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Abstract Let G be an adjoint simple algebraic group over an algebraically closed
field of characteristic p; let � be the root system of G, and take t ∈ N. Lawther has
proven that the dimension of the set G[t] = {g ∈ G : gt = 1} depends only on � and t .
In particular the value is independent of the characteristic p; this was observed for
t small and prime by Liebeck. Since G[t] is clearly a disjoint union of conjugacy
classes the question arises as to whether a similar result holds if we replace G[t] by
one of those classes. This paper provides a partial answer to that question. A special
case of what we have proven is the following. Take p,q to be distinct primes and
Gp and Gq to be adjoint simple algebraic groups with the same root system and over
algebraically closed fields of characteristic p and q respectively. If s ∈ Gp has order
q then there exists an element u ∈ Gq such that o(u) = o(s) and dimuGq = dim sGp .

Keywords Algebraic groups · Conjugacy classes · Characteristic independent

1 Background and main results

The present paper comes from the PhD thesis of the author; the main results of which
are given below. However first we must make some definitions. So let X and Y be
reductive groups (which for us means they are connected) over algebraically closed
fields with (possibly different) prime characteristics. A reductive group X is said to
have type (�,n) if rank X = n and the commutator subgroup, [X,X], is semisimple
with root system � . If X is simple we will often abuse this notation and refer to �

as the type; furthermore if � is a family of irreducible root systems and X is simple,
we say X has type � if � ∈ �. We write X ∼t Y if X and Y have the same type;
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this is clearly an equivalence relation. Next let � be a root system, p a prime and let
G(�) be an adjoint simple algebraic group of type � (we write G(�)p if the group
is over Fp). It is worth stating at this point that throughout this paper all groups will
be over algebraically closed fields (in fact all fields are of the form Fp); we are not
considering rationality properties here. Now set

�(X,�) = {s : s is a semisimple element of the group G(�)p,

for some prime p, and CG(�)p (s)◦ ∼t X}.
(Recall that since s is a semisimple element, CG(�)p (s)◦ is reductive.) Next set

omin(X,�) = min{o(s) : s ∈ �(X,�)}
(here o(s) is the order of the group element s) and for a prime number q set

q(X,�) = min{qe : qe ≥ omin(X,�)}.
Now given a reductive subgroup X ≤ G(�)p we say that a prime q is admissible
with respect to X if for some prime r and nonnegative integer i there is a semisimple
element s ∈ G(�)r such that o(s) = qi and CG(�)r (s)

◦ ∼t X. Note that the identity
element is semisimple and of order 1 = q0. Thus every prime q is admissible with
respect to X = G(�)p ∼t G(�)r = CG(�)r (1)◦. Finally we come to the main results.

Theorem 1 Let Gp = G(�)p be an adjoint simple algebraic group of type �

over Fp . Let X ≤ Gp be the connected centralizer of a semisimple element; if
� = Bn, Cn or Dn for some n let q be admissible with respect to X, otherwise let q

be any prime. Then there exists a unipotent conjugacy class C ⊂ Gq = G(�)q such
that for any u ∈ C

dimCGq (u) = dimX and q(X,�) = o(u) or q.o(u).

Equality between q(X,�) and o(u) holds in most cases and holds in all but one
case if q is a good prime. Full details are given in Theorem 4 at the end of the paper.
There is an immediate corollary to Theorem 1.

Corollary 2 Given a semisimple element s ∈ Gp = G(�)p and a prime q which is
admissible with respect to X = CGp(s)◦ if � = Bn, Cn or Dn for some n, there is a
unipotent element u ∈ Gq = G(�)q such that dimCGq (u) = dimX and o(u) divides
min{qe : qe ≥ o(s)}.

Proof Take any u in the class C given by Theorem 1 and observe that q(X,�) divides
min {qe : qe ≥ o(s)}, since o(s) ≥ omin(X,�). �

If we have a semisimple element of prime order we can make a stronger statement.

Theorem 3 Let p,q be distinct primes and let Gp and Gq be as above. If s ∈ Gp

has order q then there exists an element u ∈ Gq such that o(u) = o(s) and dimuGq =
dim sGp .



J Algebr Comb (2010) 31: 319–353 321

In [5] it was proven that given a natural number t and an adjoint simple algebraic
group G over an algebraically closed field of characteristic p, the dimension of the
set G[t] = {g ∈ G : gt = 1} is independent of p. Clearly G[t] is a union of conjugacy
classes. The author’s thesis was an attempt to see what could be said if G[t] was
replaced by one of those classes. The statement of Theorem 3 above is in the style
of [5].

The proof of Theorem 1 will be given by case analysis in the following sections.
The individual proofs are quite straightforward once certain functions are defined.
These functions may appear to come from nowhere, but can be characterized combi-
natorially. This will be done in future papers and hints that a more uniform approach
may be possible. For the moment though, this possibility has not been realized and
we must stick with case analysis. So Section 2 recalls an important algorithm for find-
ing all connected centralizers of semisimple elements in a simple algebraic group and
uses this to prove Theorem 1 for the exceptional cases. Section 3 lays out our strategy
for proving Theorem 1. Sections 4 to 7 deal with types A, C, D and B respectively.
Theorem 3 is proven in Section 8.

2 Known results and exceptional groups

This section recalls some well known results of Steinberg and a useful result from
[2] and then applies them to the exceptional groups. Recall that if s is a semisimple
element, T a maximal torus containing s and {Xα : α ∈ �} the root subgroups with
respect to T , then it can be shown that CG(s)◦ = 〈T ,Xα : α(s) = 1〉. Furthermore
CG(s)◦ is reductive with root system � = {α ∈ � : α(s) = 1}. Finally if G is simply-
connected then we have that CG(s)◦ = CG(s). This material is due to Steinberg and
can be found in section 3.5 of [1]. Now given t ∈ N and a simple simply-connected
group Gsc , let Gad be the adjoint group in the isogeny class of Gsc and let φ : Gsc →
Gad be an isogeny. Also let s ∈ Gsc be a semisimple element such that the order
of φ(s) is t . Note that if Gad is over a field of characteristic p then p must not
divide t . An algorithm is given in [2] for finding all possible centralizers of s ∈ Gsc.
The following lemma is essentially taken from [5] and shows that the algorithm can
actually be used to determine all possible connected centralizers of an element of
order t in Gad .

Lemma 2.1 Let φ : Gsc → Gad be an isogeny and s ∈ Gsc be a semisimple element
then dimCGad

(φ(s)) = dimCGsc (s) and CGad
(φ(s))◦ = φ(CGsc (s)).

Proof Suppose c ∈ Gsc is such that φ(c) ∈ CGad
(φ(s)), then csc−1s−1 ∈ Kerφ =

Z(Gsc). So let z = csc−1s−1 and note that csc−1 = zs. Now consider the set
Gsc(z, s) = {c ∈ Gsc : csc−1 = zs}: we see that c′ ∈ Gsc(z, s) implies csc−1 =
c′sc′−1. This leads to c′ ∈ cCGsc (s) and we see that Gsc(z, s) is a coset of CGsc (s).
So Kerφ being finite gives us dimφ(CGsc (s)) = dimCGsc (s) and since Gsc(1, s) =
CGsc (s) we see that

CGad
(φ(s)) = φ

( ⋃
z∈Kerφ

Gsc(z, s)

)
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has φ(CGsc (s)) as a subgroup of finite index; therefore dimCGad
(φ(s)) = dimCGsc(s)

and φ(CGsc (s)) contains CGad
(φ(s))◦. However φ(CGsc (s)) = 〈φ(T ),φ(Xα) :

α(s) = 1〉 is clearly contained in CGad
(φ(s))◦ and so the lemma is proven. �

We shall now give the algorithm as it is presented in [5]. If we assume that G is
adjoint it is not difficult to see that, given the above lemma, this statement is equiva-
lent to that given in [2]. So let � be a root system of G and � = {α1, . . . , αn} a set of
simple roots in �. Let α0 be the highest root of � with respect to �, set c0 = 1 and
define ci for 1 ≤ i ≤ n by α0 = ∑n

i=1 ciαi . The ci are called weights and can be used
to label the extended Dynkin diagram of type �̃.

Algorithm 2.2 Using the notation above and taking any t ∈ N choose non-negative
integers b0, b1, . . . , bn with gcd(b0, . . . , bn) = 1 satisfying

∑n
i=0 bici = t . The bi are

called labels. Then the roots αi (or −α0 if i = 0) for which bi = 0 form a simple
system � whose corresponding subsystem subgroup of G (which I take to have max-
imal rank) is the connected centralizer of some semisimple element of order t . The
Dynkin diagram of this connected centralizer is the subgraph of the extended Dynkin
diagram spanned by those vertices with bi = 0. In fact up to conjugacy all connected
centralizers of semisimple elements of order t occur in this way.

From this we see that the Dynkin diagrams of connected centralizers of semisim-
ple elements must be proper subgraphs of the extended Dynkin diagram of G. Also
each proper subgraph of the extended Dynkin diagram of � will give a connected
centralizer in some adjoint simple group of type �. Simply let bi = 1 on each vertex
you wish to delete and then choose p coprime to t = ∑n

i=0 bici ; the adjoint simple
group of type � over Fp will then contain a semisimple element of order t whose
connected centralizer has the required diagram. When thinking about connected cen-
tralizers from now on we will automatically consider the corresponding subgraph of
the extended Dynkin diagram. Clearly we can use Algorithm 2.2 to list the ∼t classes
of connected centralizers in groups of type �; furthermore given an X we can see all
the possible orders of semisimple elements whose connected centralizer has the same
type as X. This allows us to calculate the value of omin(X,�) and, given q , that of
q(X,�). We can demonstrate this process in the easiest of the exceptional cases G2.
We begin with the extended Dynkin diagram of type G̃2, together with the weights
obtained from the highest root.

From this it is easy to see all possible proper subgraphs and the only task remaining
is to find labels bi realizing each subgraph, satisfying gcd(b0, . . . , bn) = 1 and min-
imizing

∑n
i=0 bici . The table below provides this information. Here X

a1
1 · · ·Xar

r Tl

will denote a reductive group with simple components of type X1, . . . ,Xr and mul-
tiplicities a1, . . . , ar . The term Tl is a central torus of rank l. For convenience we
will sometimes have repeated simple components and sometimes write multiplicities,
this should cause no confusion in context. We will also assume that x1 ≥ · · · ≥ xr ,
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where xi = rankXi . Note that from this representation of X we can read off the rank
(a1x1 + · · · + arxr + l), dimension (rank X + |�|, where � is the root system of
the semisimple group [X,X]) and (using Algorithm 2.2) the value of q(X,�) for any
prime q . Since these are the only properties we are interested in, we shall use this
notation throughout the paper

X dimX Labels omin(X,G2)

G2 14 100 1
A2 8 001 3
A2

1 6 010 2
A1T1 4 110 3
T2 2 111 6

We can now prove Theorem 1 in this case by explicitly giving unipotent conju-
gacy classes to pair with each X. The unipotent conjugacy classes in G(G2)q are
listed along with the dimensions of the corresponding centralizers in section 13.1
of [1]; the reader can check that the dimensions match. The Jordan structure of class
representatives is given with respect to the module V7 and is taken from [4]; it is easy
to see that the order of each element in the class is the smallest power of q greater than
the size of the largest Jordan block. Note that we do not always have q(X,G2) = o(u);
the single exception is 2(A2,G2) = 2.o(u).

