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Abstract We completely determine the smooth and palindromic Schubert varieties
in affine Grassmannians, in all Lie types. We show that an affine Schubert variety is
smooth if and only if it is a closed parabolic orbit. In particular, there are only finitely
many smooth affine Schubert varieties in a given Lie type. An affine Schubert variety
is palindromic if and only if it is a closed parabolic orbit, a chain, one of an infinite
family of “spiral” varieties in type A, or a certain 9-dimensional singular variety in
type B3. In particular, except in type A there are only finitely many palindromic affine
Schubert varieties in a fixed Lie type. Moreover, in types D and E an affine Schubert
variety is smooth if and only if it is palindromic; in all other types there are singular
palindromics.

The proofs are for the most part combinatorial. The main tool is a variant of
Mozes’ numbers game, which we use to analyze the Bruhat order on the coroot lat-
tice. In the proof of the smoothness theorem we also use Chevalley’s cup product
formula.

Keywords Affine Grassmannians · Schubert varieties

1 Introduction

Let G be a simply-connected simple compact Lie group, with complexification GC.
The affine Grassmannian LG is a projective ind-variety, homotopy-equivalent to the

The first author was supported by the Royalty Research Fund and NSF grant DMS-0800978.
The second author was supported by the National Science Foundation grant DMS-0504795.

S.C. Billey · S.A. Mitchell (�)
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
e-mail: mitchell@math.washington.edu

S.C. Billey
e-mail: billey@math.washington.edu

mailto:mitchell@math.washington.edu
mailto:billey@math.washington.edu


170 J Algebr Comb (2010) 31: 169–216

loop space �G and closely analogous to a maximal flag variety of GC. It has a
Schubert cell decomposition

LG =
∐

λ∈Q∨
eλ,

where Q∨ is the coroot lattice and eλ is the corresponding Schubert cell. The closure
Xλ of eλ is a finite dimensional projective variety that we call an affine Schubert
variety. In this paper we completely determine the smooth and palindromic affine
Schubert varieties.

Theorem 1.1 Let Xλ be an affine Schubert variety. Then the following are equivalent:

a) Xλ is smooth;
b) Xλ satisfies Poincaré duality integrally;
c) Xλ is a closed parabolic orbit.

Of course (a) ⇒(b) and (c) ⇒ (a) are immediate; the significant point is (b) ⇒ (c).

Corollary 1.2 There are only finitely many smooth Schubert varieties in a fixed LG.

In fact, it is easy to see that the non-trivial closed parabolic orbits are in bijective
correspondence with connected subgraphs of the affine Dynkin diagram containing
the special node s0 (Proposition 4.1).

A node of the Dynkin diagram is minuscule if there is an automorphism of the
affine diagram carrying it to the special node s0. A minuscule flag variety is a flag
variety whose parabolic isotropy group is the maximal parabolic obtained by deleting
a minuscule node. (Warning: Our “minuscule” flag varieties would be called “co-
minuscule” in some sources.) Similarly, if a variety X is isomorphic to G′/P for
some reductive algebraic group G′ and maximal parabolic subgroup P , we will say
X is a maximal flag variety.

It turns out that every closed parabolic orbit in LG is a minuscule flag variety of
some simple algebraic group, and that every minuscule flag variety occurs as a closed
parabolic orbit in some affine Grassmannian (see Proposition 4.5). Hence we obtain
as a by-product:

Corollary 1.3 Let X be a Schubert variety in a minuscule flag variety. Then the
following are equivalent:

a) X is smooth;
b) X satisfies Poincaré duality integrally;
c) X is a closed parabolic orbit.

This corollary generalizes the fact that in the type A Grassmannian, GkC
n, the

smooth Schubert varieties are the ones that are themselves Grassmannians [1, Cor.
9.3.3].

A Schubert variety Xλ is palindromic if it has palindromic Poincaré polynomial
|Xλ|(t) = 1 + a1t + . . . + ad−1t

d−1 + td , where d is the complex dimension of Xλ.
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In other words, Xλ satisfies Poincaré duality additively: ak = ad−k for all 0 < k < d .
We say that Xλ is a chain if |Xλ|(t) = 1 + t + t2 + . . . + td . In type An, there are
two infinite families of palindromic Schubert varieties (one family if n = 1) Xn,k ,
X′

n,k of dimension kn, introduced by the second author in [16]. We call these spiral
varieties, for reasons to be explained in Section 11. The two families are conjugate
under the automorphism of the affine Dynkin diagram fixing the special node s0. The
spiral varieties have a number of interesting properties (the first three are proved in
[16]):

(1) H∗Xn,k realizes the “degree filtration” on H∗�SU(n + 1);
(2) Xn,k is the variety of k-dimensional submodules in a free module of rank n+1

over the truncated polynomial ring C[z]/zk ;
(3) H ∗Xn,k and H ∗GkC

n+k are isomorphic as graded abelian groups, but not as
rings unless k = 1;

(4) (Cohen-Lupercio-Segal [8]) Xn,k is homotopy-equivalent to Holk(P
1,

Gn+1C
∞), the space of holomorphic maps of degree k.

Theorem 1.4 Xλ is palindromic if and only if one of the following conditions holds:
a) Xλ is a closed parabolic orbit (in particular, Xλ is smooth).
b) Xλ is a chain.
c) G has type An and Xλ is spiral.
d) G has type B3 and λ = (3,0,−1).

There is some overlap in conditions a)-d). For example, in the simply-laced case a
chain is a closed parabolic orbit if and only if it is a projective space, and these occur
frequently. In type An the two spiral classes of minimal dimension n are projective
spaces, but the others are neither smooth nor chains. The peculiar exception in type
B3 is a singular 9-dimensional variety with Poincaré polynomial 1 + t + t2 + 2t3 +
2t4 + 2t5 + 2t6 + t7 + t8 + t9.

Corollary 1.5 If G is not of type A, there are only finitely many palindromic Schubert
varieties in LG.

It is easy to see that in all types there are only finitely many chains (Corollary 7.2),
so the corollary follows immediately from the theorem.

By a special case of a theorem of Carrell and Peterson ([6]; see also [13], XII, §2),
an affine Schubert variety is palindromic if and only if it is rationally smooth. This
yields the corollary:

Corollary 1.6 Schubert variety. Then the following are equivalent:
a) Xλ is palindromic;
b) Xλ is rationally smooth;
c) Xλ satisfies rational Poincaré duality;
d) Xλ satisfies one of the conditions (a)-(d) of Theorem 1.4.

Since we have enumerated all the palindromic Schubert varieties, the corollary can
be proved ad hoc by checking that the singular ones satisfy rational Poincaré duality.
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The equivalence of rational Poincaré duality and rational smoothness is well-known
[15].

In the simply-laced case (this excludes affine type A1, which should not be re-
garded as simply-laced) every chain is a projective space (Corollary 7.6), and so in
particular is smooth. Hence:

Corollary 1.7 In types D and E, an affine Schubert variety is smooth if and only if
it is palindromic. In all other types there are singular palindromics.

This contrasts with an unpublished theorem of Dale Peterson, which asserts that
for ordinary Schubert varieties the corollary holds in all simply-laced types ADE.
Combining Peterson’s result with Corollary 1.7, we get evidence for the following
conjecture.

Conjecture 1.8 In any flag manifold G/Q of affine or classical type, smoothness is
equivalent to rational smoothness for all non-cyclic simply laced types.

Theorem 1.4 gives a second proof of Theorem 1.1: Having listed all the palin-
dromic Schubert varieties, we need only run through the list and show that only the
closed parabolic orbits satisfy Poincaré duality integrally.

In a second forthcoming article [2], the authors consider an alternative approach to
the proof of Theorem 1.4. In this work, we associate a natural family of bounded par-
titions to each element in the coroot lattice in such a way that the relations in Young’s
lattice on partitions imply relations in Bruhat order on coroot lattice elements. These
relations are sufficient to differentiate all palindromic affine Schubert varieties from
the non-palindromic ones.

Several tools developed in this paper may be of interest in their own right:

• A simple type-independent description for the covering relation in Bruhat order
on coroot lattice elements corresponding to linear reflections is given in Proposi-
tion 9.1. A similar description for the covering relations corresponding to certain
affine reflections r1,β (Proposition 9.3).

• A type-independent characterization is given of rigid elements (elements with a
unique reduced expression) and chains in W̃S . In order to be as explicit as possible,
we give a type by type description of the corresponding coroot lattice elements in
addition to the general characterization.

• The Poincaré polynomials for all smooth and palindromic affine Schubert varieties
are explicitly determined.

• A necessary condition for smoothness in chains is given in terms of Chevalley’s
rule for multiplication in the cohomology ring.

Let us outline the proofs of Theorems 1.1 and Theorem 1.4. We use a variant of
the Mozes numbers game [18] to observe the affine Weyl group action on the coroot
lattice elements. The proof of Theorem 1.1 begins by considering some elementary
obstructions to palindromy. We call this the “palindromy game” in analogy with the
Mozes numbers game. The point is simply that LG has only one cell of each of the
first few dimensions, and hence a palindromic Xλ can’t have too many cells near



J Algebr Comb (2010) 31: 169–216 173

the top. This already narrows down the possibilities for smooth or palindromic affine
Schubert varieties considerably. In particular, in any affine Grassmannian there is a
unique 2-cell, and hence a palindromic Xλ of complex dimension d can only have one
(2d − 2)-cell. If Xλ satisfies Poincaré duality, then multiplication by the generator of

H 2Xλ induces an isomorphism H 2d−2Xλ

∼=−→ H 2dXλ. It is known that the classical
formula of Chevalley for this cup product generalizes to the affine case (indeed to any
Kac-Moody flag variety), putting further severe restrictions on which λ can occur.
Along the way we also classify the chains together with their cup product structure.
Each lemma, theorem and proposition is stated independent of type. A few of the
lemmas employ a type by type description of the Dynkin diagram and coroot lattice
elements.

The proof of Theorem 1.1 uses only the weak order on the coroot lattice; in other
words, it only uses descents of the form λ ↓ sλ with s one of the Coxeter generators
of the affine Weyl group. Theorem 1.4, on the other hand, requires a more elaborate
version of the palindromy game incorporating the full Bruhat order; in other words,
it requires descents of the form λ ↓ rλ in which r is an affine reflection associated to
a non-simple root.

We note that there are useful tools for identifying smooth and rationally smooth
affine Schubert varieties already in the literature. Kumar’s [12] test for smoothness
and rational smoothness of Schubert varieties can be applied to the affine Grass-
mannian [12] by testing each Schubert variety at the identity. Carrell-Kuttlers’ [7]
algorithm for identifying the singular locus outside of type G2 could also be used by
showing that each Schubert variety not corresponding to a closed parabolic orbit has a
non-empty singular locus. However, at this time, we do not see how to use these tests
to give the simple description of the smooth and rationally smooth Schubert varieties
in our main theorems.

2 Notation

We follow the notation from [5] whenever possible.
G: simple, simply-connected compact Lie group of rank n

T : maximal torus, with Lie algebra t

W : Weyl group
S = {s1, s2, . . . , sn}: set of Coxeter generators for W

�,�+: root system, positive roots
αs , s ∈ S: simple positive roots. If s = si , we also denote αs by αi .
ms(α), α ∈ �: α = ∑

s∈S ms(α)αs

α0: highest root; set ms = ms(α0)

D: Dynkin diagram with S as set of nodes
Q∨, P ∨: Coroot lattice, coweight lattice
GC, TC: complexification of G,T .
B , B−: Borel subgroup containing TC, opposite Borel subgroup.

G̃C: GC(C[z, z−1]), or regular maps C
×−→GC

P̃ : GC(C[z]) ⊂ G̃C , or regular maps C−→GC
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LG: G̃C/P̃ , the affine Grassmannian
B̃: {f ∈ P̃ : f (0) ∈ B−}
W̃ : affine Weyl group
S̃: S ∪ {s0}, the Coxeter generators for W̃

D̃: affine Dynkin diagram with S̃ as set of nodes
�̃: affine root system Z × �

W̃S : set of minimal length representatives for W̃/W

�, �S : length function on W̃ , length function relative to S

Bruhat coverings. If σ ∈ W̃/W , and r is an affine reflection, we write σ ↓ rσ if
�S(rσ ) = �S(σ ) − 1. Thus σ covers rσ in the Bruhat order. If r ∈ S̃ we call this a
left descent. The partial order generated by the left descents is the left weak order or
just weak order for short. Note the right weak order isn’t useful on W̃/W since every
non-trivial element has only s0 as a right descent. If �S(rσ ) = �S(σ ) + 1, we write
σ ↑ rσ .

Minuscule nodes: We call a node s of D minuscule if it satisfies the equivalent con-
ditions: (i) There is an automorphism of D̃ carrying s0 to s; (ii) ms = 1, where ms

is the coefficient of αs in the highest root α0. We call a flag variety of GC minus-
cule if its parabolic isotropy group is the maximal parabolic obtained by deleting a
minuscule node. Note, the minuscule fundamental coweights form a set of distinct
representatives for P ∨/Q∨. We caution the reader that these coweights would be
called “co-minuscule” in some sources such as [1]. However, our minuscule nodes
correspond with their fundamental cominuscule coweights.

Long and short nodes: In the simply-laced case we regard all roots as long. A node
s of the Dynkin diagram is regarded as long/short according as the corresponding
simple root αs is long/short.

Poincaré series: If A is a suitable graded object—a ranked poset, a graded abelian
group, etc.—we write |A|(t) for the Poincaré series of A. The spaces X considered
in this paper invariably have their homology groups concentrated in even dimen-
sions, and as a slight variant of this notation we write |X|(t) = ∑

i ai t
i , where ai =

rank H2iX. Similarly, the CW-complexes we consider have only even-dimensional
cells, and it will be convenient to call the 2k-skeleton of X the complex k-skeleton.
Here the k-skeleton of X is the union of all cells of dimension up to and including k.

3 The coroot lattice

In this section we set down some basic facts and notation concerning the coroot lat-
tice.

3.1 The coroot lattice and the affine Weyl group

The affine Weyl group W̃ is the group of affine transformations of t generated by all
reflections across hyperplanes α = k, where α ∈ �, k ∈ Z. It fits into a split extension

Q∨−→W̃−→W.
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Hence there are bijections

Q∨ ∼=−→ W̃/W
∼=−→ W̃S,

mapping λ ∈ Q∨ to wλ ∈ W̃S if λ and wλ are in same coset of W̃/W . Thus we have
two distinct canonical sets of coset representatives for W̃ /W . Define

�S(λ) = min{�(λw) : w ∈ W } = �(wλ).

Both length functions can be computed using the formulas of [11]:

�(λ) =
∑

α∈�+
|α(λ)|, �S(λ) = �(λ) − q(λ), (1)

where

q(λ) = |{α ∈ �+ : α(λ) > 0}|.
The equivalent length generating functions |W̃S |(t) =

∑

w∈W̃S

t�(w) and |Q∨|(t) =
∑

λ∈Q∨
t�

S(λ) can be obtained from the following beautiful formula due to Bott.

