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Abstract The affine Dynkin diagram of type A
(1)
n has a cyclic symmetry. The ana-

logue of this Dynkin diagram automorphism on the level of crystals is called a promo-
tion operator. In this paper we show that the only irreducible type An crystals which
admit a promotion operator are the highest weight crystals indexed by rectangles. In
addition we prove that on the tensor product of two type An crystals labeled by rectan-
gles, there is a single connected promotion operator. We conjecture this to be true for
an arbitrary number of tensor factors. Our results are in agreement with Kashiwara’s
conjecture that all ‘good’ affine crystals are tensor products of Kirillov-Reshetikhin
crystals.
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1 Introduction

The Dynkin diagram of affine type A
(1)
n has a cyclic symmetry generated by the

map i �→ i + 1 (mod n + 1). The promotion operator is the analogue of this Dynkin
diagram automorphism on the level of crystals. Crystals were introduced by Kashi-
wara [7] to give a combinatorial description of the structure of modules over the
universal enveloping algebra Uq(g) when q tends to zero. In short, a crystal is a non-
empty set B endowed with raising and lowering crystal operators ei and fi indexed
by the nodes of the Dynkin diagram i ∈ I , as well as a weight function wt. It can
be depicted as an edge-colored directed graph with elements of B as vertices and
i-arrows given by fi . In type An, the highest weight crystal B(λ) of highest weight λ

is the set of all semi-standard Young tableaux of shape λ (see for example [15, 17])
with weight function given by the content of tableaux.

Definition 1.1 A promotion operator pr on a crystal B of type An is an operator
pr : B → B such that:

(1) pr shifts the content: If wt(b) = (w1, . . . ,wn+1) is the content of the crystal ele-
ment b ∈ B , then wt(pr(b)) = (wn+1,w1, . . . ,wn);

(2) Promotion has order n + 1: prn+1 = id;
(3) pr ◦ ei = ei+1 ◦ pr and pr ◦ fi = fi+1 ◦ pr for i ∈ {1,2, . . . , n − 1}.
If condition (2) is not satisfied, but pr is still bijective, then pr is a weak promotion
operator.

Given a (weak) promotion operator on a crystal B of type An, one can define an
associated (weak) affine crystal by setting

e0 := pr−1 ◦ e1 ◦ pr and f0 := pr−1 ◦ f1 ◦ pr. (1.1)

A promotion operator pr is called connected if the resulting affine crystal B is con-
nected (as a graph). Two promotion operators are called isomorphic if the resulting
affine crystals are isomorphic.

Our aim is the classification of all affine crystals that are associated to a promotion
operator on a tensor product of highest weight crystals B(λ) of type An.

Schützenberger [25] introduced a weak promotion operator pr on tableaux using
jeu-de-taquin (see Section 3.1). It turns out that pr is the unique weak promotion op-
erator on B(λ); furthermore, pr is a promotion operator if and only if λ is a rectangle
(cf. Proposition 3.2 which is based on results by Haiman [4] and Shimozono [28]).

Let us denote by ω1, . . . ,ωn the fundamental weights of type An. One can identify
the rectangle partition λ := (sr ) of height r and width s with the weight sωr . We
henceforth call pr on B(sωr) the canonical promotion operator. It can be extended to
tensor products B(s1ωr1) ⊗ · · · ⊗ B(s�ωr�) indexed by rectangles by setting pr(b1 ⊗
· · · ⊗ b�) := pr(b1) ⊗ · · · ⊗ pr(b�). Let B be a crystal with an isomorphism � to
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Fig. 1 The four affine crystals associated to the classical crystal B(ω1) ⊗ B(3ω1) for type A1. The affine
crystal B1,1 ⊗ B3,1 corresponds to (bb). The others are not ’good’ crystals (see Definition 2.12): (aa) is
not connected, (ab) is not simple, and (ba) does not satisfy the convexity condition on string lengths.

a direct sum of tensor products of highest weight crystals indexed by rectangles.
A promotion operator is induced by � if it is of the form �−1 ◦ pr ◦ � , where pr is
the canonical promotion on each summand. Note that throughout the paper, all tensor
factors are written in reverse direction compared to Kashiwara’s conventions, which
is more compatible with operations on tableaux.

The main result of this paper is the following theorem.

Theorem 1.2 Let B = B(s′ωr ′)⊗B(sωr) be the tensor product of two classical high-
est weight crystals of type An with n ≥ 2, labeled by rectangles. If (s, r) 	= (s′, r ′),
there is a unique promotion operator pr = pr. If (s, r) = (s′, r ′), there are two pro-
motion operators: The canonical one pr = pr which is connected and the one induced
by � (with � as defined in (2.3)) which is disconnected.

Remark 1.3 As illustrated in Figure 1, Theorem 1.2 does not hold for n = 1. Only
(bb) yields a ’good’ crystal according to the combinatorial Definition 2.12. It would
be interesting to determine whether (ab) and (ba) correspond to crystals for U ′

q(̂sl2)-
modules.

As suggested by further evidence discussed in Section 5, we expect this result to
carry over to any number of tensor factors.

Conjecture 1.4 Let B := B(λ1) ⊗ · · · ⊗ B(λ�) be a tensor product of classical high-
est weight crystals of type An with n ≥ 2. Then, any promotion operator is induced by
an isomorphism � from B to some direct sum of tensor products of classical highest
weight crystals of rectangular shape.

Furthermore, there exists a connected promotion operator if and only if λ1, . . . , λ�

are rectangles, and this operator is pr up to isomorphism.
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As shown by Shimozono [28], the affine crystal constructed from B(sωr) using
the promotion operator pr is isomorphic to the Kirillov-Reshetikhin crystal Br,s of
type A

(1)
n . Kirillov-Reshetikhin crystals Br,s form a special class of finite dimen-

sional affine crystals, indexed by a node r of the classical Dynkin diagram and a
positive integer s. Finite-dimensional affine U ′

q(g)-crystals have been used exten-
sively in the study of exactly solvable lattice models in statistical mechanics. It has
recently been proven [12, 19] that (for nonexceptional types) the Kirillov-Reshetikhin
module W(sωr), labeled by a positive multiple of the fundamental weight ωr , has a
crystal basis called the Kirillov-Reshetikhin crystal Br,s . Kashiwara conjectured (see
Conjecture 2.13) that any ‘good’ affine finite crystal is the tensor product of Kirillov-
Reshetikhin crystals.

Note that Theorem 1.2 and Conjecture 1.4 are in agreement with Kashiwara’s
Conjecture 2.13. Namely, if one can assume that every ‘good’ affine crystal for type
A

(1)
n comes from a promotion operator, then Theorem 1.2 and Conjecture 1.4 imply

that any crystal with underlying classical crystal being a tensor product is a tensor
product of Kirillov-Reshetikhin crystals.

Promotion operators have appeared in other contexts as well. Promotion has been
studied by Rhoades et al. [20, 23] in relation with Kazhdan-Lusztig theory and the
cyclic sieving phenomenon. Hernandez [5] proved q-character formulas for cyclic
Dynkin diagrams in the context of toroidal algebras. He studies a ring morphism
R which is related to the promotion of the Dynkin diagram. Since q-characters are
expected to be related to crystal theory, this is another occurrence of the promotion
operator. Theorem 1.2 is also a first step in defining an affine crystal on rigged config-
urations. There exists a bijection between tuples of rectangular tableaux and rigged
configurations [2, 13, 16]. A classical crystal on rigged configurations was defined
and a weak promotion operator was conjectured in [27]. It remains to prove that this
weak promotion operator has the correct order.

This paper is organized as follows. In Section 2 crystal theory for type An is re-
viewed, some basic properties of promotion operators are stated which are used later,
and Kashiwara’s conjecture is stated. In Section 3, the Schützenberger map pr is
defined on B(λ) using jeu-de-taquin. It is shown that it is the only possible weak
promotion operator on B(λ), and that it is a promotion operator on B(λ) if and only
if λ is of rectangular shape. Section 4 is devoted to the proof of Theorem 1.2 and in
Section 5 we provide evidence for Conjecture 1.4; in particular, we discuss unique
factorization into a product of Schur polynomials indexed by rectangles.

2 Review of type A crystals

In this section, we recall some definitions and properties of type A crystals, state
some lemmas which will be used extensively in the proof of Theorem 1.2, and state
Kashiwara’s conjecture.

2.1 Type A crystal operations

Crystal graphs of integrable Uq(sln+1)-modules can be defined by operations on
tableaux (see for example [15, 17]). Consider the type An Dynkin diagram with



J Algebr Comb (2010) 31: 217–251 221

nodes indexed by I := {1, . . . , n}. There is a natural correspondence between domi-
nant weights in the weight lattice P := ⊕

i∈I Zωi , where ωi is the i-th fundamental
weight, and partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) with at most n parts. Suppose
λ = ωr1 + · · · + ωrk is a dominant weight. Then we can associate to λ the partition
with columns of height r1, . . . , rk . In particular, the fundamental weight sωr is asso-
ciated to the partition of rectangular shape of width s and height r .

The highest weight crystal B(λ) of type An is given by the set of all semi-standard
tableaux of shape λ over the alphabet {1,2, . . . , n + 1} endowed with maps

ei, fi :B(λ) → B(λ) ∪ {∅} for i ∈ I = {1,2, . . . , n},
wt :B(λ) → P.

Throughout this paper, we use French notation for tableaux (that is, they are weakly
increasing along rows from left to right and strictly increasing along columns from
bottom to top). The weight of a tableau t is its content

wt(t) := (m1(t),m2(t), . . . ,mn+1(t)) ,

where mi(t) is the number of letters i appearing in t . The lowering and raising op-
erators fi and ei can be defined as follows. Consider the row reading word w(t) of
t ; it is obtained by reading the entries of t from left to right, top to bottom. Consider
the subword of w(t) consisting only of the letters i and i + 1 and associate an open
parenthesis ’)’ with each letter i and a closed parenthesis ’(’ with each letter i + 1.
Successively match all parentheses. Then fi transforms the letter i that corresponds
to the rightmost unmatched parenthesis ’)’ into an i +1. If no such parenthesis ’)’ ex-
ists, fi(t) = ∅. Similarly, ei transforms the letter i +1 that corresponds to the leftmost
unmatched parenthesis ’(’ into an i. If no such parenthesis exists, ei(t) = ∅.

For a tableau t , define ϕi(t) = max{k | f k
i (t) = ∅} (resp. εi(t) = max{k | ek

i (t) =
∅}) to be the maximal number of times fi (resp. ei ) can be applied to t . The quantity
ϕi(t) + εi(t) is the length of the i-string of t . Similarly, let bi(t) be the number of
paired ’()’ parentheses in the algorithm for computing fi and ei . We call this the
number of i-brackets in t .

