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Abstract A permutation code of length n and distance d is a set � of permutations
from some fixed set of n symbols such that the Hamming distance between each
distinct x, y ∈ � is at least d . In this note, we determine some new results on the
maximum size of a permutation code with distance equal to 4, the smallest interesting
value. The upper bound is improved for almost all n via an optimization problem on
Young diagrams. A new recursive construction improves known lower bounds for
small values of n.

Keywords Symmetric group · Permutation code · Permutation array · Characters ·
Young diagram · Linear programming

1 Introduction and summary

Let n be a positive integer. Two permutations σ, τ ∈ Sn are at distance d if στ−1

has exactly n − d fixed points. This is the ordinary Hamming distance when σ and
τ are written as words in single-line notation. For example, 14325 and 54123 are at
distance three.

A permutation code of length n and minimum distance d is a subset � of Sn such
that the distance between distinct members of � is at least d . The investigation of
permutation codes began some time ago with the articles [5, 8]. Little further atten-
tion was given to this topic until the past decade. Permutation codes have enjoyed a
resurgence due to various applications.
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For instance, consider a common electric power line. While the primary function
is delivery of electric power, the frequency can be modulated to produce a family
of n ‘close’ frequencies. At the receiver, as the power itself is received, these small
variations in frequency can be decoded as symbols. In order for this information trans-
mission to not interfere with power transmission, it is important that the frequency
remain as constant as possible. One means to achieve this is to use block coding with
length n, and to insist that each codeword uses each of the n symbols exactly once.
See [2] for a survey of constructions and applications of permutation codes.

Let M(n,d) denote the maximum size of a permutation code of length n and
minimum distance d . The following are well-known elementary consequences of the
definitions.

Lemma 1.1

(a) M(n,2) = n!,
(b) M(n,3) = n!/2,
(c) M(n,n) = n,
(d) M(n,d) ≤ nM(n − 1, d),
(e) M(n,d) ≤ n!/(d − 1)!.

Part (a) is clear from the definition. For (b), consider the alternating group � = An.
The quotient of two permutations in An is again in An, and thus cannot be a single
transposition. The minimum distance is, therefore, equal to three. Permutation codes
realizing the bound in (c) are equivalent to Latin squares; see [3] for more on Latin
squares and permutation codes. To prove (d), take a permutation code � of length n

and distance d , and suppose without loss of generality that symbol n appears most
often in the last position of words in �. Then the code �′, comprised of the first n− 1
symbols of all words in � ending in n, is a permutation code of length n − 1 and
distance d . We have |�′| ≥ |�|/n. Now (e) follows from (d) by a simple induction.

Various recent papers have investigated permutation codes and their variants. We
refer the reader to [2, 6] for related algebraic results, to [10] for a nice probabilistic
approach, and to [3, 15] for some combinatorial bounds.

Although nearly all detailed investigations of M(n,d) have considered relatively
large distance d , we are presently interested in the smallest undecided distance:
d = 4. By Lemma 1.1, part (e), we have as a starting point M(n,4) ≤ n!/6.

The Gilbert-Varshamov and sphere-packing bounds for permutation codes are well
known, and generally outperform other bounds for small values of d .

Lemma 1.2 Let Dk denote the number of derangements of order k. Then

n!
∑d−1

k=0 Dk

(
n
k

) ≤ M(n,d) ≤ n!
∑� d−1

2 �
k=0 Dk

(
n
k

) .

Unfortunately, the sphere-packing upper bound for d = 4 is simply n!. Although
distance four has not been explicitly considered on its own, the following improve-
ment for d = 4 was essentially known to Frankl and Deza in early investigations [8].
A proof is provided here for completeness.
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Lemma 1.3 M(n,4) ≤ (n − 1)!.

Proof Consider for each σ ∈ Sn the set of all n words Aσ = {σ }∪{(1i)σ : 2 ≤ i ≤ n}.
We have |Aσ | = n for any σ . Given a permutation code � ⊂ Sn of distance 4, it
suffices to show that if σ 
= τ are both in �, then Aσ ∩ Aτ = ∅. Assume without loss
of generality that the identity () = 123 · · ·n ∈ Aσ ∩Aτ . If either σ or τ equals (), then
their distance is only two, a contradiction. So σ = (1i) and τ = (1j) for some 1 <

i < j ≤ n. But then στ−1 = (1ji) and σ, τ are at distance 3, another contradiction. �

Our main result is an improved upper bound on M(n,4) arising from linear pro-
gramming and a concrete problem on characters of Sn.

