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Abstract We present equivalent definitions of code loops in any characteristic p �= 0.
The most natural definition is via combinatorial polarization, but we also show how
to realize code loops by linear codes and as a class of symplectic conjugacy closed
loops. For p odd, it is possible to define code loops via characteristic trilinear forms.
Related concepts are discussed.
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1 Introduction

The largest sporadic group, the Monster, was discovered by Griess in [14], [15], and
its simplest known construction is due to Conway [5]. One of the crucial steps in
Conway’s construction is a transition from the extended binary Golay code G to a
certain loop P , called the Parker loop, consisting of signed elements of G . The ad-
ditions in P and G are the same, except that the sign arithmetic in P is governed by
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rather delicate rules based on the code structure of G . See [5] or [6, Chapter 29] for
details.

In [16], Griess showed that an analogous transition from a code to a loop can be
done for any doubly even linear binary code, resulting in a class of Moufang loops,
called even code loops here. (Griess called them code loops.)

Even code loops have been studied extensively, as witnessed by: characterization
of even code loops by means of combinatorial polarization [1, Section 13], charac-
terization of even code loops as Moufang loops with a unique nonidentity square [3],
characterization of even code loops as small Frattini Moufang 2-loops [17], calcula-
tion of the sign within even code loops [18], [23], construction of 2-local subgroups
of sporadic groups from even code loops [1, Section 14], classification of small even
code loops [24].

In order to construct p-local subgroups of the Monster for p = 3, 5 and 7,
Richardson [29] gave a definition of an odd code loop based on self-orthogonal codes
over Fp . He also pointed out similarities between the even and odd code loops, no-
tably a connection to combinatorial polarization.

Motivated by Richardson’s pioneering work, this paper is an attempt to arrive at
the “correct” definition of code loops in any characteristic p �= 0. While the definition
of even code loops has been settled, we argue that Richardson’s definition of odd code
loops should be generalized to more closely resemble the even case.

To wit, we present three equivalent ways in which odd and even code loops can
be defined: via combinatorial polarization, via linear codes, and as a class of sym-
plectic conjugacy closed p-loops. When p is odd, another equivalent definition is via
characteristic trilinear forms.

Although equivalent, the four definitions are somewhat heterogeneous and depend
on concepts from several different areas, which we gather in Section 2. The defini-
tions are then given in Section 3. The classical case of even code loops can be found in
Section 4, with several novel proofs. Our goal in Section 4 is not to give the most ele-
mentary proofs, but to take advantage of well-known results in loop theory. A certain
universal code construction is presented in Section 5. We use it in Section 6 to show
the equivalence of definitions for odd code loops via codes and via forms, and also to
compare our definition with Richardson’s original definition of odd code loops. Odd
code loops via forms are shown to be equivalent to odd code loops via polarization
in Section 7, and via conjugacy closed loops in Section 8. We briefly discuss proper-
ties of code loops and the isomorphism problem for code loops in Section 9. Finally,
Section 10 offers several insights into the four equivalent definitions, and explores
related concepts.

It is our expressed hope that the algebraic foundations of code loops developed
in this paper will eventually lead to a better understanding of p-locals in sporadic
groups—a topic that is not pursued here.

2 Prerequisites

Throughout the paper, p is a prime, Fp is the p-element field, Zp is the cyclic group
of order p, and all algebras are finite. Unless otherwise stated, all sums are taken over
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all subscripts appearing in the summands. For instance,
∑

ak is the sum over all k,
and

∑
i<j aibj ck is the sum over all i, j , k such that i < j , where the domains for i,

j , k are understood from the context.

2.1 Loops

A quasigroup Q is a set with a binary operation, written as juxtaposition, such that
every left translation Lx : Q → Q, y �→ xy and every right translation Rx : Q → Q,
y �→ yx is a bijection of Q. A loop is a quasigroup Q with neutral element, i.e., an
element 1 ∈ Q such that 1x = x1 = x for every x ∈ Q. Note that groups are precisely
associative loops.

To save space and improve legibility, we use the dot convention to indicate priority
of multiplication. For instance, xy · z stands for (xy)z.

Let Q be a loop. For x, y ∈ Q, let L(x, y) = L−1
yx LyLx , R(x, y) = R−1

xy RyRx ,

and T (x) = L−1
x Rx be the inner mappings of Q. A subloop H of Q is normal if it is

invariant under all inner mappings of Q. In such a case we write H � Q, and Q/H

is the usual factor loop Q modulo H .
The commutator of x, y ∈ Q is the unique element [x, y] ∈ Q such that xy =

yx · [x, y]. The associator of x, y, z ∈ Q is the unique element [x, y, z] ∈ Q such that
(xy)z = x(yz) · [x, y, z]. We also introduce the commutator mapping C : Q2 → Q,
(x, y) �→ [x, y] and the associator mapping A : Q3 → Q, (x, y, z) �→ [x, y, z]. When
there is a normal subloop H of Q such that C(x, y) = C(x′, y′) and A(x,y, z) =
A(x′, y′, z′) whenever xH = x′H , yH = y′H and zH = z′H , we can view C and A

as mappings from (Q/H)2 and (Q/H)3, respectively.
The nucleus of Q is the subloop N(Q) = {x ∈ Q; [x, y, z] = [y, x, z] =

[y, z, x] = 1 for every y, z ∈ Q}. The center of Q is the normal subloop Z(Q) =
{x ∈ N(Q); [x, y] = [y, x] = 1 for every y ∈ Q}.