Example 2.1 Let

t = 2 3 3
1 2 2 3

.

Then w(t) = 2331223 and

f2(t) = 3 3 3
1 2 2 3

and e2(t) = 2 3 3
1 2 2 2

.

Definition 2.2 For J ⊂ I = {1,2, . . . , n}, the element b ∈ B is J -highest weight if
ei(b) = ∅ for all i ∈ J . It is highest weight if it is I -highest weight. Similarly, b ∈ B

is J -lowest weight if fi(b) = ∅ for all ∈ J .
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2.2 Crystal isomorphisms

Let B and B ′ be two crystals over the same Dynkin diagram. Then a bijective map
� : B → B ′ is a crystal isomorphism if for all b ∈ B and i ∈ I ,

fi�(b) = �(fib) and ei�(b) = �(eib) ,

where by convention �(∅) = ∅. More generally, let B and B ′ be crystals over two
isomorphic Dynkin diagrams D and D′ with nodes respectively indexed by I and
I ′, and let τ : I → I ′ be an isomorphism from D to D′. Then � is a τ -twisted-
isomorphism if for all b ∈ B and i ∈ I ,

fτ(i)�(b) = �(fib) and eτ(i)�(b) = �(eib) .

It was proven by Stembridge [29] that in the expansion of the product of two Schur
functions indexed by rectangles, each summand sλ occurs with multiplicity zero or
one. This implies in particular that in the decomposition of type An crystals

B(s′ωr ′) ⊗ B(sωr) ∼=
⊕

λ

B(λ) (2.1)

each irreducible component B(λ) occurs with multiplicity at most one. Hence there
is a unique crystal isomorphism

B(s′ωr ′) ⊗ B(sωr) ∼= B(sωr) ⊗ B(s′ωr ′). (2.2)

Recall that all tensor factors are written in reverse direction compared to Kashiwara’s
conventions.

For two equal rectangular tensor factors, there is a unique additional crystal iso-
morphism

� : B(sωr)
⊗2 ∼= B((s − 1)ωr) ⊗ B((s + 1)ωr) ⊕ B(sωr−1) ⊗ B(sωr+1). (2.3)

Its existence follows from the well-known Schur function equality [11, 14]:

s2
(sr ) = s((s−1)r )s((s+1)r ) + s(sr−1)s(sr+1).

This isomorphism can be described explicitly as follows. For b′ ⊗ b ∈ B(sωr)
⊗2

consider the tableau b′.b given by the Schensted row insertion of b into b′. By [29],
there is a unique pair of tableaux b̃′ ⊗ b̃ either in B((s − 1)ωr) ⊗ B((s + 1)ωr) or in
B(sωr−1) ⊗ B(sωr+1) such that b̃′.b̃ = b′.b. Define �(b′ ⊗ b) = b̃′ ⊗ b̃.

Example 2.3 Let

b′ ⊗ b = 2 3
1 2

⊗ 2 2
1 1

so that b′.b =
3
2 2 2
1 1 1 2

.
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Then

�(b′ ⊗ b) = b̃′ ⊗ b̃ = 3
2

⊗ 2 2 2
1 1 1

since b̃′.b̃ = b′.b.

If on the other hand

b′ ⊗ b = 3 3
1 2

⊗ 2 2
1 1

then b′.b =
3 3
2 2
1 1 1 2

.

Hence

�(b′ ⊗ b) = b̃′ ⊗ b̃ = 1 2 ⊗
3 3
2 2
1 1

.

2.3 Duality

For each An crystal B(λ) of highest weight λ, there exists a dual crystal B(λ�), where
λ� is the complement partition of λ in a rectangle of height n + 1 and width λ1. The
crystal B(λ) and its dual B(λ�) are twisted-isomorphic, with τ(i) = n + 1 − i.

Proposition 2.4 The An crystal B = B(s1ωr1)⊗· · ·⊗B(s�ωr�) is twisted-isomorphic
to the An crystal B(s1ωn+1−r1) ⊗ · · · ⊗ B(s�ωn+1−r� ).

Proof This follows from the fact that the tensor product of twisted-isomorphic crys-
tals must be twisted-isomorphic. �

Lemma 2.5 (Duality Lemma) All promotion operators on B = B(s′ωr ′) ⊗ B(sωr)

of type An are in one-to-one connectedness-preserving correspondence with the pro-
motion operators on B(s′ωn+1−r ′) ⊗ B(sωn+1−r ). As a consequence, to classify all
promotion operators on B , it suffices to classify them for n ≤ r + r ′ − 1.

Proof By Proposition 2.4, B(s′ωr ′)⊗B(sωr) is twisted-isomorphic to B(s′ωn+1−r ′)
⊗ B(sωn+1−r ). Notice that under this twisted-isomorphism �, a promotion pr on B

becomes � ◦ pr and satisfies the conditions of Definition 1.1 of the inverse of a pro-
motion. Hence each pr induces a promotion on the dual of B . It is clear that connect-
edness is preserved.

Now suppose n > r + r ′ − 1. Summing the heights of the dual tensor product and
subtracting one, we obtain

(n + 1 − r ′) + (n + 1 − r) − 1 = 2n − (r + r ′) + 1 > n,

which satisfies the condition of the lemma. Hence it suffices to classify promotion
operators for n ≤ r + r ′ − 1. �
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2.4 Properties of promotion operators

In this section we discuss some further properties of promotion operators. We begin
with two remarks about consequences of the axioms for a promotion operator as
defined in Definition 1.1 which will be used later. In particular, in Remark 2.7 a
reformulation of the three conditions in Definition 1.1 is provided which in practice
might be easier to verify. Then we prove two Lemmas: the Highest Weight Lemma 2.8
and the Two Path Lemma 2.10.

Remark 2.6 Let pr be a promotion operator. Then, prk ◦ ei = ei+k ◦ prk whenever
i, i + k 	= 0 (mod n + 1), and similarly for fi .

Proof Iterate condition (3) of Definition 1.1, using condition (2) to go around
i = 0. �

Remark 2.7 Let B := B1 ⊗ · · · ⊗ B� be a tensor product of type An highest weight
crystals (or more generally a crystal of type An with some weight space of dimension
1; this includes the simple crystals of Definition 2.11), and pr a weak promotion
operator on B which satisfies:

(2’) pr2 ◦ en = e1 ◦ pr2, and pr2 ◦ fn = f1 ◦ pr2.

Assume that the associated weak affine crystal graph is connected. Then, pr is a
promotion operator.

Proof We need to prove condition (2): prn+1 = id. First note that condition (2’) to-
gether with the definition of e0 in (1.1) implies that condition (3): pr ◦ ei = ei+1 ◦ pr
(with i + 1 taken (mod n + 1)) holds even for i = n. By repeated application, one
obtains prn+1 ◦ ei = ei ◦ prn+1 for all i (and similarly for fi ). In other words, prn+1

is an automorphism of the weak affine crystal graph.
We now check that such an automorphism has to be trivial. First note that it pre-

serves classical weights. For all 1 ≤ j ≤ �, let uj be the highest vector of Bj . Then,
u := u1 ⊗ · · · ⊗ u� is the unique element of B of weight wt(u1) + · · · + wt(u�),
and therefore is fixed by prn+1. Take finally any v ∈ B . By the connectivity as-
sumption v = F(u), where F is some concatenation of crystal operators. Therefore,
prn+1(v) = prn+1 ◦ F(u) = F(prn+1(u)) = F(u) = v. �

For the remainder of this section B is a crystal of type An on which a promotion
operator pr is defined. Recall that for J ⊂ {1,2, . . . , n}, the element b ∈ B is J -
highest weight if ei(b) = ∅ for all i ∈ J .

Lemma 2.8 (Highest Weight Lemma) If pr(b) is known for all {1,2, . . . , n − 1}-
highest weight elements b ∈ B , then pr is determined on all of B .

Proof Any element b′ ∈ B is connected to a {1,2, . . . , n − 1} highest weight el-
ement b using a sequence ei1 · · · eik with ij ∈ {1,2, . . . , n − 1}. Hence pr(b′) =
ei1+1 · · · eik+1(pr(b)), which is determined if pr(b) is known, since ij + 1 ∈
{2, . . . , n}. �
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Definition 2.9 The orbit of b ∈ B under the promotion operator pr is the family

b
pr−→ pr(b)

pr−→ pr2(b)
pr−→ · · · pr−→ prn(b)

pr−→ b ,

(or any cyclic shift thereof).

Lemma 2.10 (Two Path Lemma) Suppose x, y, b ∈ B such that the following condi-
tions hold:

(1) The entire orbits of x and y are known;
(2) b is connected to x by a chain of crystal edges, with all edge colors from some

set Ix ;
(3) b is connected to y by a chain of crystal edges, with all edge colors from some

set Iy ;
(4) Ix ∩ Iy = ∅.

Then the entire orbit of b under promotion is determined.

Proof By Remark 2.6, we have prk ◦ ei = ei+k ◦ prk (and similarly for fi ) whenever
i, i + k 	= 0 (mod n+ 1). Since by assumption the entire orbit of x is known and b is
connected to x by a chain consisting of edges from the set Ix , all powers prk(b) are
determined except for k ∈ {n + 1 − i}i∈Ix . Similarly, the entire orbit of y is known
and b is connected to y by a chain consisting of edges from the set Iy , all powers
prk(b) are determined except for k ∈ {n + 1 − i}i∈Iy . Since Ix ∩ Iy = ∅, the entire
orbit of b is determined. �

2.5 Kashiwara’s conjecture

Let B be a Uq(g)-crystal with index set I (for the purpose of this paper it suffices

to assume that g is of type A
(1)
n , but the statements in this subsection hold more

generally). We denote by gJ the subalgebra of g restricted to the index set J ⊂ I .
The crystal B is said to be regular if, for any J ⊂ I of finite-dimensional type, B

as a Uq(gJ )-crystal is isomorphic to a crystal associated with an integrable Uq(gJ )-
module. Stembridge [30] provides a local characterization of when a g-crystal is a
crystal corresponding to a Uq(g)-module.

In [1, 7], Kashiwara defined the notion of extremal weight modules. Here we
briefly review the definition of an extremal weight crystal B̃(λ) for λ ∈ P . Let W

be the Weyl group associated to g and si the simple reflection associated to αi . Let B

be a crystal corresponding to an integrable Uq(g)-module. A vector uλ ∈ B of weight
λ ∈ P is called an extremal vector if there exists a family of vectors {uwλ}w∈W satis-
fying

uwλ = uλ for w = e, (2.4)

if 〈α∨
i ,wλ〉 ≥ 0, then eiuwλ = ∅ and f

〈α∨
i ,wλ〉

i uwλ = usiwλ, (2.5)

if 〈α∨
i ,wλ〉 ≤ 0, then fiuwλ = ∅ and e

−〈α∨
i ,wλ〉

i uwλ = usiwλ, (2.6)
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where α∨
i are the simple coroots. Then B̃(λ) is an extremal weight crystal if it is

generated by an extremal weight vector uλ.
For an affine Kac-Moody algebra g, let δ denote the null root in the weight lattice

P and c the canoncial central element. Then define Pcl = P/Zδ and P 0 = {λ ∈ P |
〈c,λ〉 = 0}.

