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Abstract Let A = K[x1, . . . , xn] be a polynomial ring over a field K and M a mono-
mial ideal of A. The quotient ring R = A/M is said to be Macaulay-Lex if every
Hilbert function of a homogeneous ideal of R is attained by a lex ideal. In this pa-
per, we introduce some new Macaulay-Lex rings and study the Betti numbers of lex
ideals of those rings. In particular, we prove a refinement of the Frankl–Füredi–Kalai
Theorem which characterizes the face vectors of colored complexes. Additionally,
we disprove a conjecture of Mermin and Peeva that lex-plus-M ideals have maximal
Betti numbers when A/M is Macaulay-Lex.

Keywords Lex ideals · Graded Betti numbers · Hilbert functions · Colored
simplicial complexes

1 Introduction

The Hilbert function is an important invariant of homogeneous ideals of a polyno-
mial ring A = K[x1, . . . , xn] over a field K , studied in commutative algebra, alge-
braic geometry and combinatorics. One of the central results in the study of Hilbert
functions is Macaulay’s Theorem [14], which characterizes the Hilbert functions of
homogeneous ideals of A in terms of lex ideals. In the 1990’s, a remarkable extension
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of Macaulay’s Theorem was proved by Bigatti [2], Hulett [12] and Pardue [23]. They
proved that lex ideals have the greatest graded Betti numbers among all homogeneous
ideals having the same Hilbert function. In this paper, we introduce a class of mono-
mial ideals M such that Macaulay’s Theorem holds for the quotient ring A/M , and
study the graded Betti numbers of lex ideals of those rings.

Let M be a monomial ideal of A and set R = A/M . Recall that the Hilbert func-
tion Hilb(N)(−) : Z → Z of a finitely generated graded R-module N is the function
defined by

Hilb(N)(d) = dimK Nd,

where Nd is the homogeneous component of degree d of N . A set W of monomials
of R is said to be a lex-segment if, for all monomials u,v ∈ R of the same degree,
u ∈ W and v >lex u imply v ∈ W , where >lex is the degree lexicographic order. We
say that a monomial ideal I of R is a lex ideal if the set of monomials in I is a lex-
segment. The ring R is said to be Macaulay-Lex if, for any homogeneous ideal J of
R, there exists a lex ideal of R having the same Hilbert function as J .

By Macaulay’s Theorem [14], the polynomial ring A itself is Macaulay-Lex.
A famous class of Macaulay-Lex rings is the Clements–Lindström rings [4] R =
A/(x

a1
1 , . . . , x

an
n ), where 1 ≤ a1 ≤ · · · ≤ an are integers or ∞. The notion of

Macaulay-Lex rings was introduced in [17], and basic properties of Macaulay-Lex
rings were established in [17, 18]. A fundamental problem about Macaulay-Lex rings
is the following.

Problem 1.1 (Mermin–Peeva) Find classes of monomial ideals M of A such that
A/M is Macaulay-Lex.

A homogeneous ideal I of A is said to be homogeneous-plus-M (resp. lex-plus-M)
if there exists a homogeneous (resp. lex) ideal J such that I = J + M . Clearly, A/M

is Macaulay-Lex if and only if, for any homogeneous-plus-M ideal I , there exists
a lex-plus-M ideal having the same Hilbert function as I . Inspired by the Bigatti-
Hulett-Pardue Theorem as well as Evans’ Lex-plus-powers Conjecture [7], Mermin
and Peeva made the following conjecture in [18].

Conjecture 1.2 (Mermin–Peeva) Suppose that R = A/M is Macaulay-Lex.

(1) Every lex ideal L of R has the greatest graded Betti numbers among all homoge-
neous ideals of R having the same Hilbert function as L.

(2) Every lex-plus-M ideal L of A has the greatest graded Betti numbers among all
homogeneous-plus-M ideals of A having the same Hilbert function as L.

Note that (1) considers infinite free resolutions, while (2) considers finite free
resolutions. Conjecture 1.2 has been well studied for Clements–Lindström rings
R = A/(x

a1
1 , . . . , x

an
n ). In this special case, Conjecture 1.2(2) was proved in a series

of papers [16, 19, 20], and Conjecture 1.2(1) was proved in [22] when the character-
istic of K is 0. On the other hand, little is known for other Macaulay-Lex rings. In
this paper we consider the following rings.
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Definition 1.3 Let V = ⋃r
j=1 Vj be a set of variables with Vj = {xj,1, . . . , xj,nj

},
where n1 ≥ n2 ≥ · · · ≥ nr . Denote by S = K[V ] the polynomial ring over K with the
set of variables V . We will work with the lexicographic order >lex on S induced by
the ordering of the variables defined by xk,� > xk′,�′ if � > �′ or � = �′ and k < k′. Let
Q = ∑r

j=1(xj,1, . . . , xj,nj
)2 ⊂ S. We call the ring R = S/Q an r-colored squarefree

ring of type (n1, . . . , nr ).

We say that a quotient ring R = A/M admits ideals with maximal Betti numbers
over A if, whenever H is the Hilbert function of some homogeneous-plus-M ideal
of A, there exists a homogeneous-plus-M ideal L with Hilbert function H such that
βi,j (L) ≥ βi,j (I ) for all i, j and for all homogeneous-plus-M ideals I with Hilbert
function H , where βi,j (J ) are the graded Betti numbers of an ideal J of A. Thus
Conjecture 1.2(2) states that Macaulay-Lex rings admit ideals with maximal Betti
numbers. The main results of this paper are the following.

• Colored squarefree rings are Macaulay-Lex.
• An r-colored squarefree ring of type (n1, . . . , nr ) does not admit ideals with max-

imal Betti numbers over S if r = 2 and n2 ≥ 4 or if r ≥ 3 and nr ≥ 3.
• A computation of the graded Betti numbers of Borel ideals over R.

In particular, the second result disproves Conjecture 1.2(2).
The first result is inspired by the Frankl–Füredi–Kalai Theorem [8], which char-

acterizes face vectors of colored simplicial complexes. Indeed, if n1 = · · · = nr then
the result is equivalent to the Frankl–Füredi–Kalai Theorem (see Remark 2.12 for
details). Our proof is different from the original proof of the Frankl–Füredi–Kalai
Theorem, but similar to another proof of the theorem given by London [13]. Frankl–
Füredi–Kalai used a combinatorial technique called shifting, while our proof is based
on compression, a technique which was introduced by Macaulay [14] and used effi-
ciently by Clements–Lindström [4].