Theorem 1.4 If k2 ≤ n ≤ k2 + k − 2 for some integer k ≥ 2, then

n!
M(n,4)

≥ 1 + (n + 1)n(n − 1)

n(n − 1) − (n − k2)((k + 1)2 − n)((k + 2)(k − 1) − n)
.

The next two sections are devoted to the proof of this result. Specifically, Section 2
introduces various background necessary for the proof, and Section 3 handles the
details through a certain optimization problem.

Some interesting special cases of Theorem 1.4 are now given.

Corollary 1.5 If n = k2, or if n = (k + 2)(k − 1), where k ≥ 2 is an integer, then

M(n,4) ≤ n!
n + 2

. (1.1)

Corollary 1.6 There exists a positive constant ε such that for infinitely many values
of n,

(n − 1)! − M(n,4) ≥ ε
√

n(n − 2)!.

Proof In Theorem 1.4, take n = k2 + k/2 for k an even integer. Then

n!
M(n,4)

≥ 1 + (n + 1)n(n − 1)

n(n − 1) − (k/2)(3k/2 + 1)(k/2 − 2)
.

Multiplying both numerator and denominator of the fraction on the right by (n − 3)!,
and neglecting insignificant terms, we have (n − 1)! − M(n,4) ∼ 3

8k3(n − 3)!. �

In investigating linear programming bounds for permutation codes, Tarnanen [13]
gives the explicit bound n!/M(n,4) ≥ 12 for n ≥ 10. This is one instance of Corol-
lary 1.5 above. Indeed, the method in that article inspired Theorem 1.4, whose proof
is given in Section 3.

A similar expression to Theorem 1.4 (though unpleasant) holds as well for k2 +
k + 1 ≤ n ≤ k2 + 2k. See the end of Section 3 for details. A table of upper bounds for
small values of n is also provided.
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On the other hand, the Gilbert-Varshamov lower bound, specialized to d = 4, is

M(n,4) ≥ 6n!
2n3 − 3n2 + n + 6

. (1.2)

It is possible to construct, through recursive methods in [2], permutation codes of
minimum distance 4 which come close to or improve (1.2) for small values of n. This
is the content of Section 4.

2 Partitions, characters, and LP bounds

For n a positive integer, a partition λ of n, denoted λ � n, is an unordered list of
positive integers which sum to n. Equivalently, λ may be written as an ordered t-
tuple (λ1, λ2, . . . , λt ), where λ1 ≥ λ2 ≥ · · · ≥ λt . A partition is often identified with
its Young diagram, in which λi boxes occupy the ith row, left-justified. For instance,
the partition 1 + 3 + 4 of n = 8 is written as the triple λ = (4,3,1) and has Young
diagram as shown.

The conjugate λ∗ of a partition λ is the partition whose Young diagram is the
transpose of that for λ. Specifically, the ith part of the conjugate is

λ∗
i = |{j : λj ≥ i}|.

The conjugate of the partition shown above is (3,2,2,1). The number of ones in λ,
which is simply λ∗

1 − λ∗
2, is denoted by ϕ(λ).

In what follows, we shall use without definition terms such as ‘main diagonal’,
‘outside corner box’, and ‘hook’, which are standard for Young diagrams and Young
tableaux. A comprehensive reference is [7]. When convenient, we may use exponen-
tial notation 1t12t2 . . . to denote a partition with t1 ones, t2 twos, etc.

We now summarize some terminology and basic facts on the representation theory
of the symmetric group. See [7] for further detail.

A representation of a group G is a homomorphism h : G → GL(N,C). The char-
acter associated with h is χh = Trace ◦ h, mapping G to C. Its dimension (or degree)
is N = χh(1G). The dimension is also abbreviated dimχh. Since h is a homomor-
phism, a character χh is clearly constant on any conjugacy class of G.