Definition 2.11 [1] A finite regular crystal B with weights in P 0
cl is a simple crystal

if B satisfies

(1) There exists λ ∈ P 0
cl such that the weight of any extremal vector of B is contained

in Wclλ;
(2) The weight space of B of weight λ has dimension one.

Definition 2.12 (Kashiwara [9, Section 8]) A ‘good’ crystal B has the properties
that

(1) B is the crystal base of a U ′
q(g)-module;

(2) B is simple;
(3) Convexity condition: For any i, j ∈ I and b ∈ B , the function εi(f

k
j b) in k is

convex.

Note that the third condition of Definition 2.12 is only necessary for rank 2 crys-
tals. For higher rank crystals this follows from regularity and Stembridge’s local char-
acterization of crystals [30].

Conjecture 2.13 (Kashiwara [10, Introduction]) Any ‘good’ finite affine crystal is
the tensor product of Kirillov-Reshetikhin crystals.

3 Promotion

In this section we introduce the Schützenberger operator pr involving jeu-de-taquin
on highest weight crystals B(λ). This is used to show that promotion operators exist
on B(λ) if and only if λ is a rectangle. We then extend the definition of pr to tensor
products and discuss its relation to connectedness.

3.1 Existence and uniqueness on B(λ)

Schützenberger [25] defined a weak promotion operator pr on standard tableaux.
Here we define the obvious extension [28] on semi-standard tableaux on the alphabet
{1,2, . . . , n + 1} using jeu-de-taquin [26] (see for example also [3]):

(1) Remove all letters n + 1 from tableau t (this removes a horizontal strip from t);
(2) Using jeu-de-taquin, slide the remaining letters into the empty cells (starting from

left to right);
(3) Fill the vacated cells with zeroes;
(4) Increase each entry by one.

The result is denoted by pr(t).
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Example 3.1 Take n = 3. Then

t =
3 4 4
2 3 3
1 1 2

(1)+(2)−→
3 3 3
1 2 2
• • 1

(3)+(4)−→
4 4 4
2 3 3
1 1 2

= pr(t).

One can consider the reverse operation (which is also sometimes called demo-
tion):

(1) Remove all letters 1 from tableau t (this removes the first part of the first row);
(2) Using jeu-de-taquin, slide the remaining letters into the empty cells;
(3) Fill the vacated cells with n + 2s;
(4) Decrease each entry by one.

The result is denoted by pr−1(t). We will argue in the proof of the following propo-
sition why these operations are actually well-defined and inverses of each other.

Proposition 3.2 Let λ be a partition with at most n parts and let B(λ) be a type
An highest weight crystal. Then, pr is the unique weak promotion operator on B(λ).
Furthermore, pr is a promotion operator if and only if λ is a rectangle.

Using standardization, the second part of the proposition follows from results of
Haiman [4] who shows that, for standard tableaux on n+ 1 letters, pr has order n+ 1
if and only if λ is a rectangle (and provides a generalization of this statement for
shifted shapes). Shimozono [28] proves that pr is the unique promotion operator on
B(sωr) of type An. The resulting affine crystal is the Kirillov-Reshetikhin crystal
Br,s of type A

(1)
n [12, 28]. We could not find the statement of the uniqueness of the

weak promotion operator in the literature.
For the sake of completeness, we include a complete and elementary proof of

Proposition 3.2; the underlying arguments are similar in spirit to those in [4], except
that we are using crystal operations on semi-standard tableaux instead of dual equiv-
alence on standard tableaux. We first recall the following properties of jeu-de-taquin
(see for example [3, 8, 17, 18]).

Remarks 3.3 Fix the ordered alphabet {1,2, . . . , n + 1}.
(a) Jeu-de-taquin is an operation on skew tableaux which commutes with crystal

operations.
(b) Let λ/μ be a skew partition, and T the set of semi-standard skew-tableaux

of shape λ/μ, endowed with its usual type An crystal structure. Let f be a func-
tion which maps each skew tableau in T to a semi-standard tableau of partition
shape, and which commutes with crystal operations. For example, one can take for f

the straightening function which applies jeu-de-taquin to t ∈ T until it has partition
shape. Let C be a connected crystal component of T . Then, by commutativity with
crystal operations, there exists a unique partition ν such that f (C) is the full type An

crystal B(ν) of tableaux over this alphabet. Since B(ν) has no automorphism, this
isomorphism is unique, and f has to be straightening using jeu-de-taquin.

(c) Let λ be a rectangle, and μ ⊂ λ. Consider the complement partition μ� of
μ in the rectangle λ. Then, the type An crystal of skew tableaux of shape λ/μ is
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isomorphic to the crystal of tableaux of shape μ�; this can be easily seen by rotating
each tableau t of shape μ� by 180◦ and mapping each letter i to n + 2 − i. By
uniqueness of the isomorphism, the isomorphism and its inverse are both given by
applying jeu-de-taquin, either sliding up or down. In particular, jeu-de-taquin down
takes any tableau of shape λ/μ to a tableau of shape μ�, and vice-versa.

Example 3.4 Let λ := (64) and μ := (5,2). The complement partition of μ in λ is
μ� = (6,6,4,1). We now apply jeu-de-taquin up from a tableau of shape μ�, and
obtain a skew tableau of shape λ/μ. Applying jeu-de-taquin down yields back the
original tableau. As is well-known for jeu-de-taquin, the end result does not depend
on the order in which the inner corners are filled; here we show one intermediate step,
after filling successively the three inner corners (2,4), (5,3), and (6,3). The color of
the dots at the bottom (resp. at the top) indicates at which step each empty cell has
been created by jeu-de-taquin up (resp. down).

6 ◦ ◦ • • •
4 4 5 5 ◦ ◦
3 3 3 3 4 6
2 2 2 2 3 4

J−D−T←→
4 6 ◦ ◦ ◦ ◦
3 3 4 5 5 6
2 2 3 3 4 4
• • • 2 2 3

J−D−T←→
3 4 4 5 6 6
2 3 3 3 4 5
• • 2 2 2 4
◦ ◦ ◦ ◦ • 3

.

Proof of Proposition 3.2 We first check that pr is well-defined; the only non-trivial
part is at step 3 where we must ensure that the previously vacated cells form the be-
ginning of the first row. Fix a partition λ, and consider the set T of all tableaux whose
n + 1s are in a given horizontal border strip of length k. Step (1) puts them in bijec-
tion with the tableaux of the type An−1 crystal B(λ′) where λ′ is λ with the border
strip removed. Let f be the function on B(λ′) which implements the jeu-de-taquin
step (2) of the definition of pr. Since jeu-de-taquin commutes with crystal opera-
tions, B(λ′) is an irreducible crystal, and since crystal operations preserve shape,
all tableaux in f (B(λ′)) have the same skew-shape λ/μ. Considering f (t) where
t is the anti-Yamanouchi tableau of shape λ′ shows that μ = (1k) as desired be-
cause the jeu-de-taquin slides follow successive hooks (the anti-Yamanouchi tableau
of shape λ′ = (λ′

1, . . . , λ
′
m) is the unique tableau of shape λ′ which contains λ′

i entries
m + 1 − i). For example:

4
3 4 4
2 3 3 4 4
1 2 2 3 3 4 4

→
4 4
3 3 4
2 2 3 4 4
• 1 2 3 3 4 4

→
4 4
3 3 4 4
2 2 3 3 4
• • 1 2 3 4 4

→
4 4
3 3 4 4 4
2 2 3 3 3
• • • 1 2 4 4

→
4 4
3 3 4 4 4
2 2 3 3 3 4
• • • • 1 2 4

.

Note further that applying down jeu-de-taquin to f (t) reverses the process, and yields
back t . It follows that pr−1 as described above is indeed a left inverse and therefore
an inverse for pr. Finally, pr satisfies conditions (1) and (3) of Definition 1.1 by
construction, so it is a weak promotion operator.

We now prove that a weak promotion operator pr on B(λ) is necessarily pr. Con-
sider the action of pr−1 on a tableau t . By condition (1) of Definition 1.1, it has to
strip away the 1s, subtract one from each remaining letter, transform the result into
a semi-standard tableau of some shape μ′(t) ⊂ λ, and complete with n + 1s. Let B ′
be the set of all skew-tableaux in B(λ) after striping and subtraction, endowed with
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the An−1 crystal structure induced by the {2, . . . , n} crystal structure of B(λ). Write
f −1 for the function which reorganizes the letters. By condition (3) of Definition 1.1,
f −1 is an An−1-crystal morphism, so by Remark 3.3 (b) it has to be jeu-de-taquin.
Therefore pr−1 = pr−1, or equivalently pr = pr.

It remains to prove that pr is a promotion operator if and only if λ is a rectangle.
Assume first that λ is a rectangle. By Remark 3.3 (c), for each k, jeu-de-taquin

down provides a suitable bijection f −1 from skew tableaux of shape λ/(k) and
tableaux of shape (k)�. The inverse bijection f is jeu-de-taquin up. We show
pr2 ◦ en = e1 ◦ pr2, which by Remark 2.7 finishes the proof that pr is a promotion
operator. Let t be a semi-standard tableau, l1, l2, and l3 be respectively the number of
bracketed pairs (n+1, n), of unbracketed n+1s, and unbracketed ns. Then, from Re-
mark 3.3 (c) one can further deduce that in pr2(t) there are l1 bracketed pairs (2,1),
l2 unbracketed 2s, and l3 unbracketed 1s. We revisit Example 3.4 in this context. We
have l1 = 2, l2 = 1, and l3 = 2; due to label shifts, we have on the left • = n + 1 and
◦ = n, in the middle • = 1 and ◦ = n + 1, and on the right • = 2 and ◦ = 1:

5 ◦ ◦ • • •
3 3 4 4 ◦ ◦
2 2 2 2 3 5
1 1 1 1 2 3

pr−→
4 6 ◦ ◦ ◦ ◦
3 3 4 5 5 6
2 2 3 3 4 4
• • • 2 2 3

pr−→
4 5 5 6 7 7
3 4 4 4 5 6
• • 3 3 3 5
◦ ◦ ◦ ◦ • 3

.