This paper is organized as follows: In Section 2, we show that colored squarefree
rings are Macaulay-Lex. In Section 3, we study the graded Betti numbers of lex-
plus-Q ideals and disprove Conjecture 1.2(2). In Section 4, we study the graded Betti
numbers of Borel ideals of r-colored squarefree rings. In Section 5, we discuss some
related problems.

2 The Macaulay-Lex property

In studying Problem 1.1 and Conjecture 1.2, it is enough to consider monomial ideals
since the initial ideal of a homogeneous-plus-M ideal I is a monomial ideal which
contains M and which has the same Hilbert function as I (see e.g., [6, Chap. 15]).
Thus, throughout this paper, we assume that all the ideals are monomial ideals. The
main result of this section is the following.

Theorem 2.1 Let R be an r-colored squarefree ring. For any monomial ideal I of R,
there exists a unique lex ideal L of R having the same Hilbert function as I .
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In the rest of this section, R = S/Q stands for an r-colored squarefree ring as de-
fined in Definition 1.3. For a subset A ⊂ [r] = {1,2, . . . , r}, write Ā = [r] \ A, VA =⋃

j∈A Vj , SA = K[VA], QA = ∑
j∈A(xj,1, . . . , xj,nj

)2 ⊂ SA and RA = SA/QA.
For any set W of monomials of R, we write Wd for the set of monomials in W of
degree d .

Definition 2.2 Let W be a set of monomials of R and A ⊂ [r]. Then we may decom-
pose W as the disjoint union

W =
⊎

f ∈RĀ

f Wf

where f ranges over the monomials in RĀ and each Wf is a set of monomials in RA.
We say that W is A-compressed if all the Wf are lex-segments of RA. Moreover, we
say that W is compressed if W is A-compressed for all A ⊂ [r] with |A| = r − 1,
where |A| is the cardinality of A. Let Lf = ⊎

d≥0(Lf )d be the lex-segment set of
monomials in RA such that |(Wf )d | = |(Lf )d | for all d . The set of monomials X =⊎

f f Lf is called the A-compression of W .
Let I be a monomial ideal of R and M the set of monomials in I . The A-

compression of I is the K-vector space spanned by the A-compression of M .

Notation 2.3 Let W be a set of monomials in Rd . Define

Shad(W) = {ym ∈ Rd+1 : y ∈ V, m ∈ W }.
Write Lex(W) ⊂ Rd for the lex-segment set of monomials with |W | = |Lex(W)|.

For any monomial m ∈ R, let first(m) (resp. last(m)) be the greatest (resp. small-
est) variable which divides m. Let

color(m) = {j ∈ [r] : there exists y ∈ Vj such that y divides m}.

The following facts are straightforward (see, e.g., [17]).

Lemma 2.4 If W ⊂ R is a lex-segment set of monomials of the same degree then
Shad(W) is also a lex-segment.

Corollary 2.5 Theorem 2.1 holds if and only if, for any set W ⊂ R of monomials of
the same degree, one has |Shad(W)| ≥ |Shad(Lex(W))|.

We will prove Theorem 2.1 by using Corollary 2.5 and induction on r .

Lemma 2.6 Theorem 2.1 holds if r ≤ 2.

Proof The statement is obvious if r = 1. Suppose r = 2. Note that R = R0 ⊕R1 ⊕R2.
Then, by Corollary 2.5, it is enough to show that, for any set W ⊂ R1 of monomials,
one has |Shad(W)| ≥ |Shad(Lex(W))|.

Let ak = |W ∩ Vk| for k = 1,2. A routine computation implies

|Shad(W)| = n1a2 + n2a1 − a1a2 = −(n1 − a1)(n2 − a2) + n1n2.
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Then |Shad(W)| is smallest when the difference between (n1 − a1) and (n2 − a2) is
minimized. Hence |Shad(W)| ≥ |Shad(Lex(W))| by the definition of >lex. �

Definition 2.7 Let W = {u1, . . . , ut } and W ′ = {u′
1, . . . , u

′
t } be sets of monomials of

R with u1 >lex · · · >lex ut and u′
1 >lex · · · >lex u′

t . We say that W is lex-greater than
W ′ if there exists 1 ≤ j ≤ t such that uk = u′

k for k < j and uj >lex u′
j .

Lemma 2.8 Suppose that Theorem 2.1 holds for all (r −1)-colored squarefree rings.
Let A ⊂ [r] with |A| = r − 1.

(i) For any monomial ideal I of R, the A-compression of I is an ideal of R.
(ii) Let W ⊂ Rd be a set of monomials and W ′ the A-compression of W . Then W ′ is

lex-greater than or equal to W and |Shad(W)| ≥ |Shad(W ′)|.
Proof (i) Let M = ⊕

f f Mf be the set of monomials in I , where f ∈ RĀ is a mono-
mial and Mf ⊂ RA. Let L = ⊕

f f Lf be the A-compression of M . Note that the
vector space spanned by Mf is a monomial ideal of RA. By the assumption, the vec-
tor space spanned by Lf is an ideal of RA. Hence, what we must prove is that, for
any f u ∈ f Lf and for any variable y ∈ VĀ, one has yf u ∈ L or yf u = 0.

Suppose yf �= 0. Since I is an ideal, Wf ⊂ Wyf . Hence Lf ⊂ Lyf . This implies
u ∈ Lyf and yf u ∈ yf Lyf ⊂ L.

(ii) It is clear that W ′ is lex-greater than or equal to W . Let I be the monomial
ideal generated by W and J the A-compression of I . Then |Shad(W)| = dimK Id+1
and |Shad(W ′)| ≤ dimK Jd+1 = dimK Id+1 by (i). Hence the statement follows. �

Lemma 2.9 Let W ⊂ Rd be a compressed set of monomials. Let u ∈ W and v ∈ Rd .
If v >lex u and if u and v are divisible by some variable y then v ∈ W .

Proof Let A = [r] \ color(y). Since W is A-compressed and u
y

∈ Wy , we have v
y

∈
Wy , i.e., v ∈ W . �

For any monomial m ∈ R, write

grow(m) = ∣
∣{y ∈ V[r]\color(m) : y < last(m)}∣∣.

Note that if W ⊂ Rd is a lex-segment, then |Shad(W)| = ∑
m∈W grow(m). This

definition is inspired by work of Bigatti [2], who used the analogous formula in a
polynomial ring to study Borel ideals.

Lemma 2.10 Let m and m′ be monomials of degree d with last(m) = xs,t and
last(m′) = xs′,t ′ . If t < t ′ then grow(m) ≤ grow(m′).