Both the irreducible representations of the symmetric group Sn and the conjugacy
classes of Sn are in one-to-one correspondence with the set of all partitions of n. Each
irreducible character of Sn is an integer-valued function on the conjugacy classes of
Sn. Here, we represent the character corresponding to partition λ by χλ, and the
conjugacy class corresponding to μ simply by μ. So the (λ,μ)-entry of the character
table of Sn is χλ(μ).

We also have χλ(1n) = dimχλ, and this is often written dimλ. The explicit value
of dimλ is easily obtained from the hook length formula, [7]. More generally, the
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so-called Frobenius character formulas (see [11] for details) give χλ(1n−t t1)/dimλ,
for small values of t . These are

χλ(1n−221)

dimλ
=

∑
i βi(βi + 1) − ∑

i αi(αi + 1)

n(n − 1)
, and

χλ(1n−331)

dimλ
=

∑
i αi(αi + 1)(2αi + 1) + ∑

i βi(βi + 1)(2βi + 1) − 3n(n − 1)

2n(n − 1)(n − 2)
,

where λ � n has

• exactly s boxes on its main diagonal,
• α1 > α2 > · · · > αs boxes below the diagonal in columns 1 through s, and
• β1 > β2 > · · · > βs boxes right of the diagonal in rows 1 through s.

A (symmetric) k-class association scheme on a set X consists of k + 1 nonempty
symmetric binary relations R0, . . . ,Rk which partition X × X, where R0 is the iden-
tity relation {(x, x) : x ∈ X}, and such that for any x, y ∈ X with (x, y) ∈ Rh, the
number of z ∈ X such that (x, z) ∈ Ri and (y, z) ∈ Rj depends only on the indices
h, i, j . For J ⊂ {1, . . . , k}, a J -clique is a subset W of X such that for any distinct
w1,w2 ∈ W , (w1,w2) ∈ Rj for some j ∈ J .

The symmetric group defines an association scheme, called the conjugacy scheme,
where X = Sn are the points, relations are indexed by partitions λ � n, and (σ, τ ) ∈
Rμ if and only if στ−1 belongs to conjugacy class μ. Of course, σ and τ are at
distance d if and only if (σ, τ ) ∈ Rμ, where ϕ(μ) = n − d .

This motivates a generalized form of permutation codes. We say � ⊂ Sn is a D-
permutation code if any two distinct permutations in � are at some distance in D.
The maximum size of such a set � is denoted M(n,D). It is an easy observation that

M(n,D)M(n,Dc) ≤ n!, (2.1)

where Dc = {1, . . . , n} \ D. It is not hard to see that (2.1) implies Lemma 1.3; see
Section 5 for more details.

Tarnanen [13] considered the following specialization of Delsarte’s inequality (see
[4]) to cliques in the conjugacy scheme. Notation has been changed slightly for con-
venience.

Theorem 2.1 ([13]) Subject to aμ ≥ 0 for all μ � n, a(1,...,1) = 1, aμ = 0 for all
μ � n having n − ϕ(μ) 
∈ D, and

∑

μ�n

aμχλ(μ) ≥ 0

for all λ � n, put

MLP(n,D) = max
∑

μ�n

aμ.

Then

M(n,D) ≤ MLP(n,D). (2.2)
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Delsarte in fact proved that (2.1) holds analogously for LP bounds. In our context,

MLP(n,D)MLP(n,Dc) ≤ n!. (2.3)

The preceding algebraic tools set the stage for a proof of Theorem 1.4 and some
additional observations in the next section.

3 Proof of the upper bound on M(n,4)

3.1 Outline of the proof

By (2.2) and (2.3), it follows that

M(n,4) = M(n, {4, . . . , n}) ≤ n!
MLP(n, {2,3}) . (3.1)

In this way, our results are obtained from lower bounds on MLP(n, {2,3}). The con-
venient choice of D = {2,3} above offers a nice simplification of Theorem 2.1.