Theorem 3.1 [4] Let e1, e2, . . . , en be the exponents of W . Then

|LG|(t) =
n∏

i=1

1

(1 − tei )
.

Now recall that λ ∈ Q∨ is dominant (resp. anti-dominant) if α(λ) ≥ 0 (resp.
α(λ) ≤ 0) for all α ∈ �+. It follows that λ = wλ ∈ W̃S if and only if λ is anti-
dominant.

The coroot lattice also inherits a Bruhat order and a left weak order from W̃/W .
For s ∈ S and λ ∈ Q∨ we have

λ ↓ sλ ⇐⇒ αs(λ) < 0
λ ↑ sλ ⇐⇒ αs(λ) > 0
λ = sλ ⇐⇒ αs(λ) = 0

(2)

If s = s0, the same three conditions hold with αs(λ) replaced by 1 − α0(λ).
We view the set of double cosets W\W̃/W asymmetrically, regarding it as the

orbit set of the left W action on W̃/W . Note that λ ∈ Q∨ is dominant (resp. anti-
dominant) if and only if it is the unique minimal (resp. maximal) element of its left
W -orbit in W̃/W .

We will almost always denote elements λ ∈ Q∨ using the expansion of λ in terms
of the fundamental coweights ω∨

s , s ∈ S, or equivalently as Z-valued functions on
D. Again, we freely interchange the notation ω∨

s and ω∨
i if s = si . In a given type

� the elements of S are ordered as on page 214 following [5]; note the slightly odd
ordering there in type E, in which the “off-line” node is labelled as s2. If � has rank
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n and λ = ∑
aiω

∨
i then we write λ = (a1, . . . , an), where ai = αi(λ). We use the

symbol 0 to denote a sequence of zeros whose length is irrelevant or determined by
the context. Occasionally, however, we use what we call “standard notation”, meaning
the customary explicit representation of the root systems in some R

n as in [5]; we
write ei for the standard basis where Bourbaki writes εi .

Remark: We think of Q∨ in several different ways: (1) as a lattice in t; (2) as a
group of translations acting on t; (3) as a set of coset representatives for W̃ /W ;
(4) as the subgroup Hom(S1, T ) ⊂ G̃C . This last identification uses the fact that
G is simply-connected, so that the coroot lattice and the integral lattice Ker (exp :
t−→T ) = Hom(S1, T ) coincide. It should be clear from the context which of these
interpretations is intended.

3.2 Comparison with the coweight lattice

The coroot lattice is a subgroup of finite index in the coweight lattice

P ∨ = {v ∈ t : α(v) ∈ Z∀α ∈ �}.
The fundamental coweights ω∨

s , s ∈ S, are defined by αt (ω
∨
s ) = δst . Below we sum-

marize criteria to determine if an element in P ∨ is actually an element of Q∨.
We write π1� for P ∨/Q∨, since the latter depends only on � and is the funda-

mental group of the adjoint form of G. The minuscule fundamental coweights ω∨
s

form a complete set of representatives for the non-trivial cosets in π1�. It is possible,
however, for non-minuscule fundamental coweights to represent non-trivial elements
of π1�. For the convenience of the reader, and because we need to know all such
non-trivial fundamental coweights and the relations between them, we will describe
π1� type by type. The reference is [5], where some of the data is left implicit in the
description of the fundamental weights. Since the data in [5] is in terms of weights
rather than coweights, some translation is necessary; in particular, the weights in type
B are the coweights in type C and vice-versa. For simplicity we identify the funda-
mental coweights with the nodes of D, and write s ∼ t if s = t in π1�. If δ ∈ P ∨, we
write δ = (a1, . . . , an) if δ = ∑

aiω
∨
i .

An: We have π1� = Z/(n+1), with the elements of {ω∨
i : 1 ≤ i ≤ n} representing

the distinct non-trivial classes. Equivalently, the nodes of D represent the non-trivial
classes. Hence, (a1, . . . , an) ∈ Q∨ ⇔ ∑

iai ≡ 0 mod (n + 1).

Bn: Here π1� = Z/2; the non-trivial nodes are the odd nodes and these are all
identified. Hence, (a1, . . . , an) ∈ Q∨ ⇔ ∑

aodd ≡ 0 mod 2.

Cn: Here π1� = Z/2; sn is the only non-trivial node. Hence, (a1, . . . , an) ∈ Q∨
⇔ an ≡ 0 mod 2.

Dn: Here we have

π1� ∼=
{

Z/2 × Z/2 if n even
Z/4 if n odd

The non-trivial classes are represented by s1, sn−1, sn. If k < n − 1, then sk is non-
trivial if and only if k is odd, in which case sk ∼ s1. Now let 
odd denote the sum of



J Algebr Comb (2010) 31: 169–216 177

the ai ’s with i odd, i < n−1. If n is odd, (a1, . . . , an) ∈ Q∨ ⇔ an−1 −an +2
odd ≡
0 mod 4. If n is even, (a1, . . . , an) ∈ Q∨ ⇔ 
odd + an−1 ≡ 0 ≡ 
odd + an mod 2.

E6: π1� = Z/3, with s1 and s6 representing the non-trivial nodes. The other non-
trivial nodes are s3 ∼ s6 and s5 ∼ s1. Hence, (a1, . . . , a6) ∈ Q∨ ⇔ a1 −a3 +a5 −a6 ≡
0 mod 3.

E7: π1� = Z/2, with s2, s5, s7 the non-trivial nodes. Hence, (a1, . . . , a7) ∈ Q∨
⇔ a2 + a5 + a7 ≡ 0 mod 2.

E8,F4,G2: π1� is trivial, so Q∨ = P ∨.

4 Parabolic orbits

4.1 Closed parabolic orbits

Let I ⊂ S̃ be a proper subset that contains s0. The corresponding parabolic subgroup
PI ⊂ G̃C is generated by B̃ and the simple reflections in I lifted to G̃C. Note that
PI has a unique closed orbit in LG, namely

YI = PI P̃ /P̃ = PI /PI−{s0}.

Note that YI depends only on the component of s0 in the subgraph of D̃ defined
by I . Hence:

Proposition 4.1 The non-trivial closed parabolic orbits are in bijective correspon-
dence with connected subgraphs of D̃ containing s0.

From now on we will assume that I is connected, and let pG denote the num-
ber of subgraphs as in the proposition. (We usually ignore the trivial orbit, which
corresponds to P∅ = B̃).

Let LI denote the Levi factor of PI . Since any proper sub-Coxeter system of
(W̃ , S̃) is finite, LI is a finite dimensional algebraic group whose commutator sub-
group GI,C is the simple algebraic group associated to the Dynkin diagram defined
by I . It is clear that YI = GI,C/Q, where Q is the maximal parabolic subgroup of
GI,C associated to I − {s0}. Hence YI is isomorphic to an ordinary maximal flag

variety, and in particular is irreducible and smooth. Since YI is also B̃-invariant, it is
therefore a smooth Schubert variety in LG. Hence YI = Xσ , where σ is the maximal
element of (WI )

I−{s0} ⊂ W̃S .
Note that using Proposition 4.1, one can easily compute pG and list all the closed

parabolic orbits explicitly. For example, in type An there are
(
n+1

2

)
non-trivial closed

parabolic orbits, all of which are Grassmannians. In type E8 there are ten non-trivial
closed parabolic orbits, nine of which are projective spaces. The exception is the
maximal closed parabolic orbit YI obtained by deleting the node s1; from the affine
Dynkin diagram we see that YI has type D8/D7, a nonsingular quadric hypersurface
of dimension 14.
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The dimension of any ordinary flag variety GC/QJ can be computed as follows:
Let �J denote the root subsystem corresponding to J . Then

dim(GC/QJ ) = |�+| − |�+
J |.

In particular, we have

dimYI = |�+
I | − |�+

I−{s0}|.
where �I is the root system associated to the subgraph I . We identify �I with the
root subsystem of � having {α0} ∪ {−αs : s ∈ I − {s0}} as a base.

Now let N (I ) denote the set of neighbor nodes of I ; note that N (I ) uniquely
determines I given that s0 ∈ I and I is connected. Let

AI = {α ∈ �+ : ms(α) = ms(α0)∀s ∈ N (I )}.

Lemma 4.2 AI = �+
I − �+

I−{s0}. Hence dimYI = |AI |.

Proof: It is clear that �+
I − �+

I−{s0} ⊂ AI . For the reverse inclusion, note that any
positive root α ∈ �+ can be obtained from α0 by successively subtracting simple
roots αs for various s ∈ S. If α ∈ AI , then no such αs can have s ∈ N (I ). Now write
S̃ as a disjoint union S̃ = I

∐
N (I )

∐
K . Then if β ∈ �I and γ ∈ �K , β + γ is not

a root. Hence no such αs can have s ∈ K , and it follows that α ∈ �+
I − �+

I−{s0}.

Now let λI ∈ Q∨ denote the coroot lattice representative for the top cell in YI .
Then

�S(λI ) = dimYI = |AI |.
Furthermore, setting S+(λ) = {s ∈ S : αs(λ) > 0}, we have:

Lemma 4.3 S+(λI ) = N (I ).

Proof: If s ∈ I then sλI ≤ λI in W̃/W , so αs(λI ) ≤ 0. If s ∈ K (where K is as in
the proof of Lemma 4.2), then s commutes with the elements of I ; hence αs(λI ) = 0.
Finally, if s ∈ N (I ) then λI ↑ sλI ; hence αs(λI ) > 0.

There is a simple way to recognize a dominant closed parabolic orbit:

Proposition 4.4 Suppose λ is non-trivial and dominant. Then Xλ is a closed par-
abolic orbit if and only if α0(λ) = 2.

Proof: Suppose α0(λ) = 2. Equivalently, λ has the form (i) ω∨
i with mi = 2; or (ii)

2ω∨
i with mi = 1 (i.e. i minuscule); or (iii) ω∨

i + ω∨
j with i, j minuscule. It follows

that there is a unique connected subset I ⊂ S̃ containing s0 such that S+(λ) = N (I ),
where in case (iii) this uses the fact that every minuscule node of S is a leaf node.
Moreover, Xλ is PI -invariant, and inspection of cases (i)-(iii) shows that �S(λ) =
|AI |. Hence dimXλ = dimYI by Lemma 4.2, forcing Xλ = YI .
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Conversely, suppose λI is dominant. Then λI ↓ s0λI , and hence α0(λI ) ≥ 2.
Moreover,

|AI | = �S(λI ) =
∑

α(λI )>0

(α(λI ) − 1) ≥
∑

α∈AI

(α(λI ) − 1) = (α0(λI ) − 1)|AI |.

Hence α0(λI ) = 2.

We conclude this section with a proof of Corollary 1.3.

Proposition 4.5 Every closed parabolic orbit is a minuscule flag variety of some
simple algebraic group. Moreover every minuscule flag variety occurs as a closed
parabolic orbit in some affine Grassmannian.

Proof: The first assertion is immediate, since α0 can occur at most once in a positive
root of the system �. Conversely, suppose s is a minuscule node of D, and let Z =
GC/QS−s denote the corresponding flag variety. Then there is an automorphism φ

of D̃ taking s to s0. Hence Z ∼= YI , where I = S̃ − {s}.
Corollary 1.3 is now clear from Theorem 1.1.

4.2 General parabolic orbits

In this section we fix a proper subset I ⊂ S̃ and consider arbitrary PI orbits in LG.
The propositions here are well-known (see [17] for a detailed exposition), so we omit
the proofs.

Call an element λ ∈ Q∨ I-minimal if it is the minimal element of its left W̃ I -
orbit. Then λ is I -minimal if and only if αs(λ) ≥ 0 for every s ∈ I (or 1 − α0(λ) ≥ 0
when s = s0). Every PI -orbit contains a unique I -minimal λ, and from now on
we assume λ is I -minimal unless otherwise specified. Let Oλ = PIλ ⊂ LG, and let
Mλ = LIλ ⊂ Oλ denote the corresponding Levi orbit.

Proposition 4.6 Oλ is isomorphic as an algebraic variety to the total space of a
vector bundle ξλ over Mλ, with fiber dimension �S(λ). (Here λ is the I -minimal
representative of the orbit.)

The bundle ξλ can be described explicitly in terms of a certain representation of LI

arising from the adjoint representation of LI on the the Lie algebra of the unipotent
radical of PI . We will not need this description here.

The closure relations on the PI orbits are given by the Bruhat order on the set of
I -minimal λ. We then have a filtration of LG for which the quotients are the Thom
spaces T (ξλ). Now let pλ(t) denote the generating function for the cells that lie in

Oλ. Note that pλ(t) is counting cells, not homology groups (although 1 + pλ(t) =
|T (ξλ)|(t)). In fact

pλ(t) = t�
S(λ)|Mλ|(t).

Now let Kλ ⊂ I denote those s such that αs(λ) = 0 (or 1 − α0(λ) = 0 if s = s0; in
the language of the next section, these are the “zero nodes” of λ). Then Mλ is a flag
variety of type �I/�Kλ .
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Proposition 4.7 We have

|LG|(t) =
∑

λ

t�
S(λ)|Mλ|(t),

where the sum is over all I -minimal λ. Moreover,

|Mλ|(t) =
∏|I |

i=1(1 − tei )

(1 − t)|I |−|Kλ| ∏|Kλ|
j=1(1 − tfj )

,

where e1, ..., e|I | (resp. f1, ..., f|Kλ|) are the degrees of W̃ I (resp. W̃Kλ ).

We apply this proposition to the exceptional Schubert variety in type B3.

Corollary 4.8 Let G have type B3. Then X(3,0,−1) is a singular palindromic of di-
mension 9, with Poincaré polynomial 1112222111. It satisfies Poincaré duality over
Q but not over Z, and has singular locus X(2,0,0).

Proof: Note that �S(3,0,−1) = 9. It is not difficult to compute the Bruhat order
on W̃S through dimension 9 (by hand or by computer); then one can read off the
Poincaré polynomial. Another approach is as follows: Let I = {s0, s2, s3} and note
that X(3,0,−1) is PI invariant. We will now use the proposition to analyze the PI -orbit
decomposition through dimension 9.

Let λ0 = (0,0,0), λ1 = (−1,0,1), λ3 = (−2,1,0). Note that these elements are
I -minimal of S-length 0, 3, and 5, respectively. The Levi orbits Mλi

have types
B3/B2, B3/A2, B3/A1 respectively. Since Bn has exponents 2,4, . . .2n, while An

has exponents 2,3, . . . n + 1, we conclude from Proposition 4.7 that

1. |Mλ0 |(t) = 111111 (dimension 5); note that Mλ0 = Oλ0 is the closed parabolic
orbit X(2,0,0).

2. |Mλ1 |(t) = 1112111 (dimension 6)
3. |Mλ2 |(t) = 123444321 (dimension 8).

The generating function for the cells of Oλ0 ∪ Oλ1 ∪ Oλ2 is then |Mλ0 |(t) +
t3|Mλ1 |(t) + t5|Mλ2 |(t). Comparing with |LG(t)| = 1

(1−t)(1−t3)(1−t5)
, we conclude

that the complex 8-skeleton of LG is contained in Oλ0 ∪ Oλ1 ∪ Oλ2 . Since the top
cell of Oλ3 is in dimension 5 + 8 = 13 > 9, it follows that X(3,0,−1) = Oλ0 ∪ Oλ1 .
Hence |X(3,0,−1)| is as claimed, and in particular X(3,0,−1) is palindromic.