Proof We may assume t ′ = t + 1. For any j ∈ color(m) one has
∣
∣{y ∈ Vj : y ≤ x1,t }

∣
∣ = t. (1)

Indeed, if
∣
∣{y ∈ Vj : y ≤ x1,t }

∣
∣ ≤ t − 1 then nj ≤ t − 1. However, since j ∈ color(m),

some xj,� is greater than xs,t . This means nj ≥ � ≥ t , a contradiction. Then (1) im-
plies grow(m′) ≥ ∣

∣{y ∈ V : y ≤ x1,t }
∣
∣ − dt ≥ grow(m). �
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Lemma 2.11 Suppose r ≥ 3. Let W ⊂ Rd be a compressed set of monomials which
is not a lex-segment. There exists a set W ′ ⊂ Rd of monomials such that |W | = |W ′|,
|Shad(W)| ≥ |Shad(W ′)|, and W ′ is lex-greater than W .

Proof If r ≥ 3 then any compressed subset W ⊂ R1 is a lex-segment. Suppose d ≥ 2.
Let g ∈ Rd be the lex-greatest monomial which is not in W and b the lex-smallest
monomial in W . Set W̃ = W ∪ {g} and W ′ = (W \ {b}) ∪ {g}. Then, by the choice of
g and b, a straightforward computation implies

|Shad(W̃ )| ≤ |Shad(W)| + grow(g) and |Shad(W̃ )| ≥ |Shad(W ′)| + grow(b).

Hence, to prove the statement, it is enough to show

grow(g) ≤ grow(b). (2)

The statement is obvious if d = r . Hence we may assume 2 ≤ d < r . Let u be
the lex-greatest monomial in W such that u <lex g. Set y1 = first(u), y0 = first(g)

and z = last(b). Clearly, y0 ≥ y1 since g >lex u. Moreover, since W is compressed,
Lemma 2.9 implies

y0 > y1.

[Case 1]: Suppose color(y0) �= color(z). Since u ≥lex b, we have y0 > y1 ≥
first(b). Let f be the lex-smallest monomial of degree d which is divisible by y0z.
Since y0 > first(b), f >lex b. Since f and b are divisible by z, Lemma 2.9 implies
f ∈ W . Also, since f >lex u and since u is the lex-greatest monomial in W with
u <lex g, we have f >lex g.

Let w = first( f
y0

). Since f is the lex-smallest monomial of degree d which is
divisible by y0z, if w �= z then f is the lex-smallest monomial of degree d which
is divisible by y0. However, this cannot happen since f >lex g and g is divisible
by y0. Hence z = w. Write g = y0w1 · · ·wd−1, where y0 > w1 > · · · > wd−1. Since
first( f

y0
) = z,

f
y0

>lex
g
y0

, and f
y0

is the lex-smallest monomial of degree d − 1 which
is divisible by z, we have z > w1 > · · · > wd−1. Let z = xp,q and wd−1 = xs,t . Note
that t ≤ q since z > wd−1. If t < q then, by Lemma 2.10, we have grow(g) ≤ grow(b)

as desired. If t = q then, for each k, wk = x�k,q for some p < �k ≤ s. Hence, by (1),

grow(b) ≥ ∣
∣{y ∈ V[r]\color(y0) : y < xp,q}∣∣ − (d − 1)q

≥ ∣
∣{y ∈ V[r]\color(y0) : y < xs,t }

∣
∣ + (d − 1) − (d − 1)q

= ∣
∣{y ∈ V[r]\color(y0) : y < xs,t }

∣
∣ − (d − 1)(q − 1) = grow(g).

[Case 2]: Suppose color(y0) = color(z) = {c}. Fix a ∈ [r] \ color(b). Note that
{a} �= color(y0). Let f = y0f

′ be the lex-smallest monomial of degree d such that
f is divisible by y0 and a �∈ color(f ). Since y0 > y1, f >lex u ≥lex b. Then, since
f,b ∈ R[r]\{a} and W is compressed, we have f ∈ W . In particular, f >lex g by
the choice of u. Hence f ′ cannot be the lex-smallest monomial of degree d − 1
in R[r]\{c}.
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Let m be the lex-smallest monomial of degree d in R[r]\{c}. Since f ′ is lex-smallest
in (R[r]\{a,c})d−1 but is not lex-smallest in (R[r]\{c})d−1, m is divisible by xa,1 and
f ′ = m

xa,1
. Then g

y0
<lex f ′ ≤lex

m
last(m)

. Since m is lex-smallest in (R[r]\{c})d ,

last(g) = last(m) =
{
xr,1, if c �= r,

xr−1,1, if c = r.

In both cases, we have grow(g) = 0 ≤ grow(b). �

Now we are in position to prove Theorem 2.1.

Proof of Theorem 2.1 We use induction on r . We may assume r ≥ 3 by Lemma 2.6.
Suppose that the statement holds for all (r − 1)-colored squarefree rings.

Let W be a set of monomials of degree d . By Corollary 2.5, it is enough to
show that |Shad(W)| ≥ |Shad(Lex(W))|. By Lemmas 2.8 and 2.11, if W is not
a lex-segment then there exists W ′ ⊂ Rd such that |W ′| = |W |, |Shad(W ′)| ≤
|Shad(W)| and W ′ is lex-greater than W . Arguing inductively, we have |Shad(W)| ≥
|Shad(Lex(W))|. �

Remark 2.12 Here we note the relation between Theorem 2.1 and face vectors of
colored simplicial complexes. A simplicial complex � on [n] = {1,2, . . . , n} is a
collection of subsets of [n] such that, if F ∈ � and G ⊂ F , then G ∈ �. A simplicial
complex � is said to be r-colored if there exists a partition of [n], [n] = C1 ∪· · ·∪Cr ,
such that for every F ∈ � and every 1 ≤ i ≤ r , |Ci ∩ F | ≤ 1. In particular, if r =
max{|F | : F ∈ �} then � is called completely balanced.

Let Hi = {k ∈ [n] : k ≡ i (mod r)} for i = 1,2, . . . , r and let C be the collection of
subsets F ⊂ [n] satisfying |F ∩Hi | ≤ 1 for all i. Let >rev be the reverse lexicographic
order induced by 1 >rev · · · >rev n. An r-colored rev-lex complex � ⊂ C is an r-
colored simplicial complex such that, for any faces F ∈ � and G ∈ C with |F | =
|G|, if G >rev F then G ∈ �. Considering the partition [n] = H1 ∪ · · · ∪ Hr , we see
that r-colored rev-lex complexes are r-colored. While many r-colored complexes are
not defined by the special partition above, Frankl, Füredi and Kalai [8] proved that
they all share a face vector with an r-colored rev-lex complex. In particular, since
r-colored rev-lex complexes are uniquely determined by their face vectors, this result
characterizes the possible face vectors of colored complexes in terms of colored rev-
lex complexes (a numerical characterization was also given in [8]). This result of
Frankl, Füredi and Kalai can be recovered from Theorem 2.1.