Proposition 3.1 Let n ≥ 4. Then MLP(n, {2,3}) is given by

max{1 + a + b : a, b ≥ 0 and

∀ λ � n, dim(χλ) + aχλ(1n−22) + bχλ(1n−33) ≥ 0}. (3.2)

Each feasible point for the LP in Proposition 3.1 leads to a lower bound on MLP.
For the proof of Theorem 1.4, we will consider feasible points (a, b) which are mul-
tiples of (3, n − 2). As we shall see in Sect. 3.2, such feasible points lead to the
optimum LP value for n in the relevant range.

A necessary and sufficient condition for the point (a, b) = (3C, (n − 2)C) to be
feasible is that, for all λ � n,

dim(λ) + 3Cχλ(1n−22) + (n − 2)Cχλ(1n−33) ≥ 0,

or equivalently, using the Frobenius character formulas,
∑s

i=1[αi(αi + 1)(2αi − 5) + βi(βi + 1)(2βi + 7)]
n(n − 1)

≥ 3 − 2

C
. (3.3)

Therefore, we obtain the largest possible C by minimizing, over all λ � n, the numer-
ator on the left of (3.3). (Recall that n is fixed.)

Define the polynomials f (x) = x(x + 1)(2x − 5) and g(x) = x(x + 1)(2x + 7),
and put

�(λ) =
s∑

i=1

[f (αi) + g(βi)], (3.4)

where as before λ has α1 > · · · > αs boxes below the diagonal and β1 > · · · > βs

boxes right of the diagonal. Again, s is the number of boxes on the main diagonal.
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Proposition 3.2 Let n = k2 + l, 0 ≤ l ≤ k − 2. With � as defined in (3.4),

�(λ) ≥ n(n − 1) + 2l(k − l − 2)(2k − l + 1) for all λ � n,

with equality if λ = l1kk or λ = (l + 1)1(k − 1)k+1.

We defer a proof of Proposition 3.2 until Sect. 3.3. From this, (3.1) and (3.3), it
follows that

n!
M(n,4)

≥ MLP(n, {2,3})
≥ 1 + (n + 1)C

≥ 1 + 2(n + 1)n(n − 1)

3n(n − 1) − �(l1kk)

= 1 + (n + 1)n(n − 1)

n(n − 1) − l(2k − l + 1)(k − l − 2)
.

This completes the proof of Theorem 1.4.

3.2 Optimality of (3C, (n − 2)C)

We saw in the last section that each feasible point (a, b) for the LP in (3.2) results
in a lower bound on MLP(n, {2,3}). Therefore, it is important to note that our choice
a = 3C, b = (n − 2)C is indeed best-possible. Since MLP(n, {2,3}) = 1 + a + b, the
optimality will follow provided we show that

• (3C, (n − 2)C) lies on at least two constraints of the form tia + uib ≤ 1, i = 1,2,
such that t1 < u1 while t2 > u2.

It is a routine calculation that

k∑

i=0

[f (i) + g(i)] = k(k + 1)2(k + 2). (3.5)

Actually, from this identity, it is straightforward to prove the second statement of
Proposition 3.2. In particular, for λ(1) = l1kk one has sequences

αi : k, k − 1, . . . , k − l + 1, k − l − 1, . . . ,1,0,

and βi : k − 1, k − 2, . . . ,1,0;
similarly for λ(2) = (l + 1)1(k − 1)k+1,

αi : k + 1, k, . . . , k − l + 1, k − l − 1, . . . ,3,2,

and βi : k − 2, k − 3, . . . ,1,0.

After simplifying �, we see that (3C, (n − 2)C) lies on the two constraints in (3.2)
which correspond to these two λ(i).
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Now, the constraints are of the form tia + uib ≤ 1, where

ti = −χλ(i)
(1n−22)

dim(λ(i))
and ui = −χλ(i)

(1n−33)

dim(λ(i))
.

Using the Frobenius character formulas and (3.5),

u1 − t1 = k(k + 1)(k − l)(k − l − 1)

n(n − 1)(n − 2)
> 0

and

t2 − u2 = k(k + 1)(k2 + k + 2 + l + 2kl − l2)

n(n − 1)(n − 2)
> 0.

It follows that, if C is chosen according to Proposition 3.2, (3C, (n − 2)C) is indeed
the optimum for (3.2).

