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Abstract Given a point on a Schubert variety in an orthogonal Grassmannian, we
compute the multiplicity, more generally the Hilbert function. We first translate the
problem from geometry to combinatorics by applying standard monomial theory. The
solution of the resulting combinatorial problem forms the bulk of the paper. This
approach has been followed earlier to solve the same problem for Grassmannians
and symplectic Grassmannians.

As an application, we present an interpretation of the multiplicity as the number
of non-intersecting lattice paths of a certain kind. A more important application, al-
though it does not appear here but elsewhere, is to the computation of the initial ideal,
with respect to certain convenient monomial orders, of the ideal of the tangent cone
to the Schubert variety.

Taking the Schubert variety to be of a special kind and the point to be the ‘identity
coset,’ our problem specializes to one about Pfaffian ideals, treatments of which by
different methods exist in the literature. Also available in the literature is a geometric
solution when the point is a ‘generic singularity.’

Keywords Orthogonal Grassmannian · Schubert variety · Hilbert function ·
Multiplicity · Pfaffian ideal · O-domination · O-depth

1 Introduction

Given a Schubert variety in an orthogonal Grassmannian (by which is meant the va-
riety of isotropic subspaces of maximum possible dimension of a finite dimensional
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vector space with a symmetric non-degenerate form—see §2 for precise definitions)
and an arbitrary point on the Schubert variety, we compute the multiplicity, more
generally the Hilbert function, of the local ring of germs of functions at that point.
More precisely, we give a combinatorial description of the Hilbert function (Theo-
rem 2.5.1) which enables us to interpret the multiplicity as the number of certain
non-intersecting lattice paths (§3) and to compute the initial ideal of the tangent cone
to the Schubert variety ([18]).

The analogous treatment of Grassmannians appears in [7–9, 11, 12] and of sym-
plectic Grassmannians in [4]. The present paper is a sequel to [4, 7, 9, 11, 12] and toes
the same line as they do. In particular, its strategy is borrowed from them and runs
as follows: first translate the problem from geometry to combinatorics, or, more pre-
cisely, apply standard monomial theory to obtain an initial combinatorial description
of the Hilbert function (the earliest version of the theory capable of handling Schu-
bert varieties in an orthogonal Grassmannian is to be found in [19]); then transform
the initial combinatorial description to obtain the desired alternative description. But
all this is easier said than done.

While the problem makes sense for Schubert varieties of any kind and standard
monomial theory itself is available in great generality [14, 16, 17], the translation of
the problem from geometry to combinatorics has been made—in [15]—only for ‘mi-
nuscule1 generalized Grassmannians.’ Orthogonal Grassmannians being minuscule,
this translation is available to us and we have an initial combinatorial description of
the Hilbert function. As to the passage from the initial to the alternative description—
and this is where the content of the present paper lies—neither the end nor the means
is clear at the outset.

The first problem then is to find a good alternative description. But how to mea-
sure the worth of an alternative description? The interpretation of multiplicity as the
number of certain non-intersecting lattice paths, deduced in §3 from our alternative
description, seems to testify to its correctness. An even stronger justification is that it
enables, as shown in [18], computation of Gröbner degenerations of tangent cones at
torus fixed points to Schubert varieties.

The proof of the equivalence of the initial and alternative combinatorial descrip-
tions is, unfortunately, a little technically involved. It builds on the details of the
proofs of the corresponding equivalences in the cases of the Grassmannian and
the symplectic Grassmannian. In [10] it is shown that the equivalence in the case
of the Grassmannian is a kind of KRS correspondence, called ‘bounded KRS.’
The proof there is short and elegant and it would be nice to realize the main
result of the present paper too in a similar spirit as a kind of KRS correspon-
dence.

Taking the Schubert variety to be of a special kind and the point to be the ‘identity
coset,’ our problem specializes to one about Pfaffian ideals considered in [2, 5]. On
the other side of the spectrum from the identity coset, so to speak, are points that are
generic in the complement of the open orbit of the stabiliser of the Schubert variety.
For these, a geometric solution to the problem appears in [1].

1Symplectic Grassmannians are not minuscule but can be treated as if they were.
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One can ask if it is possible to extract more tangible information—closed form
formulas for example—from our alternative description, although our interest is
not so much along this line as in computing Gröbner degenerations. The papers
quoted in the previous paragraph and [3] give some answers in the special cases
they consider. More interestingly, the recent article [6] gives not only an interpre-
tation of the multiplicity similar to ours but also a closed form formula. But it is
not clear that the approach of [6] leads to Gröbner degenerations or for that mat-
ter to the Hilbert function: the point of [6] is to circumvent the need for Gröb-
ner degenerations (precursors of [6] in the Grassmannian and symplectic Grass-
mannian cases having had these as starting points), while ours is to arrive at
them. In any case, [6] is different in both method and the nature of results relied
upon.

The organization of the paper is as follows: the set up is described and the
main theorem stated in §2; the interpretation of multiplicity is given in §3; the
proof of the main theorem is reduced to those of certain combinatorial statements
in §4; the proof of these statements forms the bulk of the paper: it is eventually
given in §9 after preparations in §5–8. The appearance of the tombstone (�) sym-
bol immediately after an assertion means that the proof is easy and hence omit-
ted.

We thank the referees for comments aimed at improving readability. In particular,
the inclusion of examples is at their behest.

2 The set up and the theorem

2.1 Initial statement of the problem

Fix once for all a base field k, algebraically closed and of characteristic not 2; a nat-
ural number d ; a vector space V of dimension 2d with a non-degenerate symmetric
bilinear form 〈 , 〉; and a basis e1, . . . , e2d of V such that 〈ei, ek〉 is 1 if i = k∗ and 0
otherwise, where k∗ := 2d + 1 − k.

Denote by SO(V ) the group of linear automorphisms of V preserving 〈 , 〉 and the
volume form. Denote by Md(V )′ the closed sub-variety of the Grassmannian of d-
dimensional subspaces consisting of the points corresponding to isotropic subspaces.
The action of SO(V ) on V induces an action on Md(V )′. There are two orbits for this
action. They are isomorphic: acting by a linear automorphism preserving the form but
not the volume form gives an isomorphism. Denote by Md(V ) the orbit of the span
of e1, . . . , ed and call it the (even) orthogonal Grassmannian.

The Schubert varieties of Md(V ) are defined to be the B-orbit closures in Md(V )

(with canonical reduced scheme structure), where B is a Borel subgroup of SO(V ).
The problem that is tackled in this paper is this: given a point on a Schubert vari-
ety in Md(V ), compute the multiplicity, or more generally the Hilbert function, of
the local ring of germs of functions at that point. The solutions are to be found in
Theorem 2.5.1, Corollary 2.5.2, and in §3.
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Orthogonal Grassmannians and their Schubert varieties are, of course, also defined
when the dimension of V is odd. As is well known and recalled with proof in [20,
§1.3], such Schubert varieties are isomorphic to those in even orthogonal Grassman-
nians. So the results of this paper would apply also to them.

2.2 The problem restated

We take B to be the subgroup consisting of elements upper triangular with respect
to e1, . . . , e2d . The subgroup T of elements diagonal with respect to e1, . . . , e2d is
a maximal torus of SO(V ). The B-orbits of Md(V ) are naturally indexed by its
T -fixed points: each orbit contains a unique such point. The T -fixed points are easily
seen to be of the form 〈ei1, . . . , eid 〉 for {i1, . . . , id} in OI (d), where OI (d) is the set
of subsets of {1, . . . ,2d} of cardinality d satisfying:

• for each k, 1 ≤ k ≤ d , there does not exist j , 1 ≤ j ≤ d , such that i∗k = ij —in other
words, for each �, 1 ≤ � ≤ 2d , exactly one of � and �∗ appears in {i1, . . . , id};

• the parity is even of the number of elements of the subset that are (strictly) greater
than d .

Let I (d,2d) denote the set of all subsets of cardinality d of {1, . . . ,2d}. We use
symbols v, w, . . . to denote elements of I (d,2d) (in particular, those of OI (d)). The
members of v are denoted v1, . . . , vd , with the convention that 1 ≤ v1 < . . . < vd ≤
2d . There is a natural partial order on I (d,2d): v ≤ w, if v1 ≤ w1, . . . , vd ≤ wd .

The point of the orthogonal Grassmannian Md(V ) that is the span of ev1 , . . . ,
evd

for v ∈ OI (d) is denoted e(v). The B-orbit closure of e(v) is denoted Xv . The
point e(v) (and therefore the Schubert variety Xv) is contained in the Schubert vari-
ety Xw if and only if v ≤ w.

Our problem can now be stated thus: given elements v ≤ w of OI (d), find the
Hilbert function of the local ring of the Schubert variety Xw at the point e(v).

2.3 Basic notation

Let an element v of OI (d) remain fixed. Let R(v) denote the set of all ordered pairs
(r, c), 1 ≤ r, c ≤ 2d , such that r is not and c is an entry of v. The picture below
shows a drawing of R(v). We think of r and c in (r, c) as row index and column
index respectively. The columns are indexed from left to right by the entries of v

in ascending order, the rows from top to bottom by the entries of {1, . . . ,2d} \ v in
ascending order.

We refer to d(v) as the diagonal. The points of OR(v) are those that are (strictly)
above the diagonal, and the points of N(v) are those that are to the South-West of
the poly-line captioned ‘boundary of N(v)’: we draw the boundary so that points
on the boundary belong to N(v). The reader can readily verify that d = 13 and
v = (1,2,3,4,6,7,10,11,13,15,18,19,22) for the particular picture drawn. The
points of ON(v) indicated by solid circles form a v-chain (§2.4.1).
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N(v) := {(r, c) ∈ R(v) | r > c}
OR(v) := {

(r, c) ∈ R(v) | r < c∗}

ON(v) := {
(r, c) ∈ R(v) | r > c, r < c∗}

= OR(v) ∩ N(v)

d(v) := {
(r, c) ∈ R(v) | r = c∗}

�
�
�

�
�

�
�

�
�

�
��

diagonal

boundary
of N(v)

�
(r, c)

(c∗, c)

(r, r∗)
leg

leg

�

�

�

�

We will be considering monomials, also called multisets, in some of these sets.
A monomial, as usual, is a subset with each member being allowed a multiplicity
(taking values in the non-negative integers). Its degree is the sum of all multiplicities.
The intersection of a monomial in a set with a subset of the set is a monomial in the
subset, the multiplicities being those in the original monomial.

For α = (r, c) in OR(v), the elements pv(α) := (c∗, c) and ph(α) := (r, r∗) of the
diagonal d(v) are respectively the vertical and horizontal projections of α. The lines
joining α to its projections are the legs of α.

For α = (r, c) in R(v), define α# := (c∗, r∗). The involution α 	→ α# is just the
reflection with respect to the diagonal d(v). For a subset or even multiset E of R(v),
the symbol E# has the obvious meaning. We call E symmetric if E = E#.

For α = (r, c) of R(v), we define α(up) to be α itself if α is either on or above the
diagonal d(v) (more precisely, if r ≤ c∗), and to be its reflection α# in the diagonal if
α is below the diagonal (more precisely, if r > c∗). For a monomial E of R(v), we
define E(up) to be the intersection of E (as a multiset) with the subset OR(v) ∪ d(v)

of R(v). The notations α(down) and E(down) have similar meanings.
For (r, c) and (R,C) in R(v), to write (R,C) > (r, c) means that R > r and

C < c; to say (R,C) dominates (r, c) means that r ≤ R and C ≤ c (in terms of
pictures, (r, c) lies (not necessarily strictly) to the Northeast of (R,C)); to say they
are comparable means that either (R,C) > (r, c) or (r, c) > (R,C)—it is convenient
to exclude equality in comparability.

For an integer i, we let i(odd) be the largest odd integer not bigger than i and
i(even) the smallest even integer not smaller than i.

2.4 Basic definitions

2.4.1 v-chain

An ordered sequence α, β , . . . of elements of N(v) is called a v-chain if α > β > . . . .
A v-chain α1 > . . . > α� has head α1, tail α�, and length �.

2.4.2 The “connection” relation on elements of a v-chain

Let C : α1 = (r1, c1) > α2 = (r2, c2) > · · · be a v-chain in ON(v). Two consecutive
elements αj and αj+1 of C are said to be connected if the following conditions are
both satisfied:
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• their legs are “intertwined”; equivalently and more precisely, this means that r∗
j ≥

cj+1, or, what amounts to the same, rj ≤ c∗
j+1.

• the point (rj+1, r
∗
j ) belongs to N(v); this just means that rj+1 > r∗

j .

Consider the coarsest equivalence relation on the elements of C generated by the
above relation. The equivalence classes of C with respect to this equivalence relation
are called the connected components of the v-chain C.

This definition has its quirks:

The v-chain C : α > β > γ in the picture has
{α,β} and {γ } as its connected components; but
the “sub” v-chain α > γ of C is connected (as
a v-chain in its own right).
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2.4.3 The subset OmonC attached to a v-chain C in ON(v)

Let C be a v-chain in ON(v). We will define OmonC as a multiset of N(v). It is easy
to see and in any case stated explicitly as part of Corollary 5.1.5 that it is multiplicity
free and so is actually a subset of N(v).

First suppose that C : α1 = (r1, c1) > · · · > α� = (r�, c�) is a connected v-chain in
ON(v). Observe that, if there is at all an integer j , 1 ≤ j ≤ �, such that the horizontal
projection ph(αj ) does not belong to N(v), then j = �. Define

OmonC :=
⎧
⎨

⎩

{pv(α1), . . . , pv(α�)} if � is even
{pv(α1), . . . , pv(α�)} ∪ {ph(α�)} if � is odd and ph(α�) ∈ N(v)

{pv(α1), . . . , pv(α�−1)} ∪ {α�,α
#
� } if � is odd and ph(α�) 
∈ N(v)

For a v-chain C that is not necessarily connected, let C = C1 ∪ C2 ∪ · · · be the
partition of C into its connected components, and set

OmonC := OmonC1 ∪ OmonC2 ∪ · · ·

Example 2.4.1 Let us now illustrate the definition of OmonC for the v-chain
C := α1 > · · · > α6 in Figure 1. The connected components of C are C1 := α1 >

α2, C2 := α3 > α4 > α5, and C3 := α6. We have OmonC1 = {pv(α1),pv(α2)},
OmonC2 = {pv(α3),pv(α4),pv(α5),ph(α5)}, OmonC3 = {α6, α

#
6}, and OmonC =

OmonC1 ∪ OmonC2 ∪ OmonC3 . It is worthwhile to note that the sub-v-chain C4 :=
α3 > α4 > α6 of C is connected (the point A in the figure belongs to N(v));
OmonC4 = {pv(α3),pv(α4)} ∪ {α6, α

#
6}. �
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Fig. 1 A v-chain C

Remark 2.4.2 The definition of OmonC is admittedly ad hoc. One could try to trans-
late it to a less specific context using general concepts about Weyl groups. We have
chosen not to take such an approach because we do not know how to carry out the
proof in a more general context.

We now try to motivate the definition of OmonC in §2.4.3 above. Our strategy of
proof requires a good notion of ‘domination’ on monomials in OR(v): there should
correspond to each monomial an element of OI (d) that is the least among those that
‘dominate’ it. The notion in [7] of domination is just not good enough here, so we are
forced to modify it. In §2.4.4 and §2.6.5 below, we give two equivalent definitions of
the new notion of domination, called O-domination, for v-chains in ON(v). Both of
these use the association C 	→ OmonC just defined.

The reason why the notion of domination in [7] does not work here can be seen
from Proposition 2.6.1 below. For the dominating element to belong to OI (d), the
monomial OmonC must not only be ‘distinguished’ in the sense of [7] (the notion
is recalled in §2.6.1 below) but also be symmetric about the diagonal and contain
evenly many elements of the diagonal. Given a connected v-chain C = α1 > . . . > αl ,
the only things we can say for sure about all its projections on the diagonal are:
pv(α1) > pv(α2) > · · · > pv(αl) > ph(αl) and pv(α1) > ph(α1) > ph(α2) > · · · >

ph(αl). This explains somewhat the occurrence of the first sequence in the right hand
side of the definition in §2.4.3.

2.4.4 A first definition of O-domination

An element w of OI (d) is said to O-dominate a v-chain C if w dominates in the
sense of [7] the monomial OmonC : an equivalent definition is given in §2.6.5 be-
low. An element w of OI (d) O-dominates a monomial E of ON(v) (respectively of
OR(v)) if it O-dominates every v-chain in E (respectively in E ∩ ON(v)).

2.5 The main theorem and its corollary

Theorem 2.5.1 Let ORw(v) denote the associated graded ring with respect to the
unique maximal ideal of the local ring of germs at e(v) of functions on Xw . Then,
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for any non-negative integer m, the dimension as a vector space of the homogeneous
piece of ORw(v) of degree m equals the cardinality of the set OSw(v)(m) of mono-
mials of degree m of OR(v) that are O-dominated by w.

The proof of this theorem occupies us for most of this paper. It is reduced in §4,
by an application of standard monomial theory, to combinatorics. The resulting com-
binatorial problem is solved in §5–9. For now, let us note the following immediate
consequence (the proof of Corollary 2.2 of [7] holds verbatim here too):

Corollary 2.5.2 The multiplicity at the point e(v) of the Schubert variety Xw equals
the number of monomials in ON(v) of maximal cardinality that are square-free and
O-dominated by w.

2.6 Another definition of O-domination

Our goal in this subsection is to give an equivalent definition of O-domination of a
v-chain—see §2.6.5. In the process we recall some relevant material from [7].

2.6.1 Distinguished subsets of N(v)

Following [7, §4], we define a multiset E of N(v) to be distinguished, if, first of all, it
is a subset in the usual sense (in other words, it is “multiplicity free”), and if, for any
two distinct elements (R,C) and (r, c) of E, the following conditions are satisfied:

A. R 
= r and C 
= c.
B. If R > r , then either r < C or C < c.

In terms of pictures, condition A says that (r, c) cannot lie exactly due North or
East of (R,C) (or the other way around); so we can assume, interchanging the two
points if necessary, that (r, c) lies strictly to the Northeast or Northwest of (R,C);
condition B now says that, if (r, c) lies to the Northwest of (R,C), then the point that
is simultaneously due North of (R,C) and due East of (r, c) (namely (r,C)) does not
belong to N(v).