Suppose that � is an r-colored simplicial complex on [n]. Then there exists a
monomial ideal I of an r-colored squarefree ring R of type (n, . . . , n) such that the
set of monomials of R which are not in I can be identified with �. (Since R has nr

variables, the ideal I will contain at least (nr −n) variables corresponding to vertices
which do not appear in �.) Theorem 2.1 shows that there exists a lex ideal L of R

having the same Hilbert function as I . The r-colored rev-lex complex having the
same face vector as � corresponds to the set of monomials of R which are not in L.

Actually, Theorem 2.1 refines this result. Theorem 2.1 characterizes the face vec-
tors of colored simplicial complexes on [n] with a fixed partition [n] = C1 ∪ · · · ∪Cr .



306 J Algebr Comb (2010) 31: 299–318

For example, our result gives the complete description of face vectors of 2-colored
complexes on {1,2,3,4,5,6} with the specific partition {1,2,3,4}∪ {5,6}, while the
Frankl–Füredi–Kalai theorem does not guarantee this.

3 Betti numbers of lex-plus-Q ideals

In this section, we show that most colored squarefree rings do not admit ideals with
maximal Betti numbers over S. As before, let R = S/Q be an r-colored square-
free ring of type (n1, . . . , nr ) as defined in Definition 1.3. For a finitely gener-
ated graded S-module M , the integers βi,j (M) = dimK Tori (M,K)j and βi(M) =
dimK Tori (M,K) are called the graded Betti numbers of M and the total Betti num-
bers of M respectively. A monomial ideal I of S is said to be strongly color-stable
if uxj,k ∈ I implies uxj,� ∈ I for all k < � and for all j ∈ [r]. The next fact easily
follows from [1, Theorem 5.4] or [15, Theorem 5.9].

Lemma 3.1 Let I be a homogeneous-plus-Q ideal. There exists a strongly color-
stable ideal J with J ⊃ Q and Hilb(J ) = Hilb(I ) such that βij (J ) ≥ βij (I ) for all i

and j .

The above lemma shows that, to study Conjecture 1.2(2) for colored squarefree
rings, it is enough to consider strongly color-stable ideals.

3.1 2-colored squarefree rings

We first consider 2-colored squarefree rings. Let n1 ≥ n2 ≥ 4, S = K[x1, . . . , xn1 ,

y1, . . . , yn2 ] and Q = (x1, . . . , xn1)
2 + (y1, . . . , yn2)

2.

Proposition 3.2 A 2-colored squarefree ring R = S/Q of type (n1, n2) with n2 ≥ 4
does not admit ideals with maximal Betti numbers over S.

We first give an example.

Example 3.3 Let A=K[x1, . . . , x4, y1, . . . ,y4] and P = (x1, . . . , x4)
2 + (y1, . . . ,y4)

2.
Let

L = (x4, x3, y4, x2y3, x1y3) + P,

I = (x4, x3, y4, x2y3, x2y2) + P

and

J = (x4, x3, x2) + P.

Then L is lex-plus-P and any strongly color-stable ideal B with B ⊃ P and
Hilb(B) = Hilb(L) is isomorphic to L, I , or J . The following are Betti diagrams
of these ideals computed by the computer algebra system Macaulay 2 [9]:
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betti(res(S/L)) = total: 1 14 65 156 224 202 113 36 5
0: 1 3 3 1 . . . . .
1: . 11 53 107 118 78 32 8 1
2: . . 9 48 106 124 81 28 4

betti(res(S/I)) = total: 1 14 66 159 225 196 104 31 4
0: 1 3 3 1 . . . . .
1: . 11 53 108 120 77 27 4 .
2: . . 10 50 105 119 77 27 4

betti(res(S/J)) = total: 1 14 64 150 209 182 98 30 4
0: 1 3 3 1 . . . . .
1: . 11 53 106 113 68 22 3 .
2: . . 8 43 96 114 76 27 4

None of these ideals has maximal graded Betti numbers. Hence, by Lemma 3.1, the
ring A/P does not admit ideals with maximal Betti numbers.

Proof of Proposition 3.2 We use the ideals given in Example 3.3. Let L′ be the ideal
of S defined by

L′ = LS + (x5, . . . , xn1 , y5, . . . , yn2).

Define I ′ and J ′ in the same way as L′. Then L′ is lex-plus-Q, and every strongly
color-stable ideal B with B ⊃ Q and Hilb(B) = Hilb(L′) is isomorphic to L′, I ′,
or J ′. Recall that, if M is a homogeneous ideal of S and f is a non-zero divisor
of S/M , then the tensor product of the minimal free resolutions of S/M and S/(f )

is a minimal free resolution of S/(M + (f )). By using this fact together with the
computations given in Example 3.3, it follows that

β1(I
′) > β1(L

′) > β1(J
′)

and

βn1+n2−1(L
′) > βn1+n2−1(I

′) = βn1+n2−1(J
′).

Then, by Lemma 3.1, the ring S/Q does not admit ideals with maximal Betti numbers
over S. �

Remark 3.4 While we used a computer system for the computations of Betti dia-
grams of L, I , and J , one can compute those Betti numbers by using Lemma 3.7 and
Hochster’s formula.

3.2 General construction

In the rest of this section, R = S/Q is an r-colored squarefree ring of type
(n1, . . . , nr ) with r ≥ 3 and nr ≥ 3. The goal is to show the following.

Theorem 3.5 With the same notation as above, R does not admit ideals with maximal
Betti numbers over S.
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First, we give a formula to compute the graded Betti numbers of a strongly color-
stable ideal I with I ⊃ Q using simplicial complexes. Let Ṽj = {xj,0} ∪ Vj , Ṽ =
⋃r

j=1 Ṽj and S̃ = K[Ṽ ]. Let

Q̃ = ({xj,kxj,� ∈ S̃ : k �= �, j = 1,2, . . . , r}).

For any strongly color-stable ideal I = I ′ + Q of S, where I ′ is generated by mono-
mials not in Q, define

Ĩ = I ′S̃ + Q̃.

Thus the ideal Ĩ is obtained from I = I ′ + Q by replacing Q by Q̃.

Example 3.6 Let I = (x1,2x2,2, x1,2x2,1) + (x2
1,1, x1,1x1,2, x

2
1,2, x

2
2,1, x2,1x2,2, x

2
2,2).