By Theorem 1.1 (or by direct application of the Chevalley formula; see §6),
X(3,0,−1) does not satisfy Poincaré duality integrally, and in particular is singular.
Since the open orbit Oλ1 is smooth, the singular locus can only be Oλ0 = X(2,0,0).
Finally, X(3,0,−1)satisfies Poincaré duality rationally by the Carrell-Peterson theorem.

5 The palindromy game I: weak order and the coroot lattice

In §5.1 we give an informal overview of the palindromy game, in its simpler form
using only the weak order. More details are given in §5.2.
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5.1 The node-firing game

In this section we describe a variation on Mozes numbers game [18] which we call
the node-firing game. Our description of the game follows [3, 9]. The purpose of
this game is to make the bijection between W̃S and Q∨ explicit and to highlight the
left-weak order.

We identify the coweight lattice P ∨ with the group of Z-valued functions on the
Dynkin diagram D, where s �→ αs(λ). We extend this labeling to the affine diagram
D̃ by putting the value 1 − α0(λ) on the node s0. This latter value is of course deter-
mined by the others, but it is important to include it as part of the picture. The coroot
lattice Q∨ can then be identified with a subgroup of finite index in the group of all
labelled diagrams using the criteria in Section 3.2. For example, suppose � has type
Dn with n ≥ 6, and λ = −ω∨

2 + 2ω∨
3 + ω∨

n−2. Then the labelled diagram of λ is

Here s0 is the lower left node, and the nodes not shown are all labeled zero. Note,
this labeled diagram is not in Q∨ if n is odd. In fact, λ = ω∨

n−2 mod Q∨, and hence
λ ∈ Q∨ if and only if n is even.

Now λ has a left descent λ ↓ sλ precisely when s is a negative node; i.e., αs(λ) <

0, or 1 − α0(λ) < 0 when s = s0. We refer to this descent as firing the node s. The
effect of such a firing on the labeled diagram is as follows:

(1) The value at s is replaced by its negative;
(2) kαs(λ) (or 1 − α0(λ), when s = s0) is added to each adjacent node t , where

k =
⎧
⎨

⎩

1 if s is long or s, t are joined by a single edge
2 if s, t are joined by a double edge with s at the short end, or � has type A1
3 if s, t are joined by a triple edge with s at the short end

If s is at the short end of a multiple bond, we call the firing back-firing. As an
example in type F4, let λ be given by the following diagram:

Firing twice yields

If we were firing along a type A subgraph, the configuration of adjacent 1,-1 sur-
rounded by zeros would simply continue moving steadily to the right. Here, however,
firing s3 back-fires against the arrow to produce
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which has two negative nodes and hence covers a pair of elements in the weak order.
Thus we have reached a fork in the Hasse diagram of the order ideal of λ.

We remark that the node-firing game yields a simple algorithm for computing the
bijections Q∨ ∼= W̃S defined by the diagram

Q∨ ∼=−→ W̃/W
∼=−→ W̃S .

Suppose first that we are given λ ∈ Q∨. If λ = 0, then every node has label 0 except
for the node corresponding to s0 which is labeled 1. If λ �= 0, then λ has at least one
negative node t1 ∈ S̃ . Then λ ↓ t1λ. Repeating the process yields

λ ↓ t1λ ↓ t2t1λ ↓ . . . ↓ tmtm−1 . . . t1λ = 0,

where m = �S(λ). Taking σ = t1t2 · · · tm, we have (i) σ ∈ W̃S (in particular, tm = s0),
(ii) the product is reduced, and (iii) λW = σW . Hence λ �→ σ .

In the reverse direction, suppose we are given σ ∈ W̃S . The corresponding λ ∈
Q∨ is obtained by letting σ act on 0 ∈ Q∨, and is computed explicitly as follows:
Choose a reduced decomposition σ = t1t2 · · · tm, where necessarily tm = s0. Then
fire up starting from 0:

0 ↑ tm · 0 ↑ tm−1tm · 0 ↑ . . . ↑ t1t2 . . . tm · 0 = λ.

(By “’firing up” we mean simply reverse the node-firing procedure described
above, firing positive nodes to raise length rather than negative nodes to lower length.)
Many examples of these node-firings can be found below.

5.2 Elementary obstructions to palindromy

In order to show that a given λ is not palindromic, we show that it has too many
cells near the top dimension. Often these violations of palindromy can be detected
by merely firing negative nodes. In general, however, we must consider more general
Bruhat descents λ ↓ rλ defined by non-simple reflections r ∈ W̃ . Whenever possible,
we arrange things so that the necessary information can be read off directly from
the labelled diagram. Indeed the reader may find it helpful—or at least amusing—to
think of this process as a game, called the palindromy game, in which the object of
one player is to find a palindromic λ satisfying given initial conditions, while the
object of the other is to prevent it by finding an excess of Bruhat descents λ ↓ rλ. In
fact we will often refer to such descents as “moves”.

We emphasize that the “palindromy game” is much easier to play than to write
down. In many cases, the reader may prefer to draw the pictures and work out the
moves for herself, rather than wade through the verbiage required to explain them in
print. To get started, here is an informal discussion of the most basic principles of
the game. Suppose that λ is nonzero and palindromic. Then there are the following
palindromy rules. These rules give necessary conditions for Xλ to be palindromic.

Rule 1. λ has exactly one negative node s ∈ D̃ (the case s = s0 corresponds to λ

dominant).
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Rule 2. Except in type A, there cannot be two zero nodes adjacent to s.

Rule 3. If s �= s0, then α0(λ) ≤ 1.

Rule 4. More generally, λ cannot “fork too soon”.

Note that Rule 3 is a special case of rule 1. If an arbitrary λ violates Rule 3 or if
s = s0 and α0(λ) > 2 then we say λ is overweight.

See below for the precise definition of “forks too soon”. Informally, this just means
that the Hasse diagram of λ (coming down from the top) reaches a fork sooner than
the Hasse diagram of W̃S (coming up from the bottom), thereby violating palindromy.
Often one can see this instantly from the diagram.

Example: In the F4 example above, λ = (−1,0,0,0) clearly forks too soon because
s1 has a “head-start” on s0.

Example: Surprisingly, E8 is in many ways the simplest type. One reason for this
is that it is the unique simply-laced type with no minuscule nodes; another reason
will be given below. Firing up from 0 ∈ Q∨ in E8 it takes six steps to reach the fork.
Hence if a given λ is to have any chance at palindromy, the fork at s4 must be suitably
protected. For example, suppose s = s1 is the unique negative node of λ. Then either s

must be blocked away from s4 by an intermediate positive node (picture the negative
value moving to the right under repeated firings), or at least one of the exit nodes
s2, s5 of the fork must be positive (and in fact must be at least as large as |α1(λ)|, but
we ignore this refinement for the moment).

Now suppose in addition that α1(λ) = −1. Then by exploiting Rule 1 and Rule 3
and the coefficients ms in the expansion α0 = ∑

s∈S ms(α)s (see §12), we see at once
that λ can only have the form

Here Xλ turns out to be the closed parabolic orbit YI with I = S̃ − {s2}, which has
has type P

8. This is easily seen by firing the negative node all the way down to the
bottom. Note that the 1 serves to protect the fork, and is killed by the -1 as it passes
by. This example illustrates why all three of the E types are actually easier than the
classical types: There are few repetitions among the coefficients ms .

Consider the length generating function in Theorem 3.1 expanded out

|W̃S |(t) =
∑

σ∈W̃S

t�(σ ) = 1 + t + . . . + tk−1 + akt
k + . . .

where k = kG is minimal such that ak > 1. If no such k exists, we set kG = ∞ (this
happens only in type A1).

Pictorially, the first fork (going up) in the Hasse diagram for W̃S occurs at height
kG − 1 (see the diagrams at the end of the paper for examples). To compute kG we
start at s0 on the affine Dynkin diagram, and follow the only possible path until a
node of degree 3 or higher is reached. The number of nodes in such a path is kG − 1.
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Here we allow doubling back along a multiple edge; for example, in type F4 we reach
a fork at s3, where we have the option of continuing to s4 or following the unused
edge back to s2:

The coefficient akG
is just the number of options at the fork. Thus kG and akG

are
easily determined by inspecting the affine Dynkin diagrams.

kG =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 type An, n > 1
3 type B,C,D

4 type E6
5 type E7,F4,G2
7 type E8
∞ type A1

(3)

akG
=

{
3 in type D4
2 otherwise

(4)

Remark: This result can also be proved by computing the rational cohomology of the
loop group: It is well known that

H ∗(BG;Q)
∼=−→ (H ∗(BT ;Q))W ,

and that the ring of invariants (H ∗(BT : Q))W is a polynomial algebra on generators
of complex dimension d1 ≤ d2 ≤ . . . ≤ dn. The degrees di can be computed explicitly
in each Lie type; see [10], p. 59. Since �G is the double-loop space of BG, we have
kG = d2 − 2, yielding the table above. From this point of view, the exceptional value
akG

= 3 in type D4 can be traced to the fact that H 8BSpin(8) has rank 3, with
generators the Pontrjagin classes p2

1,p2 plus the Euler class.

Now for all Xλ, |Xλ|(t) ≤ |W̃S |(t) coefficient by coefficient. In addition, if Xλ is
palindromic of dimension d , then

D|Xλ|(t) ≤ |W̃S |(t)
where if f (t) = a0 +a1t + . . .+ant

n is a polynomial of degree n, the dual polynomial
is Df (t) = tnf (t−1) = an +an−1t + . . .+a0t

n. In a range of dimensions (depending
on λ), the inequality will actually be an equality. In any case, (3) forces restrictions
on |Xλ|(t) near the top dimension d . Consider for example the configurations in a
Hasse diagram

which we call a pair, a fork, and a trident respectively, with λ sitting at the top. If Xλ

is palindromic then λ cannot cover a pair or a trident, and if � is not of type A then
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it cannot cover a fork. In type B we will encounter an (upside down) scepter

A palindromic λ cannot cover a scepter.
In general, we say that λ forks too soon if the Hasse diagram of its order ideal

(coming down from the top) reaches a fork sooner than the Hasse diagram of W̃S

(coming up from the bottom). More precisely: Say |Xλ|(t) = 1 + a1t + . . . + akt
k +

tk+1 + . . . + tm, where m = �S(λ) and k is maximal such that ak > 1. Then λ forks
too soon if 0 ≤ m − k < kG. Hence, this proves Rule 4 in the palindromy game.

Example: We show that if G has type E8 and λ is anti-dominant and non-trivial,
then Xλ is not palindromic. Assume there is a unique negative node s (otherwise λ

covers a pair), and all other nodes are zero. Assume further that s is a leaf node of
D (otherwise λ covers a fork). Finally, if s is one of the three leaf nodes s1, s2, s8,
then by repeated firing we reach the fork in the Dynkin diagram in 3, 2 or 5 steps
respectively. But it takes 6 steps to reach the fork from s0. Thus λ forks too soon and
hence is not palindromic.

6 Poincaré duality and the affine Chevalley formula

We state an affine version of the Chevalley formula, Proposition 6.1, and record its
implications for Poincaré duality. Proposition 6.1 is a special case of a vastly more
general cup product formula in equivariant cohomology, valid for arbitrary Kac-
Moody flag varieties ([13], Corollary 11.3.17 and Remark 11.3.18).

Let [Xλ] ∈ H2d LG denote the homology class carried by Xλ, where d = �S(λ).
These classes form the Schubert basis of H∗LG. Of course we can equally well regard
[Xλ] as a homology class in any Schubert variety containing Xλ. Let yλ ∈ H 2d LG be
Kronecker dual to [Xλ] with respect to the Schubert basis. We will use the abbrevia-
tion y for the special class y = yα∨

0
= ys0 , the generator of H 2 LG.

We have seen that if Xλ is palindromic of dimension d , then it has just one 2d − 2
cell, and hence H 2d−2Xλ

∼= Z. If in addition Xλ satisfies Poincaré duality, then cup

product with y defines an isomorphism H 2d−2Xλ

∼=−→ H 2dXλ. Hence the following
affine Chevalley formula puts severe restrictions on the possible such λ.

Proposition 6.1 If λ ↑ sλ for s ∈ S̃ , then

< yyλ, [Xsλ] >=
{
cαs(λ) if s �= s0
1 − α0(λ) if s = s0
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where

c =
⎧
⎨

⎩

1 if αs is long
2 if αs is short in type B,C,F
3 if αs is short in type G2

Note that the assumption λ ↑ sλ is equivalent to the positivity of αs(λ) or 1 − α0(λ)

in the node-firing game. It will be convenient to reformulate the Chevalley formula
in terms of the cap product.

Proposition 6.2 If λ ↓ sλ for s ∈ S̃ , then

< ysλ, y ∩ [Xλ] >=
{−cαs(λ) if s �= s0
α0(λ) − 1 if s = s0

where c = 1,2,3 is the constant defined in Proposition 6.1.

Proof: This follows by simply reversing the roles of λ and sλ in Proposition 6.1.

We then have at once:

Proposition 6.3 If Xλ satisfies Poincaré duality and λ ↓ sλ for s ∈ S̃ , then c = 1 and
αs(λ) = −1 (or 1 − α0(λ) = −1). In particular αs must be long.

Remark: This proposition already suffices to show that there are only finitely many
Schubert varieties satisfying Poincaré duality in a fixed LG, since it bounds the values
αs(λ) for s ∈ S.

7 Chains

In this section we study the chains in LG. In particular, we will show that the theorems
of the introduction hold for chains. We begin with some simple observations.

7.1 General observations

Proposition 7.1 Every infinite subset of W̃S is cofinal in the Bruhat order.

Proof: If I ⊂ S̃ is a proper subset, then W̃ I is a finite Coxeter group. Let kI denote
the maximal length of an element of W̃ I , and let k = max kI , where I ranges over
all such proper subsets. Then if w ∈ W̃ and �(w) > k, every reduced expression for
w contains every s ∈ S̃ at least once.

Now let V ⊂ W̃S be an infinite subset, and let σ ∈ W̃S . Since W̃S has only finitely
many elements of any fixed length, we can choose v ∈ V with �(v) ≥ (k + 1)�(σ ). It
then follows from the preceding paragraph that σ ≤ v, proving that V is cofinal.

Corollary 7.2 If W is not of type A1, there are only finitely many chains Xλ in L.
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Proof: If there are infinitely many chains, then it follows from Proposition 7.1 that
W̃S itself is a chain. But this is the case only in type A1.

Following Stembridge’s terminology [19], call an element of a Coxeter group rigid
if it has a unique reduced expression. Note that if w is rigid, then so is any element
obtained by taking a factor of the reduced expression for σ . The next result follows
by an easy induction on length.

Proposition 7.3 Every chain is rigid.