Class Jordan
X q q(X,G2) C ⊆ G(G2)q Structure o(u)

G2 ≥ 2 q 1 114 q

A2 2 4 A1 22 13 2
≥ 3 q 22 13 q

A2
1 ≥ 2 q Ã1 23 1 q

A1T1 2 4 G2(a1) 32 1 4
≥ 3 q 32 1 q

T2 2 8 G2 6 1 8
3 9 7 9
5 25 7 25

≥ 7 q 7 q

We will not give full details of the other exceptional cases since the techniques are
similar. For the case of F4 we will give the extended Dynkin diagram, together with
the weights obtained from the highest root, and the list of ∼t classes of connected cen-
tralizers of semisimple elements, together with the values of omin(X,F4). The reader
can then verify Theorem 1 themselves using the information given in [1] and [4].
It will then be seen that as above we do not always have q(X,F4) = o(u); the excep-
tions are (X,q) = (A3A1,3), (A3T1,2), (A3T1,5) and (C2T2,2). In these cases we
can choose classes such that q(X,F4) = q.o(u).



324 J Algebr Comb (2010) 31: 319–353

X dimX Labels omin(X,F4)

F4 52 10000 1
C3A1 24 01000 2
A2

2 16 00100 3
A3A1 18 00010 4
B4 36 00001 2

C3T1 22 11000 3
A2A1T1 12 10100 4
B3T1 22 10001 3
A3

1T1 10 01010 6
C2A1T1 14 01001 4
A3T1 16 00011 6
A2T2 10 11100 6
C2T2 12 11001 5
A2

1T2 8 10101 6
A1T3 6 11101 8
T4 4 11111 12

The groups of type E are dealt with similarly. Although here we find classes satisfy-
ing q(X,�) = o(u) in all cases. We can now move on to the classical groups.

3 Strategy

In this section we define certain sets and some properties of the functions between
them that will be used in the following sections to prove Theorem 1. So let � ∈
{A,B,C,D}, let [X]t denote the ∼t class of a reductive group X and consider the
following sets

Cent(�) = {[X]t : X = CG(�n)p (s)◦ for some semisimple element s ∈ G(�n)p,

some n ∈ N and some prime p}.
To avoid possible confusion, we emphasize at this point that Cent(�) contains the
∼t classes of connected centralizers in any group of type �. Also to avoid con-
fusion, we point out that we will often abuse notation and write ‘X ∈ Cent(�)’
rather than ‘[X]t ∈ Cent(�)’. Furthermore when we write ‘dim X’ (resp. ‘rank X’)
for X ∈ Cent(�), we mean the dimension (resp. rank) of any representative of [X]t ,
since these are invariants of the class. Finally let

Centq(�) = {[X]t ∈ Cent(�) : q is admissible with respect to X}.
(Clearly if q is admissible with respect to X then it is admissible with respect to any
group in the class [X]t .) To illustrate these concepts we shall now calculate Cent(A).
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The extended Dynkin diagram of type Ãn, together with the weights obtained from
the highest root is shown below.

Clearly all proper subgraphs are unions of Dynkin diagrams of type A and so Algo-
rithm 2.2 shows us that all connected centralizers have the form X = An1 . . .Anr Tl

(repeated factors are allowed). Also note that l + 1 is the number of vertices removed
(there are

∑
ni + l + 1 vertices in the extended diagram and those not removed span

the Dynkin diagram of [X,X], which has rank
∑

ni ) and since the diagram is a
cycle this is no less than r , the number of connected components left after the re-
movals. Finally the diagram tells us that every prime is admissible with respect to
every connected centralizer. This follows since all weights are 1, so we can label l of
the vertices we remove in Algorithm 2.2 by a 1 and the last vertex by qi − l, where i

is chosen to be large enough to make this positive. Thus q may be chosen arbitrarily
unless only one vertex is removed. In this case that vertex must be labeled with a 1
and the corresponding subsystem subgroup must be the connected centralizer of an
element of order 1, i.e. it must be the whole group and again every prime is admis-
sible. Thus all the sets Centq(A) are the same; they are all equal to Cent(A) which
equals

{An1 . . .Anr Tl : n1, . . . , nr , l ∈ N ∪ {0}, where n1 ≥ · · · ≥ nr and l + 1 ≥ r}.
Next we return to � ∈ {A,B,C,D} and consider the sets

ucclq(�) = {(C,G(�n)q) : n ∈ N and C ⊆ G(�n)q is a unipotent conjugacy class}.
As with Cent(�) we try to avoid confusion by stating that this set is not the set of all
unipotent classes in a single group. Now each pair m = (C,G(�n)q) ∈ ucclq(�) has
certain numbers associated to it, the simplest of which is the rank of the pair. This
is denoted r(m) and equals n. Before stating the others we set the convention that
when we write ‘u ∈ m’ we mean u ∈ C . So if u ∈ m then we know that the dimension
of CG(�n)q (u) and the order of u are both independent of u and hence invariants
of m. These will be called the centralizer dimension of m and the element order of m
respectively. We will denote the centralizer dimension by c.dim m and the element
order by oe(m). Finally we define a representation of ucclq(�) to be a function from
ucclq(�) to S, where S is a set whose elements we call symbols. Our results will
be much more elegant if we use appropriate symbols to represent the elements of
ucclq(�) and we will generally identify those elements with their images in S.

The symbols in S will be based on partitions of natural numbers, so before pre-
ceding we will now outline our conventions and notation regarding partitions. There
appear to be various conventions in use, but the ones stated here will be used through-
out this paper and in any sequels. We will always list the parts of a partition in de-
scending order of size and unless multiplicities are explicitly given we will assume
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that parts may be repeated. So let n = (n1, . . . , nr ) be a partition and let α,β ∈ Z

then we write αn + β = (αn1 + β, . . . , αnr + β) provided each αni + β ≥ 0. Also
let |n| = ∑

ni . Next consider n∗ = (k1, . . . , ks), where ki = |{j : nj ≥ i}|. This is
the dual partition of n and it is equal to rnr (r − 1)nr−1−nr · · ·2n2−n31n1−n2 ; here the
superscripts give the multiplicities of the parts they are above. We call the partition
with no parts ‘empty’ and denote it 0. By convention the dual of the empty parti-
tion is empty. If m = (m1, . . . ,mz) and nr ≥ m1 then we can form the concatenation
(n,m) = (n1, . . . , nr ,m1, . . . ,mz). We conclude our brief look at partitions with an
easily verified lemma.

Lemma 3.1 If (m1,m2, . . . ,mz)
∗ = g then (g − 1)∗ = (m2, . . . ,mz).

With everything we need about partitions in place we can turn to an example. We
know from section 13.1 of [1] that the unipotent conjugacy classes of G(An)q are pa-
rameterized by the partitions of n+1 (the partitions are given by the block sizes of the
Jordan form of any matrix in the class). Hence we will represent any m ∈ ucclq(A)

by the partition given by the block sizes of the Jordan form of any matrix in the
class determined by m. The representation defined in this way is bijective and so we
can identify the members of ucclq(A) with the set S = {m : m is a partition of some
m ≥ 2}. This is a good representation because key properties of the members of
ucclq(A) can be seen from the corresponding partition. It is obvious that r(m) =
|m| − 1, but section 13.1 of [1] also states that if m∗ = (g1, . . . , ga) then

c.dim m =
a∑

i=1

g2
i − 1.

However the representation is not perfect; a small inconsistency arises as follows.
For every prime q there is a corresponding set ucclq(A) and a bijection between
that set and S. Thus every member of S is identified with infinitely many pairs and
although we have seen above that all these pairs have the same rank and centralizer
dimension they will not have the same element order. If m ∈ ucclq(A) is identified
with the partition (m1, . . . ,mz) then it is easily seen that oe(m) = min{qi : qi ≥ m1}.
Thus we cannot determine the element order from the partition alone, but if we also
know q then we can. This shows us that when we identify ucclq(A) with S we are
losing some information, but it shouldn’t cause any practical problems since we will
always specify which ucclq(A) we are taking the partitions to be in when we talk
about element orders.

With all our new sets now defined we can see that proving Theorem 1 for the
classical groups is equivalent to constructing functions f : Centq(�) → ucclq(�),
for any � ∈ {A,B,C,D} and any prime q , such that the following holds. For each
X ∈ Centq(�) we have
(A) rank X = r(f (X));
(B) dim X = c.dimf (X);
(C) q(X,�n) = oe(f (X)) or q.oe(f (X)), where n = rankX.
Such functions will be explicitly given in the following sections. Sometimes a
stronger version of property (C) holds: namely that q(X,�n) = oe(f (X)) for every
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X ∈ Centq(�). We call this property (C+). In future papers we will show that for
each prime q and � ∈ {A,B,C,D} the functions we will give here are the unique
functions between Centq(�) and ucclq(�) which preserve certain natural partial or-
ders and satisfy properties (A) and (B). Property (C) will thus be shown to be a
consequence of order preservation and the other two properties. Why such functions,
which we call sensible, should be unique or exist at all is still a mystery. It is also un-
clear why the poset structure, which appears to come from the representations, should
have such a strong influence; uniqueness fails completely if we do not have a poset
homomorphism.

4 Type A

We can now prove Theorem 1 for type A. We have already noted that for any
prime q the set Centq(A) is equal to Cent(A), so for each q define a function fA :
Cent(A) → ucclq(A) as follows. Let X = An1 . . .Anr Tl , where n1 ≥ · · · ≥ nr ≥ 1,
be a representative of some element in Cent(A) and let m = (n1, . . . , nr)

∗, then set
fA(X) = (l + 1,m).

Theorem 4.1 The function fA is a bijection satisfying properties (A), (B) and (C+).
Moreover if p �= q then there exists a semisimple element s ∈ G(An)p such that
CG(An)p (s) ∼t X and o(s) = q(X,An).

Proof Recall from above that l + 1 ≥ r . Hence if (m2, . . . ,mz) = m = (n1, . . . , nr)
∗

then l+1 ≥ r = m2 and so we can form the concatenation (l+1,m), which is a parti-
tion of n+ 1 = ∑

ni + l + 1. Thus the map is well-defined and satisfies property (A).
If C = (m1,m2, . . . ,mz) is a partition of n+ 1 and hence a unipotent class in G(An)q
and (g1, . . . , ga) = (m1, . . . ,mz)

∗ then we claim that X = Ag1−1 . . .Aga−1Tm1−1

(where A0 = 1 by convention) represents the ∼t class of the connected centralizer
of some semisimple element in G(An)p and that fA(X) = C . Now using Lemma 3.1
we can see that the proposed connected centralizer does have rank n. Also, since the
number of parts in a partition is equal to the largest part of the dual of that partition,
when we use Algorithm 2.2 we have at least as many deleted vertices (m1) as con-
nected components (m2). Thus we can find a connected centralizer of the required
type and it follows immediately from the lemma that fA will map it to C . Therefore
the map is indeed bijective.

Now recall that if C = (m1, . . . ,mz) ∈ ucclq(A) then oe(C) = min{qe : qe ≥ m1}.
By the previous paragraph we see that the corresponding connected centralizer X

comes from a Dynkin diagram with m1 deleted vertices. Thus omin(X,An) = m1 and
q(X,An) = min{qe : qe ≥ m1} = oe(C). With property (C+) proven we note that if
p �= q then q(X,An) = qi is coprime to p and to construct s ∈ G(An)p we simply la-
bel the m1 vertices so that at most one vertex has label greater than one and the sum of
the labels is q(X,An). Thus we have o(s) = q(X,An) and it only remains to prove prop-
erty (B). So take C = (m1, . . . ,mz) ∈ ucclq(A) and let (g1, . . . , ga) = (m1, . . . ,mz)

∗
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and X = f −1
A (C), then a = m1 and X = Ag1−1 . . .Aga−1Tm1−1. Therefore

dimX =
a∑

i=1

dimAgi−1 + (m1 − 1) =
a∑

i=1

(g2
i − 1) + (m1 − 1)

=
a∑

i=1

g2
i − a + (m1 − 1) =

a∑
i=1

g2
i − 1 = c.dim C. �

5 Type C

In this section we will deal with groups of type C. We begin, as in type A, with the
extended Dynkin diagram of type C̃n, together with the weights obtained from the
highest root.