Then

Ĩ = (x1,2x2,2, x1,2x2,1) + (x1,0x1,1, x1,0x1,2, x1,1x1,2, x2,0x2,1, x2,0x2,2, x2,1x2,2).

Actually, the map I → Ĩ is a special case of the colored squarefree operation
introduced in [1]. Thus, by [21, Theorem 0.1], we obtain

Lemma 3.7 Let I be a strongly color-stable ideal of S with I ⊃ Q. Then I and Ĩ

have the same graded Betti numbers.

Since Ĩ is a squarefree monomial ideal, we can compute its graded Betti num-
bers using Hochster’s formula. We recall Hochster’s formula. Let J be a squarefree
monomial ideal of S̃, and let �(J ) be its Stanley-Reisner complex,

�(J ) = {u ∈ S̃ \ J : u is a squarefree monomial}.

(We identify squarefree monomials of S̃ with subsets of Ṽ and regard �(J ) as a
simplicial complex on the vertex set Ṽ .) Hochster’s formula [11] says

βi,j (J ) =
∑

W⊂Ṽ , |W |=j

dimK H̃j−i−2
(
�(J )W ;K)

,

where �(J )W = �(J ) ∩ K[W ] and where H̃i(�;K) is the i-th reduced homology
group of a simplicial complex � over a field K .

A simplicial complex � on the vertex set Ṽ is said to be colored shifted if
uxj,k ∈ � implies uxj,� ∈ � for any j ∈ [r] and for any 0 ≤ � < k such that xj,�

does not divide u. The top Betti numbers of colored shifted complexes can be com-
puted as follows (see [1, Theorem 5.7] and [21, Proposition 4.2]).

Lemma 3.8 (Babson–Novik) If � is a colored shifted simplicial complex on Ṽ then

dimK H̃r−1(�;K) = ∣
∣{u ∈ � : degu = r, u is not divisible by any of xj,0}

∣
∣.
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Let I be a strongly color-stable ideal of S. Define

�(I) = {u ∈ S \ I : u is a squarefree monomial with degu = r}.
Lemma 3.9 If I is a strongly color-stable ideal of S with I ⊃ Q, then

βr−1,2r (I ) =
∑

x1,i1 x2,i2 ···xr,ir ∈�(I)

(
r∏

k=1

ik

)

.

Proof Note that �(I) is the set of monomials u in �(Ĩ ) of degree r which are not
divisible by any of the xj,0. Since I is strongly color-stable, the simplicial complex
�(Ĩ ) is colored shifted. Note also that, for any W ⊂ Ṽ , �(Ĩ )W is colored shifted
on W . Hence, for any W ⊂ Ṽ with |W | = 2r , Lemma 3.8 implies

dimK H̃r−1
(
�(Ĩ )W ;K) =

⎧
⎪⎨

⎪⎩

1, if |W ∩ Vj | = 2 for all j and �(Ĩ )W contains all

monomials of the form x1,i1 · · ·xr,ir ∈ K[W ],
0, otherwise.

(Observe that, if W ∩ Vj = {xj,k, xj,�} with k < l, then xj,k plays the role of xj,0 in
Lemma 3.8.)

By Hochster’s formula,

βr−1,2r (Ĩ ) =
∑

W⊂Ṽ , |W |=2r

dimK H̃r−1(�(Ĩ )W ;K)

=
∣
∣
∣
∣

{

W =
r⋃

j=1

{xj,pj
, xj,qj

} ⊂ Ṽ : pj < qj ,

r∏

j=1

xj,qj
∈ �(Ĩ )

}∣
∣
∣
∣

=
∑

x1,q1x2,q2 ···xr,qr ∈�(I)

(
r∏

k=1

qk

)

.

The last equality follows since I is strongly color-stable. Then the statement follows
from Lemma 3.7. �

We need the following fact.

Lemma 3.10 Let a1 ≥ · · · ≥ at and b1 ≥ · · · ≥ bt be two sequences of integers. If
ak + · · · + at ≥ bk + · · · + bt for all k then a1 · · ·at ≥ b1 · · ·bt .

Proof We induct on t . If t = 1 then there is nothing to prove. Suppose t > 1. If
a1 ≥ b1 then the statement immediately follows by induction. Suppose a1 < b1. Note
that a2 +· · ·+ at > b2 +· · ·+ bt by the assumption. Let p ≥ 2 be the greatest integer
such that ap = a2. We claim that ak + · · · + at > bk + · · · + bt for 2 ≤ k ≤ p.

Suppose to the contrary that ak + · · · + at = bk + · · · + bt for some k, 2 < k ≤ p.
Since ak+1 + · · · + at ≥ bk+1 + · · · + bt , we have

a2 = · · · = ak ≤ bk ≤ · · · ≤ b2.

Then
∑t

j=2 aj = ∑k−1
j=2 aj + ∑t

j=k aj ≤ ∑t
j=2 bj , a contradiction.
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Thus, the sequence (a1 + 1, a2, . . . , ap−1, ap − 1, ap+1, . . . , at ) also satisfies the
assumption of the lemma, and, since a1 ≥ ap ,

a1ap

⎛

⎝
∏

j �=1,p

aj

⎞

⎠ ≥ (a1 + 1)(ap − 1)

⎛

⎝
∏

j �=1,p

aj

⎞

⎠ .

By repeating this procedure, we may assume a1 = b1. The statement follows by in-
duction. �

Proof of Theorem 3.5 Let

α = x1,n1x2,n2 · · ·xr−2,nr−2 .

[Case 1]: Suppose nr−1 = nr . To simplify, set n = nr−1 = nr . Let

I = (αxr−1,n, αxr−1,n−1) + Q

and

L = (αxr−1,n, αxr,n, αxr−1,n−1xr,n−1) + Q.

Note that I and L are strongly color-stable ideals having the same Hilbert function.
First, we show that the graded Betti numbers of I and L are incomparable.

Clearly, β0(I ) < β0(L). It is enough to show that βr−1,2r (I ) > βr−1,2r (L). Since

�(I) \ �(L) = {αxr,nxr−1,� : � = 1,2, . . . , n − 2}
and

�(L) \ �(I) = {αxr−1,n−1xr,� : � = 1,2, . . . , n − 2},
it follows from Lemma 3.9 that

βr−1,2r (I ) − βr−1,2r (L)

=
∑

x1,i1 x2,i2 ···xr,ir ∈�(I)\�(L)

(
r∏

k=1

ik

)

−
∑

x1,i1 x2,i2 ···xr,ir ∈�(L)\�(I)

(
r∏

k=1

ik

)

=
⎛

⎝
r−2∏

j=1

nj

⎞

⎠ {n − (n − 1)}(1 + 2 + · · · + (n − 2)) > 0.