3.3 Minimizing � over Young diagrams

The purpose here is to prove Proposition 3.2 using some neat local changes to Young
diagrams. Recall �(λ) = ∑s

i=1[f (αi) + g(βi)], where f and g are the cubic poly-
nomials defined in Sect. 3.1. The following simple properties of f and g are easily
verified.

Lemma 3.3

f (y) ≥ f (x) for integers 0 < x < y

g(y) > g(x) for 0 ≤ x < y

g(x) ≥ f (x) for all integers x

f (x) + f (y) ≥ f (x + 1) + f (y − 1) for integers 0 ≤ x < y

g(x) + g(y) ≥ g(x + 1) + g(y − 1) for integers 0 ≤ x < y

f (x) + g(y) ≥ f (y) + g(x) for integers 0 ≤ x ≤ y

f (y) + g(x) ≥ f (y − 1) + g(x + 1) for integers 0 ≤ x ≤ y − 3

Using Lemma 3.3, we show that diagram operations 1 through 5 below do not
increase �. The diagrams for which these operations cannot be performed are then
characterized and compared relative to �.

Operation 1 Flattening right of the diagonal. Here, assume that there is an integer
t ≥ s with λj = t and λi ≥ t + 2 for some i < j ≤ s. Without loss of generality,
suppose i is the greatest such index and j is the least such index. So the box in
position (i, λi) is an outside corner. By choice of j , moving this box into position
(j, λj + 1) yields a valid diagram λR with

�(λ) − �(λR) = g(βi) + g(βj ) − g(βi − 1) − g(βj + 1) ≥ 0.
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We illustrate this diagram operation with an example. The diagonal cells are num-
bered and the box which moves is indicated.

Operation 2 Flattening below the diagonal. Assume that there is an integer t with
λ∗

j = t and λ∗
i ≥ t + 2 for some i < j ≤ s. Without loss of generality, suppose i is

the greatest such index and j is the least such index. Moving the lowermost box of
column i into column j yields a valid diagram λB with

�(λ) − �(λB) = f (αi) + f (αj ) − f (αi − 1) − f (αj + 1) ≥ 0.

Operation 2 is illustrated below.

Operation 3 Adding to the diagonal. Assume now that both λs, λ
∗
s > s, so that both

αs and βs are positive, but that there is an outside corner box in some position other
than (s, s + 1) or (s + 1, s). Moving any such outside corner box (say from row i)
into position (s + 1, s + 1) creates a new valid diagram λD . As expected,

�(λ) − �(λD) = g(βi) − g(βi − 1) ≥ 0.

A similar inequality holds if an outside corner box is selected below the diagonal.
This operation is illustrated below.
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After some combination of these three operations, we are left with a diagram ap-
proximating a rectangle. Define a near-rectangle to be a Young diagram obtained by
removing a (possibly empty) hook from a rectangle. Then � attains its minimum
on near-rectangles, i.e., on partitions of the form λ = (k + 1, . . . , k + 1, k, . . . , k, r),
where the k and r < k terms may not be present. Near-rectangles enjoy the property
that the sequences (αi) and (βi) are each an interval of consecutive integers, possibly
minus a single integer.

We now consider two further operations which do not increase �.

Operation 4 Transposing. Suppose that λ1 > λ∗
1 for a near-rectangle λ. Then βi ≥

αi for all i = 1, . . . , s. Taking the conjugate of λ simply interchanges αi with βi .
Estimating term-by-term and using Lemma 3.3, we have

�(λ) − �(λ∗) =
s∑

i=1

[f (αi) + g(βi) − f (βi) − g(αi)] ≥ 0.

For near-rectangles, this leads to the simplifying assumption that the bounding rec-
tangle be square or tall (not wide).

Operation 5 Squaring. Suppose λ is a near-rectangle with αi ≥ βi + 3 for all i =
1, . . . , s. Move all lowermost boxes in columns 1 through s onto the right of rows
1 through s, one per row. Call the resulting diagram λS and refer to the illustration
below. Estimating term-by-term,

�(λ) − �(λS) =
s∑

i=1

[f (αi) − f (αi − 1) + g(βi) − g(βi + 1)] ≥ 0.

After possibly several iterations of these five operations, we arrive at Young dia-
grams of the following structure.