Now before proceeding we should make clear our conventions regarding groups of
type C with small rank. C1 can be defined and is isomorphic to A1, however as
subgroups of a larger Cn we know that C1 and A1 are not conjugate; thus these
subgroups are viewed as different.

Now using Algorithm 2.2 and the extended Dynkin diagram allows us to list the ∼t

classes of connected centralizers of semisimple elements. We find that all connected
centralizers have the form An1 . . .Anr Cm1Cm2Tl where for convenience n1 ≥ . . . ≥ nr

and m1 ≥ m2 ≥ 0. Also note that the number of vertices removed is l + 1 and this
is always at least one more than the number of subgraphs of type A left after the re-
movals, which is r . Finally, observe that all primes are admissible with respect to any
connected centralizer with m2 = 0, but for connected centralizers with two factors
of type C only 2 is admissible. This follows since if m2 = 0 then when obtaining the
connected centralizer from Algorithm 2.2 at least one deleted vertex has weight 1; we
can label that vertex such that the weighted sum of the labels is qi for some i. If all
deleted vertices have weight 2 then the weighted sum must be even and so can only
be a prime power if the prime is two.

Thus all the sets Centq(C), for odd q , are the same; they all equal

{An1 . . .Anr Cm1Tl : n1, . . . , nr ,m1, l ∈ N ∪ {0},
where n1 ≥ . . . ≥ nr, r ≤ l, and m1 ≥ 0}.

The set Cent2(C) equals

{An1 . . .Anr Cm1Cm2Tl : n1, . . . , nr ,m1,m2, l ∈ N ∪ {0},
where n1 ≥ . . . ≥ nr, r ≤ l, and m1 ≥ m2 ≥ 0}.

Note that if q is odd then Centq(C) is the subset of Cent2(C) where m2 = 0.
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Next we consider unipotent conjugacy classes in type Cn over characteristic q .
Following [3] we see that these are parameterized by symbols p1

m1
χ1 · · ·pz

mz
χz . Here

p1
m1 · · ·pz

mz is a partition of 2n given by the Jordan structure on the natural module,
where each odd part has even multiplicity and χ : pj �→ χj is a function from the
parts of p1

m1 · · ·pz
mz to the natural numbers. The function χ satisfies the following

rule when the characteristic is 2:

χ(p) =

⎧⎪⎨
⎪⎩

1
2 (p − 1) if p is odd;
1
2p if p is even and has odd multiplicity;
1
2 (p − 2) or 1

2p if p is even and has even multiplicity.

When q is odd the rule is much simpler:

χ(p) =
{

1
2 (p − 1) if p is odd;
1
2p if p is even.

By identifying members p ∈ ucclq(C) with the appropriate symbol we again get a
bijective representation and we will use this identification from now on. As with type
A this representation has certain advantages. For example the symbols can be seen
diagrammatically as follows (we call these Hesselink diagrams since they are simply
a way of visualizing the symbols used in [3]).

Example

The columns in the diagrams are in one-to-one correspondence with the parts in the
partitions: the ith column contains pi squares if and only if the ith part has size pi .
The value in the bottom square of the ith column is χ(pi). This helps to visualize an
operation we will need to perform later. Another advantage to the symbols is that by
definition r(p) = n = 1

2 |p|; we also know from [3] that if p = p1
m1
χ1 · · ·pz

mz
χz , then

c.dim p =
z∑

i=1

(ipi − χ(pi)).

As with type A we see that oe(p) = min{qi;qi ≥ p1}, but again we must be careful
to avoid ambiguity by always stating q when talking about oe(p).

Finally we note that partitions in which each odd part has even multiplicity are in
one-to-one correspondence with pairs of partitions (α;β) where 2|α| + |β| = 2n and
β has distinct even parts. The original partition is obtained by taking the parts from
α twice, together with the parts from β . Now with all the notation in place we obtain
the following result.
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Theorem 5.1 For each prime q , there exists a function fC,q : Centq(C) → ucclq(C)

satisfying properties (A) and (B). Furthermore, if X ∈ Centq(C), then q(X,Cn) =
oe(fC,q(X)) unless (q, l) = (2,2i ) for some i and one of the following holds:

1. X has one C-factor and l > r ;
2. X has two C-factors and l > r + 1.

In these cases we have 2(X,Cn) = 2.oe(fC,q(X)). Finally, if p �= q then there exists a
semisimple element s ∈ G(Cn)p such that CG(Cn)p (s) ∼t X and o(s) = q(X,Cn).

Before proving this result we should say something about the importance of ad-
missible primes. The reader may be wondering if the assumption that q is admissible
with respect to X is really needed. Although we have no conceptual reason for it, we
can prove that the result may fail if X �∈ Centq(C). So let q be an odd prime and note
that C2C1 �∈ Centq(C). Below we list all the members of ucclq(C). Recall that such
classes are parameterized by pairs of partitions (α;β) where 2|α| + |β| = 6 and β

has distinct even parts. The Jordan structure is obtained by taking the parts from α

twice, together with the parts from β .

(α;β) Class dimCG(C3)q (u) (α;β) Class dimCG(C3)q (u)

(3;0) 32
1 7 (1,1;2) 21 14

0 15

(2,1;0) 22
1 12

0 11 (1;4) 42 12
0 7

(1,1,1;0) 16
0 21 (0;2,4) 42 21 5

(2;2) 23
1 9 (0;6) 63 3

This demonstrates that no class has centralizer dimension equal to 13 = dimC2C1.
So we cannot produce a function g : � → ucclq(C) satisfying property (B) if � con-
tains C2C1.

Proof The proof will proceed in three stages. The first two deal with defining fC,q

and showing it satisfies properties (A) and (B) and the last looks at the values of
q(X,Cn) and the existence of s.
Stage 1: Defining fC,q(X) when X = An1 . . .Anr Tl .

If n = (n1, . . . , nr), where n1 ≥ · · · ≥ nr ≥ 0, and if we set the χ -values of 2(l,n∗)
to take their largest possible values, then we define

fC,q(An1 . . .Anr Tl) = 2(l,n∗)

= 2ll 2rnr
r 2(r − 1)

nr−1−nr

r−1 · · ·2n1−n2
1 .

That the two partitions are equal is easily seen. It is also easily seen that rankX =
1
2 |fC,q(X)| = r(fC,q(X)). So we turn to the equality of centralizer dimensions. We
begin by noting that fC,q(Tl) = 2ll and

c.dim 2ll = 2l − l = dimTl.
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Next observe that replacing Ani
by Ani+1 in X will increase dim X by 2ni + 3. Also

observe that increasing the part and χ -value of fC,q(X) in position ni + 2 by 2 and 1
respectively will increase c.dim fC,q(X) by 2(ni +2)−1 = 2ni +3. So starting from
X = Tl = Ar

0Tl and increasing the rank of each A-factor step-by-step we see that
c.dim fC,q(X) = dimX for all X of the form An1 . . .Anr Tl . Therefore the restriction
of fC,q defined above satisfies properties (A) and (B). Note that the X ∈ Centq(C)

for all q and clearly the image is contained in ucclq(C) for any q .
Stage 2: Defining fC,q(X) for arbitrary X.

Here we define fC,q(An1 . . .Anr Cm1Cm2Tl), where m1 and m2 are arbitrary. Un-
like the above we will not give an explicit formula for fC,q(X) here, instead we will
give an algorithm for producing it. Now we know what fC,q(X) is when the C-factors
both have rank 0. So begin with X = An1 . . .Anr Cm(1)Cm(2)Tl where m(1) = m(2) = 0;
also let mv be the rank of the vth C-factor in X. We will increase the m(v) until
we reach (m1,m2) (it should be made clear here that we are treating the connected
centralizers as entirely formal strings of characters; our manipulations of them are
not intended to correspond to anything group theoretic or geometric, although we
do not discount the possibility that such an interpretation may be discovered). We
will also give the corresponding alterations to make to fC,q(X ). So proceed as fol-
lows.
Step one If m2 = m(2) then go to Step two. Otherwise increase m(1) and m(2) by 1,
then replace the parts 2ss 2tt of fC,q(X ) in positions 2m(2) −1 and 2m(2) by 2(s +1)2

s

if s = t , by (2s + 1)2
s if s = t + 1 and by 2ss 2(t + 2)t+2 if s ≥ t + 2. Repeat. (Note

that s and t are allowed to be zero here.)
Step two If m1 = m(1) then we are done. Otherwise increase m(1) by 1, then replace
the parts 2ss 2tt in positions 2m(1)−1 and 2m(1) by (2s+1)2

s if s = t , and by 2ss 2(t +
1)t+1 if s ≥ t + 1. Repeat. (Again s and t are allowed to be zero.)

Below we illustrate each of the possibilities for Step one and Step two diagram-
matically. In each case the first column represents the part in position 2m(2) − 1 or
2m(1) − 1 as appropriate.

Now having given the algorithm, we must consider the question of whether the
symbols produced by are valid members of ucclq(C). First we observe that the de-
scending order of the parts is preserved. This can be seen from the diagrams above
for the parts in positions 2m − 1 and 2m (m = m(1) or m(2)) and follows in general
since the part in position 2m is increased by at least 2 during Step one and at least
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1 during Step two and the part in position 2m − 1 is increased by at most 2 during
Step one and at most 1 during Step two. This is illustrated below. The values in bold
are those which the algorithm has just acted upon, the black squares represent the
increases to the parts. Note that the increase to the second part in each pair is never
less than the increase to the first in the next pair.

Next note that since we begin with valid symbols and any odd parts created come
in pairs, we do get a partition with each odd part having even multiplicity. Also if
X ∈ Centq(C) for odd q then calculating fC,q will not require Step one and from this
we see that the χ -values place the images of the function in the appropriate ucclq(C).

The final thing to check is that we do not produce parts of the same size, but with
different χ -values. From the steps of the algorithm we see that this cannot happen
with the parts in positions 2m − 1 and 2m. We must rule the situation out for parts
in positions 2m and 2(m + 1) − 1 = 2m + 1. It could only happen if the parts were
even, since the size determines the χ -value for odd parts. From the algorithm we
see that the only way to produce even parts of the same size in positions 2m and
2(m + 1) − 1 = 2m + 1 is to begin with even parts of equal size and use Step one
consecutively. However in that case we produce the same χ -values for equal-sized
parts. Thus the algorithm does produce valid members of ucclq(C) and our fC,q is
well-defined.

We are now ready to prove the equality of ranks and centralizer dimensions. We
recall that rank X = 1

2 |fC,q(X )| = r(fC,q(X )) held before the algorithm and for each
increase in the rank of X , the algorithm increases the size of the partition fC,q(X )

by twice that amount. Step one increases rank X by 2 each time and |fC,q(X )| by 4;
Step two increases rank X by 1 and |fC,q(X )| by 2. Thus the equality is preserved
by the algorithm. To prove that the equality c.dim fC,q(X ) = dim X is also preserved
we first note that

dimCt
m − dimCt

m−1 = t (4m − 1), t ∈ {1,2}.
Now we must show that the changes made to the symbol by our algorithm match this
increase. So, in Step one we begin with 2ss 2tt in positions 2m − 1 and 2m. If s = t

we increase both these parts by 2, but leave the χ -values unchanged. This gives a
centralizer dimension increase of

2(2m − 1) + 2(2m) = 2(4m − 1),

as required. If s = t + 1 then we increase the part in position 2m − 1 by 1, but leave
the χ -value unchanged. We also increase the part and χ -value in position 2m by 3
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and 1 respectively. These increases give a centralizer dimension increase of

1(2m − 1) + 3(2m) − 1 = 2(4m − 1),

again as required. Lastly, if s ≥ t +2 then we increase the part and χ -value in position
2m by 4 and 2 respectively. This gives a centralizer dimension increase of

4(2m) − 2 = 2(4m − 1),

as required.
Finally, in Step two we begin with 2ss 2tt in positions 2m − 1 and 2m then in-

crease both parts by 1 and leave the χ -values unchanged if s = t and increase the
part and χ -value in position 2m by 2 and 1 respectively if s ≥ t + 1. In both cases
we get a centralizer dimension increase of 4m − 1, as required. Thus the equal-
ity of centralizer dimensions is preserved by the algorithm and holds for all X.
So we have now constructed our function and shown that it satisfies properties (A)
and (B).
Stage 3: The values of q(X,Cn).