We will classify the chains by first classifying all the rigid elements. In fact the
rigid elements are easily determined from the affine Dynkin diagram. Suppose s, t ∈
S̃ with s �= t , and let mst denote the order of st . Thus mst = {2,3,4,6}. Then a rigid
element cannot contain subwords of the form st, sts, stst, ststst respectively in these
four cases. Therefore, rigid elements are fully commutative [19]. We interpret these
restrictions on the Dynkin diagram as follows:

Let σ = tktk−1 · · · t1 be the reduced expression for a rigid element, where σ ∈ W̃S

and hence t1 = s0. Then every pair of adjacent nodes in this expression must be
adjacent in D̃. Hence σ determines and is determined by a path in D̃ starting at
s0. Furthermore the path in question can reverse direction only along a multiple edge,
and if the multiple edge is a double edge then it can reverse direction only once. If it is
a triple edge then the path can reverse direction at most three times. Let us call such a
path an admissible path. Then every rigid element is associated to an admissible path
in this way and vice versa. This allows us to read off the rigid elements directly from
D̃.

Examples: 1. Type A. There are two infinite families of rigid elements, obtained
in the evident way by starting at s0 and following an admissible path of arbitrary
length clockwise or counterclockwise around the diagram. These are the only rigid
elements. Note that the two families are conjugate under the involution of D̃ fixing
s0.

2. Type C. Consider an admissible path (starting at s0).

At s1 there are two options: We can reverse direction to obtain a maximal rigid ele-
ment s0s1s0, or we can continue to the right. In the latter case we obtain an infinite
family of rigid elements by running back and forth along D̃ in the evident way. These
are the only rigid elements.

3. If W is not of type A or C, then there are only finitely many rigid elements.
This is also clear, because then D̃ has no cycles and at most one multiple edge; hence
every maximal admissible path eventually terminates at a leaf node.

Let σ be a chain of length m and let y0 = 1, y1, . . . , ym denote the Schubert basis
for H ∗Xσ . Define integers ak by y1yk−1 = akyk for 1 ≤ k ≤ m. Note that these inte-
gers are positive by the Chevalley formula, and a1 = 1. In particular, H ∗(Xσ ;Q) is a
truncated polynomial algebra Q[y1]/ym+1

1 , and hence Xσ satisfies rational Poincaré
duality. Call (a1, . . . , am) the cup sequence of σ .
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Proposition 7.4 Let σ be a chain of length m. Then Xσ satisfies Poincaré duality
over Z if and only if the cup sequence of σ is palindromic, in the sense that ak =
am−k+1 for all k.

Proof: Define ck by yk
1 = ckyk , and note that ck �= 0. Then Poincaré duality holds

if and only if ckcm−k = cm for all k. But ck = a1 . . . ak , and the result follows by
induction on k.

7.2 Simply-laced types

We show that the chains in the simply laced types all lead to smooth affine Schubert
varieties.

Proposition 7.5 Let σ = tktk−1 · · · t1 be a chain in W̃S whose associated admissible
path has no multiple edges. Then Xσ is a closed parabolic orbit isomorphic to P

k ,
and hence Xσ is smooth.

Proof: Suppose that W is not of type A. Then the ti ’s are distinct, since D̃ has no
cycles and the path cannot reverse direction. Hence the path of σ is just a type Ak

subgraph I of D̃, and Xσ = YI
∼= P

k .
If W has type An, then n > 1 and σ belongs to one of the two infinite families

of rigid elements described above. The two families are conjugate, so we may as
well suppose the path of σ runs counterclockwise, so σ = sk−1 · · · s1s0 for some k,
the subscripts being interpreted mod n + 1. Then k − 1 < n: For if k − 1 = n then
σ ↓ sk−1sk−3 · · · s1s0, so that σ covers a pair; hence for k − 1 ≥ n, σ is not a chain.
Therefore k − 1 < n, in which case the argument used above shows that Xσ is a
closed parabolic orbit isomorphic to P

k .

Corollary 7.6 In the simply-laced case ADE (excluding A1), every chain is a closed
parabolic orbit isomorphic to P

k .

To describe the chains explicitly, it suffices to list the maximal chains. In type An

for n > 1 there are two maximal chains namely s2s3 · · · sns0 and sn−1 · · · s1s0 with co-
root lattice representatives (1,−1,0) and (0,−1,1) respectively. The corresponding
affine Schubert varieties are both isomorphic to P

n. In types DE every rigid ele-
ment is a chain. In type Dn there are three maximal chains, two P

n’s and one P
3.

Finally there are two P
5’s in E6, a P

7 and a P
5 in E7, and a P

8 and a P
7 in E8. We

leave it to the interested reader to write down the minimal length and coroot lattice
representatives for these chains.

7.3 Non-simply-laced types

In this subsection, we classify the chains in each of the non-simply-laced types and
identify which ones index smooth affine Schubert varieties.

A1: Every element is a chain; indeed W̃S itself forms an infinite chain with cup
sequence ak = k. To see this, note that the coroot lattice representative for the element
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of length k is λ = (2j) if k = 2j − 1 and λ = (−2j) if k = 2j . In the first case we
have α(λ) = 2j and in the second 1 −α(λ) = 2j + 1, where in this case α = α1 = α0
is the unique positive root. Hence our claim follows from the Chevalley formula.
We also conclude that the only non-trivial smooth Schubert variety in type A1 is the
unique closed parabolic orbit, Xs0 ≈ P

1.
This discussion also recovers the well-known fact in type A1 that H ∗LG is a

divided power algebra, a fact normally deduced from the equivalence LG
∼= �SU(2)

and the Serre spectral sequence.

Bn: There are two maximal chains for n ≥ 3: (1) σ = s1s2s0 with coroot lattice
representative (−1,0,1,0); and (2) τ = s0s2s3 · · · snsn−1 · · · s3s2s0, with coroot lat-
tice representative (2,0).

Note that both Xσ and Xτ are closed parabolic orbits YI , where I = {s0, s1, s2}
and I = S̃ − {s1} respectively. Xσ ≈ P

3 is of the simply laced type covered above.
Xτ is a flag variety of type Bn/Bn−1; that is, a nonsingular quadric hypersur-
face of dimension 2n − 1. A standard calculation shows that the cup sequence is
(1,1, . . . ,1,2,1, . . . ,1,1); here this follows at once from the Chevalley formula.
Thus the complex k-skeleton of Xτ satisfies Poincaré duality if and only if k ≤ n− 1,
in which case it is just P

k . We observe that firing down from τ yields the chains below
τ , namely starting with

we get

(2,0) ↓ (2,−1,0) ↓ (1,1,−1,0) ↓ (1,0,1,−1,0) ↓ . . . .

There is one additional rigid element ζ = s1s2 · · · sn · · · s2s0. Note that after omit-
ting the s2 on the left we still have an element of W̃S ; this shows that ζ covers a pair
and so is not a chain.

Remark: In type Dn, the closed parabolic orbit Y = Y
S̃−{s1} has type Dn/Dn−1, a

nonsingular quadric hypersurface of dimension 2n − 2. Its coroot lattice represen-
tative is (2,0) as in type Bn. In this case, however, the middle homology has rank
two, by a standard calculation or inspection of the Bruhat poset. Hence the Schubert
subvarieties of Y of dimension k, n − 1 < k < 2n − 2, are not even palindromic. For
future reference, we note that firing down from the top yields

(2,0) ↓ (2,−1,0) ↓ (1,1,−1,0) ↓ · · · , (5)

exactly as in type Bn except that just above the middle dimension we reach the ele-
ment (1,0,1,−1,−1), which covers a pair.

Cn: Recall that there is an infinite family of rigid elements, obtained by
running back and forth along D̃. The maximal chain in this family is σ =
s1s2 · · · snsn−1 · · · s1s0 (note that s0σ covers a pair). There is one other maximal chain:
τ = s0s1s0.
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Note that Xτ is a closed parabolic orbit and is not P
3 but rather the symplectic

Grassmannian Sp(2)/U(2). By the Chevalley formula its cup sequence is (1,2,1)

and hence its complex 2-skeleton is not smooth. The coroot lattice representative for
τ is (0,1,0) = ω∨

2 .
The coroot lattice representative of σ is λ = (−1,0) = −ω∨

1 = −α∨
0 , hence λ is

anti-dominant and λ = σ as elements of W̃ . The cup sequence is (1,2,2, . . . ,2). In-
deed, the complete list of coroot lattice representatives below σ is obtained as follows,
starting from the top:

(−1,0) ↓ (1,−1,0) ↓ . . . ↓ (0,1,−1,0)
sn−1↓ (0,1,−2)

sn↓ (0,−1,2)

sn−1↓ (0,−1,1,0) ↓ . . . ↓ (1,0).

All but one of the factors of 2 in the cup sequence occurs because of a short node;
the application of sn also yields a factor of 2 because αn(0,−1,2) = 2. It follows that
none of the complex skeleta are smooth, except for the P

1 at the bottom.
An alternative way to identify the cup sequence of σ is to note that Xσ is the

closure of the lowest non-trivial P -orbit, and it can be shown that it is therefore the
Thom space of the line bundle over P

2n−1 associated to the highest root [14]. This
line bundle is just (γ ∗)2, where γ ∗ ↓ P

2n−1 is the hyperplane section bundle. Hence
if u is the Thom class, by a general formula we have u2 = c1(γ

∗2)u = 2yu where
y = c1(γ

∗), yielding the cup sequence above.

F4: There are two maximal chains. The first is s0s1s2s3s2s1s0, a closed parabolic
orbit of type B4/B3 with coroot lattice representative (0,0,0,1). The coroot lattice
representatives of its skeleta are given by

(0,0,0,1) ↓ (−1,0,0,1) ↓ (1,−1,0,1) ↓ (0,1,−1,1) ↓ (0,−1,1,0)

↓ (−1,1,0,0) ↓ (1,0,0,0).

From our analysis of the type B case, we know that the cup sequence is (1,1,1,2,1,

1,1) and that only the complex k skeleta with k ≤ 3 or k = 7 are Poincaré duality
spaces.

The second maximal chain is s4s3s2s1s0, which has coroot lattice representative
(0,1,0,−1) and cup sequence (1,1,1,2,2). Hence it is not a Poincaré duality space.

Note that every rigid element is a chain.

G2: There are two maximal chains. The first is s2s1s2s1s2s0, which has coroot
lattice representative the anti-dominant class (0,−1) = −ω∨

2 . Its cup sequence is
(1,1,3,2,3,1) and hence it is not a Poincaré duality space. To see this, we write
down the coroot lattice representatives of its skeleta:

(0,−1) ↓ (−1,1) ↓ (1,−2) ↓ (−1,2) ↓ (1,−1) ↓ (0,1),

where we recall that firing the short node α1 in type G2 adds three times the short
value to its neighbor. From the Chevalley formula we see that the short node firings
produce cup product coefficients of 3, while the long node firing (1,−2) ↓ (−1,2)
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yields a coefficient of 2 because of the -2 in the second position. We conclude that
only the complex 1 and 2 skeleta are smooth; these are the two closed parabolic
orbits P

1, P
2. It can be shown that X−ω∨

2
is the Thom space of a line bundle over the

maximal flag variety of G2 omitting the long node [14].
The second maximal chain is s0s2s1s2s0, with coroot lattice representative (1,0).

Its cup sequence is (1,1,3,2,2), and hence it is not a Poincaré duality space.
There is one more rigid element ζ = s0s2s1s2s1s2s0. Note that omitting the s2 on

the left yields another element of W̃S ; hence ζ covers a pair and is not a chain.

7.4 Conclusions

The results of this section imply that Theorem 1.1 is true for all chains. More pre-
cisely:

Proposition 7.7 Let Xλ be a chain. Then Xλ is smooth if and only if it is a closed
parabolic orbit, in which case Xλ is either a projective space, a quadric hypersurface
of type Bk/Bk−1 for some k, or a symplectic Grassmannian of type C2/A1.

8 Proof of the Smoothness Theorem 1.1

It is well known that a closed parabolic orbit is smooth and every smooth affine
Schubert variety satisfies Poincaré duality over Z. Therefore, to prove Theorem 1.1
it is only necessary to show that if Xλ satisfies Poincaré duality integrally then it is a
closed parabolic orbit. Call λ admissible if

1. λ has a unique negative node s ∈ S̃;
2. s is a long node;
3. αs(λ) = −1 (or 1 − α0(λ) = −1, if s = s0).

Note that if Xλ satisfies Poincaré duality, then λ is an admissible palindromic by
Proposition 6.3. In Section 7 we have classified all smooth chains. Hence to finish the
main proof it suffices to prove the following key lemma:

Lemma 8.1 Suppose λ is an admissible palindromic. Then either (i) Xλ is a closed
parabolic orbit; or (ii) Xλ is a singular chain.

We first dispose of the dominant and anti-dominant cases.

Lemma 8.2 Suppose λ is admissible. Then

(a) if λ is dominant, then Xλ is a closed parabolic orbit;
(b) if λ is anti-dominant and palindromic, then G has type G2 and λ = −ω∨

2 . Hence
Xλ is a singular chain.

Proof: (a) If λ is dominant and admissible, then α0(λ) = 2, and the assertion follows
immediately from Proposition 4.4. (b) Suppose λ is antidominant, admissible, and
palindromic. Then λ = −ω∨

s , where s is a long node and ω∨
s ∈ Q∨. In particular, s is
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not minuscule. This rules out type A, since then all nodes are minuscule. Since in all
other types λ cannot cover a fork, we conclude that s is a leaf node. This eliminates
types BCD at once, since every leaf node is either short or minuscule. In type E every
leaf node is either minuscule or forks too soon. In type F4 the long leaf node s1 forks
too soon. This leaves type G2 with λ = −ω∨

2 . This element is a chain, and is singular.

Recall from Section 4 that pG is the number of non-trivial closed parabolic orbits,
and that we have shown pG is just the number of connected subdiagrams of the affine
diagram containing s0. Recall also that λ is overweight if it does not satisfy

α0(λ) ≤
{

2 for all λ

1 if λ is not dominant

An admissible palindromic cannot be overweight.

Lemma 8.3 If G is simply-laced, there are at most pG admissible palindromics.

Proof: Assume λ is admissible and palindromic. Let s ∈ D̃ denote the unique neg-
ative node of λ. By Lemma 8.2(b), we may assume that λ has at least one positive
node. Note that “positive node” always refers to a node of D, while “negative node”
refers to a node of D̃. The proof now proceeds type by type.

An: pG = (
n+1

2

)
. We may assume n > 1, since the case n = 1 was already settled

in our study of chains. Note that λ can have at most two positive nodes (otherwise
λ is overweight). Moreover if si , sj are the positive nodes, with i ≤ j , then αi(λ) =
1 = αj (λ), where in the case i = j this is to be interpreted as αi(λ) = 2. Now if sk is
the negative node, then i + j − k = 0mod (n + 1) (otherwise λ /∈ Q∨). Since there
is a unique such k, and k �= i, j , this shows that there are at most

(
n+1

2

)
admissible

palindromics.