Lemma 3.4 Function � attains its minimum at a near-rectangle λ with βi ≤ αi ≤
βi + 3 for each i = 1, . . . , s.

In other words, the Young diagram of λ is obtained from an (m+j)×m rectangle,
for some j ∈ {0,1,2,3}, by adding an extra column of Y ≥ 0 boxes appended on the
right, and an extra row of X ≥ 0 boxes appended below. If there are n boxes in total,
we have X + Y = n − m(m + j).
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We now invoke the assumption of Theorem 1.4 that n = k2 + l for some integers
k ≥ 2 and 0 ≤ l ≤ k − 2.

Case 1: j = 0. This forces m = k and X + Y = l. Using (3.5), we have

�(λ) = k(k + 1)2(k + 2) − f (k − X) − g(k − Y).

Since Y = l −X, further calculation shows that �(λ) has a negative coefficient 6(n−
(k + 1)2) of X2. Therefore, � is minimized at either X = 0 or X = l. By Lemma 3.3,
it is easily seen that (X,Y ) = (l,0) minimizes � in this case. This results in partition
λ = l1kk .

Case 2: j = 2. This leads to m = k − 1 and X + Y = l + 1. Since X ≤ k − 1 in this
case, it follows that Y ≥ l + 2 − k. Calculating with (3.5), one has

�(λ) = k(k + 1)2(k + 2) − 6k(k + 2) − f (k + 1 − X) − g(k − 1 − Y).

Working as in Case 1, this function is minimized at one or both endpoints. Since
l ≤ k − 2, the endpoints are (0, l + 1), (l + 1,0), with the minimizing partition being
λ = (l + 1)1(k − 1)k+1.

Case 3: j = 1. Since l ≤ k − 2, we have m = k − 1 and X + Y = k + l. As before,
� can only be minimized at either endpoint (X,Y ) = (k − 1, l + 1) or (l, k). The two
relevant values agree with that calculated in Case 1. We have

�((k − 1)k−lkl+1) = �(l1kk) = n(n − 1) + 2l(k − l − 2)(2k − l + 1).

Case 4: j = 3. A (k + 2) × (k − 1) rectangle minimizes � for l = k − 2, in addition
to previous shapes. We have

�((k − 1)k+2) = n(n − 1).

3.4 Other values of n and d

It should be stressed that the case n = k2 + l, k + 1 ≤ l ≤ 2k is not qualitatively
different. Using feasible points of the form (3C/2, (n − 2)C), a slightly modified
function �, and working mostly with the (m + 1) × m and (m + 3) × m rectangles,
one arrives at a similar bound. For n = k2 + k − 1 and k2 + k, the bounds obtained
from this method are worse, the latter bound agreeing with Lemma 1.3. We omit
details, but state the results for the interested reader.

Theorem 3.5 If n = k2 + l, with k + 1 ≤ l ≤ 2k for some integer k ≥ 2, then

n!
M(n,4)

≥ 1 + (n + 1)n(2n − 1)

2n(n − 1) − ((k + 1)2 − n)(l(5 − 2l) + k(4l − 1))
.

For l = k − 1, n!/M(n,4) ≥ n + 1 and for l = k, n!/M(n,4) ≥ n.
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Fig. 1 Lower bounds on
MLP(n, {2,3}) versus n

A plot of the small LP bounds we obtain by this method is given in Figure 1.
To guess feasible points of the form (3C, (n−2)C), we initially computed explicit

values of MLP for small values of n. Using Operations 1 through 5 above, the number
of constraints is drastically reduced, and the LP becomes computationally efficient.

A preliminary look at the case d = 5 shows that near-rectangles are not neces-
sarily the optimizing diagrams. This is essentially due to the ‘nonlinear’ χλ(1n−422)

term. Therefore, the technique may fail to have much success for upper bounds on
permutation codes of higher distances.

4 Constructions for small n

A permutation code of length n and distance d is here denoted by PC(n, d). It is
well-known that M(n,4) = n!/6 for n = 4,5,6. In fact, more is true. We will later
make use of the fact that for these values of n, Sn can be partitioned into six disjoint
PC(n,4). See [2] and earlier references for details of the constructions.