First recall that if J is the size of the largest Jordan block of fC,q(X), then
oe(fC,q(X)) = min{qe : qe ≥ J }. Now proceed with the case analysis
Case 1: X has no C-factor (so X ∈ Centq(C) for all q).

Here we see that oe(fC,q(X)) = min{qe : qe ≥ 2l}. Furthermore we see that
the two outer vertices of weight 1 must have been deleted from the extended
Dynkin diagram C̃n when getting X from Algorithm 2.2. Since l − 1 vertices with
weight 2 were also deleted we see that omin(X,Cn) = 2l. This clearly gives us
q(X,Cn) = min{qe : qe ≥ 2l} = oe(fC,q(X)). Now, if p �= q then q(X,Cn) = qi is co-
prime to p and we can proof the existence of an s ∈ G(Cn)p by labeling the ver-
tices so that at most one vertex has label greater than one and the sum of the labels
is q(X,Cn).
Case 2: X has one C-factor (so X ∈ Centq(C) for all q).

From the formula given in Stage 1 of this proof and Step two of the algorithm
in Stage 2 we see that J = 2l + 1 if l = r , and 2l otherwise. To obtain X from
Algorithm 2.2 we have deleted l vertices of weight 2 and one of weight 1 in C̃n.
So omin(X,Cn) = 2l + 1 and if l = r we clearly have q(X,Cn) = min{qe : qe ≥
2l + 1} = oe(fC,q(X)). If we have l > r then q(X,Cn) = min{qe : qe ≥ 2l + 1} =
min{qe : qe ≥ 2l} = oe(fC,q(X)) unless (q, l) = (2,2i ) for some i, when we get
2(X,Cn) = 2.oe(fC,q(X)). Lastly, if p �= q then we proceed as above to obtain a semi-
simple element of order q(X,Cn).
Case 3: X has two C-factors (so X is only contained in Cent2(C)).

As in Case 2 we see that J = 2l + 2 if l = r , 2l + 1 if l = r + 1, and 2l otherwise.
We also see that to obtain X from Algorithm 2.2 we have deleted l + 1 vertices of
weight 2 in C̃n, so omin(X,Cn) = 2l + 2. Since the only admissible prime here is 2
we now set q = 2.

There are three subcases to deal with, so first let l = r and then 2(X,Cn) = min{2e :
2e ≥ 2l + 2} = oe(fC,q(X)). Next take l = r + 1 and observe that since 2l + 1 is odd
we have 2(X,Cn) = min{2e : 2e ≥ 2l + 2} = min{2e : 2e ≥ 2l + 1} = oe(fC,q(X)).
Finally if l > r + 1 then since 2l + 1 is odd we have 2(X,Cn) = min{2e : 2e ≥
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2l + 2} = min{2e : 2e ≥ 2l} = oe(fC,q(X)) unless l = 2i for some i, when we get
2(X,Cn) = 2.oe(fC,q(X)). Lastly, if p �= 2 then we again proceed as above to obtain a
semisimple element of order 2(X,Cn). �

We conclude this section by noting that the above proof provides a blueprint that
we will follow in several more situations. As a result we will sometimes not give the
details as fully as we have here. This should not be a problem as the proofs are mostly
straightforward, the difficulty is in knowing how to define our functions in the first
place.

6 Type D

In this section we will deal with groups of type D. We begin as before with the
extended Dynkin diagram of type D̃n, together with the weights obtained from the
highest root.

Once again we should make clear our conventions regarding groups with small rank.
D3, D2 and D1 can be defined and are isomorphic to A3, A2

1 and T1 respectively,
however as subgroups of a larger Dn we know that D3 and A3 are not conjugate
and nor are D2 and A2

1; thus these subgroups are viewed as different. D1 and T1 are
viewed as the same. We take D0 to be the trivial group.

Using Algorithm 2.2 allows us to list the ∼t classes of connected centralizers of
semisimple elements. However before giving the possibilities we must first observe
that since Tl = kl = T l

1 (here k is the field our group is defined over) and T1 = D1
the number of factors of type D is not an invariant: Tl may be written as Da

1Tl−a

for any 0 ≤ a ≤ l (of course this was also true for types A and C, but since in those
cases there were no other D-factors we simply choose to always write Tl). With this
in mind we note that the connected centralizers of semisimple elements in type D all
have the form X = An1 . . .Anr Dm1 . . .Dmd

, where n1 ≥ . . . ≥ nr and m1 ≥ . . . ≥ md

(it is convenient later to write Tl as Dl
1). Algorithm 2.2 also shows that the number

of D-factors with rank at least 2 (denoted δ) is less than or equal to 2 and that the
number of A-factors (r) can be no more than the number of deleted vertices minus
one, which equals the dimension of the central torus, i.e. d − δ.

Now observe that all primes are admissible with respect to any connected cen-
tralizer with δ ≤ 1, but for connected centralizers with δ = 2 only 2 is admissible.
This follows since if δ ≤ 1 then when obtaining the connected centralizer from Algo-
rithm 2.2 at least one deleted vertex has weight 1; we can label that vertex such that
the weighted sum of the labels is qi for some i. If all deleted vertices have weight 2
then the weighted sum must be even and so can only be a prime power if the prime is
two.
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Thus all the sets Centq(D), for odd q , are the same; they all equal

{An1 . . .Anr Dm1D
l
1 : n1, . . . , nr ,m1, l ∈ N ∪ {0},

where n1 ≥ . . . ≥ nr, r ≤ l, and m1 ≥ 0}.
The set Cent2(D) equals

{An1 . . .Anr Dm1Dm2D
l
1 : n1, . . . , nr ,m1,m2, l ∈ N ∪ {0},

where n1 ≥ . . . ≥ nr, r ≤ l, and m1 ≥ m2 ≥ 0}.
Next we consider unipotent conjugacy classes in type Dn over odd characteris-

tic q (postponing the treatment of characteristic 2 until later). As before, from [3]
we see that these are parameterized by symbols p1

m1
χ1 · · ·pz

mz
χz , where p1

m1 · · ·pz
mz

is a partition of 2n given by the Jordan structure on the natural module. This time
each even part has even multiplicity and χ : pj �→ χj is a function from the parts of
p1

m1 · · ·pz
mz to the natural numbers satisfying

χ(p) =
{

1
2 (p + 1) if p is odd;
1
2p if p is even.

By identifying members p ∈ ucclq(D) with the appropriate symbol we again get a
bijective representation and we will use this identification from now on. We can define
Hesselink diagrams in exactly the same way as we did in type C and they will again
help to visualize the operations of our functions. Also by definition r(p) = n = 1

2 |p|,
from [3] we see that if p = p1

m1
χ1 · · ·pz

mz
χz , then

c.dim p =
z∑

i=1

(ipi − χ(pi))

and oe(p) = min{qi;qi ≥ p1}. We repeat the now standard warning to avoid ambigu-
ity by always stating q when talking about oe(p).

Finally we note that if all parts of the partition are even then there are two classes
associated to that partition; we will treat these classes as the same. Now with all the
notation in place we obtain the following result.

Theorem 6.1 For each odd prime q , there exists a function fD,q : Centq(D) →
ucclq(D) satisfying properties (A), (B) and (C+). Furthermore, if p �= q then
there exists a semisimple element s ∈ G(Dn)p such that CG(Dn)p (s) ∼t X and
o(s) = q(X,Dn).

Proof The proof will proceed along the lines established in the proof of Theorem 5.1.
Stage 1: Defining fD,q(An1 . . .Anr Dm1D

l
1) when r ≤ l and 2m1 − 1 ≥ n1 ≥ · · · ≥

nr ≥ 0.
First note that 2m1 − 1 ≥ 0 and m1 ∈ Z imply that m1 ≥ 1, so d (the number of

D-factors) is l + 1. Now set n = (n1, . . . , nr ), then if 2m1 − 1 ≥ n1 ≥ · · · ≥ nr ≥ 0
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and r ≤ l we define

fD,q(An1 . . .Anr Dm1D
l
1) = 2(l + 1, (2m1 − 1,n)∗) − 1

= (2l + 1)l+1 (2r + 1)
nr

r+1 (2r − 1)
nr−1−nr
r · · ·

× 3n1−n2
2 12m1−1−n1

1 .

That the two partitions are equal is easily seen. It is also easily seen that rankX =
1
2 |fD,q(X)| = r(fD,q(X)). So we turn to the equality of centralizer dimensions. We

begin by noting that fD,q(Dl+1
1 ) = (2l + 1)l+1 11. We then see that

c.dim (2l + 1)l+1 11 = (1(2l + 1) − (l + 1)) + (2(1) − 1) = l + 1 = dimDl+1
1 .

Next observe that increasing m1 by 1 will increase dim X by 4m1 + 1. To match this
we observe that increasing both the parts and the χ -values in positions 2m1 + 1 and
2m1 + 2 by 1 increases c.dim fD,q(X) by (1(2m1 + 1) − 1) + (1(2m1 + 2) − 1) =
4m1 + 1. So we get c.dim fD,q(X) = dimX for all X of the form Dm1D

l
1. Finally

we note that increasing ni by 1 will increase dim X by 2ni + 3, and increasing the
part and χ -value in position ni +2 by 2 and 1 respectively will increase c.dim fD,q(X)

by 2(ni + 2) − 1 = 2ni + 3. Therefore the restriction of fD,q defined above sat-
isfies properties (A) and (B) and clearly the image is contained in ucclq(D) for
any odd q .
Stage 2: Defining fD,q(X) for arbitrary X.

Take X ∈ Centq(D) with q odd: if it satisfies the conditions of the previous
stage then the image has already been defined, if not we will construct an element
X̂ that does. Recall that 0 ≤ δ ≤ 1 since q is odd (here δ is the number of D-
factors with rank greater then 1) and since we always have r ≤ d − δ we see that
r ≤ l(= d − 1) can only be broken if δ = 0 and r = d . Thus if X fails to satisfy
our first condition, adding a factor of type D1 will give an element X̃ which does
(as in the previous section all operations of this kind are considered formal manip-
ulations of strings of characters). If X does satisfy r ≤ d − 1 then we set X̃ = X.
Now if X̃ fails to satisfy 2m̃1 − 1 ≥ ñ1 we can simply increase m̃1 and construct
an element X̂ which does. Note that increasing m̃1 in this way may increase δ

from 0 to 1, thus strengthening the condition r ≤ d − δ. However this condition
will still hold since δ ≤ 1 gives d − 1 ≤ d − δ and therefore r ≤ d − 1 (which we
started with and which clearly remains satisfied when m̃1 ≥ 1 is increased) implies
r ≤ d − δ.

We now observe that fD,q(X̂) is defined by the previous stage and that X can be
recovered from X̂ simply by decreasing m̂1 (possibly to zero to reverse the process of
creating X̃; recall that D0 is the trivial group by convention). We will decrease m̂1 in
steps of size one and give the corresponding alterations to make to fD,q(X̂) at each
stage. (This is why we write Dl

1 instead of Tl : if X = A3A2D
2
1 then X̂ = A3A2D2D

2
1

and the sequence of elements we get by decreasing m̂1 is A3A2D2D
2
1 , A3A2D

3
1 ,

A3A2D
2
1 , but if we use Tls this sequence would be written A3A2D2T2, A3A2T3,

A3A2T2. The sequence clearly looks more natural and is easier to specify with the
first notation.) We proceed as follows.
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While X �= X̂

Replace the parts (2s − 1)s (2t − 1)t of fD,q(X̂) in positions
2m̂1 − 1 and 2m̂1 by
2(s − 1)2

s−1 if s = t , and by (2s − 3)s−1 (2t − 1)t if s ≥ t + 1.
Decrease m̂1 in X̂ by 1.
End

Below we illustrate our algorithm diagrammatically. In both cases the first column
represents the part in position 2m̂1 − 1.