It follows in particular that e1 applies to pr2(t) if and only if l2 > 0 if and only if en

applies to t ; furthermore both the action of e1 and en decrease l2 by one and increase
l3 by one. This does not change μ = (l1, l1 + l2 + l3), and therefore the jeu-de-taquin
action on the rest of the tableaux. Therefore pr2(en(t)) = e1(pr2(t)), as desired.

To conclude, let us assume that λ is not a rectangle. We show that pr2 ◦ en 	=
e1 ◦ pr2, which by Remark 2.7 implies that pr cannot be a promotion operator. The
prototypical example is n = 2 and λ = (2,1), where the following diagram does not
commute:

3
1 3

pr

en

2
1 1

pr 3
2 2

e1

2
1 3

pr 3
1 2

pr 2
1 3

	= 3
1 2

	= 2 2

Interpretation: the underlined cell is the unique cell containing a 1 (resp. a 2, resp. a
3) on the left hand side (resp. middle, resp. right hand side), and we can track how
it moves under promotion. Note that the value in the cell is such that promotion will
always move the cell weakly up or to the right, and neither e1 nor en affects it. At the
first promotion step, depending on whether we apply en or not, the cell moves to the
right, or up. But then, due to the inner corner of the partition it cannot switch to the
other side, and therefore the diagram cannot close.
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The same phenomenon occurs for any shape having (at least one) inner corner.
Consider the uppermost inner corner, and construct the tableau:

n − 1 · · · n − 1 n + 1
n − 2 · · · n − 2 n − 1

...
...

...
...

n − k · · · n − k n − k + 1
n − k n + 1 · · ·

· · ·
< n − k · · ·

· · ·

(3.1)

We assume that this tableau does not contain any letter n so that en applies to it
and transforms the n + 1 in the top row into an n. Let j be the width of the upper
rectangle and assume that the tableau does not contain any further letters n − k (only
the j copies in the first j columns). Applying pr without application of en, promotion
slides the underlined n − k up, and even after an additional application of pr all the j

cells containing n−k in the original tableau, are in the upper rectangle. First applying
en and then pr has the effect of sliding the cell containing the underlined n − k to the
right; this cell cannot come back in the upper rectangle with another application of
pr. Hence pr2 ◦ en 	= e1 ◦ pr2. �

3.2 Promotion on tensor products

Now take B := B(s1ωr1) ⊗ · · · ⊗ B(s�ωr�) a tensor product of � classical highest
weight crystals labeled by rectangles. For b1 ⊗ · · · ⊗ b� ∈ B , define pr : B → B by

pr(b1 ⊗ · · · ⊗ b�) = pr(b1) ⊗ · · · ⊗ pr(b�). (3.2)

Lemma 3.5 pr on B = B(s1ωr1)⊗· · ·⊗B(s�ωr�) is a connected promotion operator.

Proof Since pr on each tensor factor B(siωi) satisfies conditions (1) and (2) of Defi-
nition 1.1, pr on B also satisfies conditions (1) and (2). Since pr on each tensor factor
B(siωi) satisfies condition (3) and the bracketing is well-behaved with respect to act-
ing on each tensor factor, we also have condition (3) for pr on B . The affine crystal
resulting from pr on B(sωr) is the Kirillov-Reshetikhin crystal Br,s of type A

(1)
n [12,

28]. Since Br,s is simple, the affine crystal resulting from pr on B is connected by [9,
Lemmas 4.9 and 4.10]. �

Lemma 3.5 shows that a promotion operator with the properties of Definition 1.1
exists on B = B(s1ωr1)⊗· · ·⊗B(s�ωr�). Theorem 1.2 states that for � = 2 this is the
only connected promotion operator.

4 Inductive proof of Theorem 1.2

In this section we provide the proof of Theorem 1.2. Throughout this section B :=
B(s′ωr ′) ⊗ B(sωr). For n < max(r, r ′) this crystal is either nonexistent or trivial.
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4.1 Outline of the proof

Aside from distinguishing the cases where (s′, r ′) = (s, r), our proof does not depend
in a material way on the values of s and s′. The basic tool in our proof is an induction
which allows us to relate the cases described by the triple (r ′, r, n) to those described
by (r ′ − 1, r − 1, n − 1), provided that

(1) n ≤ r ′ + r − 1 and
(2) we do not have r ′ = r = 1.

As follows from Lemma 2.5, any crystal which does not satisfy these hypotheses is
isomorphic to one which does, with the exception of the case where r ′ = r = n = 1.
(This case does not satisfy the result of the Theorem as was discussed in Remark 1.3).
The general idea for the proof is to use repeated applications of induction and duality
to successively reduce the rank of the crystal. Note that both techniques preserve the
fact that the rank is greater or equal to the maximum of the heights of the two rectan-
gles r and r ′. We take as base cases those crystals where either r or r ′ is equal to zero.
In these cases, we have only a single tensor factor and the statement of Theorem 1.2
was shown by Shimozono [28].

This approach, however, does not cover those cases which inductively reduce to
the case (1,1,1). The only case which directly reduces to (1,1,1) is (2,2,2). By
duality, the case (2,2,2) is equivalent to the case (1,1,2). We prove this case directly,
as a separate base case, and thus complete the proof.

The proof is laid out as follows. In Section 4.2, we discuss the base case of the A2
crystals with r = r ′ = 1. In Section 4.3, we present the basic lemma (Lemma 4.8) for
our inductive arguments. In Section 4.4, we show how to apply the induction in the
case where r ′ ≥ r and r ′ > 1 for different tensor factors. Note that by (2.2) we can
always assume that r ′ ≥ r . In Section 4.5 we treat the case of equal tensor factors.

4.2 Row tensor row case, n = 2

In this subsection we prove Theorem 1.2 for the row tensor row case with n = 2. In
this case, the isomorphism of Equation (2.3) becomes:

� : B(sω1) ⊗ B(sω1) ↪→→ B((s − 1)ω1) ⊗ B((s + 1)ω1) ⊕ B(sω2) . (4.1)

Proposition 4.1 Let B := B(s′ω1) ⊗ B(sω1) be the tensor product of two single row
classical highest weight crystals of type A2 with s, s′ ≥ 1. If s 	= s′, there is a unique
promotion operator pr = pr which is connected. If s = s′, there are two promotion
operators: pr which is connected, and pr′ := �−1 ◦ pr ◦ � , induced by the canonical
promotions on the classical crystals B((s −1)ω1)⊗B((s +1)ω1) and B(sω2), which
is disconnected.

We may assume without loss of generality that s′ ≤ s. After a preliminary
Lemma 4.2, we show that if the pr-orbits coincide with the pr-orbits on the inversion-
less component, then pr = pr (Proposition 4.3). Here the inversionless component is
the component B((s + s′)ω1) in the decomposition (2.1) of B . Then, we proceed with
the analysis of pr-orbits on the inversionless component (Lemma 4.6). When s′ < s,
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there is a single possibility which implies pr = pr. When s′ = s, there are two possi-
bilities, and we argue that one implies pr = pr, while the other implies pr = pr′ via
the isomorphism � .

Lemma 4.2 (Content Lemma) If v′ ⊗ v ∈ B does not contain any 3s, then pr(v′ ⊗
v) = pr(v′) ⊗ pr(v).

Proof By assumption w = v′ ⊗ v contains only the letters 1 and 2. The only 1-
bracketing that can be achieved is by 2s in the left tensor factor that bracket with
1s in the right tensor factor. Hence knowing ϕ1(w) and ε1(w) determines w com-
pletely. Since pr rotates content, pr(w) contains only 2s and 3s. Since furthermore
ϕ2(pr(w)) = ϕ1(w) and ε2(pr(w)) = ε1(w), this completely determines pr(w). Since
pr is a valid promotion operator by Lemma 3.5, pr must agree with pr on these ele-
ments. �

Proposition 4.3 Let B := B(s′ω1) ⊗ B(sω1), and pr be a promotion on a classical
type An crystal C := B ⊕ B ′ of which B is a direct summand (typically C := B).
Assume that the orbits under promotion on the inversionless component of B coincide
with those for the canonical promotion pr of B . Then pr coincides with pr on B .

We start with the elements with only one letter in some tensor factor.

Lemma 4.4 Under the hypothesis of Proposition 4.3, the pr-orbit of an element v′⊗v

is its pr-orbit whenever either v′ or v contains a single letter.

Proof Assume that v′ = ks′
(resp. v = ks ). Then, v′ ⊗ v is in the pr-orbit of the

inversionless element 1s′ ⊗ pr1−k(v) (resp. of pr3−k(v′) ⊗ 3s ) which by hypothesis
is also its pr-orbit. �

Next come elements with exactly two letters in each tensor factor.

Lemma 4.5 Under the hypothesis of Proposition 4.3, the pr-orbit of an element w :=
v′ ⊗ v is its pr-orbit whenever v′ and v each contain precisely two distinct letters.

Proof By Lemma 4.4, it remains to consider the cases when both v′ and v contain
two letters.

(1) If w = 1a2b ⊗ 2c3d it is inversionless and we are done by hypothesis. The pr-
orbit includes the elements 2a3b ⊗ 1d3c and 1b3a ⊗ 1c2d .

(2) Assume w = 2a3b ⊗1d2c. Applying f2 a sufficient number of times gives 3a+b ⊗
1d2c13c2 . If we instead apply e1 a sufficient number of times to w, we get the
elements 1a1 2a23b ⊗ 1d+c. In both cases Lemma 4.4 applies, and by the Two
Path Lemma 2.10, the pr-orbit of w is its pr-orbit.

(3) The orbits of the elements considered previously include the elements 1b3a ⊗
2d3c and 1a2b ⊗ 1c3d .

(4) Assume w = 1b3a ⊗ 1d3c. Applying ea
2 yields 1b2a ⊗ 1d3c, and applying f d

1
yields 1b3a ⊗ 2d3c. Both elements have already been treated, and by the Two
Path Lemma 2.10, the pr-orbit of w is its pr-orbit.
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(5) The orbits of the elements considered previously include w = 1a2b ⊗ 1c2d and
w = 2a3b ⊗ 2c3d . Hence all cases are covered.

�

We are now in the position to prove Proposition 4.3.

Proof of Proposition 4.3 By the Highest Weight Lemma 2.8, we only need to
determine promotion of each {1}-highest weight element. They are of the form
1a2b3c ⊗ 1d3e with b ≤ d . We claim that its promotion orbit is given as follows:

w0 = 1a2b3c ⊗ 1d3e (1)−→ w1 = 1c2a3b ⊗ 1e2d (2)−→ w2 = 1b2c3a ⊗ 2e3d (3)−→ w0 .