2.6.2 Attaching elements w ≥ v of I (d,2d) to distinguished subsets of N(v)

Given a distinguished subset S of N(v), we can get an element w(≥ v) of I (d,2d)

as follows: start with v, remove all its members that are column indices of elements
of S, and add row indices of all elements of S. As observed in [7, Proposition 4.3],
this association is a bijection (between distinguished subsets of N(v) on the one hand
and elements w of I (d,2d) such that w ≥ v on the other). We denote it by w ↔ Sw .

2.6.3 The involution #

There are two natural order reversing involutions on the poset I (d,2d):

• w 	→ w∗, where w∗ := {j∗ | j ∈ w};
• w 	→ {1, . . . ,2d} \ w.
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The composition of these two commuting involutions is order preserving. We denote
it by w 	→ w#. The elements of OI (d) are fixed under this involution.

Proposition 2.6.1 An element w ≥ v of I (d,2d) belongs to OI (d) if and only if
the distinguished subset Sw of N(v) corresponding to it as described in §2.6.2 is
symmetric and has evenly many diagonal elements.

Proof That the symmetry of Sw is equivalent to the condition that w = w# is proved
in [4, Proposition 5.7]. Now suppose that Sw is symmetric. We claim that for an
element (r, c) of Sw that is not on the diagonal, either both r and c are bigger than
d or both are less than d + 1. Since Sw is symmetric, it follows that (c∗, r∗) also
belongs to Sw . Since Sw is distinguished, it follows that in case r < c∗ (that is, if
(r, c) lies above the diagonal), we have r < r∗, and so c < r < r∗; and in case r > c∗,
we have c∗ < c, and so c∗ < c < r , and the claim is proved. The result follows easily
from the claim. �

2.6.4 The element OwC of OI (d) attached to a v-chain C

It is obvious from its definition (§2.4.3) that OmonC is symmetric in the sense of
§2.6.3 and has evenly many elements on the diagonal. It is also distinguished in the
sense of §2.6.1 (Corollary 5.1.5). We denote by OwC the element of I (d,2d) asso-
ciated to OmonC (as in §2.4.3). It belongs to OI (d) (Proposition 2.6.1).

2.6.5 A second definition of O-domination

From [7, Lemma 5.5] it follows that an element w of OI (d) O-dominates a v-chain C

in ON(v) if and only if w ≥ OwC , where OwC is as defined in §2.6.4.

3 Multiplicity counts certain non-intersecting lattice paths

Fix notation as in Theorem 2.5.1. The monomials in Corollary 2.5.2 can be inter-
preted as certain non-intersecting lattice paths. It follows that the multiplicity equals
the number of these paths. This interpretation generalizes those in [3, 5]. We first
illustrate by means of examples and then provide a brief justification.

3.1 Description and illustration

The grid in Figure 2 represents points of ON(v) and those of the diagonal in N(v)

for v, w as in the following example.

Example 3.1.1 Let d = 23,

v = (1,2,3,4,5,11,12,13,14,19,20,22,23,26,29,30,31,32,37,38,39,40,41),

w = (4,5,9,10,14,17,18,21,23,25,27,28,31,32,34,35,36,39,40,41,44,45,

46),
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Fig. 2 An element of OPathsw(v) with v and w as in Example 3.1.1

so that

Sw ={(9,3), (10,2), (17,13), (18,12), (21,20), (25,22), (27,26),

(28,19), (34,30), (35,29), (36,11), (44,38), (45,37), (46,1)},
Sw(up) =

{(9,3), (10,2), (17,13), (18,12), (21,20), (25,22), (28,19), (36,11), (46,1)}.

In Figure 2, The open circles represent the points of Sw(up). From each point β of
Sw(up) we draw a vertical line upwards from β and let β(start) denote the top most
point of ON(v) on this line. In case β is not on the diagonal, draw also a horizontal
line rightwards from β and let β(finish) denote the right most point of ON(v) on this
line. In case β is on the diagonal, then β(finish) is not a fixed point but varies subject
to the following constraints:

• β(finish) is one step away from the diagonal (that is, it is of the form (r, c), for
some entry c of v, where r is the largest integer less than c∗ that is not an entry
of v);

• the column index of β(finish) is not less than that of β;
• if depthSw

β (that is, the largest integer � such that there is a sequence α1 > . . . >

α� = β in Sw) is odd, then the horizontal projection of β(finish) is the same as the
vertical projection of γ (finish) where γ is the diagonal element of Sw of depth 1
more than that of β .
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Fig. 3 A disallowed tuple of lattice paths

A lattice path between a pair of such points β(start) and β(finish) is a sequence
α1, . . . , αq of elements of ON(v) with α1 = β(start) and αq = β(finish) such that, for
1 ≤ j ≤ q − 1, if we let αj = (r, c), then αj+1 is either (R, c) or (r,C) where R is
the least element of {1, . . . ,2d} \ v that is bigger than r and C the least element of v

that is bigger than c.
Consider the set OPathsw(v) of all tuples (�β)β∈Sw(up) of paths where

• �β is a lattice path between β(start) and β(finish) (if β is on the diagonal, then
β(finish) is allowed to vary in the manner described above);

• �β and �γ do not intersect for β 
= γ .

The number of such p-tuples, where p := |Sw(up)|, is the multiplicity of Xw at the
point e(v). A particular element of OPathsw(v) is depicted in Figure 2.

Example 3.1.2 The reader is invited to verify that the multiplicity is 15 in the fol-
lowing simple case: d = 7, v = (1,2,3,4,7,9,10), w = (4,6,7,10,12,13,14). �

Example 3.1.3 Figure 3 shows a tuple of paths not in OPathsw(v). �

3.2 Justification for the interpretation

Any monomial as in Corollary 2.5.2 contains OR(v) \ ON(v), for, by the definition
of O-domination, adding or removing elements of OR(v) \ ON(v) to or from a
monomial does not alter the status of its O-domination. One could therefore equally
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well consider the set OMw(v) of monomials in ON(v) of maximal cardinality that
are square-free and O-dominated by w. Any tuple of paths in OPathsw(v) can be
considered as a square-free monomial in ON(v) in the obvious way. This provides
a bijection between OPathsw(v) and OMw(v), similar to its counterparts in the
Grassmannian and symplectic Grassmannian cases in [4, 7]. For a detailed formal
proof of the bijection, see [20, §11.2].

4 Reduction to combinatorics

In this section we reduce the proof of our main Theorem 2.5.1 to those of some
combinatorial statements.

4.1 The tangent space to Md(V ) at e(v)

Fix notation as in §2.1–§2.3. Let Md(V ) ⊆ Gd(V ) ↪→ P(∧dV ) be the Plücker em-
bedding (where Gd(V ) denotes the Grassmannian of all d-dimensional subspaces of
V ). For θ in I (d,2d), let pθ denote the corresponding Plücker coordinate. Consider
the affine patch A(v) of P(∧dV ) given by pv 
= 0, where v is some fixed element
of OI (d) (⊆ I (d,2d)). The affine patch OA(v) := Md(V ) ∩ A(v) of the orthogonal
Grassmannian Md(V ) is an affine space whose coordinate ring can be taken to be
the polynomial ring in variables of the form X(r,c) with (r, c) ∈ OR(v). Taking d = 5
and v = (1,3,4,6,9) for example, a general element of OA(v) has a basis consisting
of column vectors of a matrix of the following form:

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
X21 X23 X24 X26 0

0 1 0 0 0
0 0 1 0 0

X51 X53 X54 0 −X26
0 0 0 1 0

X71 X73 0 −X54 −X24
X81 0 −X73 −X53 −X23

0 0 0 0 1
0 −X81 −X71 −X51 −X21

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.1.1)

The origin of the affine space OA(v), namely the point at which all X(r,c) vanish, cor-
responds clearly to e(v). The tangent space to Md(V ) at e(v) can therefore be iden-
tified with the affine space OA(v) with co-ordinate functions X(r,c), (r, c) ∈ OR(v).

4.2 The ideal I of the tangent cone to Xw at e(v)

Fix elements v ≤ w of OI (d). Set Yw(v) := Xw ∩OA(v), where Xw is the Schubert
variety indexed by w and OA(v) is the affine patch around e(v) as in §4.1. From [13,
19] we can deduce a set of generators for the ideal I of functions on OA(v) vanishing
on Yw(v) (see for example [20, §3.2.2]). We recall this result now.
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In the matrix (4.1.1), columns are numbered by the entries of v, the rows by 1, . . . ,
2d . For θ ∈ OI (d), consider the submatrix given by the rows numbered θ \ v and
columns numbered v \ θ . Such a submatrix being of even size and skew-symmetric
along the anti-diagonal, we can define its Pfaffian (a square root of the determinant of
the submatrix, defined up to sign; see [18, §4]). Let fθ denote this Pfaffian. We have

I = (fτ | τ ∈ OI (d), τ 
≤ w) . (4.2.1)

We are interested in the tangent cone to Xw at e(v) or, what is the same, the
tangent cone to Yw(v) ⊆ OA(v) at the origin. Observe that fθ is a homogeneous
polynomial of degree O-v-degree(θ), where the O-v-degree(θ) is defined as one
half of the cardinality of v \ θ . Because of this, Yw(v) itself is a cone and so equal to
its tangent cone. The ideal of the tangent cone is therefore the ideal I in (4.2.1).

The coordinate ring k[Yw(v)] of Yw(v) is a quotient of the polynomial ring
k[OA(v)], and the proposition that follows identifies a subset of the monomials in
fθ which forms a k-basis for k[Yw(v)]. A totally ordered sequence θ1 ≥ . . . ≥ θt of
elements in OI (d) is called a standard monomial (in OI (d)). Such a monomial is
v-compatible if for each k, 1 ≤ k ≤ t , either θk � v or v � θk ; it is w-dominated, for
an element w of OI (d), if w ≥ θ1. We denote by OSMw(v) the set of w-dominated
v-compatible standard monomials.

Proposition 4.2.1 As θ1 ≥ . . . ≥ θt runs over the set OSMw(v) of w-dominated
v-compatible standard monomials, the elements fθ1 · · ·fθt form a basis for the co-
ordinate ring k[Yw(v)] of the affine patch Yw(v) = Xw ∩ OA(v) of the Schubert
variety Xw .

Proof This follows from results of [13, 19]. See [15] or [20, Proposition 3.2.1]. �

Proposition 4.2.1 says that the graded piece of k[Yw(v)] of degree m is generated
as a k-vector space by elements of degree m of the set OSMw(v) of w-dominated v-
compatible standard monomials, where the degree of a standard monomial θ1 ≥ . . . ≥
θt is defined to be the sum of the O-v-degrees of θ1, . . . , θt . To prove Theorem 2.5.1
it therefore suffices to prove the following:

Theorem 4.2.2 The set OSMw(v)(m) of w-dominated v-compatible standard
monomials in OI (d) of degree m is in bijection with the set OSw(v)(m) of monomi-
als in OR(v) of degree m that are O-dominated by w.

The proof of Theorem 4.2.2 will be reduced in §4.4 to those of Propositions 4.3.1,
4.3.2 and 4.3.3 below. These propositions will eventually be proved in §9.

4.2.1 Illustration by an example

We illustrate the bijection in Theorem 4.2.2 by an example. Take d = 5 and v =
(1,2,3,6,7): the elements of OR(v) are depicted in Figure 4. As we will see
presently in §4.3, 4.4, it is enough to restrict attention to monomials in ON(v) (rather
than OR(v)) and, correspondingly, standard monomials where are all elements are
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Fig. 4 For illustrating the bijection in Theorem 4.2.2: see §4.2.1

> v. There being 9 elements in ON(v), there are 55 such monomials of degree at
most 2. Listed in the tables of Figure 4 are these monomials and against them the
corresponding standard monomials. The correspondence will be described by means
of two maps—Oπ and Oφ—these to be described in §6 and §7 below. The reader
is invited to return repeatedly to this example and verify the details in the course of
reading §6 and §7.

The reader’s attention is especially drawn to the correspondences for the mono-
mials (5,3)(4,2), (4,1)(5,2), (4,1)(5,3), (8,2)(5,1), (8,2)(4,1), (8,1)(5,2), and
(8,1)(4,2). As can be verified from the definition of O-domination, the only mono-
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mials of degree at most 2 that are not O-dominated by w = (3,6,7,9,10) are
(9,1)(4,3) and (9,1)(5,3). Observe that w ≥ the first element of every standard
monomial in the tables except of those corresponding to these two monomials.

4.3 The main combinatorial propositions

The bijection in Theorem 4.2.2 will be described by means of two maps Oπ and Oφ

whose definitions will be given in §6 and §7 below. We state some properties of these
maps.

The map Oπ associates to a monomial E in ON(v) a pair (OwE,O�E) consist-
ing of an element OwE of OI (d) and a ‘smaller’ monomial O�E in ON(v). This
map enjoys the following good properties:

Proposition 4.3.1

(1) OwE ≥ v.
(2) O-v-degree(OwE) + degree(O�E) = degree(E).
(3) OwE O-dominates O�E.
(4) OwE is the least element of OI (d) that O-dominates E.

The map Oφ, on the other hand, associates a monomial in ON(v) to a pair (w,T)

consisting of an element w of OI (d) with w ≥ v and a monomial T in ON(v) that
is O-dominated by w.

Proposition 4.3.2 The maps Oπ and Oφ are inverses of each other.

For an integer f , 1 ≤ f ≤ 2d , consider the following conditions, the first on a
monomial E in ON(v), the second on an element w of OI (d):

(‡) f is not the row index of any element of E and f 
(:= 2d − f + 1) is not
the column index of any element of E.
(‡) f is not an entry of w.

(It is convenient to the use the same notation (‡) for both conditions.)

Proposition 4.3.3 Assume that v satisfies (‡)—all references to (‡) in this proposi-
tion are with respect to a fixed f , 1 ≤ f ≤ 2d .

(1) Let w be an element of OI (d) with w ≥ v and T a monomial in ON(v) that is
O-dominated by w. If w and T both satisfy (‡), then so does Oφ(w,T).

(2) If a monomial E in ON(v) satisfies (‡), then so do the ‘components’ OwE and
O�E of its image under Oπ .

4.4 From the main propositions to the main theorem

Let us now see how the Theorem 4.2.2 follows from the propositions of §4.3. Most
of the following argument runs parallel to its counterparts in the case of the Grass-
mannian and symplectic Grassmannian—Propositions 4.3.1 and 4.3.2 have their
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counterparts in [4, 7]—but, in the case that d is odd, the part involving the “mirror
image” requires additional work. This is where Proposition 4.3.3 comes in.

We first set up some notation (which, thank goodness, will not be needed beyond
this section). Let OS(v)OT (v)and OU(v)denote respectively the sets of monomials
in OR(v), ON(v), and OR(v) \ ON(v). Superscripts, suffixes, and combinations
thereof are used to modify the meanings of these symbols and also of sets of standard
monomials in OI (d):

• superscript: an element of OI (d) denoting domination (or O-domination):
– OT w(v) is the subset of OT (v) consisting of those elements that are

O-dominated by w;
– OSMw(v), which has already appeared above (in Proposition 4.2.1), is the set

of v-compatible, w-dominated standard monomials in OI (d).
• subscript: an element of OI (d) applicable only to sets of standard monomials and

denoting anti-domination: a standard monomial θ1 ≥ . . . ≥ θt is anti-dominated by
v if θt ≥ v.

• suffix “(m)”: indicates degree.

For example, OSMw
v (v)(m) denotes the set of v-compatible standard monomials that

are anti-dominated by v, dominated by w, and have degree m.
One more comment on notation before we proceed. Recall that a ‘base element’ v

of OI (d) has been fixed and that we have been using the suffix ‘(v)’ to explicitly
indicate the dependence upon v of the constructions. For a brief while now (only
until the end of this section) we need to simultaneously handle several base elements.
The base element being used will be clear from the notation: for instance, OSM(v∗)
denotes the set of v∗-compatible standard monomials in OI (d) (v∗ is defined below).

Define the domination map from OT (v) to OI (d) by sending a monomial in
ON(v) to the least element that O-dominates it. Define the domination map from
OSMv(v) to OI (d) by sending θ1 ≥ . . . ≥ θt to θ1. Both these maps take, by defini-
tion, the value v on the empty monomial.

We are now ready to see how Theorem 4.2.2 follows from the propositions
of §4.3. Repeated application of Oπ gives a map from OT (v) to OSMv(v) that
commutes with domination and preserves degree. Repeated application of Oφ gives
a map from OSMv(v) to OT (v). These two maps being inverses of each other
(Proposition 4.3.2), we have a bijection between OSMv(v) and OT (v). In fact,
since domination and degree are respected (Proposition 4.3.1), we get a bijection
OSMw

v (v)(m) ∼= OT w(v)(m).
As explained below, the ‘mirror image’ of this bijection gives another bijection:

OSMv(v)(m) ∼= OU(v)(m). Putting the two bijections together, we get the desired
result:

OSMw(v)(m) =
m⋃

k=0

OSMw
v (v)(k) × OSMv(v)(m − k)

∼=
m⋃

k=0

OT (v)w(v)(k) × OU(v)(m − k) = OSw(v)(m).
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It only remains to explain how to realize OSMv(v)(m) ∼= OU(v)(m) as the
‘mirror image’ of OSMv(v)(m) ∼= OT (v)(m). For an element u of OI (d), define
u∗ := (u∗

d , . . . , u∗
1). In the case d is even, the association u 	→ u∗ is an order revers-

ing involution, and the argument in [4] for the symplectic Grassmannian holds here
too. In the case d is odd, u∗ is not an element of OI (d), and so some additional work
is required.

Let us first do the case when d is even. We get a bijection OSMv(v) ∼= OSMv∗(v∗)
by associating to θ1 ≥ . . . ≥ θt the element θ∗

t ≥ . . . ≥ θ∗
1 . The sum of the O-

v-degrees of θ1, . . . , θt equals the sum of the O-v∗-degrees of θ∗
t , . . . , θ∗

1 , and so
OSMv(v)(m) ∼= OSMv∗(v∗)(m).

For an element (r, c) of ON(v∗), consider its flip (c, r). Since v belongs to OI (d),
the complement of v∗ in {1, . . . ,2d} is v, and it follows that (c, r) belongs to OR(v)\
ON(v). This induces a degree preserving bijection OT (v∗) ∼= OU(v). Putting this
together with the bijection of the previous paragraph and the one deduced earlier in
this section (using Oπ and Oφ), we get what we want:

OSMv(v)(m) ∼= OSMv∗(v∗)(m) ∼= OT (v∗)(m) ∼= OU(v)(m).