We conclude this stage by performing the appropriate checks. First observe that when
constructing X̂ we did not require that m̂1 was minimal with respect to 2m̂1 − 1 ≥
n̂1. So if X satisfies r ≤ d − 1 and 2m1 − 1 ≥ n1 and we form X′ by increasing
m1, then both fD,q(X) and fD,q(X′) will be determined by the formula given in
the previous stage, however we could also take X′ as X̂ and apply the algorithm to
fD,q(X′) = fD,q(X̂) to recover fD,q(X). Therefore we must show that the algorithm
is consistent with the formula. So, if fD,q(X) has 2m1 parts and fD,q(X′) has 2m′

1
parts, then the formula tells us that the parts in positions 2m1 + 1 to 2m′

1 of fD,q(X′)
all have size 1. Thus to recover X from X′ we must use the algorithm m′

1 − m1 times
and this will decrease the final 2(m′

1 − m1) parts of fD,q(X′) to zero. Therefore the
fD,q(X) determined by the algorithm is the same as the fD,q(X) determined by the
formula and the function is well-defined.

Next we want to know that the symbols our procedure has produced are genuine
elements of ucclq(D). For this we must be sure that the descending order of the
parts is maintained and that the even parts in the underlying partitions of our symbols
still have even multiplicity. The same reasoning as in Theorem 5.1 shows that the
descending order of the parts is maintained. The even parts have even multiplicity
since the symbols of the form fD,q(X̂) have only odd parts and any even parts created
by the algorithm come in pairs.

Thirdly, we observe that at each stage of the algorithm the rank of the connected
centralizer drops by 1 and the size of the underlying partition of the symbol drops
by 2. Thus since the formula given in the previous stage satisfied rank X̂ =
1
2 |fD,q(X̂)| = r(fD,q(X̂)), we see that this holds in all cases.

Finally we come to the equality of centralizer dimensions. For this we notice that

dimDm−1 − dimDm = −(4m − 3).

Now we must show that the changes made to the symbol by our algorithm match
this decrease; we have already seen that equality is satisfied before the algorithm is
applied. We begin with (2s − 1)s (2t − 1)t in positions 2m − 1 and 2m. If s = t

we decrease both parts and χ -values by 1, otherwise we decrease the first part
and χ -value by 2 and 1 respectively. These give centralizer dimension decreases of
−((1(2m−1)−1)+ (1(2m)−1)) = −(4m−3) and −(2(2m−1)−1) = −(4m−3)
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respectively, as required. So since the equality c.dim fD,q(X̂) = dim X̂ held before
the algorithm, we see that it holds for all X. Thus our fully defined function satisfies
properties (A) and (B).
Stage 3: The values of q(X,Dn).

Let J be the size of the largest Jordan block of fD,q(X), then as in Theorem 5.1
we have oe(fD,q(X)) = min{qe : qe ≥ J }. To match this we must calculate q(X,Dn).
Therefore we must find the value of omin(X,Dn) under all possible conditions. Recall
from the beginning of the section that r ≤ d −δ, 0 ≤ δ ≤ 1 and the number of vertices
deleted in the extended Dynkin diagram to get X from Algorithm 2.2 is d − δ + 1.

First suppose that δ = 0 (so there is no D-factor of rank greater than one): here we
delete d +1 vertices from the extended Dynkin diagram. Consider the following three
subcases. If d = r then the number of vertices deleted after applying Algorithm 2.2
is one more than the number of subgraphs of type A left. We deduce that only two
vertices of weight 1 have been deleted and omin(X,Dn) = 2(d −1)+1+1 = 2d . For

example, the labels
1 1
0010010

0 0 give a semisimple element of order 6 with a connected
centralizer of type A3A

2
2D

3
1 . If d = r + 1 then the number of deleted vertices is two

more than the number of subgraphs of type A left. We deduce that three vertices
of weight 1 have been deleted (we will use as many weight 1 vertices as we can
since we are looking for the semisimple element with the smallest possible order)

and omin(X,Dn) = 2(d − 2) + 1 + 1 + 1 = 2d − 1, as when the labels
1 1
0010010

1 0 give
a semisimple element of order 7 with a connected centralizer of type A3

2D
4
1 . Finally

if d ≥ r + 2 then all four vertices of weight 1 must have been deleted and we get
omin(X,Dn) = 2(d − 3) + 1 + 1 + 1 + 1 = 2d − 2.

Now let δ = 1 (so there is one D-factor with rank greater than one): here we delete
d vertices from the extended Dynkin diagram and have only two subcases to consider.
If d = r + 1 then the number of vertices deleted after applying Algorithm 2.2 is one
more than the number of subgraphs of type A left. Hence only one vertex of weight
1 has been deleted and omin(X,Dn) = 2(d − 1) + 1 = 2d − 1. An example of this

is given by the labels
0 1
0010010

0 0 which give a semisimple element of order 5 with a
connected centralizer of type A2

2D4D
2
1 . If d ≥ r + 2 then at least two more vertices

have been deleted than there are subgraphs of type A left. We deduce that two vertices
of weight 1 have been deleted and omin(X,Dn) = 2(d −2)+1+1 = 2d −2, as when

the labels
0 1
0010010

0 1 give a semisimple element of order 6 with a connected centralizer
of type A2A1D4D

3
1 . Overall we have shown the following:

omin(X,Dn) =

⎧⎪⎨
⎪⎩

2d if d = r;
2d − 1 if d = r + 1;
2d − 2 if d ≥ r + 2.

Now, if p �= q then q(X,Dn) = qi is coprime to p and we can construct s ∈ G(Dn)p
by labeling the vertices so that at most one has label greater than one and the sum of
the labels is q(X,Dn). This can always be done since we see by the above that at least
one vertex of weight 1 will be deleted.
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Now recall from the previous stage that if d ≥ r +1 then X = X̃. So having formed
X̂, to regain X we use the algorithm given in that stage and we note that we shall not
decrease m̂1 to 0, since this would only be done to reverse adding a D1. This process
never took place when creating X̂ since we started with X = X̃. Since m̂1 is never
decreased to 0 by the algorithm we also never decrease the parts in positions 1 and 2.
Therefore the largest part of fD,q(X) is equal to the largest part of fD,q(X̂) which,
by Stage 1, is 2l + 1 = 2(d − 1) + 1 = 2d − 1; hence oe(fD,q(X)) = min{qe : qe ≥
2d − 1}. At the same time we have q(X,Dn) = min{qe : qe ≥ omin(X,Dn)}, where
omin(X,Dn) = 2d − 1 or 2d − 2. However since q is odd and 2d − 2 is even we must
have q(X,Dn) = min{qe : qe ≥ 2d − 1} = oe(fD,q(X)).

Thus the only case left to check is when d = r . This time when we form X̃ we
get d̃ = r + 1 = d + 1. Now when we form X̂ we don’t change the number of D-
factors so d̂ = d̃ = d + 1. Therefore from Stage 1 we see that the first two parts of
fD,q(X̂) are (2̂l + 1)̂l+1 (2r + 1)r+1 = (2d̂ − 1)d̂ (2r + 1)r+1 = (2d + 1)2

d+1. Now to
recover X from X̂ we will decrease m̂1 to 0 and to match this we will, in particular,
replace the parts (2d + 1)2

d+1 in positions 1 and 2 by 2d2
d . Therefore J = 2d , which

equals omin(X,Dn) by above, and we get q(X,Dn) = oe(fD,q(X)). So property (C+)
has been demonstrated and the proof is complete. �

We can now consider unipotent conjugacy classes in type Dn over characteris-
tic 2. Following [3], these are again parameterized by symbols p = p1

t1
χ1 · · ·pz

tz
χz (this

is a bijective representation and we will use this identification from now on). Here
p1

t1 · · ·pz
tz is a partition of 2n given by the Jordan structure, with an even number of

parts and where each odd part has even multiplicity. The map χ : pj �→ χj from the
parts of p1

t1 · · ·pz
tz to the natural numbers satisfies the following rule:

χ(p) =

⎧⎪⎨
⎪⎩

1
2 (p + 1) if p is odd;
1
2 (p + 2) if p is even and has odd multiplicity;
1
2p or 1

2 (p + 2) if p is even and has even multiplicity.

Here we should note that there are two classes associated to symbols where χ(p) =
1
2p for all parts p; we again treat these classes as the same.

Once again we get r(p) = n = 1
2 |p|, if p = p1

m1
χ1 · · ·pz

mz
χz , then

c.dim p =
z∑

i=1

(ipi − χ(pi))

and oe(p) = min{qi;qi ≥ p1}. Now with all the notation confirmed we obtain the
following result.

Theorem 6.2 There exists a function fD,2 : Cent2(D) → uccl2(D) satisfying proper-
ties (A), (B) and (C+). Furthermore, if p �= 2 then there exists a semisimple element
s ∈ G(Dn)p such that CG(Dn)p (s) ∼t X and o(s) = 2(X,Dn).
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Proof The structure of the proof should be familiar by now.
Stage 1: Defining fD,2(An1 . . .Anr D

2
m1

Dl
1) when r ≤ l and 2m1 − 1 ≥ n1 ≥ · · · ≥

nr ≥ 0.
First note that 2m1 − 1 ≥ 0 and m1 = m2 ∈ Z imply that m2 = m1 ≥ 1 and so d

(the number of D-factors) is l + 2. Now set n = (n1, . . . , nr), then if 2m1 − 1 ≥ n1 ≥
· · · ≥ nr ≥ 0 and r ≤ l we have

fD,2(An1 . . .Anr D
2
m1

Dl
1) = 2(l + 1, (2m1 − 1,n)∗)

= 2(l + 1)l+2 2(r + 1)
nr

r+2 2r
nr−1−nr

r+1 · · ·4n1−n2
3 22m1−1−n1

2 .

It is easily seen that the two partitions are equal and properties (A) and (B) hold for
this restriction by the same reasoning used for Theorems 5.1 and 6.1.
Stage 2: Defining fD,2(X) for arbitrary X.

Take X ∈ Cent2(D): if it satisfies the conditions of the previous stage then the
image has already been defined, if not we will again construct an element X̂ that
does. Recall from the beginning of the section that 0 ≤ δ ≤ 2 and since we always
have r ≤ d − δ we see that r ≤ l = d − 2 can only be broken if δ = 1 and r = d − 1,
or if δ = 0 and r = d or d − 1. Thus adding D

r−(d−2)
1 to X when r > d − 2 will

give an element X̃ which satisfies our first condition by construction; if r ≤ d − 2
we let X̃ = X. Now if X̃ fails to satisfy m̃1 = m̃2 we can simply increase m̃2 until
we reach an element X which does. If this element fails to satisfy 2m1 − 1 ≥ n1 we
again simply increase m1 and m2 and construct an element X̂ which does. Note as
previously that increasing m1 and m2 in this way may increase δ, thus strengthening
the condition r ≤ d − δ. However this condition will still hold since δ ≤ 2 gives
d − 2 ≤ d − δ and therefore r ≤ l = d − 2 (which is satisfied by X̃ and clearly
remains satisfied when m̃1, m̃2 ≥ 1 are increased) implies r ≤ d − δ.