Dn: pG = 2n. There are at most three positive nodes (otherwise λ is overweight).
If there are exactly three, then they are all minuscule and take the value 1 on λ (oth-
erwise λ is overweight). Furthermore s = sn−2 (otherwise λ covers a fork). Hence
λ = ω∨

1 + ω∨
n−1 + ω∨

n − ω∨
n−2.

If there are two positive nodes t, u then at least one of them, say t , is minuscule
(otherwise λ is overweight). If u is also minuscule, then using the characterization of
the coroot lattice elements, one can check that λ has one of the following forms:

λ =
⎧
⎨

⎩

ω∨
1 ± (ω∨

n−1 − ω∨
n )

ω∨
n−1 + ω∨

n − ω∨
1 (n even)

ω∨
n−1 + ω∨

n (n odd)

If u is not minuscule, then s �= s0, s is not minuscule, and αt (λ) = 1 = αu(λ)

(otherwise λ is overweight). Furthermore, t = s1 (otherwise λ /∈ Q∨) and s, u are
adjacent (otherwise λ covers a fork). Hence λ = ω∨

1 ± (w∨
k − w∨

k−1), where 2 < k <

n − 1. But ω∨
1 − w∨

k + w∨
k−1 is a non-palindromic skeleton of the quadric in (5), so

we must have λ = ω∨
1 + w∨

k − w∨
k−1.

Hence there are at most n − 1 admissible palindromics with two positive nodes.
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Suppose λ has exactly one positive node i. Then we claim

λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω∨
i if i even, i �= n − 1, n

ω∨
i − ω∨

1 if i odd, i �= 1, n − 1, n

2ω∨
1 if i = 1

2ω∨
i if n even, i = n − 1, n

2ω∨
i − ω∨

1 if n odd, i = n − 1, n

To prove one case of the claim, suppose i = 1. Then the negative node s can only
be s0 or s2 (otherwise either λ covers a fork or λ /∈ Q∨). This forces α1(λ) = 2
(otherwise either λ /∈ Q∨ or λ is overweight). But if s = s2 then λ = (2,−1,0), a
non-palindromic skeleton of the quadric. Hence s = s0 and λ = 2ω∨

1 .
To prove another case, suppose n odd and i = n. Then the negative node s must be

s0, s1 or sn−1 (otherwise λ covers a fork). If s = s0 then αn(λ) = 0mod 4 (otherwise
λ /∈ Q∨), and hence λ is overweight. If s = sn−1 then λ = (0,−1, a) for some a >

0. Then a + 1 = 0mod 4 (otherwise λ /∈ Q∨), and hence λ is overweight. Hence
j = 1b and αn(λ) is even (otherwise λ /∈ Q∨), and then αn(λ) = 2 (otherwise λ is
overweight). Hence λ = 2ω∨

n − ω∨
1 .

The remaining cases are left to the reader. Thus there are at most 1+n−1+n = 2n

admissible palindromics, as desired.

En: pG = 10. For each n = 6,7,8, we will show that there are at most n admissible
palindromics with one positive node, at most 10−n with two positive nodes, and none
with more than two positive nodes.

E6: There are at most three positive nodes (otherwise λ is overweight). If there are
exactly three, then the negative node must be s4 and only one of the adjacent nodes
is occupied (otherwise λ is overweight). But then λ covers a fork, a contradiction. So
there are at most two positive nodes.

Suppose there are exactly two. Then there are four possibilities: (1,0,0,0,0,1),
(0,0,1,−1,1,0), (0,0,1,0,−1,1) and (1,0,−1,0,0,1). For example, suppose that
s4 is the negative node. Then the positive nodes must be adjacent to it (other-
wise λ covers a fork), and hence must each take the value 1 (otherwise λ is over-
weight). But this forces s3, s5 as the positive nodes (otherwise λ /∈ Q∨). Hence
λ = (0,0,1,−1,1,0,0).

If there is just one positive node t , then for each choice of t there is only one
possibility for λ. For example, suppose the positive node is s6. Then the negative
node must be s1: For if s0 is negative, then α6(λ) = 0mod 3 (otherwise λ /∈ Q∨); but
then λ is overweight. The other four choices of negative node all fork too soon. It
follows that α6(λ) is even (otherwise λ /∈ Q∨), and hence α6(λ) = 2 (otherwise λ is
overweight). Hence λ = (−1,0,0,0,0,2).

E7: There are at most three positive nodes (otherwise λ is overweight). If there are
exactly three, then the negative node must be s4 and the adjacent nodes s3, s5 must be
zero (otherwise λ is overweight). But then λ covers a fork, a contradiction. So there
are at most two positive nodes.

If there are exactly two, we find that there are three possibilities: (0,1,0,−1,1,

0,0), (0,1,0,0,−1,0),(0,1,0,0,0,−1,1).
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If there is just one positive node t , then for each choice of t there is only one
possibility for λ. For example, suppose s4 is positive. Then α4(λ) = 1 and the negative
node must be s3 or s5 (otherwise λ is overweight). But s5 can’t occur, since then
λ /∈ Q∨. Hence λ = ω∨

4 − ω∨
3 .

E8: There are at most three positive nodes (otherwise λ is overweight). If there are
exactly three, then λ is still overweight unless λ = ω∨

1 + ω∨
2 + ω∨

8 − ω∨
4 . But then λ

covers a fork, a contradiction. So there are at most two positive nodes.
If there are exactly two, then λ must be either (1,1,−1,0) or (0,1,1,−1,0). If

there is only one positive node t , then for each such t there is at most one possibility
for λ. In all cases one finds that the alternatives fork too soon or are overweight;
details are left to the reader.

We can now prove Lemma 8.1. In the simply laced case, we know that every closed
parabolic orbit satisfies Poincaré duality and hence is admissible and palindromic.
Lemma 8.3 implies the converse holds also so Lemma 8.1 holds.

We now turn to the non-simply laced types.

Bn: pG = 2n − 2. We will show that (1) there are at most 2n − 2 admissible
palindromics that satisfies Poincaré duality, and (2) all other admissible palindromics
are singular skeletons of the quadric X(2,0) (and in particular, are chains).

There are at most two positive nodes (otherwise λ is overweight). If there are
exactly two, then one of them is s1 (otherwise λ is overweight). If the other is s2
then λ = (1,1,−1) (otherwise λ covers a fork). This element is a singular skeleton
of the quadric. So suppose that the two positive nodes are s1, sj , where j > 2. Then
we claim λ = ω∨

1 + ω∨
j − ω∨

j−1. To prove the claim, let s = si . If i �= 2 then j =
i ± 1 (otherwise λ covers a fork). Then there are two palindromic solutions: λ =
(1,0,−1,1,0) and λ = (1,0,1,−1,0). In the second case λ is a singular skeleton
of the quadric, hence a singular chain. If i = 2 then j = 3 and λ = (1,−1,1,0)

(otherwise λ covers a fork, since s0 is necessarily a zero node). Hence there are at
most n − 2 admissible palindromics that satisfy Poincaré duality.

Suppose there is one positive node sj . Then we claim that

λ =
⎧
⎨

⎩

ω∨
j if j even

ω∨
j − ω∨

1 if j odd, j > 1
2ω∨

1 if j = 1

If j is even then i is also even (otherwise λ /∈ Q∨). Since i �= n, this forces i = 0
(otherwise λ covers a fork). Hence λ = ω∨

j .
If j is odd and j > 1, then αj (λ) = 1 (otherwise λ is overweight). Hence i is odd

(otherwise λ is overweight). Since i �= n, this forces i = 1 (otherwise λ covers a fork).
Now suppose j = 1. If α1(λ) is odd, then i is odd (otherwise λ /∈ Q∨), in which

case λ covers a fork. So i is even. Hence αj (λ) is even (otherwise λ /∈ Q∨), forc-
ing αj (λ) = 2 and i = 0,1. If i = 1 then λ = (2,−1,0), a singular skeleton of the
quadric. Hence i = 0 and λ = 2ω∨

1 . This completes the proof of our claim.

Cn: pG = n. We must have s = si for i = 0, n. But if i = n then λ /∈ Q∨. Hence
i = 0 and λ is dominant. This forces λ = ω∨

i if i < n, and λ = 2ω∨
n if i = n, as shown

earlier.
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F4: pG = 4. If λ has more than one positive node, then λ = (1,−1,0,1), a singular
chain.

Now suppose there is one positive node sj . For each of j = 2,3, it is easy to check
that there is only one corresponding admissible palindromic, namely (−1,1,0,0)

and (0,−1,1,0). For j = 1,4 there are two admissible palindromics: (1,0,0,0) and
(1,−1,0,0) for j = 1, and (0,0,0,1) and (−1,0,0,1) for j = 4. The dominant
classes are singular chains.

G2: pG = 2. Suppose λ is an admissible palindromic (and is not anti-dominant).
Then λ has exactly one positive node sj (otherwise λ is overweight), . j = 1,2. If
j = 2 there are three admissible palindromics: (−1,1), (−1,2) and (0,1). The first
two are singular chains. If j = 1 there are two: (1,0) and (1,−1). The first is a
singular chain.

This completes the proof of Lemma 8.1 and Theorem 1.1.

Remark: Let I be a connected subgraph of D̃ containing s0. Then S+(λ) = N (I ) by
Lemma 4.3. From this point of view, the proof of Theorem 1.1 amounts to showing
that (i) If Xλ satisfies Poincaré duality, then S+(λ) = N (I ) for some (unique) I , and
(ii) for each I there is a unique λ such that S+(λ) = N (I ) and Xλ satisfies Poincaré
duality.

9 The palindromy game II: Bruhat order and the coroot lattice

In the characterization of the smooth Schubert varieties, it turned out (somewhat sur-
prisingly) that we only needed the weak order. For the palindromy theorem, however,
we will need more general Bruhat descents of the form λ ↓ rλ, where r is an affine
reflection associated to a non-simple root. As it happens, we will only need two kinds
of such reflections: The linear reflection sβ ∈ W associated to a positive root β , and
the affine reflection rβ = r1,β associated to the affine root (1, β), where again β is
a positive root. In the spirit of the palindromy game, we will often refer to such de-
scents as “moves”. Whenever possible we describe these moves λ ↓ sβλ, λ ↓ rβλ in
terms of the Dynkin diagram D̃.

Note that if r1 and r2 are any two distinct reflections (linear or affine), then by
elementary geometry we have that r1λ = r2λ ⇒ r1λ = λ = r2λ. Hence if λ ↓ r1λ and
λ ↓ r2λ, it follows that λ covers a pair.

9.1 β-positive and β-negative pairs

Let β be a positive root and let λ ∈ Q∨. We want to determine when the reflections
sβ and rβ lower the S-length of λ by 1. Note that rβλ = sβλ + β∨. For all α ∈ �+
we have the formulas

α(sβλ) = α(λ) − α(β∨)β(λ)

and

α(rβλ) = α(λ) + α(β∨)(1 − β(λ)).
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In order to evaluate the change in S-length after reflection, it is convenient to
partition the positive roots into the following sets:

1. β itself;
2. The β-null roots; i.e., {α : α(β∨) = 0}. Thus sβα = α.
3. β-positive pairs α,α′: These are characterized by sβα = α′.
4. β-negative pairs α,α′: These are characterized by sβα = −α′.

The apparent symmetry of α and α′ is misleading. In the β-positive case, we
will always take α to have α(β∨) < 0. Then α′(β∨) > 0, and α + kβ = α′, where
k = −α(β∨) = 1,2, or 3.

In the β-negative case α′(β∨) = α(β∨), and α + α′ = kβ . When k = 1 there is no
way to distinguish α,α′, but for k = 2,3 we can and will always choose α so that
β − α is a positive root. Then β − α′ is a negative root.

9.2 Linear reflections

Let λ be an element of the coroot lattice, and fix a positive root β . Note that sβλ = λ

⇔ β(λ) = 0. We say that the opposite sign condition is satisfied on (β,λ) if for every
β-negative pair α,α′ the values α(λ),α′(λ) have opposite sign. In particular, both are
nonzero.

Proposition 9.1 Let β ∈ �+ and λ ∈ Q∨.

(a) �S(sβλ) < �S(λ) ⇔ β(λ) < 0.
(b) λ ↓ sβλ ⇔ β(λ) < 0 and the opposite sign condition is satisfied.

Proof: Note that application of a linear reflection sβ to λ can only affect the q term
in the S-length formula (1). Furthermore the β-null positive roots and the β-positive
pairs contribute zero to the change in the q term, henceforth denoted as �q . Since
we always have β(sβλ) = −β(λ), the change in length will be determined by what
happens on the β-negative pairs α,α′.

Now suppose β(λ) < 0 and α,α′ are a β-negative pair. Since α + α′ is a positive
multiple of β , the values α(λ),α′(λ) either have opposite sign, are both negative, or
a negative and a zero. The pairs with opposite sign contribute zero to �q , while in
the other two cases we have respectively �q = 2, �q = 1. This proves ⇐ in (a), and
also (b).

If β(λ) > 0, then �S(sβλ) > �S(λ) (substitute sβλ for λ and apply the previous
case). This yields ⇒ in (a), completing the proof of the theorem.

The following application will be particularly useful. Given a fixed λ and nodes
s, t ∈ D with opposite sign, let I denote the unique minimal path between them,
regarded as a subgraph of D. If all interior nodes of I vanish on λ, we say that s and
t are linked by I .

Lemma 9.2 (Linear ABC-moves) Suppose that nodes s, t have opposite sign, with
s the negative node, and they are linked by a subgraph I of type A, B , or C. Then if
any one of the following conditions holds, λ covers a pair.
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(a) I has type A,B or C, and αs(λ) + αt (λ) < 0. Furthermore, if I has type B or
C, the positive node t is required to be the minuscule node of I .

(b) I has type BC, the positive node t is the minuscule node of I , αs(λ)+αt (λ) > 0,
and 2αs(λ) + αt (λ) < 0.

(c) I has type BC, the negative node s is the minuscule node of I , αs(λ)+αt (λ) < 0
and αs(λ) + 2αt (λ) �= 0.

Proof: We will find a non-simple β ∈ �+
I such that (i) λ ↓ sβλ. It then follows that λ

covers a pair. Since the β-negative pairs all lie in �+
I , we may as well assume I = D;

i.e., that � itself has type An,Bn,Cn and {s, t} = {s1, sn}. We will prove part (a) in
detail and sketch the rest.

Case (a): Let β = α1 + α2 + . . . + αn. Then by assumption β(λ) < 0, and we claim
that the opposite sign condition is satisfied. Let α,α′ be a β-negative pair. If β is
long, or β is short and the pair is also short, then α +α′ = β and it is clear that one of
the two contains α1 and the other contains αn, proving our claim. In particular, this
settles type A.

In type Bn we have β = e1, which is a short root, and there are long β-negative
pairs e1 − ei, e1 + ei . In that case we have α + α′ = 2β . Thus each root of the pair
contains α1. On the other hand α′ = β + (β − α), where β − α is a positive root. It
follows that α′ contains αn twice, and since we are assuming αn(λ) < 0, the opposite
sign condition is satisfied as required.

In type Cn we have β = e1 +en, which is again short. There is one long β-negative
pair 2e1,2en, and again we have α + α′ = 2β . Here α′ = 2e1 = α0, and so contains
α1 twice. The opposite sign condition follows as before.