Now suppose that d is odd. Then the map x 	→ x∗ does not map OI (d) to OI (d)

but to OI (d)∗ (defined as the set consisting of those elements u of I (d,2d) such that,
for each k, 1 ≤ k ≤ 2d , exactly one of k, k∗ belongs to u, and the number of entries
of u greater than d is odd). We define a map u 	→ ũ from OI (d)∗ to OI (d + 1) as
follows: ũ := {ũ1, . . . , ũd , d + 2} (the elements as listed are not in increasing order
except in the trivial case u = (1, . . . , d)), where, for an integer e, 1 ≤ e ≤ 2d , we set

ẽ :=
{

e if 1 ≤ e ≤ d

e + 2 if d + 1 ≤ e ≤ 2d

This map u 	→ ũ is an order preserving injection.
Consider the composition x 	→ x∗ 	→ x̃∗ from OI (d) to OI (d + 1). This is an

order reversing injection. The induced map on standard monomials is an injection
from OSMv(v) to OSMṽ∗(ṽ∗). It is readily seen that the image under this map is the
subset OSMṽ∗(ṽ∗)(‡) consisting of those standard monomials all of whose elements
satisfy (‡) with f = d +1. We have already established (using the maps Oπ and Oφ)
a bijection OSMṽ∗(ṽ∗) ∼= OT (ṽ∗). It follows from Proposition 4.3.3 that under this
bijection the subset OSMṽ∗(ṽ∗)(‡) maps to OT (ṽ∗)(‡) (defined as the set of those
monomials in ON(ṽ∗) satisfying (‡) with f = d + 1).

Now OT (ṽ∗)(‡) is in degree preserving bijection with OU(v): every element of
degree 1 of OT (ṽ∗)(‡) is uniquely of the form (̃c, r̃) for (r, c) in OR(v) \ ON(v),
and the desired bijection is induced from this. Putting all of these together, we finally
have

OSMv(v) ∼= OSMṽ∗(ṽ∗)(‡) ∼= OT (ṽ∗)(‡) ∼= OU(v).

Thus, in order to prove our main theorem (Theorem 2.5.1), it suffices to describe
the maps Oπ and Oφ and to prove Propositions 4.3.1–4.3.3.
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5 O-depth

The next three sections prepare the way for the proof of the combinatorial proposi-
tions of §4.3, which will eventually appear in §9. The concept of O-depth defined
in §5.2 below plays a key role in this paper. As the name suggests, it is the orthogonal
analogue of the concept of depth of [7].

The definition of O-depth being more involved than that of depth, such proper-
ties as in Proposition 5.2.1 (1), Proposition 5.3.4 below need to be explicitly stated
and proved: unlike in the case of depth, they are not immediately obvious from the
definition. In §5.3, it is observed that the O-depth is no smaller than the depth. Also
recorded there are some observations about the relation between O-depths and types
of elements in v-chains.

5.1 Type, OmonC,α , OqC,α , and criticality

We introduce some terminology and notation. Their usefulness may not be immedi-
ately apparent.

The type of an element αj in a connected v-chain C : α1 > · · · > α� is said to be
V, H, or S, accordingly as:

V: j 
= �, or j = � and � is even.
H: j = �, � is odd, and ph(α�) ∈ N(v).
S: j = �, � is odd, and ph(α�) 
∈ N(v).

Now let α be an element of a (not necessarily connected) v-chain C. Its type is
defined to be its type in its connected component, and the set OmonC,α of elements
of N(v) generated by α is defined by:

OmonC,α :=
⎧
⎨

⎩

{pv(α)} if α is of type V in C;
{pv(α),ph(α)} if α is of type H in C;
{α,α#} if α is of type S in C;

Also OqC,α is defined to be pv(α) if α is of type V or H and α if of type S. Observe
that the monomial OmonC defined in §2.4.3 equals the union ∪α∈COmonC,α .

If ph(α) 
∈ N(v), then clearly the same is true for every succeeding element. The
first such element of C is called the critical element.

In the v-chain depicted in Figure 1, the types of the elements α1, . . . , α6 are re-
spectively V, V, V, V, H, and S; the critical element is α6.

Proposition 5.1.1

(1) The cardinality is odd of a connected component that has an element of type H
or S. Conversely, if the cardinality of a component is odd, then it has an element
of type H or S.

(2) An element of type H or S can only be the last element in its component.
(3) The critical element has type either V or S. No element before it can be of type

S and every element after it is of type S. In particular, any element that succeeds
an element of type S is of type S. �
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Proposition 5.1.2 Let α > γ be elements of a v-chain C (we are not assuming that
they are consecutive).

(1) If α > γ is connected as a v-chain in its own right, then α is connected to its
successor; α cannot be the last element in its connected component.

(2) If α > γ is not connected as a v-chain in its own right and the legs of α and γ

intertwine, then γ is a component by itself and has type S. �

Proposition 5.1.3 Let E : α > . . . > ζ be a v-chain, D and D′ two v-chains with
tail α, and C, C′ the concatenations of D, D′ respectively with E. Then

(1) The last element in the connected component containing α is the same in C

and C′ (and this is the same as in E).
(2) Denoting by λ the element in (1), the only element among α, . . . , ζ that possibly

has different types in C and C′ is λ. �

Proposition 5.1.4 Let α and β be elements of a v-chain C. Let us use α′ and β ′
respectively to denote elements of OmonC,α(up) and OmonC,β (up).

(1) If α > β (these elements are not necessarily consecutive in C), then, given β ′,
there exists α′ such that α′ > β ′. In fact, this is true for every choice of α′ except
when

(*) α is of type H, and ph(α) 
> β ′ for some β ′ ∈ OmonC,β .

In particular, OqC,α > β ′ and OqC,α > OqC,β .
(2) Conversely, suppose that α′ > β ′ for some choice of α′ and β ′. Then α ≥ β; if

equality occurs, then α is of type H, α′ = pv(α) and β ′ = ph(α). In particular, if
α′ > OqC,β (or more specially OqC,α > OqC,β ), then α > β .

(3) If (*) holds for α > β in C, then
(a) the critical element of C is the one just after α; in particular, α is uniquely

determined.
(b) all elements of C succeeding α are of type S; in particular, β is of type S and

β ′ = β .
(c) (*) holds for γ in place of β for every γ in C that succeeds α.

Proof (1) If α is of type V or H, we need only take α′ = pv(α), for pv(α) > pv(β),
pv(α) > ph(β), and pv(α) > β . Now suppose that α is of type S. Then β too is of
type S (Proposition 5.1.1 (3)), so β ′ can only be β , and the first part of (1) is proved.
It follows that if α′ = pv(α) or if α has type S, then α′ > β ′ independent of the choice
of α′. So if α′ 
> β ′, then (*) holds and α′ = ph(α).

(3) Let λ be the immediate successor of α in C. Then α is not connected to λ

(Proposition 5.1.1 (2)). Since ph(α) 
> β ′, it follows that α and β have intertwining
legs. Therefore so do α and λ. By Proposition 5.1.2 (2), λ has type S in C.

Since α has type H and λ type S, it follows immediately that λ is the critical ele-
ment. This proves (a). Assertion (b) now follows from Proposition 5.1.1 (3). For (c),
write ph(α) = (a, a∗), λ = (R,C), and γ = (r, c). Then R < a∗, for α and λ have
intertwining legs but are not connected. So c < r ≤ R < a∗. This means ph(α) 
> γ .
And γ being of type S (by (b)), we can take γ ′ = γ .
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(2) Suppose that α 
≥ β . Then β > α. By the second part of (1) above, β is of
type H and β ′ = ph(β); by item (b) of (3), α is of type S, so α′ = α. This leads to the
contradiction β > α > ph(β). �

Corollary 5.1.5 OmonC is a distinguished subset of N(v) in the sense of §2.6.1.

Proof If α in C is of type V or S, then OmonC,α is a singleton; if it is of type H, then
OmonC,α = {pv(α),ph(β)}. So there can be no violation of conditions A and B of
§2.6.1 by elements of OmonC,α .

Suppose α > β . By Proposition 5.1.4 (1), we have α′ > β ′ for any choice of α′ ∈
OmonC,α and β ′ ∈ OmonC,β except when the condition (*) holds. By (3) of the same
proposition, if (*) holds, then β ′ = β , and writing β = (r, c), ph(α) = (a, a∗), we
have r < a (since α > β) and c < r < a∗ (see proof of item 3(c) of the proposition).
Thus there can be no violation of conditions A and B of §2.6.1. �

Corollary 5.1.6 Let E be a v-chain in ON(v) and w an element of OI (d). If w

O-dominates E, then w dominates in the sense of [7] the monomial E ∪ E# of N(v).

Proof By [4, Proposition 5.15], it is enough to show that w dominates E. Let C :
α1 > . . . > αt be a v-chain in E. Writing αj = (rj , cj ) and OqC,αj

= (Rj ,Cj )

we have rj ≤ Rj and Cj ≤ cj . By Proposition 5.1.4 (1), OqC,α1
> . . . > OqC,αt

.
Since w O-dominates E, it in particular dominates OqC,α1

> . . . > OqC,αt
and so

also C. �
5.2 Definition of O-depth

Recall from [7] the notion of depth of an element α in a monomial F in N(v): it is the
largest possible length of a v-chain in F with tail α and denoted depthFα. The depth
of F is the maximum of the depths in it of all its elements.

The O-depth of an element α in a v-chain C in ON(v) is the depth in OmonC

in the sense of [7] of OqC,α : in other words, it is the depth in OmonC of pv(α) in
case α is of type V or H, and of α (equivalently of α#) in case α is of type S. It is
denoted O-depthC(α).

In the v-chain C depicted in Figure 1, O-depthC(αi) = i for 1 ≤ i ≤ 6; setting
C0 := C \ {α1}, the O-depths in C0 of α2, . . . , α6 are respectively 1, 3, 4, 5, and 6.

The O-depth of an element α in a monomial E of ON(v) is the maximum, over all
v-chains C in E containing α, of the O-depth of α in C. It is denoted O-depthE(α).
Finally, the O-depth of a monomial E in ON(v) is the maximum of the O-depths in
E of all the elements of E.

There is a conflict in the above definitions: Is the O-depth of an element of a v-
chain C the same as its depth as an element of the monomial C? In other words, could
the O-depth of an element in a v-chain be exceeded by its O-depth in a sub-chain?
The conflict is resolved by the first item of the following proposition.

Proposition 5.2.1

(1) For v-chains C ⊆ D, the O-depth in C of an element of C is no more than its
O-depth in D.
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(2) If a v-chain C is an initial segment of a v-chain D, then the O-depths in C and D

of an element of C are the same.

Proof (1): By an induction on the difference in the cardinalities of D and C, we may
assume that D has one more element than C. Call this extra element δ. Suppose that δ

lies between successive elements α and β of C (the modifications needed to cover the
extreme cases when it goes at the beginning or the end are being left to the reader).

The only elements of C that could possibly undergo changes of type on addition
of δ are α and the last element in the connected component of β , which let us call β ′.
If there are no type changes, then OmonC ⊆ OmonD and the assertion is immediate.
The only type change that α can undergo is from H to V. The type changes that β ′
can undergo are: H to V; V to H; S to V; V to S. An easy enumeration of cases shows
that only one of α and β ′ can undergo a type change.

We need not worry about changes from V to H for in this case OmonC ⊆ OmonD .
First let us suppose that α undergoes a change of type (from H to V). Then δ

is connected to α. It follows from Proposition 5.1.1 (1) that δ has type V in D: the
connected component of α in C has odd number of elements, so if δ happens to be the
last element in its component in D, the number of elements in that component will
be even. Replacing an occurrence of ph(α) in a v-chain of OmonC by pv(δ) would
result in a v-chain in OmonD (by Proposition 5.1.4 (1)), and this case is settled.

Now suppose that β ′ undergoes a type change. Then δ is connected to β and δ is of
type V in D (Proposition 5.1.1 (2)). Replacing by pv(δ) any occurrence in a v-chain
in OmonC of pv(β

′), ph(β
′), β ′ accordingly as the type of β ′ in C is V, H, or S, (not

necessarily in the same place but at an appropriate place) gives a v-chain in OmonD

(by Proposition 5.1.4 (1)), and we see that the O-depth cannot decrease.
(2): Thanks to Proposition 5.1.4 (2), contributions to OmonD from elements be-

yond α for an element α of C, (in particular from those not in C) do not affect the
depth in OmonD of OqD,α . Looking for the possibility of differences in types in C

and D of elements of C, we see that the only element of C that has possibly a different
type in D is its last element. And this too can change type only from H to V. �

Corollary 5.2.2 If C ⊆ D are v-chains in ON(v), then OwC ≤ OwD (although it
is not always true that OmonC ⊆ OmonD).

Proof By [7, Lemma 5.5], it is enough to show that every v-chain in OmonC is dom-
inated by OwD . Let β1 = (r1, c1) > · · · > βt = (rt , ct ) be an arbitrary v-chain in
OmonC . To show that it is dominated by OwD , it is enough, by [7, Lemma 4.5], to
show the existence of a v-chain (R1,C1) > · · · > (Rt ,Ct ) in OmonD with rj ≤ Rj

and Cj ≤ cj for 1 ≤ j ≤ t . Such a v-chain exists by the proof of (1) of Proposi-
tion 5.2.1. �

Corollary 5.2.3

(1) Let E be a monomial in ON(v) and α ∈ E. Then there exists a v-chain C in E

with tail α such that O-depthE(α) = O-depthC(α).
(2) For elements α > γ in a v-chain C (these need not be consecutive), we have

O-depthC(α) < O-depthC(γ ).
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(3) O-depthE(α) < O-depthE(γ ), for α > γ in a monomial E in ON(v).
(4) No two elements of the same O-depth in a monomial in ON(v) are comparable.

Proof (1) follows from (2) of the Proposition above and the definition of O-depth.
(2) This follows from Proposition 5.1.4 (1) and the definition of O-depth.
(3) By (1), there exists a v-chain C with tail α such that O-depthE(α) =

O-depthC(α). Concatenate C with α > γ and let D denote the resulting v-chain.
By (2) of the Proposition above, O-depthC(α) = O-depthD(α). By (2) above,
O-depthD(α) < O-depthD(γ ). And finally, O-depthD(γ ) ≤ O-depthE(γ ) by the de-
finition of O-depthE(γ ).

(4) is immediate from (3). �

Corollary 5.2.4 Let β > γ be elements of a v-chain C of elements of ON(v). Let
E be a v-chain in OmonC with tail OqC,γ and length O-depthC(γ ). Then OqC,β

occurs in E.

Proof It is enough to show that for α′ 
= OqC,β in E, either α′ > OqC,β or OqC,β >

α′. Let α be in C such that OqC,β 
= α′ ∈ OmonC,α . If β ≥ α, then OqC,β > α′ by
Proposition 5.1.4 (1). If α > β and α′ 
> OqC,β , then, by (1) and (3) of the same
proposition, α′ 
> OqC,γ , a contradiction. �

5.3 O-depth and depth; O-depth and type

Lemma 5.3.1 The O-depth of an element α in a monomial E of ON(v) is no less
than its depth (in the sense of [7]) in E ∪ E#.

Proof Let C : α1 > . . . > αt be a v-chain in E ∪ E# with tail αt = α, where t is
the depth of α in E ∪ E#. We then have α1(up) > . . . > αt (up), so we may as-
sume C to be in E. By Proposition 5.1.4 (1), OqC,α1

> . . . > OqC,αt
in OmonC .

So depthE∪E#(α) = t ≤ depthOmonC
(OqC,αt

) ≤ O-depthE(α). �

Lemma 5.3.2

(1) For consecutive elements α > β of a v-chain C,

O-depthC(β) =
⎧
⎨

⎩

O-depthC(α) + 2 if and only if α is of
type H and ph(α) > β

O-depthC(α) + 1 otherwise

(2) For an element of a v-chain C such that either its horizontal projection belongs
to N(v) or it is connected to its predecessor, the parity of its O-depth in C is the
same as that of its ordinality in its connected component in C.

(3) The O-depth is odd of a type H element in a v-chain; it is even of a type V element
that is the last in its component.

(4) If in a v-chain C there is an element of O-depth d , then
(a) for every odd integer d ′ ≤ d , there is in C an element of O-depth d ′.
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(b) if, for an even integer d ′ ≤ d , there is no element in C of O-depth d ′, then
the element α in C of O-depth d ′ − 1 is of type H, and ph(α) > β , where β

denotes the immediate successor of α in C.
(5) Let C be a v-chain and α an element of type H in C. Then the depth in OmonC

of ph(α) equals O-depthC(α) + 1. In particular, this depth is even.

Proof (1): From items 1 and 3(a) of Proposition 5.1.4, it follows that, for γ in C with
γ > α, if γ ′ 
> OqC,α for some γ ′ in EC,γ , then γ ′ 
> OqC,β . Thus O-depthC(β)

exceeds O-depthC(α) by the number of elements in OmonC,α that dominate OqC,β .
This number is 1 if α is of type V, or of type S, or of type H and ph(α) 
> β; it is 2 if
α is of type H and ph(α) > β (note that ph(α) > β if and only if ph(α) > OqC,β ).

(2): Let λ be such an element. Everything preceding λ in C is of type H
or V (Proposition 5.1.1 (3)). Let λ belong to the kth connected component, and n1, . . . ,
nk be respectively the cardinalities of the first, . . . , kth connected components. By (1)
above and item 3(b) of Proposition 5.1.4, O-depthC(λ) is n1(even)+· · ·+nk−1(even)
plus the ordinality of λ in the kth connected component.

(3): The assertions are special cases of 2.
(4): This follows easily from (1) and (3).
(5): By Proposition 5.1.4 (2), there is no element γ in OmonC that lies between

pv(α) and ph(α) (meaning pv(α) > γ > ph(α)), so the assertion holds. �

Corollary 5.3.3 For a v-chain C in ON(v), if the O-depths of elements in C are
bounded by k, then the depths of elements in OmonC are bounded by k(even).