Since L is lex-plus-Q, any monomial ideal J ⊃ Q with Hilb(J ) = Hilb(L) satis-
fies β0(J ) ≤ β0(L). Thus, to complete the proof, it is enough to show that, if J is any
homogeneous-plus-Q ideal which has the same Hilbert function as L and satisfies
β0(J ) = β0(L), then βr−1,2r (J ) ≤ βr−1,2r (L).

We may assume that J is strongly color-stable. Since J has the same Hilbert func-
tion as L, J contains two monomials u1 and u2 of degree r −1 which are not in Q. Let
{ck} = [r] \color(uk). Then |Shad({u1, u2})| ≥ nc1 +nc2 −1. Since J has a generator
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of degree r and has the same Hilbert function as L, |Shad({u1, u2})| must be equal to
2n − 1. It follows that nc1 = nc2 = n, and c1 �= c2. Thus (u1, u2) + Q is isomorphic
to (αxr−1,n, αxr,n) + Q. Hence we may assume u1 = αxr−1,n and u2 = αxr,n.

Let v be a generator of J of degree r . Then �(J ) \�(L) = {αxr−1,n−1xr,n−1} and
�(L) \ �(J ) = {v}. Also, since J �= L is strongly color-stable, v is a monomial of
the form v = xk,nk−1(

∏
j �=k xj,nj

) for some 1 ≤ k ≤ r − 2. Then, by Lemma 3.9, we
have

βr−1,2r (L) − βr−1,2r (J ) ≥
⎛

⎝
∏

j �=k,r−1,r

nj

⎞

⎠
{
(nk − 1)n2 − nk(n − 1)2} ≥ 0

as desired.

[Case 2]: Suppose nr−1 > nr . Let

I = α(xr−1,nr−1 , . . . , xr−1,nr+2, xr,nr ) + Q

and

L = α(xr−1,nr−1 , . . . , xr−1,nr+2, xr−1,nr+1, xr−1,nr xr,nr ) + Q.

Then I and L are strongly color-stable ideals having the same Hilbert function.
First, we show that the graded Betti numbers of I and those of L are incomparable.
Clearly, β0(I ) < β0(L). On the other hand, in the same way as in [Case 1], we have
βr−1,2r (I ) > βr−1,2r (L) since

�(I) \ �(L) = {αxr−1,nr+1xr,� : � = 1,2, . . . , nr − 1}
and

�(L) \ �(I) = {αxr,nr xr−1,� : � = 1,2, . . . , nr − 1}.
Since L is lex-plus-Q, to complete the proof, it is enough to show that, for any

strongly color-stable ideal J ⊃ Q having the same Hilbert function as L, if β0(J ) =
β0(L) then βr−1,2r (J ) ≤ βr−1,2r (L).

Let t = nr−1 −nr . Then J has generators u1, . . . , ut of degree r − 1 which are not
in Q. First, we claim that color(uk) = [r − 1] for all k.

Let {ck} = [r] \ color(uk). Suppose c1 = · · · = cs = r and ck �= r for k > s. Then

|Shad({u1, . . . , ut })| ≥ snr + (ncs+1 − s) + (ncs+2 − s − 1) + · · · + (nct − t + 1).

However, since J has a generator of degree r and has the same Hilbert function as L,
|Shad({u1, . . . , ut })| must be equal to tnr . Since nck

− (k − 1) ≥ nr−1 − t + 1 > nr

for k = s + 1, . . . , t , it follows that s = t and color(uk) = [r − 1] for all k.
Let v = x1,j1 · · ·xr,jr be the generator of J with degv = r . Write

uk = x1,i1,k
· · ·xr−1,ir−1,k

.

Since J is strongly color-stable, we may assume that

i1,k + · · · + ir−1,k ≥ n1 + · · · + nr−1 − (k − 1) for k = 1,2, . . . , t (3)
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and

j1 + · · · + jr−1 ≥ n1 + · · · + nr−1 − t. (4)

Also, since J is strongly color-stable, we have

jr = nr .

Now, by Lemma 3.9, we have

βr−1,2r (L) − βr−1,2r (J )

=
[

∑

x1,k1 ···xr,kr ∈�(L)

k1 · · ·kr

]

−
[

∑

x1,k1 ···xr,kr ∈�(J )

k1 · · · kr

]

=
[

t∑

k=1

i1,k · · · ir−1,k(1 + · · · + nr)

]

+ j1 · · · jr−1nr

−
[

t∑

k=1

n1 · · ·nr−2(nr−1 − k + 1)(1 + · · · + nr)

]

− n1 · · ·nr−2(nr−1 − t)nr .

By (3), the sequences (i1,k, . . . , ir−1,k) and (n1, . . . , nr−2, nr−1 − k + 1) satisfy
the conditions of Lemma 3.10, and, by (4), so do (j1, . . . , jr−1) and (n1, . . . , nr−2,

nr−1 − t). Then the desired inequality βr−1,2r (L) ≥ βr−1,2r (J ) follows from
Lemma 3.10. �

Example 3.11 Let A = K[x1, x2, x3, y1, y2, y3, z1, z2, z3] and Q = (x1, x2, x3)
2 +

(y1, y2, y3)
2 + (z1, z2, z3)

2. Let

L = (x3y3, x3z3, x3y2z2) + Q

and

I = (x3y3, x3y2) + Q.

Then, L is the lex-plus-Q ideal having the same Hilbert function as I . The following
are betti diagrams of these ideals computed by Macaulay 2.

betti(res(S/L)) = total: 1 21 142 490 1004 1305 1090 566 166 21
0: 1 . . . . . . . . .
1: . 20 37 24 7 1 . . . .
2: . 1 105 343 460 321 122 24 2 .
3: . . . 123 537 983 968 542 164 21

betti(res(S/I)) = total: 1 20 141 493 1016 1324 1105 572 167 21
0: 1 . . . . . . . . .
1: . 20 36 24 7 1 . . . .
2: . . 105 343 463 330 132 29 3 .
3: . . . 126 546 993 973 543 164 21
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4 Betti numbers of Borel ideals over a colored squarefree ring

In the previous section, we saw that most colored squarefree rings do not satisfy
Conjecture 1.2(2). On the other hand, we are not sure whether Conjecture 1.2(1) fails
for those rings. Indeed, the ideals used in the proof of Theorem 3.5 do not give a
counterexample to Conjecture 1.2(1). The purpose of this section is to give a way to
compute the graded Betti numbers of lex ideals of a colored squarefree ring, which
will be the fist step in studying Conjecture 1.2(1) for colored squarefree rings.