We now observe that fD,2(X̂) is determined by the previous stage and that X

can be recovered from X̂ simply by decreasing m̂1 and m̂2 (possibly to zero to
reverse to process of creating X̃). We will decrease m̂1 and m̂2 in steps of size
one and give the corresponding alterations to make to fD,2(X̂) at each stage. First
though we must introduce a partial order: write Da1 . . .Dar � Db1 . . .Dbt if r ≤ t

and ai ≤ bi for all 1 ≤ i ≤ r (here the partial order is simply convenient for stat-
ing our algorithm, but it will be of central importance in the future work on sensi-
ble functions mentioned at the end of Section 3). We also recall that by convention
D0Da = Da .
Step one
While Dm1 . . .Dmd

� Dm̂1−1Dm̂2−1Dm̂3 . . .Dm̂d

Replace the parts 2ss+1 2tt+1 of fD,2(X̂) in positions 2m̂1 − 1
and 2m̂1 by 2(s − 1)2

s−1
if s = t , by (2t − 1)2

t if s = t + 1, and by 2(s − 2)s−1 2tt+1 if s ≥ t + 2.
Decrease m̂1 and m̂2 in X̂ by 1.

End
(Step one continues until applying it again would give an element whose D-factors
preceded the D-factors of X in our partial order.)
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Step two
While X �= X̂

Replace the parts 2ss+1 2tt+1 in positions 2m̂2 − 1 and 2m̂2

by (2s − 1)2
s

if s = t , and by 2(s − 1)s 2tt+1 if s ≥ t + 1.
Decrease m̂2 by 1.
End

Below we illustrate our algorithm diagrammatically. In each case the first column
represents the part in position 2m̂2 − 1 or 2m̂1 − 1 as appropriate. Observe that the
shapes removed from our symbols here are the same shapes that were added by the
algorithm in Theorem 5.1, but upside down. It is unclear if this indicates some ‘du-
ality’ between the functions fC,2 and fD,2. We shall see that there is no such visual
relationship between either of these functions and fB,2.

Observe as before that when constructing X̂ we did not require that m̂1 (= m̂2)
was minimal with respect to 2m̂1 − 1 ≥ n̂1. So if X satisfies r ≤ d − 2, m1 = m2 and
2m1 − 1 ≥ n1 and we form X′ by increasing m1 and m2 equally, then both fD,2(X)

and fD,2(X
′) will be determined by the formula given in the previous stage, however

we could also take X′ as X̂ and apply the algorithm to fD,2(X
′) to recover fD,2(X).

Therefore we must show that the algorithm is consistent with the formula. So, if
fD,2(X) has 2m1 parts and fD,2(X

′) has 2m′
1 parts, then the formula tells us that the

parts in positions 2m1 +1 to 2m′
1 of fD,2(X

′) all have size 2. Thus to recover X from
X′ we must use Step one of the algorithm m′

1 − m1 times and this will decrease the
final 2(m′

1 −m1) parts of fD,2(X
′) to zero. Therefore the fD,2(X) determined by the

algorithm is the same as the fD,2(X) determined by the formula and the function is
well-defined.

Next we must check that the symbols our procedure has produced are genuine el-
ements of uccl2(D). We can see that the descending order of the parts is maintained
by an argument similar to that used in the proof of Theorem 5.1; the odd parts in the
underlying partitions of our symbols still have even multiplicity, since the symbols
of the form fD,2(X̂) have only even parts and any odd parts created by the algorithm
come in pairs; and we do not produce parts of the same size, but with different χ -
values. Again this follows by an argument similar to the one used in the proof of
Theorem 5.1.
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Finally in this stage we observe that the formula given in the previous stage sat-
isfied properties (A) and (B) and proceding as in the proof of Theorem 5.1 we can
show these actually hold for all X ∈ Cent2(D).
Stage 3: The values of 2(X,Dn).

Let J be the size of the largest Jordan block of fD,2(X), then as in Theorem 5.1
we have oe(fD,2(X)) = min{2e : 2e ≥ J }. To match this we must calculate 2(X,Dn).
Therefore we must find the value of omin(X,Dn) under all possible conditions. Recall
that r ≤ d − δ, 0 ≤ δ ≤ 2 and that the number of deleted vertices in the extended
Dynkin diagram is d − δ + 1.

The cases 0 ≤ δ ≤ 1 were dealt with in the proof of Theorem 6.1, so we suppose
that δ = 2. Here we delete d − 1 vertices from the extended Dynkin diagram and
since all must have had weight 2 we see that omin(X,Dn) = 2(d − 1). So as in the
proof of Theorem 6.1, overall we have shown the following:

omin(X,Dn) =

⎧⎪⎨
⎪⎩

2d if d = r;
2d − 1 if d = r + 1;
2d − 2 if d ≥ r + 2.

Now, if p �= 2 then 2(X,Dn) = 2i is coprime to p and we can construct s ∈ G(Dn)p
by labeling the vertices so that at most one has label greater than one and the sum of
the labels is 2(X,Dn).

Now recall from the previous stage that if r ≤ d − 2 then X = X̃. So having
formed X̂, to regain X we use the algorithm given in that stage and we note that
we shall not decrease m̂1 or m̂2 to 0, since this would only be done to reverse
adding D

r−(d−2)
1 . This process never took place when creating X̂ since we started

with X = X̃. Since neither m̂1 nor m̂2 are ever decreased to 0 by the algorithm
we also never decrease the parts in positions 1 and 2. Therefore the largest part
of fD,2(X) is equal to the largest part of fD,2(X̂) which, by Stage 1, is 2(d − 1);
hence oe(fB,2(X)) = min{2e : 2e ≥ 2(d − 1)}. Since in this case we also have
omin(X,Dn) = 2d − 2 it follows that 2(X,Dn) = oe(fB,2(X)).

Thus the only cases left to check are when d = r or r + 1. This time when we
form X̃ we get d̃ = r + 2 = d + 2 or d + 1 respectively. Now when we form X̂

we don’t change the number of D-factors, so d̂ = d̃ . Therefore from Stage 1 we
see that the first two parts of fD,2(X̂) are

2(̂l + 1)̂l+2 2(r + 1)r+2 = 2(d̂ − 1)d̂ 2(r + 1)r+2 =
{

2(d + 1)2
d+2 if d = r;

2d2
d+1 if d = r + 1.

Now to recover X from X̂ we will decrease both m̂1 and m̂2 to 0 if d was r , and just
m̂2 to 0 if d was r + 1. To match this we will, in particular, apply Step one or Step
two respectively to the parts in positions 1 and 2.

So if d = r we have J = 2d = omin(X,Dn), and if d = r + 1 we have J = 2d −
1 = omin(X,Dn). In either case 2(X,Dn) = oe(fB,2(X)), so property (C+) has been
demonstrated and the proof is complete. �
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7 Type B

In this section we will deal with groups of type B . We begin as before with the
extended Dynkin diagram of type B̃n, together with the weights obtained from the
highest root.

Again we should make clear our conventions regarding groups with small rank. B2

and B1 can be defined and are isomorphic to C2 and A1 respectively, but as subgroups
of a larger Bn we know that the B2s form a single conjugacy class, whereas B1 and
A1 are not conjugate and hence are viewed as different. We take B0 to be the trivial
group.

Once again Algorithm 2.2 allows us to list the ∼t classes of connected central-
izers of semisimple elements. As with type D we must observe that Tl can also
be written as Dl

1. Although we could use either notation when constructing fB,q

for odd q , it will be more convenient to write Dl
1 when q = 2. Therefore in the

interests of consistency we will use this notation for the remainder of the section.
Thus the connected centralizers of semisimple elements in type B have the form
X = An1 . . .Anr BwDm1 . . .Dmd

, where n1 ≥ . . . ≥ nr and m1 ≥ . . . ≥ md . Algo-
rithm 2.2 also shows that the number of D-factors with rank at least 2 (denoted δ)
is less than or equal to 1 and that the number of A-factors (r) can be no more than
the number of deleted vertices minus one, which equals the dimension of the central
torus, i.e. d − δ.

Now observe that all primes are admissible with respect to any connected cen-
tralizer with δ = 0, but for connected centralizers with δ = 1 only 2 is admissible.
This follows since if δ = 0 then when obtaining the connected centralizer from Algo-
rithm 2.2 at least one deleted vertex has weight 1; we can label that vertex such that
the weighted sum of the labels is qi for some i. If all deleted vertices have weight 2
then the weighted sum must be even and so can only be a prime power if the prime is
two.

Thus all the sets Centq(B), for odd q , are the same; they all equal

{An1 . . .Anr BwDl
1 : n1, . . . , nr ,w, l ∈ N ∪ {0}, where n1 ≥ . . . ≥ nr, and r ≤ l}.

The set Cent2(B) equals

{An1 . . .Anr BwDm1D
l
1 : n1, . . . , nr ,w,m1, l ∈ N ∪ {0},

where n1 ≥ . . . ≥ nr, r ≤ l, and m1 ≥ 0}.
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Next we consider unipotent conjugacy classes in type Bn over odd characteristic
q (postponing the treatment of characteristic 2 until later). As before, from [3] we see
that these are parameterized by symbols p1

m1
χ1 · · ·pz

mz
χz , where p1

m1 · · ·pz
mz is a par-

tition of 2n + 1 given by the Jordan structure on the natural module, each even part
has even multiplicity and χ : pj �→ χj is a function from the parts of p1

m1 · · ·pz
mz

to the natural numbers satisfying

χ(p) =
{

1
2 (p + 1) if p is odd;
1
2p if p is even.

By identifying members p ∈ ucclq(B) with the appropriate symbol we again get
a bijective representation and we will use this identification from now on. Now
by definition r(p) = n = 1

2 (|p| − 1), from [3] we see that if p = p1
m1
χ1 · · ·pz

mz
χz ,

then

c.dim p =
z∑

i=1

(ipi − χ(pi))

and oe(p) = min{qi;qi ≥ p1}. We repeat the now standard warning to avoid ambigu-
ity by always stating q when talking about oe(p). Now with all the notation in place
we obtain the following result.

Theorem 7.1 For each odd prime q , there exists a function fB,q : Centq(B) →
ucclq(B) satisfying properties (A), (B) and (C+). Furthermore, if p �= q then
there exists a semisimple element s ∈ G(Bn)p such that CG(Bn)p (s) ∼t X and
o(s) = q(X,Bn).

Proof The reader knows the drill by now.
Stage 1: Defining fB,q(An1 . . .Anr BwDl

1) when 2w ≥ n1 ≥ · · · ≥ nr .
If n = (n1, . . . , nr ), where 2w ≥ n1 ≥ · · · ≥ nr then we let

fB,q(An1 . . .Anr BwDl
1) = 2(l + 1, (2w,n)∗) − 1

= (2l + 1)l+1 (2r + 1)
nr

r+1 (2r − 1)
nr−1−nr
r · · ·12w−n1

1 .

It is easily seen that the two partitions are equal and properties (A) and (B) may be
proven as in previous sections.
Stage 2: Defining fB,q(X) for arbitrary X.

Here we define the image fB,q(X) of an arbitrary connected centralizer X. If X

satisfies 2w ≥ n1 then the image has already been determined, if not we can sim-
ply increase w and construct a connected centralizer X̂ which does. We now ob-
serve that fB,q(X̂) is determined by the previous stage and that X can be recovered
from X̂ simply by decreasing ŵ. We will decrease ŵ in steps of size one and give
the corresponding alterations to make to fB,q(X̂) at each stage. We proceed as fol-
lows.
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While X �= X̂

Replace the parts (2s + 1)s+1 (2t + 1)t+1 of fB,q(X̂) in positions
2ŵ and 2ŵ + 1 by
2s2

s if s = t , and by (2s − 1)s (2t + 1)t+1 if s ≥ t + 1.
Decrease ŵ by 1.
End

Below we illustrate our algorithm diagrammatically. In both cases the first column
represents the part in position 2ŵ.

Note that, as in the previous section, ŵ need not be minimal. However using the
same arguments as in the previous section we can show that the fB,q(X) determined
by the algorithm (using any X̂) equals the fB,q(X) determined by the formula. So
our definitions are not inconsistent.