Proof The depth of OqC,α in OmonC for any α in C is at most k by hypothesis.
An element of OmonC that is not OqC,α for any α in C can only be of the form
ph(α) for some α. By Proposition 5.1.4, depthOmonC

pv(α) = depthOmonC
ph(α) −

1, which implies depthOmonC
ph(α) ≤ k + 1. If, moreover, k is even, then by (3) of

Lemma 5.3.2 depthOmonC
ph(α) = depthOmonC

pv(α) + 1 ≤ (k − 1) + 1 = k. �

Proposition 5.3.4 Given α in a monomial E in ON(v), there exists a v-chain C in E

with tail α such that O-depthC(β) = O-depthE(β) for every β in C.

Proof Proceed by induction on d := O-depthE(α). Choose a v-chain D in E

with tail α such that O-depthD(α) = O-depthE(α) (such a v-chain exists by
Corollary 5.2.3 (1)). Let α′ be the element in D just before α. It follows from
item (3) of Corollary 5.2.3 and item (1) of Lemma 5.3.2 that O-depthE(α′) (as also
O-depthD(α′)) is either d − 1 or d − 2. By induction, there exists a v-chain C′ with
tail α′ that has the desired property. Let C be the concatenation of C′ with α′ > α.

We claim that C has the desired property. The only thing to be proved is
that O-depthC(α) = d . By item (1) of Lemma 5.3.2, we have O-depthC(α) ≥
O-depthC′(α′) + 1. In particular, the claim is proved in case O-depthC′(α′) is d − 1,
so let us assume that O-depthC′(α′) is d − 2. It now follows from the same item that
α′ has type H in D and ph(α

′) > α; it further follows that it is enough to show that α′
has type H in C.

Since α′ has type H in D, it follows (from item (2) of Proposition 5.1.1) that
α′ > α is not connected and (from item (3) of Lemma 5.3.2) that d − 2 is odd. Now,
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by item (3) of Lemma 5.3.2, the type in C′ of α′ cannot be V, so it is H, and the claim
is proved. �

Corollary 5.3.5 For a monomial E in ON(v), β in E, and i < O-depthE(β):

(a) If i is odd, there exists an element α in E of O-depth i such that α > β .
(b) If i is even and there is no element α in E of O-depth i such that α > β , then

there is element α in E of O-depth i − 1 such that ph(α) > β .

Proof Proposition 5.3.4 and Lemma 5.3.2 (4). �

Corollary 5.3.6 Let C be a v-chain in ON(v) with tail α such that O-depthC(α)

is odd. Let A be a v-chain in ON(v) with head α, and D the concatenation of C

with A. Let C′ denote the v-chain C \ {α}. Then

(1) The type of an element of A is the same in both A and D. In particular, OmonA ⊆
OmonD and OqA,β = OqD,β for β in A.

(2) The type of an element of C′ is the same in both C′ and D. In particular,
OmonC′ ⊆ OmonD .

(3) OmonD = OmonC′ ∪ OmonA (disjoint union); letting j0 := O-depthC(α) we
have (OmonD)j0 = OmonA and (OmonD)1 ∪ · · · ∪ (OmonD)j0−1 = OmonC′ .
(For a monomial E in N(v), the subset of elements of depth at least i is denoted
Ei , and the subset of elements of depth exactly i is denoted Ei .)

Proof (1) Generally (meaning without the assumption that O-depthC(α) is odd), the
only element of A that could possibly have a different type in D is the last one in
the first connected component of A; whether or not it changes type depends exactly
upon whether or not the parity of the cardinality of its connected component in D is
different from that in A. Under our hypothesis, this parity does not change, for, by (3)
of Lemma 5.3.2, the type of α in C is H or S, and so the cardinality of the connected
component of α in C is odd.

(2) Generally (meaning without the assumption that O-depthC(α) is odd), the only
element of C′ that could possibly have a different type in D is the last one of C′; it
changes type if and only if it is connected to α and the cardinality of its connected
component in C′ is odd. Under our hypothesis, this cardinality is even, for the same
reason as in (1).

(3) That OmonD = OmonC′ ∪ OmonA (disjoint union) is an immediate conse-
quence of (1) and (2). By Lemma 5.3.2 (1), OqA,α = OqD,α dominates every ele-
ment of OmonA, so OmonA ⊆ (OmonD)j0 (depthOmonD

OqD,α = O-depthD(α) =
O-depthC(α) = j0). It is enough to prove the following claim: every element of
OmonC′ has depth less than j0 in OmonD . Let γ ′ be an element of OmonC′ . If
γ ′ > OqD,α then the claim is clear. If not, then, by Proposition 5.1.4 (1), γ ′ = ph(γ ).
By Lemma 5.3.2 (3), O-depthD(γ ) is odd. Since the claim is already true for
OqD,γ = pv(γ ), we have O-depthD(γ ) = depthOmonD

pv(γ ) ≤ j0 − 2. By (5) of
the same lemma, depthOmonD

γ ′ = O-depthD(γ )+ 1, so depthDγ ′ ≤ j0 − 1, and the
claim is proved. �
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Proposition 5.3.7 Let E be a monomial in ON(v) and j an odd integer. For β in
OEj,j+1(:= {α ∈ E |O-depthE(α) ≥ j}), we have

O-depth
OEj,j+1(β) = O-depthE(β) − j + 1

Proof Proceed by induction on j . For j = 1, the assertion reduces to a tautology.
Suppose that the assertion has been proved up to j . By the induction hypothesis, we
have OEj+2,j+3 = O(OEj,j+1)3,4, and we are reduced to proving the assertion for
j = 3.

Let A be a v-chain in OE3,4 with tail β and O-depthA(β) = O-depth
OE3,4(β).

Let α be the head of A. We may assume O-depthE(α) = 3 for, if O-depthE(α) > 3,
we can find, by Lemma 5.3.2 (4), α′ of O-depth 3 in E with α′ > α, and extending
A by α′ will not decrease the O-depth in A of β (Proposition 5.2.1 (1)). Let E be a
v-chain in OmonA with tail OqA,β and length O-depthA(β). The head of E is then
OqA,α (see Proposition 5.1.4 (1)).

Choose C in E with tail α such that O-depthC(α) = 3. Let D be the concatenation
of C with A. By Corollary 5.3.6, E is contained in OmonD , OqD,α = OqA,α , and
OqD,β = OqA,β . By Proposition 5.2.1 (2), the O-depth of α is the same in D as in C.
Choose a v-chain F in OmonD with tail OqD,α = OqA,α . Concatenating F with E

we get a v-chain in OmonD with tail OqD,β = OqA,β of length O-depth
OE3,4(β) +

2. This proves that O-depthE(β) ≥ O-depth
OE3,4(β) + 2.

To prove the reverse inequality, we need only turn the above proof on its head. Let
D be a v-chain in E with tail β such that O-depthE(β) = O-depthD(β). Let G be a
v-chain in OmonD with tail OqD,β and length O-depthE(β). There exists an element
α in D of O-depth 3 in D (by Lemma 5.3.2 (4)). Let C be the part of D up to and
including α, and A the part α > . . . > β . By Proposition 5.2.1 (2), O-depthC(α) = 3
and, as above, Corollary 5.3.6 applies.

By Corollary 5.2.4, OqA,α = OqD,α occurs in G. The part F of G up to and in-
cluding OqA,α is of length at most 3, and the part E : OqD,α > . . . > OqD,β belongs
also to OmonA (Proposition 5.1.4 (2)). Thus the length of G is at most 2 more than
the the length of E which is at most O-depth

OE3,4(β). �

Corollary 5.3.8 O(OEi,i+1)j,j+1 = OEi+j−1,i+j for odd integers i, j .

6 The map Oπ

This section describes the map Oπ . The description is given in §6.1. It relies on
certain claims proved in §§6.3, 6.4. Those proofs in turn refer to results from §8 (but
there is no circularity): to postpone the definition of Oπ until all the results needed
for it have been proved would hurt readability. The observations in §6.5 are required
only in §9.

The symbol j will be reserved for an odd positive integer throughout this section.

6.1 Description of Oπ

The map Oπ takes as input a monomial E in ON(v) and produces as output
a pair (OwE,O�E), where OwE is an element of OI (d) such that OwE ≥ v
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and O�E is a ‘smaller’ monomial, possibly empty, in ON(v). If the input E is empty,
no output is produced (by definition). So now suppose that E is non-empty.

We first partition E into subsets according to the O-depths of its elements. Let
OE

pr
k be the sub-monomial of E consisting of those elements of E that have O-

depth k—the superscript “pr” is short for “preliminary”. It follows from Corol-
lary 5.2.3 (4) that there are no comparable elements in OE

pr
k and so we can arrange

the elements of OE
pr
k in ascending order of both row and column indices. Let σk be

the last element of OE
pr
k in this arrangement (assuming OE

pr
k is non-empty).

Let now j be an odd integer. We set OE
pr
j,j+1 := OE

pr
j ∪ OE

pr
j+1. We say that

E is truly orthogonal at j if OE
pr
j,j+1 is non-empty (and therefore σj exists—by

Lemma 5.3.2 (4a)) and ph(σj ) belongs to N(v) (that is, if r > r∗ where σj = (r, c)).
Let OEj,j+1 denote the monomial in N(v) defined by OEj,j+1 :=

⎧
⎪⎨

⎪⎩

(
OE

pr
j,j+1 \ {σj }

)
∪

(
OE

pr
j,j+1 \ {σj }

)# ∪ {pv(σj ),ph(σj )} if E is truly
orthogonal at j

OE
pr
j,j+1 ∪

(
OE

pr
j,j+1

)#
otherwise

Here OE
pr
j,j+1 \ {σj } and other terms on the right are multisets: the multiplicity of σj

in OE
pr
j,j+1 \ {σj } is one less than that in OE

pr
j,j+1. As proved in Corollary 6.3.4 (1)

below, OEj,j+1 has depth at most 2. Let OEj (respectively OEj+1) be the subset (as
a multiset) of elements of depth 1 (respectively 2) of OEj,j+1.

Now, for every integer k, we apply the map of π of [7, §4] to OEk to obtain
a pair (OwE(k),OE′

k), where OwE(k) is an element of I (d,2d) and OE′
k is a

monomial in N(v). Let SOwE(k) be the distinguished monomial in N(v) associated
to OwE(k)—see §2.6.2.

Proposition 6.1.1

(1) SOwE(k), OE′
k are symmetric; therefore ∪kSOwE(k), ∪kOE′

k are so too.
(2) ∪kSOwE(k) is a distinguished subset of N(v) (in particular, the SOwE(k) are

disjoint).
(3) For j an odd integer, either both SOwE(j) and SOwE(j+1) meet the diagonal, or

neither of them does, precisely as whether or not E is truly orthogonal at j . And
therefore ∪kSOwE(k) has evenly many diagonal elements.

(4) No OE′
k intersects the diagonal. And therefore neither does ∪kOE′

k .

The proposition will be proved below in §6.4.
We are finally ready to define the image (OwE,O�E) of E under Oπ .

We let OwE be the element of I (d,2d) associated to the distinguished sub-
set ∪kSOwE(k) of N(v); since ∪kSOwE(k) is symmetric and has evenly many di-
agonal elements, it follows (Proposition 2.6.1) that OwE is in OI (d). And we take
O�E := ∪kOE′

k ∩ ON(v).

Remark 6.1.2 Setting

π(OEj,j+1) := (yj,j+1,OE
′
j,j+1), O�E := ∪j oddOE

′
j,j+1 ∩ ON(v),
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and defining OwE to be the element of I (d,2d) associated to ∪j oddSyj,j+1 would
give an equivalent definition of Oπ .

6.2 Illustration by an example

We illustrate the map Oπ by means of an example. Let d = 15, and v =
(1,2,3,4,9,10,14,16,18,19,20,23,24,25,26). A monomial E in ON(v) is
shown in Figure 5. Solid black dots indicate the elements that occur in E with non-
zero multiplicity. Integers written near the solid dots indicate multiplicities.

The O-depth of E is 5. The element (21,9) has O-depth 3 although it has depth 2
in E. Figure 6 shows the monomials OE

pr
1,2, OE

pr
3,4, and OE

pr
5,6. Solid dots, open dots,

and crosses indicate elements of these monomials respectively. The monomial E is
truly orthogonal at 1 and 3 but not at 5: σ1 = (28,2), σ3 = (21,9), and σ5 = (15,14).

Figure 7 shows the monomials OE1,2, OE3,4, and OE5,6 of N(v) and also their
decomposition into blocks, and Figure 8 the monomials OE′

1,2, OE′
3,4, and OE′

5,6.
We have

∪kSOwE(k) = {(15,14), (17,16), (21,10), (7,4), (27,24), (28,3), (30,1), (29,2)}

Fig. 5 The monomial E
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Fig. 6 OE
pr
1,2, OE

pr
3,4, and OE

pr
5,6

hence OwE = (7,9,15,17,18,19,20,21,23,25,26,27,28,29,30). The monomial
O�E is the intersection with ON(v) of the union of OE′

1,2, OE′
3,4, and OE′

5,6—in
other words it is just the monomial lying above d in Figure 8.

6.3 A proposition about OEj,j+1

The aim of this subsection is to show that OEj,j+1 has depth no more than 2—see
item (b) of Proposition 6.3.3. This basic fact was mentioned above in the description
of Oπ and is necessary (psychologically although not logically) to make sense of the
definitions of OEj and OEj+1. We prepare the way for Proposition 6.3.3 by way of
two preliminary propositions. The first of these is about elements of O-depth j and
j + 1 in E, the second about the relation of these elements with σj .

Proposition 6.3.1

(1) OE
pr
k has no comparable elements.
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Fig. 7 OE1,2, OE3,4, and OE5,6

(2) For j an odd integer and β an element of OE
pr
j+1, there exists α in OE

pr
j such

that α > β . In particular, the row index of σj+1 (if σj+1 exists) is less than the
row index of σj .

Proof For (1) use Corollary 5.2.3 (4); for (2), Prop. 5.3.4, Lemma 5.3.2 (4). �

Proposition 6.3.2 Let E be truly orthogonal at j , with j odd. Then

(1) pv(σj ) > ph(σj ); if α > pv(σj ), then α > σj ; if α > σj , then α > ph(σj ).
(2) No element of OE

pr
j is comparable to pv(σj ) or ph(σj ).

(3) No element of OE
pr
j+1 is comparable to ph(σj ).

(4) The following is not possible: α ∈ OE
pr
j , β ∈ OE

pr
j+1, and ph(α) > β .

Proof (1) is trivial. (2) follows immediately from the definition of σj . We now prove
(3). First suppose β > ph(σj ) for some β in OE

pr
j+1. By (2) of Proposition 6.3.1,

there exists α in OE
pr
j such that α > β . But then the row index of α exceeds that

of σj , a contradiction to the choice of σj .
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Fig. 8 OE′
1,2, OE′

3,4, and OE′
5,6

We claim it is not possible for β ∈ OE
pr
j+1 to satisfy ph(σj ) > β . This being a

special case of (4), we need only prove that statement. So suppose α belongs to
OE

pr
j and ph(α) > β . Let C be a v-chain in E with tail α and O-depthC(α) = j

(Proposition 5.2.3 (1)). Concatenate C with α > β and call the resulting v-chain D.
Then, by Lemma 5.3.2 (3), α is of type H in D, so that, by Lemma 5.3.2 (1), we have
O-depthD(β) = O-depthD(α) + 2. But, by Proposition 5.2.1 (2), O-depthD(α) =
O-depthC(α) = j , so that O-depthE(β) ≥ j + 2, a contradiction. �

Let OEj,j+1(ext) denote the set—not multiset—defined by:

OEj,j+1(ext) :=
{

OEj,j+1 ∪ {σj , σ
#
j } if E is truly orthogonal at j

OEj,j+1 otherwise

Here OEj,j+1 on the right stands for the underlying set of the multiset OEj,j+1

defined above. The set OEj,j+1(ext) is the disjoint union of the sets OEj (ext)
and OEj+1(ext) defined as follows (here again the terms on the right hand side denote
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the underlying sets of the corresponding multisets):

OEj (ext) :=
{

OE
pr
j ∪ (OE

pr
j )# ∪ {pv(σ )} if E is truly orthogonal at j

OE
pr
j ∪ (OE

pr
j )# otherwise

OEj+1(ext) :=

⎧
⎪⎨

⎪⎩

OE
pr
j+1 ∪

(
OE

pr
j+1

)# ∪ {ph(σ )} if E is truly orthogonal at j

OE
pr
j+1 ∪

(
OE

pr
j+1

)#
otherwise

Proposition 6.3.3

(1) OEj (ext) (respectively OEj+1(ext)) is precisely the set of elements of depth 1
(respectively 2) in OEj,j+1(ext). In particular,
(a) Neither OEj (ext) nor OEj+1(ext) contains comparable elements.
(b) The length of a v-chain in OEj,j+1(ext) is at most 2.
(c) There is a v-chain of length 2 in OEj,j+1 unless OEj+1(ext) is empty.

(2) Let k be a positive integer, not necessarily odd. If there is in E an element of
O-depth at least k, then OEk(ext) is non-empty. The converse also holds except
possibly if k is even and E is truly orthogonal at k − 1. In particular, if OEk(ext)
is non-empty, then there is an element of O-depth at least k − 1.

Proof (1): It is enough to show that every element of OEj (ext)(up) (respec-
tively OEj+1(ext)(up)) is of depth 1 (respectively 2) in OEj,j+1(ext)(up), for

• α > β implies α(up) > β(up) for elements α, β of N(v).
• OEj,j+1(ext) = OEj (ext) ∪ OEj+1(ext).
• OEj,j+1(ext), OEj (ext), and OEj+1(ext) are symmetric.

In turn, it is enough to show the following:

(i) Every element of OEj (ext)(up) has depth 1.
(ii) OEj+1(ext)(up) has no comparable elements.

(iii) Every element of OEj+1(ext)(up) has depth at least 2.

Item (i) follows from Proposition 6.3.1 and Proposition 6.3.2 (2); item (ii) from Pro-
position 6.3.1 (1) and Proposition 6.3.2 (3); item (iii) from Proposition 6.3.1 (2) and
Proposition 6.3.2 (1).