Case (b): Take as β the smallest root containing αs(λ) twice. In type Bn, β = α1 +
. . . αn−1 + 2αn = e1 + en. In type Cn, β = α0. In each case it is easy to check the
opposite sign condition.

Case (c): If αs(λ) + 2αt (λ) > 0, use the β of part (a). If αs(λ) + 2αt (λ) < 0, use the
β of part (b).

9.3 Affine reflections

In this section we give necessary and sufficient conditions for λ ↓ rβλ and λ ↑ rβλ.
Note that rβλ = λ ⇔ 1 − β(λ) = 0.

9.3.1 The positive and negative pair conditions

Suppose λ ∈ Q∨. We say that β ∈ �+ satisfies the positive pair condition if either:

(i) 1 − β(λ) < 0 and whenever α,α′ is a β-positive pair, either α(λ) > 0 or
α′(λ) ≤ 0; or

(i)* 1 − β(λ) > 0 and whenever α,α′ is a β-positive pair, either α(λ) < 0 or
α′(λ) > 1.
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We say that β ∈ �+ satisfies the negative pair condition if either:

(ii) 1 − β(λ) < 0 and either β is long, or β is short and whenever α,α′ is a long
β-negative pair, either α(λ) ≤ 0 or α′(λ) ≤ 0; or

(ii)* 1 − β(λ) > 0 and either β is long, or β is short and whenever α,α′ is a long
β-negative pair, either α(λ) ≥ 2 or α′(λ) ≥ 2.

If we wish to refer only to a specific β-positive or β-negative pair we say that α,
α′ satisfies the positive pair condition or negative pair condition. In fact we will be
concerned almost exclusively with the case 1 − β(λ) < 0; the case 1 − β(λ) > 0 is
included for completeness.

Proposition 9.3 Let β ∈ �+ and λ ∈ Q∨.

a) �S(rβ(λ)) < �S(λ) ⇔ 1 − β(λ) < 0.
b) Suppose 1 − β(λ) < 0. Then λ ↓ rβλ ⇔ the positive pair condition and the nega-

tive pair condition are satisfied.
c) The analogous statements hold for 1 − β(λ) > 0.

If there exists a β such that λ ↓ rβλ, we say λ has an affine move. In particular, if
β �= α0, then λ cannot be palindromic.
Proof: For m ∈ Z let

f (m) =
{−m if m ≤ 0
m − 1 if m > 0

Then

�S(λ) =
∑

α∈�+
f (α(λ)).

We will analyze the effect of rβ on �S by considering the four types of roots listed
above separately. For any subset � ⊂ �+, we write �� for the contribution of � to
the change in �S ; more precisely:

∑

α∈�

f (α(rβλ)) =
∑

α∈�

f (α(λ)) + ��.

First observe that

β(rβλ) = 2 − β(λ),

while

f (2 − m) =
⎧
⎨

⎩

f (m) − 1 if 1 − m < 0
f (m) if 1 − m = 0
f (m) + 1 if 1 − m > 0

Hence

�{β} =
{−1 if 1 − β(λ) < 0

1 if 1 − β(λ) > 0
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Second, if � is the set of positive roots α such that sβ(α) = α, then �� = 0. There-
fore, the proposition then follows from the lemma below:

Lemma 9.4 If α,α′ is a β-positive (β-negative) pair, then

1 − β(λ) < 0 ⇒ �{α,α′} ≤ 0
1 − β(λ) > 0 ⇒ �{α,α′} ≥ 0.

In each case �{α,α′} = 0 ⇔ the positive (negative) pair condition holds for α,α′.

Proof: We have

α(rβλ) = α′(λ) + α(β∨)

α′(rβλ) = α(λ) − α(β∨).

Set a = α(λ), a′ = α′(λ), and k = −α(β∨) = 1,2,3. Thus we need only compute the
effect of the transformation (a, a′) �→ (a − k, a′ + k) on f (a) + f (a′). Taking k = 1
for simplicity, we find that

�{α,α′} = 0 if a > 0 and a′ > 1, or a < 0 and a′ ≤ 0, or a = 0 and a′ = 1;
�{α,α′} < 0 if a = 0 and a′ > 1, or a < 0 and a′ ≥ 1;
�{α,α′} > 0 if a > 0 and a′ ≤ 1, or a = 0 and a′ < 0.

If α,α′ are a β-positive pair, the lemma now follows easily on inspection, making
use of the fact that β + α = α′. Note, for example, that if 1 − β(λ) < 0 and a > 0
then automatically a′ > 1 and hence �{α,α′} = 0. If k > 1 a similar argument applies,
making use of the fact that kβ + α = α′.

If α,α′ is a β-negative pair, then α(β∨) = α′(β∨) and

α(rβλ) = α(β∨) − α′(λ)

α′(rβλ) = α(β∨) − α(λ).

Let k = α(β∨) = α′(β∨) = 1,2,3. Then we need only compute the effect of the
transformation (a, a′) �→ (k −a, k −a′) on f (a)+f (a′). Since f (1 −a) = f (a) for
all a, when k = 1 we find �{α,α′} = 0. If k > 1 and 1 − β(λ) < 0 we find

�{α,α′}
{= 0 if α(λ) ≤ 0 or α′(λ) ≤ 0
< 0 otherwise

Note that if, say, α(λ) ≤ 0, then α′(λ) ≥ kβ(λ) ≥ 2k. The case k > 1 and 1−β(λ) > 0
is similar. Since k > 1 ⇔ β is short and α,α′ are long, this completes the proof of
the lemma.

9.3.2 Graph-splitting and affine ABC-moves

Two types of affine moves will be particularly useful. We continue to fix λ ∈ Q∨.
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Lemma 9.5 (Graph-splitting moves) Let I be a proper connected subgraph of D,
and let αI denote the highest root of �I . If αI (λ) ≥ 2 and αI satisfies the positive
pair condition, then λ ↓ αI (λ) and λ covers a pair.

Proof: Note that αI is long in the sub-root system �I , whether it is long in � or
not. Since the negative pair condition involves only roots in �I , it will automatically
be satisfied in this case. If the positive pair condition also holds, then λ ↓ rαI

λ by
Proposition 9.3. Since there is also a left descent λ ↓ sλ for some s ∈ S̃ , it follows
that λ covers a pair. (Note that αI �= α0, since I is a proper subgraph.)

We call descents λ ↓ rαI
λ as above graph-splitting moves, since we are splitting

the Dynkin graph D into I and the components of its complement.

Lemma 9.6 (Affine A-moves) Suppose that s0 is linked to a nonzero node t by a
proper type A subgraph I , and that 1 − α0(λ), αt (λ) have opposite sign. If 1 −
α0(λ) + αt (λ) < 0, then λ covers a pair.

Proof: Let β = α0 −∑
s∈I :s �=s0

αs . Then β(λ) > 1 and β is a long root. Hence the neg-
ative pair condition holds. Moreover, the positive pair condition is also automatically
satisfied: For suppose α,α′ is a β-positive pair, so that β +α = α′. Then α(λ) = αt (λ)

and α′(λ) = α0(λ). Hence either α(λ) > 0 or α′(λ) ≤ 0. Then λ ↓ rβλ and λ covers a
pair.

We call the descent λ ↓ rβλ constructed above an affine A-move. There are similar
but less productive moves in the B,C cases; the following lemma will suffice for our
purposes:

Lemma 9.7 (Affine BC-moves) Suppose s0 is a negative node of λ, linked to
a positive node t by a subgraph I of type BC. If 1 − α0(λ) + αt (λ) < 0 and
1 − α0(λ) + 2αt (λ) �= 0, then λ covers a pair.

Proof: We may assume λ is dominant. There are three cases:

(1) � has type Bn and t = sn;
(2) � has type Cn and t = si , with i < n;
(3) � has type F4 and t = s3.

Suppose 1 − α0(λ) + 2αt (λ) > 0 (this rules out Case 3). Then λ has no other
positive nodes. Let β = α0 −∑

s∈I :s �=s0
αs , as in the previous lemma. Then β(λ) > 1,

and the positive pair condition is satisfied because β is the highest root containing αt

once. We also have (i) β is a short root; and (ii) if α,α′ is a long β-negative pair, then
α does not contain αt (compare the proof of Lemma 9.2), and hence α(λ) = 0. Hence
the negative pair condition is satisfied, λ ↓ rβλ, and λ covers a pair.

Now suppose 1 − α0(λ) + 2αt (λ) < 0. Let J = � − {sn} in Case 1, J =
{si+1, . . . sn} in Case 2. Then αJ (λ) = α0(λ) − 2αt (λ) ≥ 2 (note that ms(αJ ) =
ms(α0) for all s ∈ J ). Since the unique neighbor node of J in S is positive, λ covers
a pair by Lemma 9.5.
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In Case 3 let β be the highest root containing α3 twice. Then β(λ) ≥ 2 and the
positive pair condition is satisfied. Moreover β = 1222 = e1 − e4 is a long root,1 so
the negative pair condition is satisfied. Hence λ ↓ rβλ and λ covers a pair.

10 Proof of the Palindromy Theorem 1.4

The proof considers the anti-dominant, dominant, and “mixed” (i.e., neither dominant
nor anti-dominant) cases separately, proceeding by a process of elimination based on
the Palindromy Game II. The reader should keep at hand the list of chains (§7). The
spiral varieties were shown to be palindromic in [16]; see §12. The exceptional case
λ = (3,0,−1) in type B3 was shown to be palindromic in Corollary 4.8, therefore, it
remains to prove the “only if” part of the theorem. We will make frequent use of the
graph-splitting moves and linear/affine ABC-moves introduced in §9.

10.1 Anti-dominant case

Theorem 10.1 If λ is nonzero and anti-dominant, then Xλ is palindromic in precisely
the following cases:

(i) � has type An and λ is a spiral class of the form −k(n + 1)ω∨
i for i = 1, n and

k ≥ 1;
(ii) � has type Cn or G2 and λ = −α∨

0 . In these cases λ is a chain.

Proof: Suppose λ is palindromic. There is a unique s ∈ S such that αs(λ) < 0, since
otherwise λ covers a pair. Thus λ = −mω∨

s for some s ∈ S and m > 0. If s is not
a leaf node, firing it shows that λ covers a fork. This contradicts palindromy except
in type A. In type A we have λ = (0,−m,0) with −m in the i-th position, where
1 < i < n and m ≥ 2 (otherwise λ /∈ Q∨). Then λ ↓ μ = (0,−m,m,−m,0). Then
there is a graph-splitting move μ ↓ rαi

μ. Hence λ covers a trident, a contradiction.
Thus s is a leaf node.

In type A we then have s = s1, sn and m divisible by n + 1, so that λ is spiral as
claimed. For the remainder of the proof we assume G is not of type A.

We claim m = 1; in other words, λ = −ω∨
s for some leaf node s. In particular, s

is not minuscule. To prove the claim, suppose m > 1, and let a ∈ S denote the unique
node adjacent to s. If s is a long node, then firing it yields μ = sλ = mω∨

s − mω∨
a .

Then there is a graph-splitting move μ ↓ rαs μ and hence λ covers a fork. To see this
we need only check the positive pair condition. But if αs + α = α′, then since s is a
leaf node we have ms(α

′) < ma(α
′), and hence α′(μ) ≤ 0. A similar argument works

if s is short (note this only happens in type Bn with s = sn, and in type G2 with
s = s1). This proves the claim.

The theorem now follows immediately in types CDEF : In type DEF every leaf
node is either minuscule or forks too soon, while in type C we can only have s = s1.
It remains to consider type B and G2.

1Here we are following Bourbaki notation so 1222 = α1 + 2α2 + 2α3 + 2α4.
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In type Bn there is one non-minuscule extreme node s = sn. Note that n is neces-
sarily even, since otherwise ω∨

n is not in the coroot lattice. In particular n ≥ 4. Then

−ω∨
n = (0,−1) ↓ (0,−2,1) ↓ (0,−2,2,−1)

so that now (0,−2,2,−1) covers the pair μ = (0,−2,2,0,−1) and η = (0,−2,0,1).
Furthermore μ in turn covers the pair μ1 = (0,−2,2,0,0,−1) (or (2,0,0,−1) if
n = 4) and μ2 = (0,−2,2,−2,1). Now let β = αn−1 + 2αn. Then β is a long root
with β(η) = 2. The positive pair condition for is immediately verified, so η ↓ rβη.
Furthermore, η differs from μ2 by a simple reflection. It follows that λ covers a
scepter, a contradiction.

In type G2, we have −ω∨
2 = −α∨

0 , which is a chain. On the other hand, −ω∨
1 forks

too soon (see the Hasse diagram in §13).

10.2 Dominant case

Throughout this section we assume λ ∈ Q∨ is nontrivial and dominant. In particular,
λ ↓ s0λ.

Theorem 10.2 Suppose λ is dominant and nonzero. Then Xλ is palindromic in pre-
cisely the following cases:

a) α0(λ) = 2, in which case Xλ is a closed parabolic orbit.
b) � has type An and λ is a spiral class of the form k(n + 1)ω∨

i for i = 1, n and
k ≥ 1.

c) � has type G2 and λ = ω∨
1 . In this case λ is a chain.

Proof: The theorem is trivial in type A1, so from now on we exclude that case. If
α0(λ) = 2 then Xλ is a closed parabolic orbit by Proposition 4.4, while spiral classes
are palindromic as discussed in § 11. So fix a dominant nonzero palindromic λ; we
must show that one of the three conditions holds.

Let t be a positive node linked to s0 by I .

Case 1: Suppose we can take I of type A. Then we must have 1 − α0(λ) +
αt (λ) ≥ 0 (otherwise there is an affine A-move showing λ covers a pair). Hence
(mt − 1)αt (λ) ≤ 1, and if equality holds then there are no other positive nodes.

1a: Suppose mt > 1. Then mt = 2 and λ = ω∨
t ; in particular α0(λ) = 2.

1b: Suppose mt = 1 (i.e., t is minuscule) and there is one other positive node u.
Then u must also be minuscule, forcing � of type A, D, or E6; in particular, � is
simply-laced. Then u is also connected to s0 by a type A subgraph with all interior
nodes vanishing, so by Lemma 9.6 we must have 1 − α0(λ) + αu(λ) ≥ 0. It follows
that λ = ω∨

t + ω∨
u (with t, u minuscule); in particular α0(λ) = 2.

1c: Suppose λ = mω∨
t with t minuscule. Then m �= 1 (otherwise (λ /∈ Q∨). If

m = 2 then α0(λ) = 2, so suppose m > 2. If � is not of type A, then t is not adjacent
to s0, and the node a adjacent to s0 has ma = 2. Hence firing s0 yields μ = s0λ with
α0(μ) = 2(1−m)+m = 2−m < 0. Note that α0 satisfies the opposite sign condition
on μ: For if α0 = α + α′, then each of α,α′ must contain αa once. Thus if α, say,
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contains αt , we have α(λ) = 1 and α′(λ) = 1 − m < 0. Hence there is a linear move
μ ↓ sα0μ by Proposition 9.1, showing that λ covers a fork.