Applying e1 a sufficient number of times to w1 yields a word whose second factor
contains a single letter. Using Lemma 4.4, we deduce that pr(w1) = w2 = pr(w1)

as claimed (arrow (2)). Applying f b
1 to w2 yields 2b+c3a ⊗ 2c3d whose pr-orbit is

its pr-orbit by Lemma 4.5. Therefore pr(w2) = w0 = pr(w2) as claimed (arrow (3)).
Arrow (1) follows from pr3 = id. �

We now turn to the analysis of promotion orbits on the inversionless component
(see Figure 2).

Lemma 4.6 When s′ 	= s, the pr-orbit of every element in the inversionless compo-
nent agrees with pr. When s′ = s, there are precisely two cases; either pr agrees with
pr on the orbit of every element in this component, or pr agrees with pr′ on the orbit
of every element in this component.

Proof Draw the crystal graph for the inversionless component with 1s′ ⊗ 1s at the
top, 1-arrows going down and 2-arrows going right (see Figure 2). When there is no
ambiguity, we drop the ⊗ sign and consider elements in B as words. The orbits of the
elements w in the inversionless component are considered in the following order:

(1) Corners: w ∈ {1s′ ⊗ 1s ,2s′ ⊗ 2s ,3s′ ⊗ 3s}.
(2) Diagonal: w := 1a2s′−a ⊗ 2s−a3a with 1 ≤ a < s′.
(3) Middle row: w := 1s′ ⊗ 2s−a3a with s′ ≤ a < s.
(4) Lower leftmost column: w := 1a2s′−a ⊗ 2s with 1 ≤ a ≤ s′ and a < s.
(5) Left of lower row: w := 2s′ ⊗ 2a3s−a with 1 ≤ a < s.
(6) Rest of leftmost column and lower row: w := 1a2b or w := 2a3b, except when

a = b = s = s′.
(7) General elements: w := 1a2b3c not in any of the other cases.
(8) Row and column of 1s ⊗ 3s when s = s′.

(1): By content, 1s′ ⊗ 1s pr−→ 2s′ ⊗ 2s pr−→ 3s′ ⊗ 3s pr−→ 1s′ ⊗ 1s , which agrees
with the pr-orbit.

(2): The orbit of w := 1a2s′−a ⊗ 2s−a3a for 1 ≤ a < s′ is forced by bracketing
arguments. Recall that bi(w) denotes the number of () brackets in the construction of
fi and ei on w. Start with the element w1 := 2a3s′−a ⊗1a3s−a . Note that b1(w1) = a.
Thus b2(pr(w1)) = a. This implies that in w2 := pr(w1) all 3s must be in the left
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tensor factor and all 2s must be in the right tensor factor. This forces w2 = 1s′−a3a ⊗
1s−a2a . Now we have b1(w2) = 0. Thus if we define w0 := pr(w2) = pr−1(w1),
we must have b2(w0) = 0. However, we also have that b2(w1) = 0. Hence we have
b1(w0) = 0. These facts imply that in w0 all 1s precede all 2s and all 2s precede
all 3s. Therefore w0 = 1a2s′−a ⊗ 2s−a3a = w, and the pr-orbit of w is its pr-orbit

w
pr−→ w1

pr−→ w2
pr−→ w.

(3): The argument for w := 1s′ ⊗2s−a3a with s′ ≤ a < s is very similar to (2). Start
with w1 := 2s′ ⊗ 1a3s−a . Since b1(w1) = s′, we must have b2(w2) = s′ for w2 :=
pr(w1). This forces the first tensor factor of w2 to be 3s′

, which completely fixes
w2 = 3s′ ⊗ 1s−a2a . We have b1(w2) = 0, and so b2(w0) = 0 where w0 := pr(w2) =
pr−1(w1). However, we also have b2(w1) = 0, and so b1(w0) = 0. Thus, as above,
w0 must have no inversions, and we have w0 = 1s′ ⊗ 2s−a3a and the pr-orbit of w is
its pr-orbit.

(4): Applying f a
1 to w := 1a2s′−a ⊗2s gives the corner element 2s′ ⊗2s . Applying

f a
2 to w yields the diagonal element 1a2s′−a ⊗ 2s−a3a (or middle row element for

a = s′ < s). Hence by the Two Path Lemma 2.10 the pr-orbit of w is its pr-orbit.
(5): Let w := 2s′ ⊗ 2s−a3a for 1 ≤ a < s, Then ea

2(w) = 2s′ ⊗ 2s whose orbit is

known by the corner case, and es′
1 or ea

1 applied to w yields a diagonal or row element.
Hence again by the Two Path Lemma 2.10 the pr-orbit of w is its pr-orbit.

(6): By Lemma 4.2, the element w := 1a2b is mapped to 2a3b under promotion.
From Step (4) and (5) either the pr-orbit of 1a2b or of 2a3b is its pr-orbit, except
when a = b = s = s′.

(7): For a general element w := 1a2b3c, f a
1 (w) yields the element 2a+b3c of the

lowest row, and ec
2(w) yields the element 1a2b+c of the leftmost column edge. By

(4), (5), (6) and the Two Path Lemma 2.10 the pr-orbit of w is its pr-orbit, except
when s = s′ and w is in the row or column of 1s ⊗ 3s .

(8): Assume s = s′, and consider pr(1s−12 ⊗ 3s). Using (7) for the pr-orbit of
1s−13 ⊗ 3s and pr3 = id, we have:

pr(1s−12 ⊗ 3s) = pr(e2(1
s−13 ⊗ 3s)) = pr(e2(pr(23s−1 ⊗ 2s)))

= pr2(e1(23s−1 ⊗ 2s)) = pr−1(e1(23s−1 ⊗ 2s))

= pr−1(13s−1 ⊗ 2s) .

(4.2)

By the bracketing structure between the 2s and 3s in 13s−1 ⊗ 2s , there are only two
possible choices for pr−1(13s−1 ⊗ 2s), as desired:

2s−13 ⊗ 1s and 12s−1 ⊗ 1s−13 . (4.3)

By the Two Path Lemma 2.10, each of those choices completely determines the pr-
orbits on the row and column of 1s ⊗ 3s . The first choice is clearly compatible with
pr. The second choice is compatible with pr′:

12s−1 ⊗ 1s−13
�−→ 2s−1 ⊗ 1s3

pr−→ 3s−1 ⊗ 12s �−1−→ 13s−1 ⊗ 2s .

�
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Proof of Proposition 4.1 If s 	= s′, the statement of the Proposition follows from
Lemma 4.6 and Proposition 4.3. It remains to settle the case s = s′.

Case 1: pr coincides with pr on the inversionless component. Then, by Proposi-
tion 4.3: pr = pr.

Case 2: pr coincides with pr′ on the inversionless component. Note that � maps
this component to the inversionless component of B((s − 1)ω1) ⊗ B((s + 1)ω1).
Therefore, applying Proposition 4.3 to B((s − 1)ω1) ⊗ B((s + 1)ω1) yields that pr
coincides with pr′ on �−1(B((s − 1)ω1) ⊗ B((s + 1)ω1)). Then, pr stabilizes both
�−1(B((s − 1)ω1) ⊗ B((s + 1)ω1)) and �−1(B(sω2)); since the latter piece admits
a unique promotion, pr = pr′.

Since pr 	= pr′, the two cases above are necessarily exclusive, and by Lemma 4.6
they cover all the choices for pr on the inversionless component. �

4.3 Induction

The remainder of our proof uses induction to relate any promotion operator on
B := B(s′ωr ′) ⊗ B(sωr) of type An to a promotion operator on D := B(s′ωr ′−1) ⊗
B(sωr−1) of type An−1. This is done in Proposition 4.8. Before we can state and
prove this proposition we first need some more notation and a preliminary lemma.

Let Ci(B) be the subgraph of B consisting of the vertices with s + s′ copies of
the letter i, along with the arrows ej , fj with j ∈ {1,2, . . . , n} \ {i − 1, i}. Recall the
promotion operator pr of Section 3.1. In addition, if (s, r) = (s′, r ′), we can define the
promotion operator pr′ = �−1 ◦pr◦� . If we want to emphasize that these promotion
operators act on the crystal B (respectively D), we write prB and pr′B (respectively
prD and pr′D).

Lemma 4.7 If (s, r) = (s′, r ′), there exist at least two promotion operators prB and
pr′B on B . Furthermore, they are distinct when restricted to maps on C1(B) → C2(B)

or Cn(B) → Cn+1(B).

Proof Set Ci := Ci(B). We note first that for content reasons, any promotion operator
must bijectively map Ci → Ci+1 (and Cn+1 → C1). By Section 3.1 we know that
there are at least two promotion operators prB and pr′B defined on B . It remains to
show they differ when restricted to C1 and Cn.

Consider the element (where we write the columns of tableaux using exponential
notation to indicate the multiplicity of each column)

w1 :=

⎛

⎜

⎜

⎜

⎝

r
...

2
1

⎞

⎟

⎟

⎟

⎠

s

⊗

⎛

⎜

⎜

⎜

⎝

n + 1
...

n + 3 − r

1

⎞

⎟

⎟

⎟

⎠

s

∈ C1.
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Under pr, w1 maps to

w2 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

r + 1
r
...

3
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

s

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎝

n + 1
...

n + 4 − r

2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

s

.

However it is not hard to see that

�(w1) =

⎛

⎜

⎜

⎜

⎝

r

r − 1
...

1

⎞

⎟

⎟

⎟

⎠

s−1

⊗

⎛

⎜

⎜

⎜

⎝

r

r − 1
...

1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

n + 1
...

n + 3 − r

1

⎞

⎟

⎟

⎟

⎠

s

∈ B((s − 1)ωr) ⊗ B((s + 1)ωr).

Similarly,

�(w2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

r + 1
r
...

5
4
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

s

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n + 1
...

n + 4 − r

3
2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

s

∈ B(sωr−1) ⊗ B(sωr+1).

Since pr′ preserves the components under � by definition, it cannot agree with pr on
w1. Hence pr 	= pr′ on C1.

For the restriction on Cn, consider the element

wn :=

⎛

⎜

⎜

⎜

⎝

n

r − 1
...

1

⎞

⎟

⎟

⎟

⎠

s

⊗

⎛

⎜

⎜

⎜

⎝

n + 1
n
...

n + 2 − r

⎞

⎟

⎟

⎟

⎠

s

∈ Cn.

Note that �(wn) is in the B((s − 1)ωr) ⊗ B((s + 1)ωr) component. On the other
hand, the image of wn under pr is

wn+1 :=

⎛

⎜

⎜

⎜

⎝

n + 1
r
...