(2): The first assertion follows from Lemma 5.3.2 (4): if k is odd there is an ele-
ment of O-depth k in E; if k is even and there is no element of O-depth k in E, then
there is in E an element of O-depth k − 1 and type H, so E is truly orthogonal at
k − 1. The second assertion is clear from the definition of OEk(ext). �

Corollary 6.3.4

(1) No element of OEj,j+1 has depth more than 2.
(2) OEj+1(ext) = OEj+1 and OEj (ext) ∩ OEj,j+1 = OEj (as sets). In particular,

OEj+1 = OEj,j+1 ∩ OEj+1(ext) and OEj = OEj,j+1 ∩ OEj (ext) as multisets
defined by the intersection of a multiset with a subset.
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Proof (1): Since OEj,j+1 ⊆ OEj,j+1(ext) (as sets), this follows immediately from
item (b) of the proposition above.

(2): Since the union of OEj+1(ext) (which always is contained in OEj,j+1) and
OEj (ext) ∩ OEj,j+1 is all of OEj,j+1, and since OEj , OEj+1 are disjoint, it it
enough to show that OEj+1(ext) ⊆ OEj+1 and OEj (ext) ∩ OEj,j+1 ⊆ OEj .

Now, since elements of OEj (ext) have depth 1 even in OEj,j+1(ext) (by item (1)
of the proposition above), it is immediate that OEj (ext) ∩ OEj,j+1 ⊆ OEj . And
it follows from the proof of item (iii) in the proof of item (1) of the proposi-
tion above that an element of OEj+1(ext) has depth 2 even in OEj,j+1 (not just
in OEj,j+1(ext)), so that OEj+1(ext) ⊆ OEj+1. �

6.4 Proof of Proposition 6.1.1

(1) The monomials OEj,j+1 are clearly symmetric. Observe that α in OEj,j+1 has
the same depth as α#, for α1 > α2 implies α(up) > α2(up) and α(down) > α2(down)
for α1, α2 in N(v). Thus the monomials OEk are symmetric. Since the map π of [7]
respects #—see Proposition 5.7 of [4]—it follows that SOwE(k) and OE′

k are sym-
metric. Therefore so are ∪kSOwE(k) and ∪kOE′

k .
(2) This follows from Corollary 8.3.6.
(3) If E is truly orthogonal at j , then pv(σj ) and ph(σj ) are diagonal elements re-

spectively in OEj and OEj+1—see Corollary 6.3.4 (2). Thus both OEj and OEj+1
have diagonal blocks in the sense of Proposition 5.10 (A) of [4]. It follows from the
result just quoted that both SOwE(j) and SOwE(j+1) meet the diagonal. It is of course
clear that each SOwE(k) meets the diagonal at most once since diagonal elements are
clearly comparable but elements of SOwE(k) are not by Lemma 4.9 of [7].

Suppose that E is not truly orthogonal at j . Then σj and σ #
j belong to different

blocks—this is equivalent to the definition of E being not truly orthogonal at j . By
Proposition 6.3.1 (2), it follows that σj+1 and σ #

j+1 also belong to different blocks.
So neither OEj nor OEj+1 has a diagonal block.

(4) If E is not truly orthogonal at j , then neither OEj nor OEj+1 has a diagonal
block (as has just been said above), and it follows from Proposition 5.10 (A) of [4]
that neither OE′

j nor OE′
j+1 meets the diagonal.

So suppose that E is truly orthogonal at j . Then both OEj and OEj+1 have
a diagonal entry each of multiplicity 1, namely pv(σj ) and ph(σj ) respectively.
It is clear from the definition of σj that no element of OEj (up) shares its row
index with pv(σj ). And it follows from Proposition 6.3.1 (2) that no element of
OEj+1(up) shares its row index with ph(σj ). It now follows from the proof of Propo-
sition 5.10 (B) of [4]—see the last line of that proof—that neither OE′

j nor OE′
j+1

meets the diagonal. �

6.5 More observations

It follows from Corollary 6.3.4 (1) that the length of any v-chain in OEj,j+1 is at
most 2. Applying Lemma 8.1.1 to OEj,j+1, we get:

Proposition 6.5.1 The length of any v-chain in OEj,j+1 ∪ OE′
j ∪ OE′

j+1 is ≤ 2. �
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Proposition 6.5.2

(1) For α′ = (r, c) in OE′
k(up), there exists α = (r,C) in OE

pr
k with C ≤ c.

(2) For α′ = (r, c) in OE′
j+1(up), there exists α = (R, c) in OEj+1(up) with r ≤ R.

(3) For α′ in OE′
j+1(up), there exists α in OE

pr
j with α > α′.

Proof (1) That there exists α in OEk(up) with C ≤ c follows from the definition of
OE′

k(up). Clearly such an α cannot be on the diagonal, so α belongs to OE
pr
k .

(2) As in the proof of (1), it follows from the definition of OE′
j+1 that there exists

α = (R, c) in OEj+1 with r ≤ R. If α lies strictly below the diagonal, then c > R∗,
so that α∗ = (c∗,R∗) > α′ = (r, c), a contradiction to Lemma 8.1.1 (α∗ belongs to
OEj+1 by the symmetry of OEj+1). Thus α belongs to OEj+1(up).

(3) Writing α′ = (r, c), by (1), we can find an β = (r,C) in OE
pr
j+1 with C ≤ c.

By Proposition 6.3.1 (2), there exists α in OE
pr
j,j+1 such that α > β . �

Corollary 6.5.3 If in OE′
j (up) ∪ OE′

j+1(up) there exists an element with horizontal
projection in N(v), then E is truly orthogonal at j .

Proposition 6.5.4 The O-depth of an element in OE
pr
j ∪ OE

pr
j+1 is at most 2. More

strongly, the O-depth of an element in OE
pr
j,j+1 ∪OE′

j (up)∪OE′
j+1(up) is at most 2.

Proof It is enough to show that no element in OE′
j (up) ∪ OE′

j+1(up) has O-depth

more than 2, for we may assume by increasing multiplicities that OE
pr
j ⊆ OE′

j (up)

and OE
pr
j+1 ⊆ OE′

j+1(up) (as sets). It follows from Proposition 6.5.1 that a v-chain in
OE′

j (up)∪OE′
j+1(up) has length at most 2. Let α′

1 = (r1, c1) > α′
2 = (r2, c2) be such

a v-chain. It follows from the proof of Corollary 4.14 (2) of [7] that α′
1 ∈ OE′

j (up) and
α′

2 ∈ OE′
j+1(up). By item (1) of Lemma 5.3.2, it is enough to rule out the following

possibility: α′
1 is of type H in α′

1 > α′
2 and ph(α

′
1) > α′

2.
Suppose that this is the case. By Proposition 6.5.2 (1) and (2), it follows that there

exist elements α1 = (r1,C1) ∈ OE
pr
j,j+1 and α2 = (R2, c2) ∈ OEj+1(up) with C1 ≤

c1 and r2 ≤ R2. Since ph(α
′
1) > α′

2, it follows that α1 > α2. Now, if α2 = ph(σj ), then
Proposition 6.3.2 (2) is contradicted; if α2 belongs to OE

pr
j+1, Proposition 6.3.2 (4) is

contradicted (because ph(α1) > α2). �

7 The map Oφ

This section describes the map Oφ and proves some basic facts about it. Certain
proofs here refer to results from §8, but there is no circularity. As in §6, j denotes
an odd integer throughout.

7.1 Description of Oφ

The map Oφ takes as input a pair (w,T), where T is a monomial, possibly empty,
in ON(v) and w ≥ v an element of OI (d) that O-dominates T, and produces as
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output a monomial Oφ(w,T) of ON(v). To describe Oφ, we first partition T into
subsets OTw,j,j+1, the partition being dependent on w.

Let S
j
w (respectively Sw,j,j+1) denote the subset of Sw consisting of those el-

ements that are j -deep (respectively that are j deep but not j + 2 deep, or equiva-
lently of depth j or j + 1) in Sw in the sense of [7, §4]. Since Sw is distinguished,
symmetric, and has evenly many elements on the diagonal d(v), it follows that S

j
w

and Sw,j,j+1 too have these properties, and that, in fact, the number of diagonal ele-
ments of Sw,j,j+1 is either 0 or 2 (in the latter case, the elements have to be distinct
since Sw is distinguished and so is multiplicity free). Let us denote by wj and wj,j+1

the elements of OI (d) corresponding to S
j
w and Sw,j,j+1 by Proposition 2.6.1.

Let OTw,j,j+1 denote the subset of T consisting of those elements α such that

• every v-chain in T with head α is O-dominated by wj , and
• there exists a v-chain in T with head α that is not O-dominated by wj+2.

It is evident that the subsets OTw,j,j+1 are disjoint (as j varies over the odd integers)
and that their union is all of T (for w = w1 O-dominates all v-chains in T by hy-
pothesis and S

j
w is empty for large j and so wj = v). In other words, the OTw,j,j+1

form a partition of T.

Lemma 7.1.1

(1) The length of a v-chain in OTw,j,j+1 ∪ OT#
w,j,j+1 is at most 2. In fact, the O-

depth of any element in OTw,j,j+1 is at most 2.
(2) wj,j+1 O-dominates OTw,j,j+1.

Proof The lemma follows rather easily from Corollary 8.2.3 as we now show. Let
C be a v-chain in OTw,j,j+1. Let τ be the tail of C. Choose a v-chain D in T with
head τ that is not O-dominated by wj+2. Let E be the concatenation of C with D.
Since the head of E belongs to OTw,j,j+1, it follows that E is O-dominated by wj .
It follows from (the only if part of) Corollary 8.2.3 (applied with E = E and x = wj )
that wj,j+1 O-dominates OE

pr
1 ∪ OE

pr
2 and wj+2 O-dominates OE3,pr. This means

τ 
∈ OE3,pr, so τ ∈ OE
pr
1 ∪ OE

pr
2 , and so C ⊆ OE

pr
1 ∪ OE

pr
2 . This proves (2). By

Proposition 5.2.1 (2), the O-depths of elements of C are the same in C and E, so
C ⊆ OC

pr
1 ∪OC

pr
2 , which proves the second assertion of (1). The first assertion of (1)

follows from the second (see Lemma 5.3.1). �

Corollary 7.1.2 wj,j+1 dominates OTw,j,j+1 ∪ OT#
w,j,j+1 in the sense of [7].

Proof Lemma 7.1.1 (2), Corollary 5.1.6 (taking E = OTw,j,j+1 and w = wj,j+1). �

So we may apply the map φ of [7, §4] to the pair (wj,j+1,OTw,j,j+1 ∪
OT#

w,j,j+1) to obtain a monomial (OTw,j,j+1 ∪OT#
w,j,j+1)


 in N(v). In applying φ,

there is the partitioning of OTw,j,j+1 ∪OT#
w,j,j+1 into ‘pieces’, these being indexed

by elements of Swj,j+1 = Sw,j,j+1—observe that the elements of depth 1 (respec-
tively 2) of Sw,j,j+1 are precisely those of Sw of depth j (respectively j + 1). We
denote by OPβ the piece of OTw,j,j+1 ∪ OT#

w,j,j+1 corresponding to β in Ewj,j+1 .
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We also use the notation OP

β where the ‘star’ operation on a piece is as defined

in [7]. Moreover, we will use the phrase O-piece of T (with respect to w being im-
plicitly understood) to refer to a piece of OTw,j,j+1 ∪ OT#

w,j,j+1.

Lemma 7.1.3

1. The monomial (OTw,j,j+1 ∪ OT#
w,j,j+1)


 is symmetric and has either none or
two distinct diagonal elements depending exactly on whether Swj,j+1 = Sw,j,j+1
has 0 or 2 elements on the diagonal.

2. The depth of (OTw,j,j+1 ∪ OT#
w,j,j+1)


 is 2; the sets ∪β∈(Sw)j OP

β and

∪β∈(Sw)j+1OP

β are respectively those of the elements of depth 1 and 2 in

(OTw,j,j+1 ∪ OT#
w,j,j+1)


.

Proof (1) The symmetry follows by combining Proposition 5.6 of [4], which says
that the map π respects the involution #, with Proposition 4.2 of [7], which says that
π and φ are are inverses of each other.

The assertion about diagonal elements follows by combining item (B) of [4,
Proposition 5.10], which is an assertion about the existence and relative multiplic-
ities of diagonal elements in B and B′ where B is a diagonal block of a monomial
in N(v), and Proposition 4.2 of [7].

(2) It follows from Propositions 4.2 of [7] that the map π (described in §4 of that
paper) applied to (OTw,j,j+1 ∪OT#

w,j,j+1)

 results in the pair (wj,j+1,OTw,j,j+1 ∪

OT#
w,j,j+1). It now follows from Lemma 4.16 of [7] that the depth of (OTw,j,j+1 ∪

OT#
w,j,j+1)


 is exactly 2. The latter assertions again follow from the results of [7]—
in fact, the proof that π ◦ φ is identity on pages 47–49 of [7] shows that the OP


β are

the blocks in the sense of [7] of the monomial (OTw,j,j+1 ∪ OT#
w,j,j+1)


. �

Suppose that (OTw,j,j+1 ∪ OT#
w,j,j+1)


 contains the pair (a, a∗), (b, b∗) of di-
agonal elements with a > b. We call the pair (b, a∗), (a, b∗) the twists, and set
δj := (b, a∗). In other words, δj is the element of the twisted pair that lies above
the diagonal—observe that the twisted elements are reflections of each other. We
allow ourselves the following ways of expressing the condition that (OTw,j,j+1 ∪
OT#

w,j,j+1)

 has diagonal elements: δj exists; w is diagonal at j (the latter expres-

sion is justified by the lemma above).
With notation as above, consider the new monomial defined as

{
(OTw,j,j+1 ∪ OT#

w,j,j+1)

 if w is not diagonal at j

(
(OTw,j,j+1 ∪ OT#

w,j,j+1)

 \ d(v)

)
∪ {δj , δ

#
j } if w is diagonal at j

This new monomial is symmetric and contains no diagonal elements. Its intersection
with ON(v) is denoted OT


w,j,j+1. In other words, OT

w,j,j+1 is the intersection of

the new monomial with the subset of N(v) of those elements that lie strictly above
the diagonal.

The union of OT

w,j,j+1 over all odd integers j is defined to be Oφ(w,T). This

finishes the description of the map Oφ.
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Fig. 9 To illustrate Oφ: see
Example 7.1.4

For β in Sw,j,j+1(up), we define the orthogonal piece-star O(T,w,β)
 corre-
sponding to β as

O(T,w,β)
 :=
⎧
⎨

⎩

OP

β = OP


β (up) if β is not on the diagonal
OP


β ∩ ON(v) if β ∈ (Sw)j+1 is on the diagonal
{OP


β ∩ ON(v)} ∪ {δj } if β ∈ (Sw)j is on the diagonal
(7.1.1)

With this, we can say that Oφ(w,T) is the union of O(T,w,β)
 as β varies over
Sw(up).

Example 7.1.4 We illustrate by means of an example the map Oφ. Take d = 12, v =
(1,2,3,4,5,6,9,10,13,14,17,18), w=(8,10,13,14,16,18,19,20,21,22,23,24)

and T = {(21,3), (16,4), (16,5), (7,6)}. Figure 9 shows the elements of Sw and T.
We have:

w1 = w = (8,10,13,14,16,18,19,20,21,22,23,24),

w3 = (1,2,8,10,13,14,16,18,19,20,21,22),

w5 = (1, ,3,4,8,10,13,14,16,18,19,20);

OTw,1,2 is empty, OTw,3,4 = {(21,3)(16,4)},
OTw,5,6 = {(16,5)(7,6)}, OTw,j,j+1 is empty for j ≥ 7.

Figure 10 shows the break up of T into the OTw,j,j+1.
Now:

w1,2 = (3,4,5,6,9,10,13,14,17,18,23,24),

w3,4 = (1,2,5,6,9,10,13,14,17,18,21,22),

w5,6 = (1,2,3,4,8,10,13,14,16,18,19,20).



J Algebr Comb (2010) 31: 355–409 391

Fig. 10 To illustrate Oφ: see
Example 7.1.4

Fig. 11 To illustrate Oφ: see
Example 7.1.4. The single,
double, and triple circles
indicate respectively points of
(OTw,1,2 ∪ OTw,1,2

#)∗,
(OTw,3,4 ∪ OTw,3,4

#)∗, and
(OTw,5,6 ∪ OTw,5,6

#)∗

Applying the map φ of [7] to the pairs (wj,j+1,OTw,1,2 ∪ OT#
w,1,2), we get:

(OTw,1,2 ∪ OTw,1,2
#)∗ = {(24,1), (23,2)},

(OTw,3,4 ∪ OTw,3,4
#)∗ = {(21,3), (22,3), (22,4), (16,4), (21,4), (21,9)},

(OTw,5,6 ∪ OTw,5,6
#)∗ = {(16,5), (20,5), (20,9), (16,9),

(7,6), (8,6), (19,17), (19,18)}
Figure 11 shows these monomials.

Clearly w is diagonal at 1,3,5; in other words δ1, δ3, δ5 exist: δ1 = (23,1), δ3 =
(21,3), and δ5 = (16,5). We have:

OT∗
w,1,2 = {(23,1)}, OT∗

w,3,4 = {(21,3), (21,3), (16,4)}
OT∗

w,5,6 = {(16,5), (16,5), (7,6), (8,6)}.
Figure 12 shows these monomials. And, finally, Figure 12 shows the union of these
monomials, which is Oφ(w,T). �
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Fig. 12 To illustrate Oφ: see
Example 7.1.4

Lemma 7.1.5 Suppose that (OTw,j,j+1 ∪ OT#
w,j,j+1)


 contains the pair (a, a∗),
(b, b∗) of diagonal elements with a > b. Let

. . . , (r1, c1), (a, a∗), (c∗
1, r∗

1 ), . . . ; . . . , (r2, c2), (b, b∗), (c∗
2, r∗

2 ), . . .

be respectively the elements of depth 1 and 2 of (OTw,j,j+1 ∪OT#
w,j,j+1)


 arranged
in increasing order of row and column indices. Then

(1) c1 ≤ a∗ and r1 ≤ b (assuming (r1, c1) exists); and
(2) r2 < b and c2 ≤ b∗ (assuming (r2, c2) exists).

Proof (1) Suppose that (r1, c1) exists. It is clear that c1 ≤ a∗. From way the map
φ of [7] is defined, it follows that (r1, a

∗) is an element of OTw,j,j+1. Suppose that
r1 > b. Then ph(r1, a

∗) = (r1, r
∗
1 ) belongs to N(v). We consider two cases.