Our starting point is a construction found in [2]. This is actually analogous to the
‘partitioning construction’ [14] for constant weight binary codes.

Lemma 4.1 ([2]) Suppose there are disjoint PC(n0,4) of sizes s1, . . . , sp and disjoint
PC(n1,4) of sizes t1, . . . , tp . Suppose further that there is a constant weight binary
code of length n = n0 + n1, weight n1, and distance 4 of size c. Then there is a
PC(n,4) of size c

∑p

j=1 sj tj .

The idea here is to consider each word x of the constant weight code in turn. On the
positions in which x has a 0, place any word from the ith PC(n0,4). Likewise, on the
positions in which x has a 1, place any word (symbols shifted to {n0 +1, . . . , n0 +n1})
from the ith PC(n1,4). The distance between permutations resulting from different
constant weight binary words x 
= y is at least 4 by virtue of the constant weight code.
The distance between permutations arising from the same constant weight binary
word x is at least 4, either because a given PC(ni,4) alone carries the distance, or
because for each j = 0,1, the PC(nj ,4) are disjoint.

The difficult ingredient in Lemma 4.1 is a good set of disjoint PC(n,4). In this
construction, the set of positions in which ‘high’ symbols are placed is different for
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distinct constant weight codewords. So it follows that the construction results in dis-
joint PC(n,4) when the ingredient constant weight codes are disjoint. For this pur-
pose, we cite an easy but helpful fact from coding theory. The proof is rather well
known, but provided here for completeness.

Lemma 4.2 ([9]) Let U
n
w denote the set of all binary words of length n and weight

w. Then U
n
w partitions into n codes of minimum distance 4.

Proof Define a mapping T : U
n
w → Z/(n) as follows. For a binary word x =

x0x1 · · ·xn−1 of weight w, put T (x) = ∑
i ixi (mod n). Consider Cj = T −1(j),

where j ∈ Z/(n). If x,y ∈ Cj were to disagree in exactly two positions, say posi-
tions h and k, then

0 = j − j = T (x) − T (y) = h(xh − yh) + k(xk − yk) = ±(h − k).

It follows that each Cj has minimum distance at least 4. �

In Lemma 4.1, suppose our disjoint PC(nj ,4) are �
(j)

1 , . . . ,�
(j)
p , j = 0,1. For

any i, we could equally as well have paired up �
(0)
1 with �

(1)
i , �

(0)
2 with �

(1)
i+1, and

so on. This results in p disjoint PC(n,4) of sizes s1ti + s2ti+1 + · · · + spti−1, where
indices wrap (mod p) and i = 1, . . . , p.

These are essentially our new observations which make the partitioning construc-
tion for permutation codes now recursive.

Theorem 4.3 Suppose there exist disjoint PC(n0,4) of sizes s1, . . . , sp and disjoint
PC(n1,4) of sizes t1, . . . , tp . Suppose further that there are disjoint constant weight
binary codes of length n = n0 + n1, weight n1, and distance 4 of sizes c1, . . . , cq .
Put ui = s1ti + s2ti+1 + · · ·+ spti−1, i = 1, . . . , p, where indices are read (mod p).
Then there are disjoint PC(n,4) of sizes uicj , i = 1, . . . , p, j = 1, . . . , q .

In either the binary constant weight setting or the permutation setting, consider
any set of disjoint codes of sizes a1, . . . , aN . By including singletons, these codes
may be assumed to partition the relevant space of words. Following [1], define the
norm of this partition to be

∑N
i=1 a2

i . Let A2(n,4,w) denote the maximum norm of a
partition into constant weight binary codes of length n, weight w, and distance 4. Let
M2(n,4) denote the maximum norm of a partition into PC(n,4). It is clear that, in
both cases, the norm is bounded above in terms of the maximum possible code size.
This is stated below for permutation codes.

Lemma 4.4

n!
M(n,4)

≤ (n!)2

M2(n,4)
.

Define the binorm of a1, . . . , aN to be
∑N

i=1(a1ai + a2ai+1 + · · · + aNai−1)
2,

where indices are read mod N . Observe that if all ai = n!/N , then the binorm is sim-
ply n!4/N . Let M4(n,4) be the maximum binorm of a partition of Sn into PC(n,4).
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Table 1 Improved lower bounds on M2(2n,4) and M(n,4) from the partitioning construction

2n
(2n

n )
2

A2(2n,4,n)
≤ n!4

M4(n,4)
≤ (2n)!2

M2(2n,4)
≤ (2n)!