2

⎞

⎟

⎟

⎟

⎠

s

⊗

⎛

⎜

⎜

⎜

⎝

n + 1
...

n + 3 − r

1

⎞

⎟

⎟

⎟

⎠

s

,

which is in the B(sωr−1) ⊗ B(sωr+1) component under � . So we conclude that
pr 	= pr′ on Cn. �

For the next proposition, B := B(s′ωr ′) ⊗ B(sωr) is an An crystal, with n ≥ r ′ ≥
r ≥ 1, and D := B(s′ωr ′−1) ⊗ B(sωr−1) is an An−1 crystal. Here we interpret ω0 as
the zero weight.
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Proposition 4.8 If prD is the only promotion operator defined on D, then any pro-
motion operator pr on B agrees with prB on both C1(B) and Cn(B). If prD and pr′D
are the only promotion operators defined on D, then any promotion operator pr on
B either agrees with prB on both C1(B) and Cn(B) or it agrees with pr′B on both
C1(B) and Cn(B).

Proof For the purpose of this proof we set Ci := Ci(B). Note that while the graphs
C1 and Cn+1 are twisted-isomorphic to D, the other graphs Ci for i 	= 1, n+ 1 do not
have enough arrows.

We claim there is a unique isomorphism from the An−1 crystal Cn+1 to D. We
define one such isomorphism φn+1, by simply removing the top row from each factor.
(It is easy to see that this is removing all letters n + 1). By the decomposition (2.1),
this isomorphism is unique.

Similary, there is a unique twisted isomorphism from the {2, . . . , n} crystal C1
to the {1, . . . , n − 1} crystal D with twist given by τ : i �→ i − 1. We define one
such isomorphism, φ1, by removing the bottom row from each factor and subtracting
one from each letter. Now given any τ -twisted isomorphism φ : C1 → D, we get
φ−1 ◦ φ1 : D → D is a crystal isomorphism. By (2.1) this must be the identity, which
implies that φ = φ1.

Note that this implies that there is a unique twisted isomorphism from Cn+1 → C1
with twist given by τ : i �→ i +1. This is given by φ−1

1 ◦φn+1, and any other τ -twisted
isomorphism would give a nontrivial automorphism of D. Since any promotion op-
erator pr on B must give such a τ -twisted isomorphism when restricted to Cn+1,
we have shown that the promotion operator pr restricted to pr : Cn+1 → C1 is deter-
mined.

Now let pr be any promotion operator on B , restricted to the union of the sets
C1, . . . ,Cn+1. Let prB be the standard promotion operator on B , and prD be the
standard promotion operator on D. Define a map φ2 : C2 → D by

φ2 := prD ◦ φ1 ◦ pr
−1
B .

(All functions written here will be acting on the left.)
Define a map from D to itself by

ρ := φ2 ◦ pr ◦ φ−1
1 .

Note that ρ is a map which takes D to itself and affects content and arrows according
to axioms 1 and 3 of promotion operators as defined in Definition 1.1. We will show
that ρ also satisfies the axiom that ρn = id, hence proving that ρ is a promotion
operator on D.

We determine the order of ρ by constructing a commutative diagram:

C1

φ1

pr
C2

φ2

pr
C3

φ3

pr
. . .

pr
Cn+1

pr

φn+1

C1
φ1

D
ρ

D
ρ

D
ρ

. . .
ρ

D
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The maps φi in this diagram (for 3 ≤ i ≤ n) are defined by requiring this diagram to
commute. Specifically, we have

φi := ρ ◦ φi−1 ◦ pr−1.

Notice that, by the uniqueness of φn+1, we must have ρ ◦ φn ◦ pr−1 = φn+1 on Cn+1.
Since pr is a promotion operator, the composition prn+1 along the top row of this
diagram must be equal to the identity. Thus we can collapse the diagram to

C1

φ1

φ1

D
ρn

D

which implies ρn = id. This completes the proof that ρ is a promotion operator.
Now assume that the only choice for a promotion operator on D is prD . Recall

ρ = φ2 ◦ pr ◦ φ−1
1

=
(

prD ◦ φ1 ◦ pr
−1
B

)

◦ pr ◦ φ−1
1 .

Since ρ = prD we multiply both sides by pr
−1
D on the left to obtain

idD = φ1 ◦ pr
−1
B ◦ pr ◦ φ−1

1 .

Conjugating by φ1 gives

idC1 = pr
−1
B ◦ pr

which implies

pr = prB on C1.

Next assume that there are two choices for the promotion operator on D, namely
prD and pr′D . If ρ = prD , then by the same arguments as above, we conclude that
pr = prB on C1. If ρ = pr′D , then pr = φ−1

2 ◦ ρ ◦ φ1 must be different from prB on
C1. Furthermore, there are no more than these two possibilities for pr on C1. By
Lemma 4.7, prB and pr′B are different on C1. Hence if ρ = pr′D , then pr = pr′B on
C1.

We now wish to show that pr−1 = pr
−1
B on Cn+1 if the only choice for a promotion

operator on D is prD . We keep our definitions of φ1 and φn+1 and define φn : Cn → D

by

φn := pr
−1
D ◦ φn+1 ◦ prB.
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We now redefine ρ : D → D (though it will in fact coincide with the old definition)
by

ρ := φn+1 ◦ pr ◦ φ−1
n .

We again conclude that ρ satisfies the content and arrow properties of a promotion
operator, and we determine its order with the following diagram:

Cn+1

φn+1

Cn

φn

pr
Cn−1

φn−1

pr
. . .

pr
C1

pr

φ1

Cn+1

φn+1

pr

D D
ρ

D
ρ

. . .
ρ

D
ρ

(Again the undefined vertical arrows are defined soley to make the diagram com-
mute.) As before, we conclude that ρn = id and hence pr = prB on Cn. By very sim-
ilar arguments as before, pr on Cn is either prB and pr′B if there are the two choices
prD and pr′D for promotion operators on D.

If prD is the only promotion operator on D, then we are done. If prD and pr′D are
the two choices for promotion operators on D, then it remains to show that pr is prB
on both C1 and Cn or that pr is pr′B on both C1 and Cn. Recall w1 and wn as defined
in the proof of Lemma 4.7. Note that w1 is related to wn by a series of fj operators
(not including fn). Thus pr(w1) determines pr(wn) and conversely. �

4.4 Rectangle tensor rectangle case

In this section we prove Theorem 1.2 for (s, r) 	= (s′, r ′), r ′ ≥ r ≥ 1, r ′ > 1, and n ≤
r + r ′ − 1. The proof is by induction on n, showing that there is a unique promotion
on the An crystal B = B(s′ωr ′) ⊗ B(sωr), assuming that the statement is true by
induction for smaller n.

Lemma 4.9 For n < r + r ′ − 2, the promotion operator on the An crystal B :=
B(s′ωr ′) ⊗ B(sωr) is determined.

Proof It suffices to show that the promotion operator on {1, . . . , n−1} highest weight
elements is determined. The right tensor factor of such an element w must be of the
form

⎛

⎜

⎜

⎜

⎝

r

r − 1
...

1

⎞

⎟

⎟

⎟

⎠

a ⎛

⎜

⎜

⎜

⎝

n + 1
r − 1

...

1

⎞

⎟

⎟

⎟

⎠

b

. (4.4)

Hence the bottom row of the left tensor factor can only contain the letters 1, r and r +
1 (since r ′ > 1 the letter n+1 is not possible in the first row). But if r or r +1 appears
in the bottom of a column in the left tensor factor, then r + r ′ − 1 is the smallest
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possible number which could appear at the top of that column by columnstrictness.
But since n < r + r ′ − 2, this letter is not in our crystal. Hence the bottom row of
the left tensor factor consists only of 1s, so w is in C1(B) and by Proposition 4.8
promotion is given by either pr or pr′. �

For the rest of the proof, we assume that n = r ′ + r − 2 or n = r ′ + r − 1. The
unique element of weight sωr in B(sωr) is called Yamanouchi; it is the tableau with
row i filled with letter i for 1 ≤ i ≤ r . After a preliminary lemma, we first show that
promotion on all {1,2, . . . , n − 1} highest weight vectors, where the right factor is
Yamanouchi, is determined. Then we prove the claim for general {1,2, . . . , n − 1}
highest weight elements.

Lemma 4.10 Suppose w is a {1, . . . , n − 1} highest weight element whose right fac-
tor is Yamanouchi or whose right factor has height one. Let pr,pr′ be any two (a priori
different) promotion operators. Let w1,wn be defined by

wn
pr′→ w

pr′→ w1.

If wn
pr−→ w0

pr−→ w1 then w0 = w.

Proof We first assume that the right factor has height one. We claim that w is com-
pletely specified by:

(1) The fact that w is {1, . . . , n − 1} highest weight;
(2) The content of w;
(3) The content of the right factor of w.

Suppose w is {1, . . . , n− 1} highest weight. Then the right factor of w must be of the
form 1a(n + 1)b . Suppose also that mn+1(w) = b + c. The An−1 crystal consisting
of those elements of B with c copies of n + 1 in the left factor and b copies of n + 1
in the right factor is isomorphic to B((s′ − c)ωr ′ + cωr ′−1) ⊗ B((s − b)ω1). This has
a decomposition into classical components according to the multiplication of Schur
functions s(s′r−1,s′−c)s(s−b). Since this product is indexed by a “near rectangle” and
a rectangle, Theorem 2.1 of [29] gives that this product, when expanded into Schur
functions, is multiplicity free. Hence, there is at most one highest weight vector of a
given content. This proves the claim.

It is clear that (1) and (2) can be reconstructed from w1. From (1), we know the
right factor of w is of the form 1a(n + 1)b , and the right factor of w0 is of the form
1a′

(n + 1)b
′
. So it suffices show that b′ = b. For this, we note that the {2, . . . , n}

lowest weight element associated to w has precisely s′ + b copies of n + 1. Thus the
{1, . . . , n − 1} lowest weight element associated to wn has s′ + b copies of n, and the
{2, . . . , n} lowest weight element corresponding to w0 must have s′ + b of copies of
n + 1. But this is only the case if b′ = b.

Now we consider the case that r > 1 and the right factor of w is Yamanouchi. We
claim that w is completely specified by:

(1) The fact that w is {1, . . . , n − 1} highest-weight;
(2) The content of w;
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(3) The fact that the right factor of w is Yamanouchi.

In this case, we know that all c := mn+1(w) copies of n+1 occur in the top row of the
left factor. Thus the An−1 crystal consisting of all elements with c copies of n + 1 in
the left factor and none in the right is isomorphic to B((s′ −c)ωr ′ +cωr ′−1)⊗B(sωr).
Again, the corresponding product of Schur functions is indexed by a near rectangle
and a rectangle, and so the product is multiplicity free. Hence there is at most one
highest weight vector of a given content.

It is clear that (1) and (2) can be reconstructed from w1. From (1), we know the
right factor of w0 must be of the form (4.4). We must show that b = 0 in (4.4).