If (r2, c2) exists, then, again from the definition of the map φ, it follows that
(r2, b

∗) is an element of OTw,j,j+1. But then ph(r1, a
∗) = (r1, r

∗
1 ) > (b, b∗) and

(b, b∗) dominates (r2, b
∗), which means that the v-chain (r1, a

∗) > (r2, b
∗) (note

that a∗ < b∗ because a > b by hypothesis) in OTw,j,j+1 has O-depth more than 2, a
contradiction to Lemma 7.1.1 (1).

Now suppose that (r2, c2) does not exist. (Then (b, b∗) is the diagonal element
in (Sw)j+1.) Consider the singleton v-chain C := {(r1, a

∗)} in OTw,j,j+1. Then
OmonC = {(a, a∗), (r1, r

∗
1 )} which is not dominated by wj,j+1, a contradiction to

Lemma 7.1.1 (2).
(2) Suppose that (r2, c2) exists. Then there exists, by the definition of the map φ,

an element (r2, b
∗) in OTw,j,j+1. Since (r2, b

∗) lies above the diagonal, it follows
that r2 < b. That c2 ≤ b∗ is clear. �

7.2 Basic facts about OTw,j,j+1 and OT

w,j,j+1

Lemma 7.2.1

(1) Let α′ > α be elements of T. Let j and j ′ be the odd integers such that α′ ∈
Tw,j ′,j ′+1 and α ∈ OTw,j,j+1. Then j ′ ≤ j .
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(2) If, further, either
(a) there exists μ in T such that α′ > μ > α, or
(b) α′ ∈ OPβ ′ for β ′ in (Ew)j ′+1,
then j ′ < j .

Proof (1) By hypothesis, every v-chain with head α′ is O-dominated by wj ′
. This

implies, by Corollary 5.2.2, that every v-chain with head α is O-dominated by wj ′
.

This shows j ′ ≤ j .
(2a) Suppose that j ′ = j . It follows from (1) that α′, μ, and α all belong to

OTw,j,j+1. But then α′ > μ > α is a v-chain of length 3 in OTw,j,j+1, a contra-
diction to Lemma 7.1.1 (1).

(2b) Suppose that j ′ = j . Then α′ > α is a v-chain in OTw,j,j+1. Being of
length 2, it cannot be dominated by (Ew)j+1, which means, by the definition of
OPβ ′ , that α′ cannot belong to OPβ ′ , a contradiction. �

Proposition 7.2.2

(1) The length of a v-chain in OT

w,j,j+1 is at most 2.

(2) The O-depth of OT

w,j,j+1 is at most 2.

(3) ∪β∈(Sw)j (up)O(T,w,β)
 is the set of depth 1 elements of OT

w,j,j+1 (in particu-

lar, no two elements there are comparable); if δj exists, then it is the last element
of ∪β∈(Sw)j (up)O(T,w,β)
 when the elements are arranged in increasing order
of row and column indices.

(4) ∪β∈(Sw)j+1(up)O(T,w,β)
 is the set of depth 2 elements of OT

w,j,j+1 (in par-

ticular, no two elements there are comparable); if δj exists, then its row index
exceeds the row index of any element in ∪β∈(Sw)j+1(up)O(T,w,β)
.

Proof For (1), it is enough, given Lemma 7.1.3 (2), to show that δj is not compara-
ble to any element of depth 1 of (OTw,j,j+1 ∪ OT#

w,j,j+1)

, and this follows from

Lemma 7.1.5 (1). In fact, the above argument proves also (3).
For (4), it is enough, given Lemma 7.1.3 (2), the symmetry of the monomials

involved in that lemma, and the observation that α > β implies α(up) > β(up) for
elements α, β of N(v), to show the following: if (a, a∗) > γ = (e, f ) for γ an ele-
ment of (OTw,j,j+1 ∪ OT#

w,j,j+1)

 lying (strictly) above the diagonal, then δj > γ .

But this follows from Lemma 7.1.5 (2): γ is a depth 2 element in (OTw,j,j+1 ∪
OT#

w,j,j+1)

, and we have e ≤ r2 < b (and a∗ < f since (a, a∗) > γ ). In fact, the

above argument proves also (2): observe that f ≤ b∗ (Lemma 7.1.5 (2)). �

8 Some lemmas

This section is preparatory towards the proof in §9 of the main combinatorial results
of this paper, namely Propositions 4.3.1 and 4.3.2. These being analogues of Proposi-
tions 4.1 and 4.2 of [7], their proofs should naturally be analogous too. The proofs in
[7] rely on certain lemmas and it is natural therefore to first establish the orthogonal
analogues of those. The purpose of this section is precisely that.
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The lemmas below, especially those in §8.4, may be unintelligible until one tries
to read §9. The division of this section into four subsections is also suggested by the
structure of the proofs in [7].

8.1 Lemmas from the Grassmannian case

In this subsection, the terminology and notation of [7, §4] are in force. The statements
here, while they do not explicitly appear in [7, §4], are but slightly more precise
versions of ones that do appear there, and so we omit the proofs (which in any case
can be found in [20, §9.1]).

For a monomial F in N(v) and k a positive integer, denote by Fk the set of ele-
ments of depth k of F (as in [7]), by Fk the set of elements of depth at least k of F,
and set Fk,k+1 := Fk ∪ Fk+1.

Lemma 8.1.1 Let F be a monomial in N(v), and let π(F) = (w,F′), where π is the
map defined in [7, §4]. Then the maximum length of a v-chain in F ∪ F′ is the same
as the maximum length of a v-chain in F.

Lemma 8.1.2 Let B and U be monomials in N(v). Assume that

• the elements of B form a single block (in the sense of [7, Page 38]).
• U has depth 1 (equivalently, there are no comparable elements in U).
• for every β = (r, c) in B, there exist γ 1(β) = (R1,C1), and γ 2(β) = (R2,C2) in

U such that

C1 < c, C2 < R1, r < R2

this holds, for example, when there exists γ (β) in U such that γ (β) > β: take
γ 1(β) = γ 2(β) = γ (β).

Then there exists a unique block C of U such that w(C) > w(B).

Let x be an element of I (d,n) and Sx the corresponding distinguished subset
in N(v) (see §2.6.2). For k a positive integer, let xk , xk,k+1, xk denote respectively
the elements of I (d,n) corresponding to the distinguished subsets (Sx)k , (Sx)k,k+1,
(Sx)

k . As a corollary of [7, Lemma 4.5] we have:

Lemma 8.1.3 Let F be a monomial in N(v) and x an element of I (d,n). For x to
dominate F it is necessary and sufficient that for every α = (r, c) in F there exist
β = (R,C) in Sx with C ≤ c, r ≤ R and depthSx

β ≥ depthFα.

Corollary 8.1.4 x dominates F ⇔ xk dominates Fk ∀ k ⇔ x1,2 dominates F1,2 and
x3 dominates F3.

8.2 Orthogonal analogues of lemmas of 8.1

Lemma 8.2.2 below is the orthogonal analogue of Lemma 8.1.3 (more precisely, that
of the first assertion of Corollary 8.1.4). The following proposition will be used in its
proof.
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Proposition 8.2.1 Let x be an element of OI (d) and E a monomial in ON(v). Then
x O-dominates OE

pr
1 ∪ OE

pr
2 if and only if it O-dominates every v-chain in E of

O-depth at most 2.

Proof The ‘if’ part is immediate from definitions (see also Proposition 6.5.4). For the
‘only if’ part, let C be a v-chain in E of O-depth at most 2. To show that x dominates
OmonC , it is enough, by Corollary 8.1.4, to show that x1 dominates (OmonC)1 and
x2 dominates (OmonC)2 (by choice of C, (OmonC)k is empty for k ≥ 3).

Let α′ ∈ (OmonC)1. Choose α in C such that α′ ∈ OmonC,α . Choose α0 in OE
pr
1

such that α0 dominates α. Since x O-dominates the singleton v-chain {α0}, it follows
that x1 dominates Oq{α0},α0

. We claim that Oq{α0},α0
dominates α′. To prove the

claim, we need only rule out the possibility that α0 is of type S in {α0} and α of
type V in C. Since α′ ∈ (OmonC)1, it follows from Proposition 5.1.4 (1) that α is
the first element of C. In particular, if α is of type V in C, then ph(α) ∈ N(v), so
ph(α0) ∈ N(v), and α0 is of type H in {α0}. The claim is thus proved.

Now consider an element of (OmonC)2. Observe that the length of C is at most 2
(Lemma 5.3.1). So our element is either the horizontal projection ph(α) of the head
α of C, or it is OqC,β where β is the tail of C. In the first case, let α0 be as in the
previous paragraph, and proceed similarly. It is clear that ph(α0) ∈ N(v) (because
ph(α) ∈ N(v)); x2 dominates ph(α0) and so also ph(α).

Now we handle the second case. If β ∈ OE
pr
2 , then C is contained in OE

pr
1 ∪OE

pr
2

and there is nothing to prove. So assume that O-depthE(β) ≥ 3. Choose a v-chain D

in E with tail β , O-depthD(β) ≥ 3, and with the good property as in Proposition 5.3.4.
There occurs in D an element of O-depth 3, say δ. (Lemma 5.3.2 (4)). Let A de-
note the part δ > . . . of D and C′ the part up to but not including δ. There clearly
is an element—call it μ—of depth 2 in OmonD that dominates OqD,β . This ele-
ment μ belongs to OmonC′ (Corollary 5.3.6 (3)). Since D has the good property of
Proposition 5.3.4, C′ ⊆ OE

pr
1 ∪ OE

pr
2 , so μ is dominated by an element in (Sx)2. In

particular, OqD,β is dominated by the same element of (Sx)2.
We are still not done, for it is possible that OqD,β be β and OqC,β be pv(β). Sup-

pose that this is the case. Then α > β is connected. So ph(α) ∈ N(v) and the legs of
α and β intertwine. As seen above in the third paragraph of the present proof, there is
an element of (Sx)2 that dominates ph(α). By the distinguishedness of Sx , it follows
that the element in (Sx)2 dominating β is the same as the one dominating ph(α). By
the symmetry of Sx , this element lies on the diagonal and so dominates pv(β), and,
finally, we are done with the proof in the second case. �

As is easily seen, for x ∈ OI (d) and j an odd integer, xj,j+1 and xj belong to
OI (d)—see Proposition 2.6.1.

Lemma 8.2.2 Let E be a monomial in ON(v) and x an element of OI (d). For x

to O-dominate E it is necessary and sufficient that, for every odd integer j , every
v-chain in OE

pr
j ∪ OE

pr
j+1 is O-dominated by xj,j+1.

Proof First suppose that x dominates E. Let j be an odd integer and let A a v-chain
in OE

pr
j ∪OE

pr
j+1. We need to show that xj,j+1 dominates OmonA. For this, we may
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assume that A is maximal (by Corollary 5.2.2). By Corollary 5.2.3 (3), the length of
A is at most 2. By Lemma 5.3.2 (4) (b), for every β in OE

pr
j+1 there exists α in OE

pr
j

with α > β . Thus we may assume that the head α of A belongs to OE
pr
j .

It is enough to show (see [7, Lemma 4.5]) that for any v-chain E in OmonA

• the length of E is at most 2;
• there exists an x-dominated monomial in N(v) containing E and the head of E is

an element of depth at least j in that monomial.

The first of these conditions holds by Proposition 6.5.4. We now show that the second
holds.

We may assume that E is maximal in OmonA. By Proposition 5.1.4 (1), the head
of E is OqA,α . Let C a v-chain in E with tail α such that O-depthC(α) = j . Let
D be the concatenation of C with A. We claim that the monomial OmonD has the
desired properties. That OmonD is x-dominated is clear (since x O-dominates E). By
Corollary 5.3.6, it follows that OqD,α = OqA,α and OmonA ⊆ OmonD (in particular
that E ⊆ OmonD). By Proposition 5.2.1 (2), O-depthD(α) = O-depthC(α) = j , that
is, depthOmonD

OqD,α = j . The proof of the necessity is thus complete.
To prove the sufficiency, proceed by induction on the largest odd integer J such

that OE
pr
J ∪OE

pr
J+1 is non-empty. When J = 1, there is nothing to prove, for OE

pr
1 ∪

OE
pr
2 = E and x1,2 O-dominates OE

pr
1 ∪OE

pr
2 . So suppose that J ≥ 3. We implicitly

use Corollary 5.3.8 in what follows. By induction, x3 O-dominates OE3,4.
Let D be a v-chain in E. Our goal is to show that x dominates OmonD .

Let α be the element of D with O-depthD(α) = 3—such an element exists, by
Lemma 5.3.2 (4) (if there exists in D an element of O-depth in D exceeding 2); the
following proof works also in the case when α does not exist. Let A be the part α > . . .

of D, and C′ the part up to but not including α. By Proposition 5.2.1 (2), the O-depth
(in C′) of elements of C′ is at most 2. By Proposition 8.2.1, x1,2 dominates OmonC′ .
By Corollary 5.3.6 (3), (OmonD)1,2 = OmonC′ and (OmonD)3 = OmonA. Since
A ⊆ OE3,4, it follows that x3 dominates OmonA (induction hypothesis). Finally, by
an application of Corollary 8.1.4, we conclude that x dominates OmonD . �

Corollary 8.2.3 An element x of OI (d) O-dominates a monomial E in ON(v) if
and only if x1,2 O-dominates OE

pr
1 ∪ OE

pr
2 and x3 O-dominates OE3,4.

Proof It is easy to see that (x3)j,j+1 = xj+2,j+3; it follows from Proposition 5.3.7
that O(OE3,4)

pr
j ∪O(OE3,4)

pr
j+1 = OE

pr
j+2 ∪OE

pr
j+3. The assertion follows from the

lemma. �

8.3 Orthogonal analogues of some lemmas in [7]

The proofs of Propositions 4.1 and 4.2 of [7] are based on assertions 4.9–4.16 (of
that paper). The orthogonal analogues of these assertions are proved in this section.
Assertion 4.9 exactly as in [7] is relevant in the present context and used frequently
below, so we recall it explicitly as Lemma 8.3.1.

Throughout this section E denotes a monomial in ON(v). An O-block of E means
a block in the sense of [7] of OEk for some integer k.
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Lemma 8.3.1 If B1, . . . ,Bl are the blocks in order from left to right of some OEk ,
and w(B1) = (R1,C1), w(B2) = (R2,C2), . . ., w(Bl ) = (Rl,Cl), then

C1 < R1 < C2 < R2 < . . . < Rl−1 < Cl < Rl

Proof This is merely a recall Lemma 4.9 of [7]. In any case, it is easy. �

Lemma 8.3.2 No two elements of OEk(ext) ∪ OE′
k are comparable. More precisely,

it is not possible to have elements α > β both belonging to OEk(ext) ∪ OE′
k .

Proof It follows from Lemma 8.1.1 that OEk ∪ OE′
k contains no comparable ele-

ments. If k is even, then OEk(ext) = OEk (Corollary 6.3.4 (2)); if k is odd, we may
assume OEk(ext) = OEk (as sets) by increasing the multiplicity of σk in OE

pr
k . �

Lemma 8.3.3 For integers i ≤ k, there cannot exist γ ∈ OE′
i(up) and β ∈ OE

pr
k such

that β > γ . For integers i < k, there cannot exist γ ∈ OE′
i(up) and β ∈ OE

pr
k such

that β dominates γ .

Proof Let γ ∈ OE′
i(up) and β ∈ OE

pr
k . If i = k and β > γ , then we get a contradic-

tion immediately to Lemma 8.3.2. Now suppose that i < k and that β dominates γ .
Apply Corollary 5.3.5 (the notation of the corollary being suggestive of how exactly
to apply it). Let α be as in its conclusion. The chain α > γ contradicts Lemma 8.3.2
in case i is odd and either Lemma 8.3.2 or Proposition 6.5.4 in case i is even. �

Lemma 8.3.4 For (r, c) in O�E, there exists a unique O-block B of E with (r, c)

in B′.

Proof The existence is clear from the definition of O�E. For the uniqueness, suppose
that B and C are two distinct O-blocks of E with (r, c) in both B′ and C′. We will
show that this leads to a contradiction.

Let i and k be such that B ⊆ OEi and C ⊆ OEk . From Lemma 4.11 of [7] (of
which the present lemma is the orthogonal analogue) it follows that i 
= k, so we
can assume without loss of generality that i < k. By applying the involution # if
necessary, we may assume that (r, c) ∈ OE′

i(up). Now there exists an element (r, a)

in C with a ≤ c (this follows from the definition of C′). Clearly (r, a) ∈ OE
pr
k . Taking

β = (r, a) and γ = (r, c), we get a contradiction to Lemma 8.3.3. �

Lemma 8.3.5 Let i < j be positive integers.

(1) For a block B of OEj , there exists a unique block C of OEi with w(C) > w(B).
(2) For β in OEj (ext) ∪ OE′

j , there exists α in OEi such that α > β .

Proof (1): The assertion follows by applying Lemma 8.1.2 with B = B and U =
OEi . We need to make sure however that the lemma can be applied. More pre-
cisely, we need to check that for every β = (r, c) in B there exist γ 1(β) = (R1,C1)

and γ 2(β) = (R2,C2) in OEi such that C1 < c, C2 < R1, and r < R2. We may
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assume β = β(up), for, if β = β(down), then β(up) also belongs to OEj be-
cause OEj is symmetric, and we can set γ 1(β) = γ 2(β(up))(down), and γ 2(β) =
γ 1(β(up))(down)—note that these two belong to OEi since OEi is symmetric.

We consider three cases:

(1) β belongs to E.
(2) β = ph(σj−1) (in particular, j is even and E is truly orthogonal at j − 1).
(3) β = pv(σj ) (in particular, j is odd and E is truly orthogonal at j ).

Define β ′ to be β in case 1, σj−1 in case 2, and σj in case 3. Let C be a v-chain in E

with tail β ′ and having the good property as in Proposition 5.3.4.
First suppose that there exists in C an element of O-depth i and denote it by γ .

If ph(γ ) 
∈ N(v) (this can happen only in case 1), then set γ 1(β) = γ 2(β) = γ . Now
suppose ph(γ ) ∈ N(v). Then γ ∈ OEi except when γ = σi with i odd and σi has
multiplicity 1 in E. If γ ∈ OEi , take γ 1(β) = γ and γ 2(β) = γ # = γ (down); if
γ 
∈ Ei , then take γ 1(β) = γ 2(β) = pv(γ ).