Let R = S/Q be an r-colored squarefree ring as defined in Definition 1.3. For a
finitely generated graded R-module M , let βR

i,j (M) and βR
i (M) be the graded Betti

numbers of M and the total Betti numbers of M over R respectively. A homogeneous
ideal I of R has a linear resolution if there exists an integer d such that βR

i,i+j (I ) = 0
for all i if j �= d .

Lemma 4.1 Let A = K[x1, . . . , xn], P = (x1, . . . , xn)
2 and B = A/P . Then the

ideal I = (x1, . . . , xp) of B has a linear resolution and βB
i (I ) = pni for all i.

Proof It is clear that the first syzygy module of the ideal (x1) of B is (x1, . . . , xn).
Since I = (x1)

⊕
B(x2)

⊕
B · · ·⊕B(xp), the first syzygy module of I is isomor-

phic to (x1, . . . , xn)
⊕

B · · ·⊕B(x1, . . . , xn) ⊂ Bp . Then I has a linear resolution
and βi+1(I ) = nβi(I ) for all i ≥ 0. �

For a subset W ⊂ V , write IW for the ideal of R generated by W .

Lemma 4.2 Let W ⊂ V and pj = |W ∩ Vj |. Then IW has a linear resolution and

βR
i (IW ) =

∑

i1+···+ir=i

(n
i1
1 · · ·nir

r )

⎛

⎝
∏

ik �=0

pk

⎞

⎠ for all i.

Proof Let I{k} be the ideal of R{k} = K[Vk]/(xk,1, . . . , xk,nk
)2 generated by W ∩ Vk .

Let F{k} be the minimal free resolution of R{k}/I{k} over R{k}. Since

R = R{1} ⊗K R{2} ⊗K · · · ⊗K R{r}

and

R/IW = (
R{1}/I{1}

) ⊗K

(
R{2}/I{2}

) ⊗K · · · ⊗K

(
R{r}/I{r}

)
,

by the Künneth tensor formula, F{1} ⊗K · · · ⊗K F{r} is the minimal free resolution of
R/IW over R. This fact and Lemma 4.1 prove the desired formula. �

Definition 4.3 For monomials u = y1 · · ·yt and v = z1 · · · zt of R of the same degree,
where y1 > · · · > yt and z1 > · · · > zt are variables, write u ≥P v if yk ≥ zk for all k.
A monomial ideal I of R is said to be Borel if, for all monomials u,v ∈ R, u ∈ I and
v >P u implies v ∈ I .
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Note that lex ideals are Borel. For all monomials u,v ∈ R, write u � v if
degu < degv or degu = degv and u >lex v. Let G(I) be the set of minimal mono-
mial generators of a monomial ideal I ⊂ R.

Lemma 4.4 Let I ⊂ R be a Borel ideal with G(I) = {u1, . . . , ut }, where u1 � · · · �
ut . Then, for k = 1,2, . . . , t ,

(
(u1, . . . , uk−1) : uk

) = ({y ∈ V : y > last(uk) or color(y) ⊂ color(uk)}
)
,

where (u1, . . . , uk−1) = 0 if k = 1.

Proof Since I is Borel, it is clear that the left-hand side contains the right-hand side.
We show that the right-hand side contains the left-hand side.

Let f uk ∈ (u1, . . . , uk−1) be a monomial and d = deguk . If f uk = 0 then there
exists a monomial y ∈ Va with a ∈ color(uk) such that y divides f . Suppose f uk �= 0.
Write f uk = y1 · · ·ys , where y1 > · · · > ys are variables. Since (u1, . . . , uk−1) is
Borel, there exists an integer 1 ≤ δ ≤ d such that y1 · · ·yδ ∈ G(I). Let up = y1 · · ·yδ .
Then last(up) > last(uk) and up does not divide uk . Hence there exists y� which
divides up but does not divide uk . This y� must divide f , and y� > last(uk). �

For any monomial m ∈ R, let

W(m) = {
y ∈ V : y < last(m) and color(y) �⊂ color(m)

}

and

T (m) = V \ W(m) = {y ∈ V : y > last(m) or color(y) ⊂ color(m)}.

Proposition 4.5 Let I ⊂ R be Borel. Then

βR
i,i+j (I ) =

∑

u∈G(I), deg(u)=j

βR
i (R/IT (u)) for all i, j.

Proof The proof is the same as that of [10, Lemma 1.5]. Let G(I) = {u1, . . . , ut }
with u1 � · · · � ut . We use induction on t . If t = 1 then the first syzygy module of
I = (u1) is (0 : u1) = IT (u1), and therefore the statement follows from Lemma 4.2.

Suppose t > 1. Let J = (u1, . . . , ut−1) and d = degut . Note that J is also Borel.
Consider the short exact sequence

0 −→ R/(J : ut )(−d)
×ut−→ R/J −→ R/I −→ 0. (5)

By Lemma 4.4, (J : ut ) = IT (ut ). Let G be the minimal free resolution of R/J

over R and F the minimal free resolution of R/(J : ut )(−d) = R/IT (ut )(−d). One

has Gi = ⊕
j∈N

R(−j)
βR

i,j (R/J ). By induction, max{j : βR
i,j (R/J ) �= 0} ≤ i + d − 1.

On the other hand, by Lemma 4.2 Fi = R(−d − i)β
R
i (R/IT (ut )). Hence, R/I is mini-

mally resolved by the mapping cone arising from the map R/(J : ut )(−d)
×ut−→ R/J .

The statement follows. �
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Corollary 4.6 The graded Betti numbers of Borel ideals of R do not depend on the
characteristic of the base field K .

Remark 4.7 The key idea in the proof of Proposition 4.5 is that the colon ideal
((u1, . . . , uk−1) : uk) has a 1-linear resolution. This property also holds for Borel
ideals in the quotient ring S/M , whenever M is an ideal generated by monomials of
degree 2. Thus, the Betti numbers of Borel ideals of such rings can be computed in
the same way as in the proof of Proposition 4.5.

One might think that the graded Betti numbers of a Borel ideal I = (u1, . . . , ut )

depend on the shape of T (uj ). We will show that they only depend on grow(uj ) =
|W(uj )|. For an integer 0 ≤ a ≤ |⋃r

j=d+1 Vj |, let W(a,d) be the set of lex-smallest
variables in

⋃r
j=d+1 Vj with |W(a,d)| = a. Set T (a, d) = V \ W(a,d).