Assume first that r ′ > r . Let mr be the number of letters r in w. We note that
the number of letters r in the {2, . . . , n} highest weight associated to w must also be
precisely mr ; the only elements that can change at all are the letters n+1, and because
they are in a row of height > r , they cannot become letters r . Thus the number of
letters r − 1 in the {1, . . . , n − 1} highest weight associated to wn is also mr . From
this we conclude that in any w0, the number of rs in the associated {2, . . . , n} highest
weight is mr . If there were an n + 1 in the right factor of w, this would not be true,
so we can conclude that b = 0.

Finally suppose that r ′ = r . Let k ≥ 0 be the number of columns of the left factor
of w whose top two entries are of the form n+1

r−1 . If k > 0, the top two rows of the left
factor of w is of the general form:

⎛

⎝

≤ n . . . ≤ n n + 1 . . . n + 1 n + 1 . . . n + 1
r − 1 . . . r − 1 r − 1 . . . r − 1 ≥ r . . . ≥ r

. . .

⎞

⎠ .

If k ≤ s, we note that the number of rs in the {2, . . . , n} highest weight associated
to w is again mr . Hence we can repeat the r ′ > r argument above to conlude that
b = 0. If k > s, we set w′ to be the {r, . . . , n} lowest weight associated to w. We have
mn+1(w

′) = s′, since every element in the top row of the left factor can be raised
to an n + 1, and every r in the right factor will be ’blocked’ by at least one of the
k letters (n + 1) above an r − 1 on the left on its way up. Translating this property
to wn and back to w0, we see that the {r, . . . , n} lowest weight associated to any w0
must contain the letter n + 1 precisely s′ times. But the number of (n + 1)s in this
lowest weight must be at least s′ + b; hence b = 0. �

Lemma 4.11 The promotion operator is determined on the set of {1, . . . , n−1} high-
est weight elements in B for which the right factor is Yamanouchi.

Proof For n = r ′ + r − 2, the bottom row of the left factor can only contain the letter
1 by the same arguments as in the proof of Lemma 4.9. Hence all {1, . . . , n − 1}
highest weight elements are in C1(B) and by Proposition 4.8 the statement follows
by induction.

For n = r ′ + r − 1, let w be a {1, . . . , n − 1} highest weight element with a Ya-
manouchi right factor. The general strategy is to consider the pr-orbit of w:

w → w1 → ·· · → wn → w.
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We show that w1, . . . ,wr ′ are associated to {1, . . . , n− 1} highest weight elements in
C1(B) whose promotion we know by induction. We then show that promotion inverse
of wr ′+1, . . . ,wn is determined by showing that the associated {2, . . . , n + 1} lowest
weight elements are in Cn+1(B). By Lemma 4.10 we also know that w is the unique
element which is simultaneously pr(wn) and pr−1(w1).

The right factor of w is Yamanouchi and hence of the form

⎛

⎜

⎝

r
...

1

⎞

⎟

⎠

s

.

Note also that the bottom row of the left factor of any element of this crystal must
consist of letters ≤ r + 1; if there is a larger letter in the first row, this would force a
letter larger than n + 1 = r + r ′ in the top row. In particular, if r + 1 appears in the
bottom row of the left factor, then the column has an n + 1 on the top. Now consider
the element wi := pri (w), for 1 ≤ i ≤ r ′. The right factor of wi is

⎛

⎜

⎝

r + i
...

1 + i

⎞

⎟

⎠

s

.

The bottom row of the left factor contains only letters < r + i, which are not brack-
eted with the right factor. In particular, we see that the bottom row can always be
lowered via ej operators (without en) to a row of 1s. Since the bottom row of the
right factor can also always be lowered to 1s (without using en), we see that wi can

be lowered to C1(B) and so the promotion wi
pr−→ wi+1 for 1 ≤ i ≤ r ′ is determined

by Proposition 4.8.
Now notice that for r ′ ≤ i ≤ n, the top row of the right factor of wi consists of

only (n + 1)s. Thus the associated {2, . . . , n} lowest weight element is in Cn+1(B),
and so by induction Proposition 4.8 we have determined promotion inverse. Hence

we have computed w1
pr−→ w2

pr−→ · · · pr−→ wn and so by Lemma 4.10 we know the
orbit of w. �

Lemma 4.12 The promotion operator is determined on the set of {1, . . . , n−1} high-
est weight elements in B with a right factor of

⎛

⎜

⎜

⎜

⎜

⎜

⎝

n + 1
r − 1
r − 2

...

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

s

. (4.5)

Proof As before we set wi = pri (w). Every element in {w1,w2, . . . ,wn+1−r} is as-
sociated via a sequence of ej (not including en) to a {1, . . . , n − 1} highest weight el-
ement with a Yamanouchi right factor. So promotion of these elements is determined
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by Lemma 4.11. The remaining elements {wn+2−r , . . . ,wn,w} are associated with a
{2, . . . , n} lowest weight element in Cn+1(B), so promotion inverse is determined by
Proposition 4.8. Thus the orbit of w is determined. �

Lemma 4.13 The promotion operator is determined on the set of {1, . . . , n−1} high-
est weight elements in B .

Proof If w is a {1, . . . , n − 1} highest weight element and has a right factor which
is Yamanouchi or of the form (4.5), the result follows from Lemmas 4.11 and 4.12.
Hence we may assume that the top row of the right factor of w contains both the
letters r and n + 1. Then the letters in the top row of the right factor of wi := pri (w)

are given by:

0 : (r, n + 1) 1 : (r, r + 1) . . . n − r : (n − 1, n)

n − r + 1 : (n,n + 1) n − r + 2 : (n + 1, n + 1) . . . n : (n + 1, n + 1).

Notice that the right factor of wi for 1 ≤ i < n − r + 1 can be transformed to the Ya-
manouchi element using a sequence of ej (not including en). Hence by Lemma 4.11
promotion on this element is known. In the case that r = 1, we have determined

w1
pr−→ . . .

pr−→ wn, and hence by Lemma 4.10 we have determined the orbit of w. If
r > 1, then the top row of the right factor of wi for n − r + 1 < i ≤ n consists only
of n + 1, and hence a sequence of ej (not including en) can transform these wi into
a {1,2, . . . , n − 1} highest weight element with right factor of the form (4.5), whose
promotion orbit is already determined. In wn−r+1, the right factor has the form

⎛

⎜

⎝

n
...

n − r + 1

⎞

⎟

⎠

b ⎛

⎜

⎝

n + 1
...

n − r + 2

⎞

⎟

⎠

a

.

Notice that every letter in the right factor is fully bracketed except for the letters
n. Thus every letter 1,2, . . . , n in the left factor of wn−r+1 is unbracketed (with re-
spect to the right factor). In particular, every letter in the first row of the left factor
is unbracketed, so we can reduce them to 1s. This gives an element of C1(B) as the
associated {1, . . . , n − 1} highest weight element, and hence promotion is known by
induction by Proposition 4.8. Thus the orbit of w is determined, and this completes
the proof. �

By Lemma 4.13 promotion on all {1,2, . . . , n − 1} highest weight elements is
determined. Hence by the Highest Weight Lemma 2.8 promotion is determined on all
of B . This concludes the induction step in the proof of Theorem 1.2 when (s, r) 	=
(s′, r ′).

4.5 Equal Tensor Factors

Let B := B(sωr) ⊗ B(sωr) be the tensor product of two identical classical highest
weight crystals of type An with n ≥ 2 and r > 1. We show in this section that there
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are two promotion operators on B , given by the connected operator pr and the dis-
connected operator pr′ = �−1 ◦ pr ◦ � .

By Proposition 4.8, there are at most two possibilities for the action of promotion
on the subsets of B given by C1 := C1(B) and Cn := Cn(B). If promotion restricted
to these subsets is given by pr, then all the arguments from Section 4.4 apply as before
and we are done. So for the rest of this section we consider the case where promotion
on C1 and Cn is given by pr′. As before by the Highest Weight Lemma 2.8, it suffices
to determine promotion on all {1, . . . , n − 1} highest weight elements.

Lemma 4.14 Suppose pr on B coincides with pr′ on C1 and Cn. If w ∈ B is a
{1, . . . , n − 1} highest weight element, with �(w) ∈ B1 := B((s − 1)ωr) ⊗ B((s +
1)ωr), and the right factor of �(w) is Yamanouchi, then the orbit of w is given by
pr′.

Proof We first note that the conditions of the lemma imply that the right factor of
w is Yamanouchi: Suppose �(w) := v1 ⊗ v2 ∈ B1 is {1, . . . , n − 1} highest weight
with v2 being Yamanouchi. Then every letter n + 1 in v1.v2 is in a row higher than
row r . Furthermore, since � is a crystal isomorphism, v1 ⊗ v2 is also {1, . . . , n −
1} highest weight. Now let v′

1 ⊗ v′
2 := �−1(v1 ⊗ v2) (so v′

1.v
′
2 = v1.v2). This must

still be {1, . . . , n − 1} highest weight, and thus the right tensor factor must be of the
form (4.4). However, any n + 1 in v′

2 would certainly give an n + 1 at height r in
v′

1.v
′
2. Thus the only possibility for v′

1.v
′
2 to agree with v1.v2 is if v′

2 is Yamanouchi.
Now, we label the elements of the orbit of w under pr′ by

w → w′
1 → ·· · → w′

n → w.

Recall that � is a crystal isomorphism and hence commutes with the crystal op-
erators and preserves content. In particular, �−1(C1(B1)) ⊂ C1(B). By the proof of
Lemma 4.11 we know that, for 1 ≤ i ≤ r , �(w′

i ) is connected to C1(B1) by a series of
classical crystal operators (not involving en). Hence w′

i is connected to C1(B). From
the same lemma, it also follows that for r ≤ i ≤ n, �(w′

i ) is connected to Cn(B1)

by a series of classical crystal operators (not involving fn); hence w′
i is connected to

Cn(B). Thus the partial orbit

w′
1 → w′

2 → ·· · → w′
n

is determined. By Lemma 4.10, the entire orbit is now determined. �

Lemma 4.15 Suppose pr is a promotion operator on B which coincides with pr′ on
C1 and Cn. If w ∈ B is such that �(w) ∈ B1, then pr(w) = pr′(w).

Proof It remains to show this for those {1, . . . , n−1} highest weight elements whose
image under � is in B1 and does not have a Yamanouchi right factor. First consider
those elements w where �(w) has only a single repeated column on the right. Again,
we label the orbit under pr′ of w by

w0 := w → w′
1 → ·· · → w′

n → w0.
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By the proof of Lemma 4.12, �(w′
i ) for 0 ≤ i ≤ n is connected by special sequences

of crystal operators to elements whose promotion is already determined. Thus this is
also true for w′

i . In particular, promotion of w is determined. This logic can also be
applied to the remaining {1, . . . , n − 1} highest weight elements under consideration
following the proof of Lemma 4.13. �

The fact that pr agrees with pr′ on B1 implies that pr(B2) = B2, where B2 :=
B(sωr−1) ⊗ B(sωr+1). By Section 4.4 we already know that promotion on a tensor
product of two distinct rectangles is given by pr; thus we have in this case that pr = pr

on B2 and thus pr = pr′ on B .