Now suppose � has type A. If t is not adjacent to s0, a similar argument shows
that λ covers a trident, again contradicting palindromy. Finally, if t = s1, sn then n+1
divides m (otherwise λ /∈ Q∨), and hence λ = k(n + 1)ω∨

i for i = 1, n and k ≥ 1.

This completes the proof of Theorem 10.2 in Case 1. In particular, the theorem is
now proved in the simply-laced case.

Case 2: I has type C. This only happens when � itself has type C and t = si ,
i < n. Then 1 − α0(λ) + 2αt (λ) �= 0, since α0 takes only even values in type C. By
Lemma 9.7 we must have 1 − α0(λ) + αt (λ) ≥ 0 (otherwise λ covers a pair). Then
λ = ω∨

t and α0(λ) = 2 as in Case 1a.

Case 3: I has type B . This can only happen in two ways:
3a: � itself has type Bn and t = sn. Then α1(λ) = 0, because otherwise we can

take t = s1 in case 1b, a contradiction. Hence α0(λ) = 2αn(λ) and 1 − α0(λ) +
2αn(λ) = 1 �= 0. Thus, as in Case 2, we conclude λ = ω∨

n and α0(λ) = 2.
3b: � has type F4 and t = s3. Then λ covers a pair by Lemma 9.7, a contradiction.

Case 4: I does not have type ABC. This can happen in three ways:
3a: � has type Cn and t = sn. As in Case 1c, we conclude that λ = 2ω∨

n and
α0(λ) = 2.

3b: � has type F4 and t = s4. Thus λ = mω∨
4 for some m > 0; we will show that

m = 1 and hence α0(λ) = 2. We use only the following facts: (i) m4 = 2; and (ii)
if m4(α) = 1, then α is short. Now suppose m > 1, and let β denote the maximal
positive root with m4(β) = 1. Then β is short, and 1 − β(λ) < 0. If α,α′ is a short
β-positive pair, then β + α = α′. Hence α contains α4 (by the maximality of β)
and α(λ) > 0. Furthermore, there are no long β-positive pairs α,α′. For in that case
2β +α = α′, and hence α does not contain α4. But β +α is a root, so this contradicts
the maximality of β . Hence the positive pair condition is satisfied. If α,α′ is a long
β-negative pair, then α + α′ = 2β . It follows from (i) and (ii) that one of α(λ),α′(λ)

is zero. Hence the negative pair condition is also satisfied. Then λ ↓ rβλ and λ covers
a pair by Proposition 9.3, a contradiction.

Remark: Although it is not necessary to do so, one can easily write out the roots
used above explicitly, using the tables in [5]: We have β = 1231. There are four
β-positive pairs, with the α of the pair given by the graph roots containing α4:
0001, 0011, 0111, 1111. There are two long β-negative pairs: (1342,1120) and
(1242,1220).

3c: � has type G2 and t = s1. If α2(λ) > 0, then λ = ω∨
2 by Case 1a, and α0(λ) =

2. It remains to show that if λ = mω∨
1 , then m = 1. Let β = α1 + α2 (the highest

root containing α1 once). If m > 1 then β(λ) ≥ 2 and the positive pair condition is
satisfied. There is one β-negative pair α2, α0 (a long pair). But α2(λ) = 0, so the
negative pair condition is satisfied and λ covers a pair, a contradiction.

This completes the proof of the theorem.
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10.3 Mixed case

We assume throughout this section that λ is palindromic of mixed type. Thus λ has a
unique negative node s ∈ S and at least one positive node t ∈ S. Most of the work is
done in a series of preliminary lemmas, culminating in Corollary 10.8.

Recall, we say that an element λ of mixed type is overweight if α0(λ) ≥ 2, or
equivalently, s0 is a negative node. An overweight λ of mixed type covers a pair, and
hence is not palindromic.

10.3.1 Preliminary lemmas

Lemma 10.3 Suppose that � is not of type G2. Then either
(a) there exists a positive node t linked to s with αs(λ) + αt (λ) ≥ 0, or
(b) � has type Cn and λ is the chain (0,1,−2).

Proof: Case 1: There is a positive node t linked to s by a subgraph I of type ABC,
where in the BC case either (i) t is the minuscule node of I , or (ii) s is the minuscule
node of I and αs(λ) + 2αt (λ) �= 0. In this case αs(λ) + αt (λ) ≥ 0 by Lemma 9.2
(otherwise λ covers a pair).

Case 2: There is a positive node t linked to s by a subgraph I of type BC, where
s is the minuscule node of I and αs(λ) + 2αt (λ) = 0.

In type Bn we have t = sn, and we may assume there are no other positive nodes,
since such a node would be linked to s by a type A subgraph and we are back in Case
1. Then there is a graph-splitting move based on I − {s}; hence λ covers a pair, a
contradiction.

In type Cn we have s = sn, so the assumption αs(λ) + 2αt (λ) = 0 implies t is the
only positive node (otherwise λ is overweight). If αt (λ) ≥ 2 there is again a graph-
splitting move and λ covers a pair, a contradiction. Hence αt (λ) = 1, with t = si for
some i < n. If i < n − 1 then after firing sn there is a linear A-move showing that λ

covers a fork. Hence λ = (0,1,−2), which is a chain.
In type F4 with s = s1 and t = s3, we have α4(λ) = 0 (otherwise λ is overweight).

Since αs(λ) + αt (λ) < 0, firing down shows that λ forks too soon. If s = s2, s3 then
we may assume that α1(λ) = 0, since otherwise we are back in Case 1. In both cases
it follows that λ covers a fork, a contradiction.

Case 3: � has type F4 and {s, t} = {s1, s4}. In both cases λ forks too soon. This
completes the proof of Lemma 10.3.

Lemma 10.4 Let t be any positive node (not necessarily linked to s). Suppose
mt > ms and αs(λ) + αt (λ) ≥ 0. Then

(1) mt = ms + 1;
(2) αs(λ) = −1 and αt (λ) = 1;
(3) there are no other positive nodes.

Proof: If any one of the three conditions is not satisfied, then λ is overweight, a
contradiction.
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Lemma 10.5 Let t be a positive node linked to s. Suppose ms = mt and αs(λ) +
αt (λ) > 0. Then

(1) ms = mt = 1;
(2) αs(λ) + αt (λ) = 1;
(3) there are no other positive nodes.

Furthermore, either αs(λ) = −1 or � has type A and λ is spiral

Proof: It is immediate that conditions (1)-(3) hold (otherwise λ is overweight). In
particular � has type A,D or E6, since there are two minuscule nodes. Now suppose
αs(λ) ≤ −2, and let μ = sλ. Then αs(μ) = −αs(λ) ≥ 2. In types D and E6 there is
a unique node a ∈ S adjacent to s, and a �= t . Moreover, a is minuscule in S − {s}.
Hence if α,α′ is an αs -positive pair, so that αs + α = α′, it follows that αa occurs
exactly once in α. Therefore, either α(μ) = αa(μ) + αt (μ) = 1, or α′(μ) = αs(μ) +
αa(μ) = 0. Thus μ covers a pair by Lemma 9.5 (with I = {s}), and hence λ covers a
fork, a contradiction.

Now suppose � has type A. Then if s and t are not adjacent, a similar argument
shows that λ covers a trident, a contradiction. If s and t are adjacent, λ is spiral by
Proposition 11.1.

Lemma 10.6 Let t be a positive node linked to s. Suppose ms = mt and αs(λ) +
αt (λ) = 0. Then αs(λ) = −1.

Proof: Case 1: Assume there are no other positive nodes. Suppose αs(λ) ≤ −2, and
let β denote the maximal root such that mtβ = ms(β) + 1. Then β(λ) ≥ 2. If β is a
long root and α,α′ is a β-positive pair, then since β +α = α′, we must have mt(α) �=
ms(α) by the maximality of β . If mt(α) > ms(α) then α(λ) > 0. If mt(α) < ms(α)

then α′(λ) ≤ 0. Hence the positive pair condition is satisfied and we conclude that λ

covers a pair by Proposition 9.3. In particular, this completes the proof of Case 1 in
the simply-laced case.

In types B and F4, β is always a long root. This is clear on inspection in type B .
In F4 we have {s, t} = {s1, s4}. If s1 is the negative node then β = 1342, the second
highest root. This is clearly long since it belongs to the type A2 subgraph of D̃ on
s0, s1. If s1 is the positive node then β = 1220, the highest root of the B3 subsystem.
Hence β is long, completing the proof in B,F4.

In type Cn, β will be a short root and more care is required in the case of long
pairs. Let s = si , t = sj , where 1 ≤ i, j < n. If i < j then β = e1 + ei+1. There are
no long β-positive pairs, so the positive pair condition follows as before. However,
there is one β-negative pair 2e1,2ei+1. But 2e1 = α0 and α0(λ) = 0, so the negative
pair condition holds as well and λ ↓ rβλ by Proposition 9.3. If i > j then β = e1 −ei .
There are no long β-negative pairs, but there is one long β-positive pair 2e1,2ei . Thus
to check the positive pair condition we have to consider 2β + 2ei = 2e1 = α0. But
α0(λ) = 0 so again λ ↓ rβλ. Hence, in either case, λ covers a pair, a contradiction.

Case 2: Assume there is more than one positive node. Then the following three
conditions hold (otherwise λ is overweight):

(1) there is only one additional positive node u;
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(2) u is minuscule;
(3) αu(λ) = 1.

This rules out E8,F4 and G2 (since there is a minuscule node) and also Cn (since
αu(λ) is odd by§ 3.2). Now assume that αs(λ) ≤ −2.

Suppose first that u, t, s lie on a type A subgraph. If s is linked to u, then λ covers
a pair by Lemma 9.2. So suppose that t lies between u and s. If � has type A,
then there is a graph-splitting move showing that λ covers a pair where I is the
connected component of S −{u, s} containing t . In type BD we must have u = s1 (if
u = sn−1, sn in type Dn, then λ /∈ Q∨). Thus t = si , s = sj , with 1 < i < j . Now let
β = e1 +ei , which is the smallest root containing αu such that mt(β) = 1, ms(β) = 2.
Then β(λ) = 1 + αs(λ) < 0, and one easily checks that the opposite sign condition is
satisfied. Hence λ covers a pair in this case by Proposition 9.3.

In type E6 we have ms = mt = 2. In all cases s has two adjacent zero nodes in D̃,
and therefore λ covers a fork. In type E7 we have s = s1, s2, s3. In all cases λ forks
too soon.

If u, t, s do not lie on a type A subgraph, then we are in type Bn with u = s1 and
s = sn. Then after firing s there is a linear A-move showing that λ covers a fork. (Note
that this works whether or not t is adjacent to s, bearing in mind that back-firing along
the double bond adds 2αs(λ) to the value of its neighbor.)

Lemma 10.7 Suppose � is not of type G2 and mt < ms for all positive nodes t . Then
αs(λ) = −1.

Proof: Suppose αs(λ) ≤ −2.
Case 1: � has type BCD and there is only one positive node.
Note that the positive node is minuscule. We may assume that 2αs(λ) + αt (λ) ≤ 1

(otherwise λ is overweight). If αs(λ) + αt (λ) < 0 there is a linear ABC-move and λ

covers a pair. If αs(λ) + αt (λ) = 0 and αs(λ) ≤ −2 there is a graph-splitting move,
and again λ covers a pair. So we assume αs(λ) + αt (λ) > 0 and consider three cases:

2αs(λ) + αt (λ) < 0: Let β be the smallest root containing 2αs(λ) + αt (λ). In all
cases β is a long root. It is then clear that the opposite sign condition is satisfied, as
desired. Hence λ ↓ sβλ by Proposition 9.1 and λ covers a pair.

2αs(λ) + αt (λ) = 0: Let β be the highest root containing αs once. Then β(λ) =
αs(λ) + αt (λ) ≥ 2 since αs(λ) ≤ 2. If β is long then the positive pair condition is
clearly satisfied and we are done. If β is short and there is a long β-negative pair
α,α′, then α + α′ = 2β and α′ = β + (β − α), where β − α is a positive root. By
the maximality of β , it follows that α′ must contain αs twice, as well as αt . Hence
α′(λ) = 0, and both the positive pair condition and the negative pair condition are
satisfied. By Proposition 9.3, λ covers a pair.

2αs(λ)+αt (λ) = 1: Note this rules out type C, since αt (λ) is odd. In type D there
are two zero nodes adjacent to s, so λ covers a fork. Type Bn is similar, except in the
case s = sn. In that case, let λ = (a,0, b) with b < 0 and a + 2b = 1. Firing sn yields
μ = (a,0,2b,−b). If b ≤ −2 there is an affine move μ ↓ rαnμ by Proposition 9.5,
showing that λ again covers a fork. Here we note that if α,α′ is a β-positive pair,
then 2αn + α = α′, and hence α(λ) = 2b or α(λ) = 1. In either case the positive pair
condition is satisfied.
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This completes the proof in case 1.

Case 2: � has type BCD and there is more than one positive node.
Since the positive nodes must be minuscule, this can only happen in type D. If t is

any positive node then it is linked to s and αs(λ) + αt (λ) ≥ 0 by Lemma 9.2. Hence
there are two positive nodes t, u. If αs(λ) + αt (λ) = 0 = αs(λ) + αu(λ), there is an
affine move by Lemma 9.2 with β being the highest root containing αs once. Thus, λ

covers a pair. If (say) αs(λ)+αt (λ) > 0, then αs(λ)+αt (λ) = 1 and αs(λ)+αu(λ) =
0 (otherwise λ is overweight). In other words, up to symmetry the diagram of λ has
one of the following forms, with a ≥ 2: (a,0,−a,0,0, a+1) and (0,−a,0, a+1, a).

In the first case λ covers a fork. The second diagram is not even in the coroot lattice,
as the reader can check.

Case 3: � has type E. It is a pleasant exercise in the palindromy game to check that
λ forks too soon or is overweight. Details are left to the reader.

Case 4: � has type F4. Then s = s2, s3. If s = s2 then α3(λ) = 0 by assumption.
Then α1(λ) + α2(λ) ≥ 0 by Lemma 9.2a, and α2(λ) + α4(λ) ≥ 0 (otherwise λ forks
too soon). But then λ is overweight.

If s = s3 then for any positive node t linked to s we have αs(λ) + αt (λ) ≥ 0, by
Lemma 9.2a. If α2(λ) > 0 then α2(λ)+α3(λ) ≥ 0. By Proposition 9.2b we have either
α2(λ) + α3(λ) = 0 or α2(λ) + 2α3(λ) ≥ 0. In the first case we must have α4(λ) >

0 (otherwise λ forks too soon) and λ is overweight. In the second case λ is again
overweight. Finally if α2(λ) = 0 then α4(λ) > 0 and α1(λ) + 2α3(λ) ≥ 0 (otherwise
λ forks too soon), and again λ is overweight. (This last argument doesn’t use the
assumption αs(λ) ≤ −2.)

The main conclusions of the five lemmas above can be summarized as follows:

Corollary 10.8 Suppose � is not of type G2 and λ is palindromic of mixed type, with
unique negative node s ∈ S. Then at least one of the following conditions holds:

(1) αs(λ) = −1;
(2) λ is a chain;
(3) � has type A and λ is spiral.