Now before proceeding any further we must check that the symbols our procedure
has produced are genuine elements of ucclq(B). As before what we need to check
is that the descending order of the parts is maintained, that the even parts in the
underlying partitions of our symbols still have even multiplicity and that properties
(A) and (B) hold in general. None of this is difficult or significantly different to the
corresponding checks in previous cases.
Stage 3: The values of q(X,Bn).

Observe that the algorithm given in the previous stage will never decrease the
largest part of the partition when producing fB,q(X). So we will always have
oe(fB,q(X)) = min{qe : qe ≥ 2l+1}. To match this we must calculate q(X,Bn). There-
fore we must find the value of omin(X,Bn) under all possible conditions. Recall that
r ≤ l and that the number of deleted vertices in the extended Dynkin diagram after
applying Algorithm 2.2 is l + 1.

So if r = l then the number of deleted vertices is one more than the number
of subgraphs of type A left. We deduce that only one of the vertices of weight 1

has been deleted and so omin(X,Bn) = 2l + 1, as when the labels
1
00100100

0 give a
semisimple element of order 5 with a connected centralizer of type A3A2B2D

2
1 .

Whereas if r ≤ l − 1 then the number of deleted vertices is at least two more than
the number of subgraphs of type A left. Hence both of the vertices of weight 1
have been deleted (as in Theorem 6.1 we will use as many weight 1 vertices as
we can since we are looking for the semisimple element with the smallest pos-
sible order) and we get omin(X,Bn) = 2(l − 1) + 1 + 1 = 2l, as when the la-

bels
1
00100100

1 give a semisimple element of order 6 with a connected centralizer
of type A2

2B2D
3
1 . Now we have shown that q(X,Bn) = min{qe : qe ≥ omin(X,Bn)},

where omin(X,Bn) = 2l + 1 or 2l. However since q is odd and 2l is even we
must have q(X,Bn) = min{qe : qe ≥ 2l + 1} = oe(fB,q(X)). Thus property (C+)
holds.



346 J Algebr Comb (2010) 31: 319–353

Finally, if p �= q then q(X,Bn) = qi is coprime to p and we can construct s ∈
G(Bn)p by labeling the vertices so that at most one has label greater than one and the
sum of the labels is q(X,Bn). This can always be done since we see by the above that
at least one vertex of weight 1 will be deleted. �

We can now consider unipotent conjugacy classes in type Bn over characteristic 2.
Following [3], these are again parameterized by symbols p = p1

t1
χ1 · · ·pz

tz
χz (again

giving a bijective representation and an identification). Here p1
t1 · · ·pz

tz is a partition
of 2n + 1 given by the Jordan structure, where each odd part greater than 1 has
even multiplicity. Note that if all odd parts had even multiplicity the sum of the parts
would be even; therefore since we want a partition of 2n + 1 we must have the part 1
occurring with odd multiplicity, in particular the final part of a symbol will always
be 1. The map χ : pj �→ χj from the parts of p1

t1 · · ·pz
tz to the natural numbers

satisfies the following rule:

χ(p) =

⎧⎪⎨
⎪⎩

1
2 (p + 1) if p is odd;
1
2 (p + 2) if p is even and has odd multiplicity;
1
2p or 1

2 (p + 2) if p is even and has even multiplicity.

For the last time we note that r(p) = n = 1
2 (|p| − 1) and from [3] we see that if

p = p1
m1
χ1 · · ·pz

mz
χz , then

c.dim p =
z∑

i=1

(ipi − χ(pi))

and oe(p) = min{qi;qi ≥ p1}. We also repeat the warning to avoid ambiguity by
always stating q when talking about oe(p) for the last time.

Theorem 7.2 There exists a function fB,2 : Cent2(B) → uccl2(B) satisfying proper-
ties (A) and (B). Furthermore, if X ∈ Cent2(B), then 2(X,Bn) = oe(fB,2(X)) unless
w = 0 and r = d = 2i for some i. In this case we have 2(X,Bn) = 2.oe(fB,2(X)).
Finally if p �= 2 then there exists a semisimple element s ∈ G(Bn)p such that
CG(Bn)p (s) ∼t X and o(s) = 2(X,Bn).

Proof This is the final proof of this type. However it is also the most complex,
so we will spend a little more time on some of the details than has become the norm.

Stage 1: Defining fB,2(An1 . . .Anr BwDw+1D
l
1) when r ≤ l and 2w ≥ n1 ≥ · · · ≥ nr .

First note that 2w ≥ 0 implies that w + 1 ≥ 1 and so d (the number of D-
factors) is l + 1. Now set n = (n1, . . . , nr ), then when 2w ≥ n1 ≥ · · · ≥ nr and r ≤ l

we have

fB,2(An1 . . .Anr BwDw+1D
l
1) = (2(l + 1, (2w,n)∗),1)

= 2(l + 1)l+2 2(r + 1)
nr

r+2 2r
nr−1−nr

r+1

. . .4n1−n2
3 22w−n1

2 11.
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It is easily seen that the two partitions are equal and properties (A) and (B) are proven
as before.
Stage 2: Defining fB,2(X) when X is arbitrary.

Take X ∈ Cent2(B): if it satisfies the conditions of the previous stage then the
image has already been defined, if not we will again construct an element X̂ that
does. Recall from the beginning of the section that 0 ≤ δ ≤ 1 and since we always
have r ≤ d − δ we see that r ≤ l = d − 1 can only be broken if δ = 0 and r = d .
Thus adding D1 to X when r > d − 1 will give an element X̃ which satisfies our
first condition by construction; if r ≤ d − 1 we let X̃ = X. Now if X̃ fails to satisfy
m̃1 = w̃+1 we can simply increase m̃1 or w̃ until we reach an element X which does.
If this element fails to satisfy 2w ≥ n1 we again simply increase w and construct an
element X̂ which does. Note as previously that increasing m1 = w + 1 in this way
may increase δ, thus strengthening the condition r ≤ d − δ. However this condition
will still hold since δ ≤ 1 gives d − 1 ≤ d − δ and therefore r ≤ l = d − 1 (which is
satisfied by X̃ and clearly remains satisfied when m̃1 is increased) implies r ≤ d − δ.

We now observe that fB,2(X̂) is determined by the previous stage and that X can
be recovered from X̂ simply by decreasing ŵ and m̂1 (possibly to zero to reverse to
process of creating X̃). We will decrease ŵ and m̂1 in steps of size one and give the
corresponding alterations to make to fB,2(X̂) at each stage. Now let χ(b) = 1

2b + 1
if b is even, and 1

2 (b + 1) if b is odd. We then proceed as follows.

Step one
While w < ŵ

Replace the parts 2ss+1 2tt+1 in positions 2ŵ and 2ŵ + 1
by (2s − 1)2

s if s = t , and by
2(s − 1)s 2tt+1 if s ≥ t + 1.
Decrease ŵ by 1.
End

Step two
While X �= X̂

If the part in position 2m̂1 − 1 is odd and greater than 1
then replace
(2s − 1)2

s in positions 2m̂1 − 2 and 2m̂1 − 1 by 2(s − 1)2
s .

If the part in position 2m̂1 − 1 is 1 then decrease 12
1

in positions 2m̂1 − 1 and 2m̂1 to 0.
Otherwise replace the parts 2ss+1 bχ(b) in positions 2m̂1 − 1
and 2m̂1 by
(2s −1)2

s if 2s = b, by 11 if 2s = b+1, and by 2(s −1)s bχ(b) if 2s ≥ b+2.
Decrease m̂1 by 1.
End

Below we illustrate our algorithm diagrammatically. In each case the upward ar-
row (↑) points to the part in position 2ŵ or 2m̂1 − 1 as appropriate to the step. As the
reader can see, this algorithm is slightly more complex than those seen previously, so
we will go into a little more detail than we have in the last few cases.
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Now observe that when constructing X̂ we did not require that m̂1 (= ŵ + 1)
was minimal with respect to 2ŵ ≥ n̂1. So if X satisfies d ≥ r + 1, m1 = w + 1 and
2w ≥ n1 and we form X′ by increasing m1 and w, then both fB,2(X) and fB,2(X

′)
will be determined by the formula given in the previous stage, however we could also
take X′ as X̂ and apply the algorithm to fB,2(X

′) to recover fB,2(X). Therefore we
must show that the algorithm is consistent with the formula. So, if fB,2(X) has 2m1
parts and fB,2(X

′) has 2m′
1 parts, then the formula tells us that the parts in positions

2m1 to 2m′
1 − 1 of fB,2(X

′) all have size 2 and the part in position 2m′
1 has size 1.

Thus to recover X from X′ we must use Step one of the algorithm m′
1 − m1 times,

followed by Step two m′
1 − m1 times. After using Step one m′

1 − m1 times the final
2(m′

1 − m1) + 1 parts of fB,2(X
′) will have size 1. Then applying Step two m′

1 − m1
times will decrease the final 2(m′

1 −m1) parts to 0. Therefore the fB,2(X) determined
by the algorithm equals the fB,2(X) determined by the formula.

The next thing to do is identify and verify some implicit claims made in Step two
of our algorithm. Having applied Step one, if the part in position 2m̂1 − 1 is odd and
greater than 1, we claim that the part in position 2m̂1 − 2 has the same size. Also,
since there is no part in position zero we claim that after Step one the part in position 1
is not odd. This second claim is easily seen to be true since in the symbol fB,2(X̂) the
first part must be even (d ≥ r + 1 ≥ 1 and by the formula given in the previous stage
the first part of fB,2(X̂) is 2d). So since Step one of the algorithm does not act on
the first part (as with fB,q for odd q) we cannot have an odd first part for Step two to
act upon. Now returning to the first claim we see that since fB,2(X̂) had no odd parts
greater than one, any such parts acted upon by Step two of our algorithm must have
been created during Step one. From Step one we then see that if the part in position
2ŵ + 1 is made odd then the part in position 2ŵ is also made odd and will have the
same size. The claim follows.

We also should prove that if the part in position 2m̂1 − 1 has size 1 after Step one,
then so does the part in position 2m̂1. To see this we will first observe that the de-
scending order of the parts is maintained by Step one of the above algorithm. Clearly
fB,2(X̂) had parts in descending order of size and the descending order of the parts in
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positions 2ŵ and 2ŵ + 1 is obviously preserved in Step one. So since the part in po-
sition 2w is decreased by at least 1 and the part in position 2w + 1 is decreased by at
most 1 during Step one, the descending order of the parts is preserved in all positions
during that step. An immediate consequences of this is that Step one doesn’t change
the number of parts (since it doesn’t decrease the final part of fB,2(X̂)). Now if the
part in position 2m̂1 − 1 has size 1 after Step one, then the part in position 2m̂1 must
have size one or zero. However in the latter case the part in position 2m̂1 − 1 would
be the final part, which is impossible since fB,2(X̂) had an even number, 2(ŵ + 1),
of parts; our original claim follows.

Our final implicit claim is that if, after Step one, the part in position 2m̂1 − 1 is
even and has size 1 greater than the part in position 2m̂1, then these parts must be
22 11. Otherwise property (A) would be broken by replacing the parts by 11. So when
applying Step two we claim that if the part in position 2m̂1 − 1 is even and greater
than 2 after Step one, then the part in position 2m̂1 does not have size 1 less than
it. We only need to consider the case that the part in position 2m̂1 is odd and greater
than 1 after Step one: then the part in position 2m̂1 + 1 must have the same size and
applying Step two to match decreasing m̂1 + 1 to m̂1 will decrease both parts by 1.
So when applying Step two to match decreasing m̂1 to m̂1 − 1 we will have an even
part in position 2m̂1. The claim follows.

An example of the algorithm at work is illustrated below. The first row shows the
action of Step one and the second row continues with the action of Step two.