M(2n,4)
≤ (2n)!/GV

10 7.89458, [1] 6, [2] 47.3675 42, [2] 286

12 8.54186, [1] 6, [2] 51.251 42, [2] 507

14 12.8985, [1] 15, [2] 193.48 158.4, [2] 820

16 15.9995, [9] 15, [2] 239.99 239.99 1241

20 20 47.9975 959.95 959.95 2471

24 24 59.692 1432.6 1432.6 4325

28 28 209.85 5875.7 5875.7 6931

32 32 240 7680 7680 10417

Specializing to n0 = n1 = n in Theorem 4.3, and interpreting in terms of norms and
binorms, we arrive at the following inequality.

Corollary 4.5 M2(2n,4) ≥ A2(2n,4, n)M4(n,4).

Proof Suppose we have partitions achieving A2(2n,4, n) and M4(n,4). With no-
tation as in Theorem 4.3, there exists a partition of S2n into PC(2n,4) of sizes
(s1si + s2si+1 + · · · + spsi−1)cj for all relevant i, j . Computing the norm of this
partition,

M2(2n,4) ≥
∑

i,j

c2
j (s1si + s2si+1 + · · · + spsi−1)

2

= A2(2n,4, n)M4(n,4). �

Writing Corollary 4.5 more conveniently, we have

(2n)!2
M2(2n,4)

≤
(2n

n

)2

A2(2n,4, n)
· n!4
M4(n,4)

. (4.1)

In Table 1, partitions from [2] and [1, 9] are used to obtain lower bounds on M(2n,4)

which improve the Gilbert-Varshamov bound, here denoted by GV. Lemma 4.4 and
(4.1) are used.

5 Conclusion

Our main upper bound on M(n,4) is actually obtained through MLP(n, {2,3}), yet we
have so far said nothing about M(n, {2,3}). It is not hard to show that M(n, {2,3}) =
n for n ≥ 6. For consider a set � ⊂ Sn, n ≥ 6, with στ−1 either a transposition or
3-cycle for distinct σ, τ ∈ �. Without loss of generality, () ∈ �. Any transpositions
in � must intersect. So if � has only transpositions, then |�| ≤ 1 + (n − 1) = n. On
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the other hand, any two 3-cycles, as well as any transposition and any 3-cycle, must
pairwise intersect in two points. Checking various cases completes the argument.

It is curious that MLP(n, {2,3}) being a poor upper bound on M(n, {2,3}) is actu-
ally advantageous for bounding M(n,4). Along these lines, we are very interested in
deciding whether

MLP(n, {2,3})MLP(n, {4, . . . , n}) = n!.
A variation on this identity does hold. Consider the graph G with vertex set Sn, and
where pair {σ, τ } is an edge of G if and only if d(σ, τ ) 
∈ D. The Lovász θ -function
θ(n,D) of G is an upper bound on the size of an independent set in G; thus it is also
an upper bound on M(n,D). Furthermore,

θ(n,D)θ(n,Dc) = n!.
The interested reader is referred to [12] for more details on the Lovász bound in
relation to Delsarte’s bound.

It is not hard to see that MLP(n, {2,3}) = θ(n, {2,3}). In fact, the latter quantity
amounts to dropping the nonnegativity condition on the variables in Proposition 3.1,
and the maximum is still attained in the first quadrant a, b ≥ 0. Actually, one of the
referees has observed more generally that semidefinite programming may be a fruitful
technique for bounding permutation codes. We leave this to possible future work.

On the lower bound side, we have for n ≤ 32 reported new lower bounds sub-
stantially better than the Gilbert-Varshamov bound. It is shown that the partitioning
construction is recursive and accounts for all permutations in S2n. However, it ap-
pears difficult to control the number of disjoint arrays, and hence n!/M(n,4), as n

increases.
It is our hope that LP bounds and the partitioning construction will enjoy further

application to permutation codes, and to constant composition codes in general.
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