5 Evidence for Conjecture 1.4

In this section, we present evidence for Conjecture 1.4. In Section 5.1 we present
theoretical results that support the claims of the conjecture and in Section 5.2 we
discuss computer evidence.

5.1 Unique factorization into rectangular Schur functions

We have seen in Lemma 3.5 that pr is a valid promotion operator on a tensor product
of classical highest weight crystals of type An indexed by rectangles; furthermore pr

yields a connected affine crystal.
In the remainder of this section, we further argue that two distinct tensor prod-

ucts of classical highest weight crystals of type An indexed by rectangles have non-
isomorphic classical structures, as desired for Conjecture 1.4 (otherwise, the two
associated promotion operators could induce two non-isomorphic connected affine
crystals). This statement translates as follows at the level of symmetric polynomials.

Proposition 5.1 Let n ≥ 1. If a symmetric polynomial P := P(x1, . . . , xn+1) can be
factored as a product P = s

(c
r1
1 )

· · · s
(c

rk
k )

of nontrivial rectangular Schur polynomials

with 1 ≤ ri ≤ n, then this is the unique factorization of P as a product of rectangular
Schur polynomials.

This turns out to be a special case of the following theorem.

Theorem 5.2 (Rajan [22]) Let g be any simple Lie algebra, and V1, . . . , Vn and
W1, . . . ,Wm be nontrivial, finite-dimensional, irreducible g-modules. If V1 ⊗ · · · ⊗
Vn

∼= W1 ⊗ · · · ⊗ Wm, then n = m and Vi
∼= Wτ(i) for some permutation τ .

In type A, Purbhoo and van Willigenburg [21] give a combinatorial proof for prod-
ucts of two arbitrary Schur functions. The following combinatorial proof of Proposi-
tion 5.1 handles products of an arbitrary number of rectangular Schur functions.

Proof of Proposition 5.1 We may impose a total order on rectangular partitions by
defining (cr ) ≥ (c′r ′

) if r > r ′ or r = r ′ and c ≥ c′. We show that the factor in P
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indexed by the largest rectangle in this order is uniquely determined. Hence induction
on the largest factor proves the proposition.

Without loss of generality we may assume that (c
r1
1 ), . . . , (c

rk
k ) are ordered in

weakly decreasing order. We use two facts, easily derived from the Littlewood–
Richardson rule. Let Q = ∏k

i=1 sλ(i) be any product of Schur functions. Let (ν(j))mj=1
be the list of partitions which index the expansion of Q into the sum of Schur func-
tions (the order of this list does not matter). Then

(1) For all pairs (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ m the diagram of ν(j) contains the
diagram of λ(i).

(2) If μ is a diagram consisting of the λ(i) concatenated to form a partition shape,
then μ is one of the ν(j).

Using these properties, we shall see that (c
r1
1 ), defined to be the index of rectangle

λ(1), can be determined from the collection of ν(j). We first find r1. Note that prop-
erty (1) implies that the height of every diagram ν(j) is at least r1. But by property (2),
there is some shape ν(j) consisting of the shapes λ(i) concatenated from left to right.
In particular, this shape has height exactly equal to r1. So r1 is the minimum of the
heights of the ν(i).

Since all other rectangles (c
ri
i ) for 1 ≤ i ≤ k have height ri ≤ r1, we may assume

without loss of generality that n = r1. Each term sν in the Schur expansion of P can
be associated with a highest weight crystal element in B := B(c

r1
1 ) ⊗ · · · ⊗ B(c

rk
k )

of weight ν. Take the collection of all terms sν in the Schur expansion of P such
that the first n − 1 parts of ν agree with the first n − 1 parts of the partition obtained
by concatenating all rectangles (c

r1
1 ), . . . , (c

rk
k ). This implies in particular that the

corresponding highest weight crystal elements in B are all Yamanouchi in the first
n − 1 rows. If c1, . . . , cm are the widths of the rectangles of height n = r1, then the
terms sν , with ν given as above, are in one-to-one correspondence with the Schur
expansion of the following product of complete symmetric functions hc1 · · ·hcm in
two variables.

However, note that for n = 1 we have hj (x,1) = 1−xj+1

1−x
, so its roots are the

nontrivial (j + 1)-th roots of unity. Let us consider two factorizations hc1 · · ·hcm =
hc′

1
· · ·hc′

m′ , and show that they must coincide. Consider the largest hj occurring ei-
ther on the left or the right hand side, and consider a primitive (j +1)-th root of unity
ξ . Then, ξ is a root of hci

(1, x) for some i, and by maximality of j , ci = j . We can
therefore factor out hj from the left hand side – and similarly from the right hand
side – and apply induction. �

Example 5.3 Let us illustrate the proof of Proposition 5.1 in terms of an example.
Take P = s22s

2
11s3. In the Schur expansion of P there is a term s74, which is obtained

by concatenating the four rectangles. All terms are labeled by partitions with at least
two parts. This tells us that the height of the largest rectangle is r1 = 2.
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To determine the width of the largest rectangle, we consider the highest weight
crystal elements that are Yamanouchi in the first r1 − 1 = 1 rows:

2 2
1 1

⊗ 2
1

⊗ 2
1

⊗ 1 1 1 ,
2 2
1 1

⊗ 3
1

⊗ 2
1

⊗ 1 1 1 ,

2 3
1 1

⊗ 2
1

⊗ 2
1

⊗ 1 1 1 ,
3 3
1 1

⊗ 2
1

⊗ 2
1

⊗ 1 1 1 .

The second row of these elements gives precisely the expansion of the sl2 or two
variable expansion of h2h

2
1, which is unique. Hence c1 = 2, and the largest rectangle

is (22).

5.2 Computer exploration

The research was partially driven by computer exploration. In particular, we imple-
mented a branch-and-bound algorithm to search for all (connected) (weak) promotion
operators on a given classical crystal. The algorithm goes down a search tree, de-
ciding progressively to which {2, . . . , n}-component each connected {1, . . . , n − 1}-
component is mapped by promotion. Branches are cut as soon as it can be decided
that the yet partially defined promotion cannot satisfy condition (2’) of Remark 2.7,
or cannot be connected. The algorithm can also take advantage of the symmetries of
the classical crystal (not fully though, by lack of appropriate group theoretical tools
in MuPAD), and uses some heuristics for the decision order. The branch cutting works
reasonably well; for the difficult case of B(1)⊗4 in type A2, where the total search
space is a priori of size 144473849856000, with 2!3!3! = 72 symmetries, the algo-
rithm actually explores 115193 branches in 5 hours and 26 minutes (on a 2 GHz
Linux PC), using 16M of memory. The result is 8 isomorphic connected promotion
operators: 9 symmetries out of the 72 could be exploited to cut the search space.

Example 5.4 We start by loading the MuPAD-Combinat package, and setting the
notation for tensor products:.

» package("MuPAD-Combinat"):
» operators::setTensorSymbol("#"):

Consider the A2 classical crystal C := B(1) ⊗ B(1) ⊗ B(1):

» B1 := crystals::tableaux(["A",2], Shape = [1]):
» C := B1 # B1 # B1:

The decomposition into classical components is given by s3
1 = s3 + s111 + 2s21 (note

the multiplicity of s21). There are four promotion operators:

» promotions := C::promotions():
» nops(promotions)

4

Let us construct the corresponding crystal graphs:

» affineCrystals :=
» [crystals::affineFromClassicalAndPromotion(C, promotion)
» $ promotion in promotions]:
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Among them, two are connected:

» [ A::isConnected() $ A in affineCrystals ]

[TRUE, FALSE, FALSE, TRUE]

But they are in fact isomorphic via the exchange of the two (2,1)-classical compo-
nents:

» nops((affineCrystals[1])::isomorphisms(affineCrystals[4]))

1

The other two affine crystals are disconnected, and induced by the decomposition
s3

1 = s1s11 + s1s2 of s3
1 into a sum of products of rectangles. The use of the options

Connected and Symmetries cuts down the search tree. It turns out that for our
current crystal, the symmetries are fully exploited, and we only get one isomorphic
copy of the connected promotion operator:

» nops(C::promotions(Connected, Symmetries))

1

Now consider the A2 classical crystal C := B(2,1) ⊗ B(2,1).

» B21 := crystals::tableaux(["A",2], Shape = [2,1]):
» C := B21 # B21:

The highest weights of the classical crystal are given by the following Schur polyno-
mial expansion:

s2
21 = s42 + s411 + s33 + 2s321 + s222. (5.1)

Beware that, since n = 2, the term s2211 is zero. Also, the crystal for s411 is isomor-
phic to that for s3, and similarly s222 is trivial. Finally, note the multiplicity of s321.

There are no connected promotion operators:

» nops(C::promotions(Connected))

0

Indeed, f has no factorization into products of rectangle Schur polynomials. On the
other hand, there are eight disconnected promotion operators:

» nops(C::promotions())

8

They are induced by the following four decompositions:

s2
21 = s22s1s1 + s3s111

= s22s11 + s22s2 + s3s111

= s22s2 + s2s1s111 + s33

= s11s11s2 + s33

(5.2)

combined with the automorphism which exchanges the two (3,2,1)-classical com-
ponents.

The examples of Figure 1 for n = 1 were found with this algorithm. On the other
hand, we ran systematic tests on the following crystals with n ≥ 2:
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• All tensor products of rows with up to 3 factors and up to 6 cells (except B(2)⊗3)
in type A2 and up to 7 cells (except B(3) ⊗ B(2)⊗2) in type A3 and A4;

• B(3,2,1)⊗B(1), B(2,1)⊗B(2,1), B(2,1)⊗B(1)⊗B(1), B(2,2)⊗B(1,1,1),
B(2,2) ⊗ B(1,1,1) ⊗ B(1), B(1)⊗4, in type A2 and A3.

They all agree with Conjectures 1.4 and 2.13. Namely, for tensor products of rectan-
gles, there is a unique connected promotion operator, up to isomorphism; for other
tensor products, there is none.

In the smaller examples, we further checked that the total number of promotions
was exactly the number of automorphisms of the underlying classical crystal (that is
∏

mλ! where mλ is the number of classical components of highest weight λ) times the
number of decompositions of the symmetric function

∑

mλsλ into sums of products
of rectangular Schur functions.
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