We will now complete our check that the algorithm maintains the descending order
of the parts. For Step two we must show that the part xj following a part to be
decreased is never greater than the size of that part after the decrease. If the parts
in positions 2m̂1 − 1 and 2m̂1 have the form 2ss+1 bχ(b), where 2s ≥ b + 2 then this
will clearly be true. If the parts in positions 2m̂1 − 1 and 2m̂1 have the form 21 11 or
12

1 then, since the descending order of the parts is certainly maintained before Step
two is applied, we see that the part in position 2m̂1 + 1 must have had size 1 or 0
after Step one. If it had size 1 then when Step two was matching decreasing m̂1 + 1
to m̂1 it would have decreased it to 0; either way the descending order is maintained.
If the parts in positions 2m̂1 − 1 and 2m̂1 have the form 2s2

s+1 then, again since the
descending order of the parts is certainly maintained before Step two is applied, we
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see that the part in position 2m̂1 + 1 must have had size no greater than 2s after Step
one. If it had size 2s then when Step two was matching decreasing m̂1 + 1 to m̂1 it
would have decreased it and the descending order of the parts is preserved. Similarly,
if the parts in positions 2m̂1 − 2 and 2m̂1 − 1 have the form (2s + 1)2

s+1 where s > 1
then, since the descending order of the parts is maintained before Step two is applied,
we see that the part in position 2m̂1 must have had size no greater than 2s + 1 after
Step one. If it had size 2s + 1 > 3 then since no such parts existed in fB,2(X̂) it
must have been created during Step one. Therefore the part in position 2m̂1 + 1 must
also have had size 2s + 1 after Step one. So when Step two was matching decreasing
m̂1 + 1 to m̂1 it would have decreased the parts in positions 2m̂1 and 2m̂1 + 1 and the
descending order of the parts is preserved. The preservation of the descending order
of the parts by Step two of our algorithm follows.

To completely satisfy ourselves that the symbols our procedure has produced are
genuine elements of uccl2(B) we must check two more things. Firstly, the multiplici-
ties of the odd parts in the underlying partitions of our symbols still have the required
parity since the symbols of the form fB,2(X̂) only had one odd part of size 1 and
additional odd parts are created or destroyed by the algorithm in pairs. Secondly, we
do not produce parts of the same size, but with different χ -values since all χ -values
always take the largest possible values.

Finally in this stage we observe that the formula given in the previous stage sat-
isfied properties (A) and (B) and proceding as in the proof of Theorem 5.1 we can
show these actually hold for all X ∈ Cent2(B).
Stage 3: The values of 2(X,Bn).

Let J be the size of the largest Jordan block of fB,2(X), then as in Theorem 5.1
we have oe(fB,2(X)) = min{2e : 2e ≥ J }. To match this we must calculate 2(X,Bn).
Therefore we must find the value of omin(X,Bn) under all possible conditions. Recall
that r ≤ d − δ, 0 ≤ δ ≤ 1 and that the number of deleted vertices in the extended
Dynkin diagram is d − δ + 1.

First suppose that δ = 0 (so there is no D-factor of rank greater than one): here we
delete d + 1 vertices from the extended Dynkin diagram and consider two subcases.
If d = r then the number of vertices deleted after applying Algorithm 2.2 is one more
than the number of subgraphs of type A left. We deduce that only one vertex of weight

1 has been deleted and so omin(X,Bn) = 2d + 1. For example, the labels
1
00100100

0 give
a semisimple element of order 5 with a connected centralizer of type A3A2B2D

2
1 .

Whereas if r ≤ d −1 then the number of vertices deleted after applying Algorithm 2.2
is at least two more than the number of subgraphs of type A left. We deduce that both
vertices of weight 1 have been deleted (as in previous proofs we remind the reader that
we use as many weight 1 vertices as we can since we are looking for the semisimple
element with the smallest possible order) and omin(X,Bn) = 2(d − 1) + 1 + 1 = 2d ,

as when the labels
1
00100100

1 give a semisimple element of order 6 with a connected
centralizer of type A2

2B2D
3
1 .

Now let δ = 1 (so there is a D-factor of rank greater than one): here we delete d

vertices from the extended Dynkin diagram and since no vertices of weight 1 have
been deleted we get omin(X,Bn) = 2d . Therefore overall we have shown the follow-
ing:
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omin(X,Bn) =
{

2d + 1 if d = r;
2d if d ≥ r + 1.

Now, if p �= 2 then 2(X,Bn) = 2i is coprime to p and we can construct s ∈ G(Bn)p by
labeling the vertices so that at most one has label greater than one and the sum of the
labels is 2(X,Bn).

Now recall from the previous stage that if r ≤ d − 1 then X = X̃. So having
formed X̂, to regain X we use the algorithm given in that stage and we note that we
shall not decrease m̂1 to 0, since this would only be done to reverse adding a D1.
This process never took place when creating X̂ since we started with X = X̃. Now
it was observed when verifying the first of implicit assumptions about Step two that
Step one of our algorithm does not decrease the part of fB,2(X̂) in position 1. Since
m̂1 is never decreased to 0 by the algorithm we also see that Step two never decreases
the parts in positions 1 and 2. Therefore the largest part of fB,2(X) is equal to the
largest part of fB,2(X̂) which, by Stage 1, is 2(l +1) = 2d . Thus if r ≤ d −1 we have
oe(fB,2(X)) = min{2e : 2e ≥ 2d}, which equals 2(X,Bn) by the previous paragraph.

Thus the only case left to check is when d = r . If r = d = 0 then X = Bw and so
X̂ = BwDw+1, fB,2(X̂) = 22w+1

2 11 and fB,2(X) = 12w+1
1 . Hence J = 1 = 2d + 1,

which equals omin(X,Bn) by the above, and we get q(X,Bn) = oe(fB,2(X)). Therefore
for the remainder of the proof we will assume d = r �= 0. So observe that when we
form X̃ we get d̃ = r + 1 = d + 1. Now when we form X̂ we don’t change the
number of D-factors so d̂ = d̃ = d + 1. Therefore from Stage 1 we see that the first
two parts of fB,2(X̂) are 2d̂d̂+1 2(r + 1)r+2 = 2(d + 1)2

d+2. Now when recovering
X from X̂, Step one of our algorithm will never act on the first part of our symbol,
and will only act on the second part if we had w = 0 in X. Suppose this was not the
case, then proceed to Step two. Here we will decrease m̂1 to 0 and to match this we
will, in particular, replace the parts 2(d + 1)2

d+2 in positions 1 and 2 by (2d + 1)2
d+1.

Therefore J = 2d + 1, which again equals omin(X,Bn) by the above, and we get
q(X,Bn) = oe(fB,2(X)).

Now suppose that d = r �= 0, but we did have w = 0 in X; from above we know
that the first two parts of fB,2(X̂) have the form 2(d + 1)2

d+2. Now recall that X̂ =
An1 . . .Anr BŵDŵ+1D

l
1, where 2ŵ ≥ n1 ≥ . . . ≥ nr . Since r �= 0 we have A-factors

of non-zero rank and hence ŵ ≥ 1 and fB,2(X̂) has 2(ŵ + 1) ≥ 4 parts. Now if the
parts in positions 2 and 3 are equal, then we see that Step one will leave the first three
parts with the form 2(d + 1)d+2 (2d + 1)2

d+1. Applying Step two we must decrease
m̂1 to 0 as above and to match the decrease of m̂1 from 2 to 1 we will transform the
first three parts into 2(d + 1)d+2 2d2

d+1 (d ≥ 1 implies that the third part is odd and
greater than one). Matching the decrease from 1 to 0 we then get 2d3

d+1 and J = 2d .
Alternatively, if the parts in positions 2 and 3 of fB,2(X̂) are not equal, then we see
that Step one will leave the first three parts with the form 2(d + 1)d+2 2dd+1 2bb+1,
where d ≥ b. This time applying Step two to match the decrease of m̂1 from 2 to 1
will not affect the second part since the third part is even. So matching the decrease
from 1 to 0 we get the first two parts of fB,2(X) of the form 2d2

d+1. So again we
have J = 2d and in either subcase we get 2(X,Bn) = min{2e : 2e ≥ 2d + 1}, which
equals min{2e : 2e ≥ 2d} = oe(fB,2(X)) unless d = 2i for some i. In this case we get
2(X,Bn) = 2.oe(fB,2(X)). �
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8 The proof of Theorem 3

In this final section we will summarize what we have proven in the previous sections
and then use that information to prove Theorem 3. We begin with a theorem that can
be thought of as a more detailed version of Theorem 1.

Theorem 4 Let Gp = G(�)p be an adjoint simple algebraic group of type �

over Fp . Let X ≤ Gp be the connected centralizer of a semisimple element; if
� = Bn, Cn or Dn for some n let q be admissible with respect to X, otherwise let q

be any prime. Then there exists a function f from the set of connected centralizers of
semisimple elements of Gp to the set of unipotent conjugacy classes of Gq = G(�)q
such that, for any u ∈ f (X), dimCGq (u) = dimX. Furthermore q(X,�) = o(u) un-
less one of the following holds:

1. (�,q) = (Cn,2), X has one C-factor and r < l = 2i for some i;
2. (�,q) = (Cn,2), X has two C-factors and r + 1 < l = 2i for some i;
3. (�,q) = (Bn,2), X has w = 0 and r = d = 2i for some i;
4. (�,q) = (F4,3) and X = A3A1;
5. (�,q) = (F4,2) and X = A3T1;
6. (�,q) = (F4,5) and X = A3T1;
7. (�,q) = (F4,2) and X = C2T2;
8. (�,q) = (G2,2) and X = A2.

In these cases we have q(X,�) = q.o(u). Moreover if p �= q and q is admissible, then
there exists a semisimple element s ∈ Gp such that CGp(s)◦ ∼t X and o(s) = q(X,�).

Proof This is simply a restatement of the conclusions of Theorems 4.1, 5.1, 6.1, 6.2,
7.1, 7.2 and the calculations of Section 2. �

We can now use the above result to prove Theorem 3.

Proof of Theorem 3 Note by orders that s is semisimple. Since s �= 1 and Gp is
adjoint we see that s �∈ Z(Gp) and hence X = CGp(s)◦ �= Gp . Therefore
omin(X,�) > 1 and so since q = o(s) ≥ omin(X,�) we must have q(X,�) = q = o(s).
Now by definition q is admissible with respect to X, so we can apply Theorem 4 to
obtain a unipotent conjugacy class in Gq whose elements must have order q or 1.
The theorem also gives us that dimCGq (u) = dimX and hence dimuGq = dim sGp .
It only remains to show that o(u) = o(s). Here we recall that o(s) = q(X,�) and re-
sort to case analysis using Theorem 4. The theorem tells us that we can only have
o(u) �= q(X,�) under certain restrictions on q and X. To show that we are not in either
of the first two cases of the theorem, we observe that if o(s) = q = 2 and � = Cn

then when forming X using Algorithm 2.2 we must have deleted one vertex of weight
2 or two vertices of weight 1 from the extended Dynkin diagram. Thus our X would
be of the form Cn−aCa or An−1T1, but the first two exceptions in Theorem 4 require
a single C-factor, or two C-factors and a central torus of rank l > r + 1 ≥ 1. There-
fore we cannot be in those cases. If o(s) = q = 2 and � = Bn then when forming
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X we again must have deleted one vertex of weight 2 or two vertices of weight 1
from the extended Dynkin diagram. Thus our X would be of the form Bn−aDa or
Bn−1D1, however both of these have r = 0 and d = 1 and the third exception in
Theorem 4 requires that r = d . Thus we cannot be in that case either. The remaining
cases are in type F4 or G2 and we can see from the tables in Section 2 that the Xs
in these cases cannot be obtained as connected centralizers of elements of order q

(since q ≤ omin(X,�)). The result follows. �
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