Now suppose that C has no element of O-depth i. Then, by Lemma 5.3.2 (4), i is
even and there exists in C an element of O-depth i −1. This element of C is of type H
by Lemma 5.3.2 (1), so E is truly orthogonal at i −1. Set γ 1(β) = γ 2(β) = ph(σi−1).

(2): This proof parallels the proof of (1) above. As in the above proof, we may
assume that β = β(up). Suppose β = (r, c) belongs to OE′

j . Then there exists (r, a) ∈
OEj with a ≤ c. Since OE′

j does not meet the diagonal, it is clear that (r, a) ∈
ON(v), and thus it is enough to prove the assertion for β ∈ OEj (ext).

So now take β ∈ OEj (ext). Let β ′ and C be in the proof of (1). First suppose that
there exists in C an element of O-depth i. Denote it by γ . If γ ∈ OEi , then take
α = γ . If γ 
∈ OEi , then pv(γ ) ∈ OEi , and we take α = pv(γ ). In case there is no
element in C of O-depth i, we take α = ph(σi−1) (see the above proof). �

Corollary 8.3.6 If B and B1 are O-blocks of E with w(B) = (r, c) and w(B1) =
(r1, c1), then exactly one of the following holds:

c < r < c1 < r1, c1 < r1 < c < r,

c < c1 < r1 < r, or c1 < c < r < r1.

Proof This is a formal consequence of Lemmas 8.3.1 and 8.3.5. �

Corollary 8.3.7 If w(B) > w(C) for O-blocks B ⊆ OEi and C ⊆ OEj of E, then
i < j .

Proof This is a formal consequence of Lemmas 8.3.1 and 8.3.5. �

Corollary 8.3.8 Let (s, t) > (s1, t1) be elements of O�E, and B, B1 be O-blocks
of E such that (s, t) ∈ B′, and (s1, t1) ∈ B′

1. Then w(B) > w(B1).

Proof Let w(B) = (r, c) and w(B1) = (r1, c1). By Corollary 8.3.6, we have four
possibilities. Since (r, c) dominates (s, t) and (r1, c1) dominates (s1, t1), the possi-
bilities c < r < c1 < r1 and c1 < r1 < c < r are eliminated. It is thus enough to
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eliminate the possibility c1 < c < r < r1. Suppose that this is the case. Then, by
Corollary 8.3.7, j1 < j , where j1 and j are such that B ⊆ OEj and B1 ⊆ OEj1 .
Now, by Lemma 8.3.5 (2), there exists α in OEj1 such that α > (s, t) > (s1, t1). But
then this contradicts Lemma 8.3.2. �

Corollary 8.3.9 For an O-block B ⊆ OEi of E, the depth of w(B) in SOwE
is

exactly i.

Proof Lemma 8.3.5 and Corollary 8.3.7. �

Corollary 8.3.10 Let α ∈ OE′
k(up), β ∈ OE′

m(up), and α > β . Then k < m.

Proof Corollary 8.3.8 and Corollary 8.3.9. �

8.4 More lemmas

This subsection is a collection of lemmas to be invoked in the later subsections.
More specifically, Lemma 8.4.1 and Corollary 8.4.2 below are invoked in the proof
of Proposition 4.3.1 in §9.1, Lemma 8.4.3 in the proof of the first half of Propo-
sition 4.3.2 in §9.2, and Lemma 8.4.4 in the proof of the second half of Proposi-
tion 4.3.2 in §9.3. The lemmas may make sense only when one tries to read the
proofs of the propositions.

Throughout this subsection, E denotes a monomial in ON(v).

Lemma 8.4.1 Let C be a v-chain in O�E, α an element of C, and α′ ∈ OmonC,α .
Then depthOmonC

α′ ≤ k(even), for k the integer such that α ∈ OE′
k(up).

Proof Proceed by induction on k. If k = 1, the assertion follows from Corol-
lary 8.3.10, so assume k > 1. Choose a v-chain C′ in OmonC with tail α′ and
depthC′α′ = depthOmonC

α′. The length of a v-chain in OmonC,α is clearly at most 2.
So, if γ ′ is the element two steps before α′ in C′ (if γ ′ does not exist then there is
clearly nothing to prove), then γ ′ ∈ OmonC,γ with γ > α (see Proposition 5.1.4 (2)).
We claim that depthOmonC

γ ′ ≤ k(odd) − 1. It is enough to prove the claim, for then
depthOmonC

α′ = depthC′α′ = depthC′γ ′ + 2 ≤ k(odd) − 1 + 2 = k(even).
The claim follows by induction from Corollary 8.3.10 if k is odd or more generally

if γ ∈ OE′
l(up) with l ≤ k(odd) − 1. So assume that k is even and γ ∈ OE′

k−1(up).
By 6.5.4, it is not possible that γ is of type H and ph(γ ) > α. So the only possibility
is that α′ = ph(α) and γ > α is connected. In particular, γ is of type V and α of
type H in C and γ ′ = pv(γ ).

Now let μ be the first element in the connected component of α in C. The cardi-
nality of the part μ > . . . > γ of C is even (by Proposition 5.1.1 (1), it follows that
the cardinality of μ > . . . > α is odd), say e. Letting m be such that μ ∈ OE′

m(up),
we have, by Proposition 8.3.10, m ≤ k − 1 − (e − 1) = k − e. If m(even) < k − e,
then, since depthC′γ ′ = depthC′pv(μ) + e − 1 (by Proposition 5.1.4 (1), since, by
Proposition 5.1.1 (2), μ, . . . , γ all have type V in C) and depthC′pv(μ) ≤ m(even)
by induction, it follows that depthC′γ ′ < k − e + e − 1 = k − 1, and we are done.
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So suppose that m(even) = k − e. Let ν be the element just before μ in C (if such
an element does not exist, then depthC′γ ′ = e ≤ k − 2—observe that m(even) ≥ 2—
and we are done). Then ν > μ is not connected (by choice of μ). So ph(ν) > μ. By
Proposition 6.5.4, this means that j ≤ m(even) − 2 where j is the odd integer defined
by ν ∈ OE′

j (up) ∪ OE′
j+1(up). So, again by induction, depthC′γ ′ = depthC′ph(ν) +

e ≤ m(even) − 2 + e = k − 2, and the claim is proved. �

Corollary 8.4.2 The O-depth of an element α in O�E is at most k where k is such
that α ∈ OE′

k(up).

Proof Let C′ be a v-chain in OmonC with tail OqC,α . If k is even, then, by the
lemma, depthC′OqC,α ≤ k. So suppose that k is odd. Let γ ′ be the immediate pre-
decessor of OqC,α in C′. By Proposition 5.1.4 (2), γ > α, and so γ ∈ OE′

l(up) with
l ≤ k − 1 (see the observation in the first paragraph of the proof of the lemma). So
depthC′γ ′ ≤ k − 1 (by the lemma) and depthC′α′ = depthC′γ ′ + 1 ≤ k. �

Lemma 8.4.3 Let E be a monomial in ON(v) and Oπ(E) = (OwE,O�E). Let
i < k be integers, α an element of OE′

i(up), and δ an element of (SOwE
)k(up) that

dominates α.

(1) If k is even, then there exists β ∈ OE′
k(up) with α > β .

(2) If k is odd and (OwE)k,k+1 O-dominates the singleton v-chain α, then ei-
ther there exists β ∈ OE′

k(up) with α > β or there exists γ ∈ OE′
k+1(up) with

ph(α) > γ .

Proof Write α = (r, c) and δ = (A,B). By Corollary 8.3.9, there exists a block B of
OEk such that δ = w(B). Let (D,B) be the first element of B (arranged in increasing
order of row and column indices). We have the following possibilities:

(i) D ≤ A and (D,B) ∈ OE
pr
k .

(ii) k is odd, E is truly orthogonal at k, (D,B) = (A,B) = pv(σk), and B consists
of the single diagonal element (D,B) = (B∗,B).

(iii) k is even, E is truly orthogonal at k − 1, (D,B) = (A,B) = ph(σk−1), and B

consists of the single diagonal element (D,B) = (B∗,B).

We claim the following: in case (i), D < r (in particular, D < A); in case (ii), the
row index of σk is less than r ; and case (iii) is not possible. The first two assertions
and also the third in the case i < k − 1 follow readily from Lemma 8.3.3; in case (iii)
holds and i = k − 1, then σk−1 > α, a contradiction to Lemma 8.3.2.

First suppose that possibility (ii) holds. Write σk = (s,B). Since s < r and
ph(σk) ∈ N(v), it is clear that ph(α) = (r, r∗) also belongs to N(v). From the hy-
pothesis that (OwE)k,k+1 O-dominates {α}, it follows that there is an element of
(SOwE

)k+1 that dominates ph(α) = (r, r∗). Such an element must be diagonal (be-
cause of the distinguishedness of SOwE

), and so must be the w(C) for the unique
diagonal block C of OEk+1. In particular, this means that there are elements other
than (s, s∗) in OEk+1, and so OE′

k+1 is non-empty. In the arrangement of elements
of OE′

k+1(up) in increasing order of row and column numbers, let γ = (e, s∗) be the
last element. Then e < s < r and r∗ < s∗, so ph(α) > γ , and we are done.
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Now suppose that possibility (i) holds. Let (p, q) be the element of OEk such
that p is the largest row index that is less than r , and, among those elements with row
index p, the maximum possible column index is q . The arrangement of elements of
OEk (in increasing order or row and column indices) looks like this:

. . . , (p, q), (s, t), . . .
Since p < r ≤ A and w(B) = (A,B), we can be sure that (p, q) is not the last
element of B.

We first consider the case c < t . Then α = (r, c) > β := (p, t) ∈ OE′
k . If β ∈

OE′
k(up), then we are done. It is possible that (p, q) lies on or below the diagonal so

that β lies below the diagonal, in which case, α > β(up) and β(up) ∈ OE′
k(up), and

again we are done.
Now suppose that t ≤ c. We claim that:

• (s, t) belongs to the diagonal;
• k is odd and E is truly orthogonal at k; and
• σk = (u, t) with u < r .

Suppose that (s, t) does not belong to the diagonal. Since r ≤ s (by choice of (p, q)),
it follows that (s, t) dominates (r, c). This leads to a contradiction to Lemma 8.3.3,
for either (s, t) or its reflection (t∗, s∗) (whichever is above the diagonal) belongs
to OE

pr
k and dominates α = (r, c) in OE′

i(up). This shows that (s, t) belongs to the
diagonal. If k is even, then (s, t) = ph(σk−1), which means σk−1 > α, again contra-
dicting Lemma 8.3.3, so k must be odd. It also follows that E is truly orthogonal at
k and that (s, t) = pv(σk). Writing σk = (u, t), if r ≤ u, then σk would dominate α,
again contradicting Lemma 8.3.3. So u < r , and the claim is proved.

To finish the proof of the lemma, now proceed as in the proof when possibility (ii)
holds. �

Lemma 8.4.4 Let T be a monomial in ON(v) and w an element of OI (d) that
O-dominates T. Let β ′ > β be elements Sw(up). Let d − 1 and d be their respective
depths in Sw . Let α be an element of O(T,w,β)
 or more generally an element of
ON(v) such that

(a) it is dominated by β ,
(b) it is not comparable to any element of OPβ , and
(c) in case d is odd, then {α} ∪ OTw,d,d+1 has O-depth at most 2.

Then

(1) there exists α′ ∈ OP∗
β ′ (up) with α′ > α;

(2) for α′ as in (1), if α′ is diagonal, then ph(δd−2) > α if d is odd and δd−1 > α if
d is even.

Proof Assertion (2) is rather easy to prove. If d is odd, then, in fact, ph(δd−2) = α′;
if d is even, then δd−1 has the same column index as α′ and, by Proposition 7.2.2 (4),
has row index more than that of α, so δd−1 > α.

Let us prove (1). Write α = (r, c), β = (R,C), and β ′ = (R′,C′). There exists, by
the definition of OP∗

β ′ , an element in OP∗
β ′ with column index C′. We have C′ < c
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(for C′ < C ≤ c). Let (r ′, c′) be the element of OP∗
β ′ such that c′ is maximum possi-

ble subject to c′ < c and among those elements with column index c′ the maximum
possible row index is r ′. If r < r ′, then we are done (if (r ′, c′) is below the diagonal,
its mirror image would have the desired properties). It suffices therefore to suppose
that r ′ ≤ r and arrive at a contradiction.

In the arrangement of elements of OP∗
β ′ in non-decreasing order of row and col-

umn indices, there is a portion that looks like this:

. . . , (r ′, c′), (a, b), . . .

Since there is in O(T,w,β)
 an element with row index R′ (and clearly r ′ ≤ r < R <

R′), it follows that (a, b) exists (that is, (r ′, c′) is not the last element in the above
arrangement). It follows from the construction of OP∗

β ′ from OPβ ′ that (r ′, b) is
an element in OPβ ′ . By the choice of (r ′, c′), we have c ≤ b. Thus (r, c) dominates
(r ′, b).

The proof now splits into two cases accordingly as d is even or odd. First suppose
that d is even. Then, since β dominates (r ′, b) and yet (r ′, b) does not belong to OPβ ,
there exists a v-chain in Tw,d−1,d of length 2 and head (r ′, b). The tail of this v-chain
then belongs to OPβ and is dominated by (r, c), a contradiction to our assumption
that α is not comparable to any element of OPβ .

Now suppose that d is odd. Choose a v-chain C in T with head (r ′, b) that is
not O-dominated by wd . Let D be the part of C consisting of elements of O-depth
(in C) at most 2. We claim that D is O-dominated by wd,d+1. In fact, we claim the
following: Any v-chain F with head (r ′, b) and O-depth at most 2 is O-dominated
by wd,d+1.

To prove the claim, we first prove the following sub-claim:

(†) If the horizontal projection of (r ′, b) belongs to N(v), then β is on the diag-
onal and dominates the vertical projection of (r ′, b), and the diagonal element
β1 of (Sw)d+1 dominates the horizontal projection of (r ′, b).

Let ph(r
′, b) ∈ N(v). Then β belongs to the diagonal because Sw is distinguished

and symmetric. Once β is on the diagonal, it is clear that it dominates pv(r
′, b) (from

our assumptions, β dominates (r, c) and (r, c) dominates (r ′, b)). It follows from
Proposition 7.2.2 (3) that the row index of β1 exceeds the row index r of (r, c), so β1
dominates ph(r

′, b). This finishes the proof of the sub-claim (†).
To begin the proof of the claim, observe that F has length at most 2. Suppose first

that F consists only of the single element (r ′, b). The type of (r ′, b) in F is either H
or S. If it is S, then since β dominates (r ′, b), the claim follows immediately. If it
is H, then the claim follows immediately from the sub-claim (†).

Continuing with the proof of the claim, let now F consist of two elements:
(r ′, b) > μ. Let γ be the element of Sw such that μ ∈ OPγ , and let e be the depth of
γ in Sw . From Lemma 7.2.1 (2b) it follows that e ≥ d . If e = d , then γ = β (by the
distinguishedness of Sw), and the comparability of (r, c) and μ contradicts our hy-
pothesis (b). So e ≥ d + 1, and there exists δ of depth d + 1 in Sw that dominates μ.
We have β > δ (again by the distinguishedness of Sw).

The possibilities for the types of (r ′, b) and μ in F are: S and S, V and V, H
and S (in the last case ph(r

′, b) 
> μ by Lemma 5.3.2 (1)). Noting the existence in
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(Sw)d,d+1 of the v-chain β > δ in the first case and also of β > β1 (where β1 is as in
the sub-claim) in the last case, the proof of the claim in these cases is over. So suppose
that the second possibility holds. The distinguishedness of Sw implies that δ = β1.
Since δ is diagonal, it dominates the vertical projection of μ. Noting the existence of
the v-chain in β > δ in (Sw)d,d+1, the proof of the claim in this case too is over.

We continue with the proof of the lemma. It follows from the claim that D is
O-dominated by wd,d+1. From Corollary 8.2.3 it follows that the complement E

of D in C is not O-dominated by wd+2,d+3 (in particular, that E is non-empty) and
that every v-chain in T with head ε (where ε denotes the head of E) is O-dominated
by wd (given such a v-chain, the concatenation of D with it is O-dominated by wd−2,
and ε continues to have O-depth 3 in the concatenated v-chain). Thus ε belongs to
OTw,d,d+1. From (1) and (2b) of Lemma 7.2.1 it follows that the element μ of C in
between (r ′, b) and ε (if it exists at all) also belongs to OTw,d,d+1. Now consider the
v-chain obtained as follows: take the part of C up to (and including) ε and replace
its head (r ′, b) by (r, c). This chain has O-depth 3 and lives in {α} ∪ OTw,d,d+1, a
contradiction to hypothesis (c). �

Corollary 8.4.5 Let T be a monomial in ON(v) and w an element of OI (d) that
O-dominates T. Let β ′ > β be elements of Sw(up), α an element of O(T,w,β)
,
and d ′ := depthSw

β ′.

(1) If d ′ is odd, there exists α′ ∈ OP∗
β ′ such that α′ > α.

(2) If there does not exist α′ ∈ OP∗
β ′ such that α′ > α then (d ′ is even by (1) above

and) there exists α′′ ∈ OP∗
β ′′ such that ph(α

′′) > α, where β ′′ is the unique ele-

ment of (Sw)d ′−1 such that β ′′ > β ′. �

Corollary 8.4.6 Let T be a monomial in ON(v) and w an element of OI (d) that
O-dominates T. Let β , β ′ be elements of Sw(up), and α, α′ elements of O(T,w,β)


and OP∗
β ′ respectively.

(1) If α′ > α then β ′ > β (in particular, depthSw
β ′ < depthSw

β).
(2) If ph(α

′) > α and depthSw
β is even, depthSw

β ′ ≤ depthSw
β − 2.