10.3.2 Proof of the palindromy theorem in the mixed case

By Corollary 10.8 we may assume αs(λ) = −1 (except in type G2). If s is a long
node, then the palindromic λ is admissible, and hence is a closed parabolic orbit or
a chain by Lemma 8.1. In particular, the proof of Theorem 1.4 is now complete in
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the simply-laced case. It remains to consider types BCF when s is a short node with
αs(λ) = −1, and type G2.

Cn: Since s is short, s = si for some i < n. Let sj be a positive node linked to si . If
j < n, by Lemma 10.3 we may assume αs(λ)+αt (λ) = 0 (otherwise λ is overweight)
and that there are no other positive nodes by Lemma 10.5. If s and t are not adjacent,
then firing s shows that λ covers a fork (note this works even when i = 1, since then
back-firing along the double bond adds -2 to the initial value +1 on the node s0). If s

and t are adjacent then λ = ±(0,1,−1,0), which is a chain.
Now suppose t = sn is the unique positive node. Since αn(λ) is necessarily even,

we must have αn(λ) = 2 (otherwise λ is overweight). If i < n − 1, then firing s

shows that λ covers a fork (note this works even when i = 1, since back-firing along
the double bond puts -1 on the s0 node). If i = n − 1 we have λ = (0,−1,2), which
is a chain.

Bn: Here s = sn. Let sj be the unique positive node linked to sn. Then αj (λ) =
1,2,3, where the values 2,3 can occur only when j = 1 (otherwise λ is overweight).

Case 1: αj (λ) = 1. If j < n − 1 then firing sn yields (0,1,0,−2,1) and there is a
linear A-move, showing that λ covers a fork. If j = n − 1 then there must be another
positive node (otherwise λ /∈ Q∨). This forces λ = (1,0,1,−1), which is a singular
chain.

Case 2: αj (λ) = 2. This forces λ = (2,0,−1). Thus n must be even (otherwise
λ /∈ Q∨), and in particular n ≥ 4. Then λ covers a fork: Firing sn yields (2,0,−2,1),
which admits an affine move based on the long root β = α1 + . . . + αn−1 + 2αn =
e1 + en. This is very similar to the anti-dominant case (0,−1); details are left to the
reader.

Case 3: αj (λ) = 3. This forces λ = (3,0,−1). Thus n must be odd (otherwise
λ /∈ Q∨). If n ≥ 5, we can proceed exactly as we did in the anti-dominant case with
(0,−1). The key point is again that (3,0,−2,0,1) admits an affine move using β =
αn−1 + 2αn, and as a result λ covers a scepter, hence is not palindromic. This leaves
the case n = 3, λ = (3,0,−1) which is known to be palindromic by Corollary 4.8.

This completes the proof of Theorem 1.4 in type B .

F4: Here the short nodes are s3, s4. If s = s4, then λ = (0,1,0,−1) or λ =
(1,0,0,−1) (otherwise λ is overweight). Then (0,1,0,−1) is a chain, while
(1,0,0,−1) forks too soon (barely!).

If s = s3, the argument used in the proof of Lemma 10.7 shows that λ =
(0,1,−1,1), which is a chain.

G2: Before starting the proof, we recall (§7.3) that there are four chains of mixed
type, namely ±(1,−1) and ±(1,−2). Recall also that the initial chain coming down
from (−1,0) (see the Hasse diagram in §13)

(−1,0) ↓ (1,−3) ↓ (−2,3) ↓ (2,−3),

with (2,−3) covering a pair. Hence all of the displayed elements fork too soon.
Now suppose λ is generic, meaning that α(λ) �= 0 for all α ∈ �. Let γ range over

the four non-simple positive roots α1 + α2, 2α1 + α2 3α1 + α2, 3α1 + 2α2. If at least
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one of the γ ’s is negative on λ, then the minimal such γ satisfies the opposite sign
condition, and λ covers a pair by Proposition 9.3.

Now suppose all of the γ ’s are positive on λ. If s2 is the positive node, then λ

is overweight and again λ covers a pair. If s2 is the negative node, firing it yields a
generic dominant class μ: λ = (a, b) ↓ (a +b,−b) = μ. We saw earlier that any such
class in type G2 covers a pair, so λ covers a fork.

It remains to consider the case γ (λ) = 0 for some γ . Let a denote a positive
integer.

γ = α1 + α2: If λ = (a,−a) and a ≥ 2 then λ is overweight. If a = 1 we have the
chain (1,−1). If λ = (−a, a) and a ≥ 2, λ has an affine move λ ↓ rα2λ by Propo-
sition 9.3. Here α2 is long and there are two β-positive pairs α,α′: (α1, α1 + α2)

and (3α1 + α2,3α1 + 2α2). In each case α′(λ) < 0 and the positive pair condition is
satisfied. If a = 1 we again have a chain.

γ = 2α1 + α2: If λ = (a,−2a) and a ≥ 2, there is an affine move rβ with β =
3α1 + α2. Note that β is long and there is just one β-positive pair α2, α0, so the
positive pair condition is satisfied. If a = 1 we have the chain (1,−2). If λ = (−a,2a)

then λ is overweight unless a = 1, in which case we again have a chain.
γ = 3α1 + α2: If λ = (−a,3a) then λ is overweight. If λ = (a,−3a) and a ≥ 2,

there is an affine move rα1 and λ covers a pair. Finally (1,−3) forks too soon as noted
above.

γ = 3α1 + 2α2: Note that in this case |α1(λ)|, |α2(λ)| ≥ 2. If s2 is the negative
node then there is an affine move rβ with β = 3α1 +α2. If s1 is the negative node and
α1(λ) + α2(λ) ≤ 0 there is an affine move rα2 . If α1(λ) + α2(λ) > 0 and 2α1(λ) +
α2(λ) ≤ 0, there is an affine move rβ with β = α1 + α2, provided that β(λ) ≥ 2. If
β(λ) = 1 then λ = (−2,3), which forks too soon as noted above. Finally if 2α1(λ) +
α2(λ) > 0, there is an affine move rβ with β = 2α1 + α2.

11 The spiral varieties in type A

Most of the results in this section are from [16], to which the reader is referred for
the missing proofs. The varieties Xn,k are denoted Fn+1,k in [16]. We include these
results for the readers’ convenience and to highlight some unsaid consequences of
the previous work.

Let σd (resp. σ ′
d ) denote the word in W̃ obtained by starting at s0 and—writing

the word from right to left—proceeding clockwise (resp. counterclockwise) d steps
around the Coxeter diagram. For example, if n = 3 then σ6 = s3s0s1s2s3s0. Note that
these words are reduced, in W̃S , and rigid. Note also that σ ′

d is conjugate to σd under
the involution of the Dynkin diagram fixing s0.

Let σn,k = σkn, σ ′
n,k = σ ′

kn. We call these elements and the varieties associated to
them spiral. The term is suggested by the manner in which σn,k , σ ′

n,k spiral around
the affine Dynkin diagram and up in length as k increases.

Warning: Note that the spiral classes have length divisible by n, not n + 1. Hence
they are out of phase with the natural period of the affine Dynkin diagram; the first
(left-hand) factor s of σn,k rotates around the diagram as k increases.
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The corresponding coroot lattice representatives λn,k, λ
′
n,k are described as fol-

lows:

Proposition 11.1 An element λ ∈ Q∨ represents a spiral class if and only if

(1) λ has exactly two nonzero nodes s, t ∈ S̃;
(2) s, t are adjacent; and
(3) αs(λ) + αt (λ) = 1.

More precisely, let k = r(n + 1) + i, where 0 ≤ i < n + 1. Then

λn,k = (0, k + 1,−k,0),

where k + 1 is in the i-th coordinate, or λn,k = (−k,0), λn,k = (0, k + 1). Similarly

λ′
n,k = (0,−k, k + 1,0)

or λ′
n,k = (k + 1,0), λ′

n,k = (0,−k).

Proof: The explicit formulas for λn,k, λ
′
n,k are easily obtained by induction on k, and

show that the spiral classes satisfy properties (1)-(3). Conversely, suppose that (1)-(3)
hold, and consider the case s = si , t = si+1 with 0 < i < n and αs(λ) > 0. Then since
λ is in the coroot lattice, we have iαs(λ)+ (i +1)αt (λ) = 0mod n+1. Then λ = λn,k

with k = −αt (λ). The remaining cases are similar.

Let Xn,k = Xσn,k
, X′

n,k = X′
σn,k

. Since X′
n,k is canonically isomorphic to Xn,k as a

variety, in what follows we will state the results only for Xn,k .

Proposition 11.2 Xn,k is isomorphic to the variety of k-dimensional C[z]/zk-
submodules in C[z]/zk ⊗ C

n+1. In particular, Xn,1 ∼= CP n.

This description arises from the Quillen model, which identifies LSU(n+1) with cer-
tain spaces of C[z]-lattices in C[z, z−1] ⊗ C

n+1. In fact from this point of view, Xn,k

is precisely the intersection in BU of the Ind-varieties LSU(n+1) and BU(k).

Let

[
n + k

n

]

q

denote the “q-binomial coefficient” or equivalently the Poincaré

polynomial for the classical Grassmannian GnC
n+k .

Proposition 11.3 |Xn,k| =
[
n + k

n

]

q

. In particular, Xn,k is palindromic.

Undoubtedly a direct combinatorial proof of this could be given. Here we will
mention two topological proofs. The first is based on:

Proposition 11.4 Xn,k −Xn,k−1 = E(γ k ↓ Xn−1,k), the total space of the canonical
k-plane bundle defined by Proposition 11.2. Hence Xn,k/Xn,k−1 = T (γ k).
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Thus |Xn,k| = |Xn,k−1| + tk|Xn−1,k|, which is exactly the Pascalian recursion for-
mula for the q-binomial coefficients. This yields one proof of Proposition 11.3. The
second is based on:

Theorem 11.5 [Xn,j ] · [Xn,k] = [Xn,j+k], where the dot denotes Pontrjagin prod-
uct in H∗�G ∼= H∗LG. Moreover the natural map Symk(H∗Xn,1)−→H∗Xn,k is an
isomorphism. (Symk denotes the k-th symmetric power.)

This theorem gives another proof of Proposition 11.3, since one can easily check that

|Symk(H∗CP n)| =
[
n + k

n

]

q

.

Theorem 11.6 Xn,k satisfies Poincaré duality integrally if and only if k = 1. It satis-
fies Poincaré duality rationally for all k.

Remark: The first assertion has already been proved in Theorem 1.1. By Proposi-
tion 11.3 Xn,k is palindromic, and hence is rationally smooth by the Carrell-Peterson
theorem, proving the second assertion. Here we provide alternative proofs of both
assertions.

Proof: First observe that Poincaré duality can be expressed in terms of homology as
follows: If [X] is the fundamental class, then there are bases ei, e

′
i for H∗X that are

dual in the sense that �∗[X] = ∑
ei ⊗ e′

i , where � is the diagonal map. It follows
that if Xλ is any Schubert variety and [Xλ] = yk for some y ∈ H∗LG and k > 1,
then Xλ does not satisfy Poincaré duality: For we may assume k = p is a prime, and
then �∗[Xλ] = (�∗y)p mod p. Hence �∗[Xλ] is concentrated in bidegrees divisible
by p, and no such dual bases exist. Since [Xn,k] = [Xn,1]k by Theorem 11.5, this
proves that Xn,k does not satisfy Poincaré duality for k > 1. For k = 1, we have
Xn,1 = P

n.
Now let b1, . . . , bn denote the standard basis for H̃∗Xn,1 = H̃∗CP n. Then H∗Xn,k

consists of polynomials of degree at most k in b1, . . . , bn, with bk
n the fundamental

class. We set b0 = 1. Now let r = (r0, . . . , rn) be a multi-index with ri ≥ 0 and
∑

ri =
k. Let br = b

r0
0 . . . b

rn
n , and let r∗ = (rn, . . . , r0). Then the br , br∗ are bases, and if

we take coefficients in Q, then up to scalar multiples they are dual in the above
sense:

�∗(bk
n) = (

∑

i+j=n

bi ⊗ bj )
k =

∑

r

cr (b0 ⊗ bn)
r0 . . . (bn ⊗ b0)

rn =
∑

r

crb
r ⊗ br∗

,

where the multinomial coefficients cr are all nonzero. Thus, up to nonzero scalar
multiples, br , br∗ are dual bases over Q. This completes the proof.

12 Hasse diagrams

In this section we give some examples of Hasse diagrams for the Bruhat order on
W̃S in a range of dimensions, showing in particular the palindromics and the closed
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parabolic orbits. These diagrams are easily generated by hand in the following way:
First of all, the length generating function |W̃S |(t) is given by Bott’s formula Theo-
rem 3.1 where in the latter case variable t is assigned dimension 2. So we know in
advance the number of nodes at each level. Then we begin firing up from 0 ∈ Q∨;
this easily yields the weak order on the coroot lattice representatives λ. By record-
ing the node fired at each step, we have reduced expressions for the minimal length
representatives σ ∈ W̃S as well (incidentally, this also yields the cup product co-
efficients occurring in Chevalley’s formula). Then we fill in the missing covering
relations by using the standard criterion: σ ↓ τ if and only if τ can be obtained from
σ by omitting one generator from some reduced expression for σ . A further inter-
esting exercise is to find and check the affine or linear moves that produce these
descents.

The circled nodes are the non-trivial palindromic classes. A double circle indicates
a closed parabolic orbit.

The spiral classes λ2,k, λ
′
2,k are the elements of even length along the two edges

of the diagram.
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Note also that for k = 2 the Poincaré polynomial of X(3,0) or X(0,3) is the same

as that of G2C
4. The ring structure in cohomology, however, is different; Poincaré

duality fails. When k = 3 the Poincaré polynomial is the same as that of G2C
5. The

order ideal below (−3,0) or (−3,0) is visibly not self-dual; in particular it is not

isomorphic to Bruhat poset of G2C
5.

The bilateral symmetry in the diagram reflects the automorphism of the affine

Dynkin diagram fixing the special node s0.

Note the asymmetry in the diagram. No global symmetry is expected, because

there are no automorphisms of the affine Dynkin diagram fixing the special node s0.

However, the range of the diagram is too low to show all the patterns present. In

particular the smallest generic λ is the dominant class (1,2). It lies at the bottom of

the first generic orbit, as shown in the small diagram on the left.

On the other hand, the only non-trivial palindromic Schubert varieties are the five

visible in the diagram, each of which happens to be a chain.
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The range of the diagram is too low to show all the patterns. The lowest generic
orbit begins with the dominant class λ = (1,1) as shown in the diagram on the left.
However, the only non-trivial palindromic Schubert varieties are the seven visible in
the diagram, each of which happens to be a chain.
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Table of coefficients mi :

An: mi = 1 for all i.

Bn: m1 = 1; mi = 2 otherwise.

Cn: mn = 1; mi = 2 otherwise.

Dn: mi = 1 for i = 1, n − 1, n; mi = 2 otherwise.
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