Lemma 4.8 Let m ∈ R be a monomial of degree d with grow(m) = a. Then a ≤
|⋃r

j=d+1 Vj | and IT (m) has the same graded Betti numbers as IT (a,d).

Proof For any subset W ⊂ V , let R[W ] = K[W ]/(Q ∩ K[W ]) ∼= R/IV \W . By
Lemma 4.2, we must prove that there exists a subset W̃ such that R[W̃ ] has the
same Hilbert function as R[W(m)] and W̃ is a set of lex-smallest variables in⋃r

j=d+1 Vj .
For a subset W ⊂ V , let ci(W) = |W ∩ Vi | for i = 1,2, . . . , r and c(W) =

(c1(W), . . . , cr (W)). Note that the Hilbert function of R[W ] only depends on the
vector c(W). Let ei = |W(m) ∩ Vi | for i = 1,2, . . . , r and e = (e1, . . . , er ). Let
last(m) = xs,t and q = max{j : nj ≥ t}. Then, by (1) (in the proof of Lemma 2.10),
the vector e can be written in the form

e = (e1, . . . , eq, nq+1, . . . , nr )

and each ek is either 0, t − 1 or t for k = 1,2, . . . , q . Consider the vector of the
form

ẽ = (ẽ1, . . . , ẽr ) = (0, . . . ,0, t − 1, . . . , t − 1, t, . . . , t, nq+1, . . . , nr )

which is obtained by a permutation of entries of e. Let W̃ = ⋃r
i=1{xi,j : 1 ≤ j ≤ ẽi}.

Then c(W̃ ) = ẽ. By the construction of ẽ, it follows that R[W̃ ] and R[W(m)] have
the same Hilbert function. Also, by the formula of ẽ, it is clear that W̃ is a set of
lex-smallest variables in

⋃r
j=d+1 Vj . �

By Proposition 4.5 and Lemma 4.8, we get

Theorem 4.9 Let I = (u1, . . . , ut ) be a Borel ideal of R with grow(uk) = ak . Then

βR
i,i+j (I ) =

∑

uk∈G(I), deguk=j

βR
i (R/IT (ak,j)) for all i, j.
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Example 4.10 Let I , L and R = S/Q be as in Example 3.11. Let Ĩ = (x3y3, x3y2)

and L̃ = (x3y3, x3z3, x3y2z2) be ideals of R. Since L is lex-plus-Q, L̃ is lex. Also
W(x3y3) = {z1, z2, z3}, W(x3z3) = {y1, y2} and W(x3y2z2) = ∅. Hence, by Proposi-
tion 4.5,

βR
i,i+2(L̃) = βR

i

(
R/(x1, x2, x3, y1, y2, y3)

) + βR
i

(
R/(x1, x2, x3, y3, z1, z2, z3)

)

= (i + 1)3i +
{

(i + 1)3i +
(

i + 1

2

)

3i−1
}

and

βR
i,i+3(L̃) = βR

i

(
R/(x1, x2, x3, y1, y2, y3, z1, z2, z3)

) =
(

i + 2

2

)

3i .

Note that the ideal Ĩ has a linear resolution and βR
i,i+2(Ĩ ) = 2(i + 1)3i for all i.

5 Concluding remarks and open problems

5.1 Betti numbers of lex ideals

As we show in Section 3, Conjecture 1.2(2) is false. However Conjecture 1.2(1) is
still open even for colored squarefree rings.

Problem 5.1 Do lex ideals of a colored squarefree ring R have the greatest graded
Betti numbers among all homogeneous ideals of R having the same Hilbert function?

While we give a combinatorial way to compute the graded Betti numbers of Borel
ideals of colored squarefree rings, we do not know whether lex ideals have the great-
est graded Betti numbers among all Borel ideals having the same Hilbert function.
The only known case is

Proposition 5.2 Lex ideals of a 2-colored squarefree ring R have the greatest graded
Betti numbers among all homogeneous ideals of R having the same Hilbert function.

Proof Let I = (u1, . . . , us, v1, . . . , vt ) be a monomial ideal of R with deguk = 1 and
degv� = 2. Then I = (u1, . . . , us) ⊕R (v1) ⊕R · · · ⊕R (vt ). Then, by Lemma 4.2,

βR
i,i+2(I ) =

t∑

j=1

βR
i,i+2

(
(vj )

) = tβR
i (R/m) for all i,

where m is the maximal ideal of R, and βR
i,i+j (I ) = 0 if j �= 1,2.

Let L = (u′
1, . . . , u

′
s , v

′
1, . . . , v

′
t ′) be the lex ideal of R having the same Hilbert

function as I , where degu′
k = 1 and degv′

� = 2. Since L is lex, t ′ ≥ t . Hence
βR

i,i+2(L) = t ′βR
i (R/m) ≥ βR

i,i+2(I ) for all i. Since I and L have the same Hilbert
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function, we have
∑

i (−1)iβR
i,j (I ) = ∑

i (−1)iβR
i,j (L) for all j . Since βR

i,i+j (I ) =
βR

i,i+j (L) = 0 if j �= 1,2, it follows that

βR
j−1,j (L) − βR

j−2,j (L) = βR
j−1,j (I ) − βR

j−2,j (I ).

Thus we have βR
i,i+1(L) ≥ βR

i,i+1(I ) for all i as desired. �

5.2 Betti numbers of Stanley–Reisner ideals

One may ask the following question which is similar to Problem 5.1: Does there al-
ways exist an r-colored complex whose Stanley–Reisner ideal has the greatest graded
Betti numbers among all r-colored complexes for a fixed face vector?

Unfortunately, the answer is no. Indeed, 2-colored complexes are bipartite graphs,
and if we consider bipartite graphs with 10 edges and 7 vertices (there are only 4 such
bipartite graphs up to a permutation of the vertices), then computer computations
show that none of them have the greatest graded Betti numbers.

5.3 h-vectors of balanced Cohen–Macaulay complexes

A further generalization of Theorem 2.1 is the next problem.

Problem 5.3 Let S = K[V ] and Q = ∑r
j=1(xj,1, . . . , xj,nj

)aj , where a1, . . . , ar are
positive integers. Characterize the Hilbert functions of homogeneous ideals of S/Q.

Unfortunately, the above ring S/Q is generally not Macaulay-Lex with respect to
any order of the variables. However, Problem 5.3 would be interesting since it yields
the complete description of h-vectors of balanced Cohen–Macaulay complexes (see
[3, 24]).

Acknowledgements We would like to thank Ryota Okazaki for useful discussions regarding Section 4.
The results and examples presented in this paper have been inspired by computations performed by the
computer algebra system CoCoA [5] and Macaulay 2 [9].
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