Proof (1) Writing β = (r, c) and β ′ = (r ′, c′), there are, since both β and β ′ domi-
nate α and Sw is distinguished, the following four possibilities:

c < r < c1 < r1, c1 < r1 < c < r, c < c1 < r1 < r, c1 < c < r < r1

Since α′ > α, and α, α′ are dominated respectively by β , β ′ (this is because α, α′
belong to O(T,w,β)
, OP∗

β ′ respectively), the possibilities c < r < c1 < r1 and
c1 < r1 < c < r are eliminated (by the distinguishedness of Sw). It is thus enough
to eliminate the possibility β > β ′. Suppose, by way of contradiction, that β > β ′.
By Corollary 8.4.5, either there exists γ ∈ O(T,w,β)
 such that γ > α′, in which
case the v-chain γ > α in O(T,w,β)
 contradicts Proposition 7.2.2 (3) or (4), or
d := depthSw

β is even and there exists (with β ′′ being the unique element in Sw

such that β ′′ > β and depthSw
β ′′ = d −1) an element α′′ ∈ OP∗

β ′′ with ph(α
′′) > α′,
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in which case the v-chain α′′ > α in OT

w,d−1,d has O-depth 3 and so contradicts

Proposition 7.2.2 (2).
(2) Set d := depthSw

β . If depthSw
β ′ were d − 1, then the v-chain α′ > α in

OT

w,d−1,d would be of O-depth 3 and so would contradict Proposition 7.2.2 (2). �

9 The Proof

We are at last ready to prove the propositions of §4.3. The proof of the first proposi-
tion appears in §9.1 and that of the second in §§9.2, 9.3. These rely on the lemmas
of §8.4. As pointed out in the beginning of §8.4, the lemmas may make no sense until
one tries to read the proofs here.

9.1 Proof of Proposition 4.3.1

(1) By definition, OwE is the element of OI (d) associated to the distinguished
monomial ∪kSOwE(k). As such we have w ≥ v.

(2) follows from the corresponding property of the map π of [7]. More precisely,
that property justifies the third equality below; the other equalities are clear from the
definitions:

O-v-degree(OwE) + degree(O�E) = 1

2
degree(SOwE

) + 1

2

∑

k

degree(OE
′
k)

= 1

2

∑

k

(degree(SOwE(k)) + degree(OE
′
k)) = 1

2

∑

k

degree(OEk)

= 1

2

∑

j odd

degree(OEj,j+1) =
∑

j odd

(degree(OE
pr
j ) + degree(OE

pr
j+1))

= degree(E).

(3) The first equivalence below follows from the definition of O-domination, the
second from [7, Lemma 4.5], the third from Lemma 8.1.3:

OwE O-dominates O�E ⇔ OwE ≥ OwC ∀ v-chain C in O�E

⇔ OwE dominates OmonC ∀ v-chain C in O�E

⇔ ∀ v-chain C in O�E, ∀ α′ = (r, c) ∈ OmonC ,
∃ β = (R,C) ∈ SOwE

with C ≤ c, r ≤ R,
and depthSOwE

β ≥ depthOmonC
α′.

Now let C be a v-chain in O�E and α′ = (r, c) in OmonC . We will show that there
exists β in Sw that dominates α and satisfies depthSw

β ≥ depthOmonC
α′. Let α be

the element in C such that α′ ∈ OmonC,α , let k be such that α ∈ OE′
k(up), and let B

be the block of OEk such that α ∈ B′. Writing α = (r1, c1) and w(B) = (R1,C1), we
have C1 ≤ c1 and r1 ≤ R1 straight from the definition of w(B). By Corollary 8.3.9,
depthSOwE

w(B) = k.
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First suppose that w(B) dominates α′ (meaning C1 ≤ c and r ≤ R1). If k ≥
depthOmonC

α′, we are clearly done; by Corollary 8.4.2, this is the case when
α′ = OqC,α . So suppose that α is of type H, α′ = ph(α), and that k < depthOmonC

α′.
By Lemma 8.4.1, depthOmonC

α′ ≤ k(even). It follows that k is odd and that
depthOmonC

α′ = k + 1. By Corollary 6.5.3, E is truly orthogonal at k, which means
that OEk+1 has a diagonal block, say C. Note that w(C) dominates ph(σk) which
in turn dominates ph(α). Since depthSOwE

w(C) = k + 1 by Corollary 8.3.9, we are
done.

Now suppose that w(B) does not dominate α′. Then B is non-diagonal and α′ =
pv(α). Since B is non-diagonal, ph(α) 
∈ N(v), and α cannot be of type H. So α

is of type V in C. It follows easily (see Proposition 5.1.1 (3)) that α is the critical
element in C and the last in its connected component in C; by Lemma 5.3.2 (3),
O-depthC(α) = depthOmonC

OqC,α =: d is even. By Proposition 5.1.1 (1), (2), the
cardinality of the connected component of α in C is even. In particular, the immediate
predecessor in C of α—call it γ —is connected to α.

The type of γ in C is V, ph(γ ) belongs to N(v), and depthOmonC
pv(γ ) = d − 1

(see Lemma 5.3.2 (1)). Let � be such that γ ∈ OE′
�(up). Let C be the block of OE�

such that γ ∈ C′. Since ph(γ ) ∈ N(v), C is diagonal. Note that w(C) dominates pv(γ )

and that pv(γ ) > pv(α). By Corollary 8.3.9, depthSOwE
w(C) = �. Thus if d ≤ � we

are done. On the other hand, d − 1 ≤ � by Corollary 8.4.2.
So we may assume that � = d − 1. By Corollary 6.5.3, E is truly orthogonal at

d − 1. This implies that OEd has a diagonal block, say D. Note that w(D) domi-
nates ph(σd−1) which in turn dominates ph(γ ). Writing γ = (r2, c2), since γ > α

is connected, it follows that (r1, r
∗
2 ) belongs to ON(v). Now both w(B) and w(D)

dominate (r1, r
∗
2 ). Since SOwE

is distinguished and symmetric and w(B) is not on
the diagonal, it follows that w(D) > w(B). This implies, since w(D) is on the diag-
onal, w(D) > pv(α). Since depthSOwE

w(D) = d by Corollary 8.3.9, we are done.
(4) Let x be an element of OI (d) that O-dominates E. We will show that

x ≥ OwE. By [7, Lemma 5.5], it is enough to show that x dominates SOwE
. By

Lemma 8.1.3, it is enough to show the following: for every block B of E, there exists
β in Sx such that β dominates w(B) and depthSx

β ≥ depthSOwE
w(B).

Let B be a block of E. By Corollary 8.3.9, depthSOwE
w(B) = k where B ⊆ OEk .

Let Sk
x denote the set of elements of Sx of depth at least k. Our goal is to show

that there exists β in Sk
x that dominates w(B). Since Sx is distinguished and B is a

block, it suffices to show the following: given α ∈ B, there exists β in Sk
x (depending

upon α) that dominates α. Moreover, since B and Sk
x are symmetric, we may assume

that α = α(up).
So now let α = α(up) belong to B. Then either

(1) α belongs to OE
pr
k , or

(2) k is odd, E is truly orthogonal at k, and α = pv(σk), or
(3) k is even, E is truly orthogonal at k − 1, and α = ph(σk−1).

The proofs in the three cases are similar. In the first case, choose a v-chain C

in E with tail α such that O-depthC(α) = k (see Corollary 5.2.3 (1)). Then
depthOmonC

OqC,α = k and, clearly, OqC,α dominates α. Since x dominates
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OmonC , there exists, by Lemma 4.5 of [7], β in Sk
x that dominates OqC,α (and

so also α).
In the second case, choose a v-chain C in E with tail σk with the property that

O-depthC(σk) = k. Then depthOmonC
OqC,σk

= k. Since ph(σk) belongs to N(v),
σk is of type V or H in C, so OqC,σk

= α. Since x dominates OmonC , there exists,
by [7, Lemma 4.5], β in Sk

x that dominates OqC,σk
= α.

In the third case, choose a v-chain C in E with tail σk−1 such that the O-depth in C

of σk−1 is k − 1. Then depthOmonC
OqC,σk−1

= k − 1. Since ph(σk−1) belongs to
N(v), σk−1 is of type V or H in C, so OqC,σk−1

= pv(σk−1). From Lemma 5.3.2 (3),
it follows, since k −1 is odd, that σk−1 is of type H. Since pv(σk−1) > ph(σk−1) = α,
it follows that depthOmonC

ph(σk−1) ≥ k (in fact equality holds as is easily seen).
Since x dominates OmonC , there exists, by [7, Lemma 4.5], β in Sk

x that dominates
ph(σk−1) = α. �

9.2 Proof that OφOπ = identity

Let E be a monomial in ON(v) and let Oπ = (OwE,O�E). We need to show
that Oφ applied to the pair (OwE,O�E) gets us back to E. We know from (3) of
Proposition 4.3.1 that OwE O-dominates O�E, so Oφ can indeed be applied to the
pair (OwE,O�E).

The main ingredients of the proof are the corresponding assertion in the case of
Grassmannian [7, Proposition 4.2] and the following claim which we will presently
prove:

O(O�E)w,j,j+1 = OE
′
j (up) ∪ OE

′
j+1(up) for every odd integer j

Let us first see how the assertion follows assuming the truth of the claim, by tracing
the steps involved in applying Oφ to (OwE,O�E). From the claim it follows that
when we partition O�E into subsets (as a first step in the application of Oφ—see §7),
we get OE′

j (up) ∪ OE′
j+1(up) (for odd integers j ). Adding the mirror images will

get us to OE′
j ∪ OE′

j+1. From Corollary 8.3.9 it follows that (OwE)j,j+1 is exactly
the element of I (d,2d) obtained by acting π on OEj ∪ OEj+1. Now, since φ ◦ π =
identity, it follows that on application of φ to (OwE)j,j+1,OE′

j ∪OE′
j+1) we obtain

OEj ∪OEj+1. By twisting the two diagonal elements in OEj ∪OEj+1 (if they exist
at all) and removing the elements below the diagonal d(v), we get back OE

pr
j,j+1.

Taking the union of OE
pr
j,j+1 (over odd integers j ), we get back E.

Thus we need only prove the claim. Since O�E is the union over all odd integers
of the right hand sides (this follows from the definition of O�E), and the left hand
sides as j varies are mutually disjoint, it is enough to show that the right hand side is
contained in the left hand side. Thus we need only prove: for j an odd integer and α

an element in OE′
j (up) ∪ OE′

j+1(up),

• every v-chain in O�E with head α is O-dominated by (OwE)j .
• there exists a v-chain in O�E with head α that is not O-dominated by (OwE)j+2.

To prove the first item, write T = OEj,j+1 := {α ∈ E|O-depthE(α) ≥ j} and set
Oπ(T) = (x,U). By Proposition 5.3.7, we have OT

pr
i ∪OT

pr
i+1 = OE

pr
i+j−1 ∪OE

pr
i+j
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for any odd integer i. Thus, by the description of Oπ , we have U = ∪k≥jOE′
k(up).

By Corollary 8.3.9 and the description of Oπ , we have x = (OwE)j . By Corol-
lary 8.3.10, any v-chain in O�E with head belonging to OE′

j (up) ∪ OE′
j+1(up) is

contained entirely in ∪k≥jOE′
k(up). Finally, by Proposition 4.3.1 (3) applied to T,

the desired conclusion follows.
To prove the second item we use Lemma 8.4.3. Proceed by decreasing induction

on j . For j sufficiently large the assertion is vacuous, for OE′
j (up) ∪ OE′

j+1(up) is
empty. To prove the induction step, assume that the assertion holds for j + 2. If the
v-chain consisting of the single element α is not O-dominated by (OwE)j+2, then we
are done. So let us assume the contrary. Since the O-depth of the singleton v-chain α

is at most 2, it follows from Lemma 8.2.2 that (OwE)j+2,j+3 O-dominates the
v-chain α. Apply Lemma 8.4.3 with k = j + 2. By its conclusion, either there exists
β ∈ OE′

j+2(up) such that α > β or there exists γ ∈ OE′
j+3(up) such that ph(α) > γ .

First suppose that a γ as above exists. By induction, there exists a v-chain
in O�E—call it D—with head γ that is not O-dominated by (OwE)j+4. Let C

be the concatenation of α > γ and D. Since elements of D have O-depth at least 3
in C (Lemma 5.3.2 (1)), it follows from Corollary 8.2.3 that C is not O-dominated
by (OwE)j+2, and we are done.

Now suppose that such a γ does not exist. Then a β as above exists. If α > β is not
O-dominated by (OwE)j+2 we are again done. So assume the contrary. Since the O-
depth of β in α > β is at least 2, it follows that there exists an element of (SOwE

)j+3

that dominates β . Applying Lemma 8.4.3 again, this time with k = j + 3, we find
γ ′ ∈ OE′

j+3(up) such that β > γ ′. Arguing as in the previous paragraph with γ ′ in
place of γ , we are done. �

9.3 Proof that OπOφ = identity

Let T be a monomial in ON(v) and w an element of OI (d) that O-dominates T. We
can apply Oφ to the pair (w,T) to obtain a monomial Oφ(w,T) in ON(v). We need
to show that Oπ applied to Oφ(w,T) results in (w,T). The main step of the proof
is to establish the following:

OT


w,j,j+1 = O(Oφ(w,T))

pr
j,j+1 (9.3.1)

(for the meaning of the left and right sides of the above equation, see §7 and §6
respectively). Assuming this for the moment let us show that Oπ ◦ Oφ = identity.

We trace the steps involved in applying Oπ to Oφ(w,T). From Eq. (9.3.1) it
follows that when we break up Oφ(w,T) according to the O-depths of its elements
as in §6, we get OT


w,j,j+1 (as j varies over odd integers). The next step in the

application of Oπ is the passage from O(Oφ(w,T))
pr
j,j+1 to O(Oφ(w,T))j,j+1.

This involves replacing σj by its projections and adding the mirror image of the
remaining elements of O(Oφ(w,T))

pr
j,j+1. It follows from Proposition 7.2.2 (3) that

σj = δj and so O(Oφ(w,T))j,j+1 = (OTw,j,j+1 ∪ OT#
w,j,j+1)


. The next step is to

apply π to (OTw,j,j+1 ∪ OT#
w,j,j+1)


. Since π is the inverse of φ (as proved in [7]),

we have π((OTw,j,j+1 ∪OT#
w,j,j+1)


) = (wj,j+1,OTw,j,j+1). Since Sw and T are
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respectively the unions, as j varies over odd integers, of (Sw)j,j+1 and OTw,j,j+1,
we see that Oπ applied to Oφ(w,T) results in (w,T).

Thus it remains only to establish Eq. (9.3.1). It is enough to show that the left hand
side is contained in the right hand side, for the union over all odd j of either side is
Oφ(w,T) and the right hand side is moreover a disjoint union. In other words, we
need only show that the O-depth in Oφ(w,T) of an element of OT


w,j,j+1 is either
j or j + 1. We will show, more precisely, that, for any element β of Sw , the O-
depth in Oφ(w,T) of any element of O(T,w,β)
 equals the depth in Sw of β .
Lemma 8.4.4 will be used for this purpose.

Let α be an element of O(T,w,β)
 and set e := O-depthOφ(w,T)(α). We first
show, by induction on d := depthSw

β , that e ≥ d . There is nothing to prove in case
d = 1, so we proceed to the induction step. Let β ′ be the element of Sw of depth
d − 1 such that β ′ > β . If there exists α′ in OP


β ′ with α′ > α, the desired conclusion
follows from Corollary 5.2.3 (3) and induction. Lemma 8.4.4 says that such an α′
exists in case d is even. So suppose that d is odd and such an α′ does not exist. The
same lemma now says that ph(δd−2) > α, so the desired conclusion follows from
Lemma 5.3.2 (1).

We now show, by induction on e, that d ≥ e. There is nothing to prove in case
e = 1, so we proceed to the induction step. Let C be a v-chain in Oφ(w,T) with
tail α and having the good property of Proposition 5.3.4. Let α′ be the immediate
predecessor in C of α. Let β ′ in Sw be such that α′ ∈ OP∗

β ′ (we are not claiming at
the moment that β ′ is unique although that is true and follows from the assertion that
we are proving, the distinguishedness of Sw , and the fact that β ′ dominates α′). It
follows from Corollary 8.4.6 that β ′ > β .

Let d ′ := depthSw
β ′. It follows from Corollary 5.2.3 (3) that e′ < e where e′ :=

O-depthOφ(w,T)(α
′). We have, d ≥ d ′ + 1 ≥ e′ + 1 ≥ (e − 2) + 1 = e − 1, the first

equality being justified because β ′ > β , the second by the induction hypothesis, and
the last by Lemma 5.3.2 (1). It suffices to rule out the possibility that d = e − 1.
So assume d = e − 1. Then d = d ′ + 1 and d ′ = e′ = e − 2. It follows from (1)
of Lemma 5.3.2 that the v-chain α′ > α has O-depth 3 and from (3) of the same
lemma that e′ is odd. But then we get a contradiction to Proposition 7.2.2 (2) (α′ and
α belong to OT


w,d ′,d ′+1). The proof of Eq. (9.3.1) is thus over. �

9.4 Proof of Proposition 4.3.3

Observe that the condition (‡) makes sense also for a monomial of N(v). By virtue of
belonging to OI (d), v has f ∗ as an entry. It follows from the description of the bijec-
tion w ↔ Sw of §2.6.2 that for an element w of OI (d) to satisfy (‡) it is necessary
and sufficient that Sw (equivalently all its parts (Sw)j,j+1 =: Sw,j,j+1 satisfy (‡).

(1) Since T satisfies (‡), so do its parts OTw,j,j+1 and OTw,j,j+1 ∪ OT#
w,j,j+1

(adding the mirror image preserves (‡)). Since Sw,j,j+1 also satisfies (‡), it follows
from the description of the map φ of [7] (observe the passage from a piece P to
its ‘star’ P∗) that the (OTw,j,j+1 ∪ OT#

w,j,j+1)

 satisfy (‡). Since the ‘twisting’

involved in the passage from (OTw,j,j+1 ∪ OT#
w,j,j+1)


 to OT

w,j,j+1 involves only

a rearrangement of row and column indices, it follows that the OT

w,j,j+1 satisfy (‡).

Finally so also does their union Oφ(w,T).
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(2) The parts OE
pr
j,j+1 of E clearly satisfy (‡). Therefore so do the OEj,j+1, for,

first of all, adding the mirror image preserves (‡), and then the removal of σj and
addition of its projections involves only a rearrangement of row and column indices.
It follows from description of the map π of [7] (observe the passage from a block
B to the pair (w(B),B′)) that both (OwE)j,j+1 and OE′

j,j+1 satisfy (‡). Finally,
SOwE

and O�E being the union (respectively) of (SOwE
)j,j+1 and OE′

j,j+1(up),
they satisfy (‡). �
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