A loop Q is conjugacy closed if L−1
x LyLx is a left translation and R−1

x RyRx is
a right translation of Q for every x, y ∈ Q. A loop Q is Moufang if x(y(xz)) =
((xy)x)z holds, and extra if x(y(zx)) = ((xy)z)x holds in Q. A loop is diassocia-
tive if every two of its elements generate an associative subloop. Moufang loops are
diassociative.

For a loop Q, let Z0(Q) = 1, and let Zi+1(Q) be the unique normal subloop of Q

containing Zi(Q) such that Zi+1(Q)/Zi(Q) = Z(Q/Zi(Q)). Then Z1(Q) = Z(Q),
Zi(Q) � Z(Q) for every i, and 1 = Z0(Q) ≤ Z1(Q) ≤ Z2(Q) ≤ · · · is the upper
central series of Q. We say that Q is (centrally) nilpotent of class n if n is the least
integer such that Zn(Q) = Q.

Given a normal subloop H of Q, let (H,Q) be the intersection of all normal
subloops K of Q such that HK/K ≤ Z(Q/K). Define Q0 = Q, and Qi+1 =
(Qi,Q). Then Qi � Q for every i, and Q = Q0 ≥ Q1 ≥ Q2 ≥ · · · is the lower
central series of Q. The normal subloop Q1 = (Q,Q) is also denoted by Q′, and it
is the least normal subloop H of Q such that Q/H is an Abelian group.

By a result of Bruck [2, Lemma VI.1.2], the upper and lower central series interact
in a way familiar from group theory. That is, if Qβ+1 ⊆ Zα+1(Q) for some α and β ,
then also Qβ ⊆ Zα+2(Q) and Qβ+2 ⊆ Zα(Q).

A p-loop is a loop of order pa for some a ≥ 0. For Moufang loops, this is equiva-
lent to the condition that the order of every element is a power of p.
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A bijection f : Q → Q is a (right) pseudoautomorphism with (right) companion
c ∈ Q if f (xy)c = f (x) · f (y)c holds for every x, y ∈ Q.

For an introduction to the theory of loops, see [2] and [26].

2.2 Central extensions of loops

There is no loop-theoretical analog to Schreier’s results on group extensions, but
central extensions of loops generalize from groups easily. For more about loop exten-
sions, see [19], [10], [21], and [25].

Anticipating a more special situation, let F , V be loops. Then Q is an extension of
F by V if F �Q and Q/F is isomorphic to V . The extension is central if F ≤ Z(Q).

Given an Abelian group F and a loop V , a mapping θ : V 2 → F is a cocycle if
θ(1, v) = θ(v,1) = 1 for every v ∈ V . For a cocycle θ : V 2 → F , denote by Vθ the
groupoid defined on F × V by

(a,u)(b, v) = (abθ(u, v), uv). (2.1)

It is not hard to see that Vθ is a loop with neutral element (1,1) and F ≤ Z(Vθ ). Thus
Vθ is a central extension of F by V . In fact, every central extension arises in this way,
cf. [2]:

Theorem 2.1 Let F be an Abelian group and V a loop. The following conditions are
equivalent:

(i) Q is a central extension of F by V ,
(ii) Q = Vθ for some cocycle θ : V 2 → F .

We will mostly deal with extensions of the Abelian group of a field F by a vector
space V over F . In such a case, we write the loop operations in F and V additively,
and hence the multiplication in Vθ is given by

(a,u)(b, v) = (a + b + θ(u, v), u + v).

If θ is clear from the context, we denote the commutator and associator mappings in
Vθ by C and A, as in Subsection 2.1. Else we use Cθ and Aθ for emphasis.

A straightforward calculation yields:

Lemma 2.2 Let Q = Vθ , where V is a vector space over F and θ : V 2 → F is a
cocycle. Then the commutator mapping C can be viewed as a mapping V 2 → F and
the associator mapping A can be viewed as a mapping V 3 → F , namely

C(u, v) = θ(u, v) − θ(v,u), (2.2)

A(u,v,w) = θ(u, v) + θ(u + v,w) − θ(v,w) − θ(u, v + w) (2.3)

for every u, v, w ∈ V .
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2.3 Symplectic p-loops and small Frattini p-loops

A p-loop Q is said to be symplectic if it possesses a central subloop F of order p

such that V = Q/F is an elementary Abelian p-group. Thus, by Theorem 2.1, Q is a
symplectic p-loop if and only if Q = Vθ for a vector space V over Fp and a cocycle
θ : V 2 → Fp .

An element x of a loop Q is a non-generator if whenever S ∪ {x} generates Q

then already S generates Q. Analogously to the situation in group theory, the Frattini
subloop �(Q) of a loop Q consists of all non-generators of Q.

The Frattini subloop retains some (but not all) of the familiar properties of the
Frattini subgroup. In particular, Bruck proved [2, pp. 97–99]: (i) �(Q) is the inter-
section of all maximal subloops of Q, (ii) if Q is nilpotent then �(Q) is a normal
subloop of Q, (iii) if Q is a nilpotent p-loop then �(Q) is the least normal subloop
of Q such that Q/�(Q) is an elementary Abelian p-group.

Following Hsu [17], we say that a p-loop Q is small Frattini if |�(Q)| divides p,
and central small Frattini if it also satisfies �(Q) ≤ Z(Q).

As we have mentioned in the introduction, Hsu showed that even code loops are
precisely small Frattini Moufang 2-loops. In addition, he showed that small Frattini
Moufang p-loops are central small Frattini (and, importantly, that they are groups
whenever p > 3). To generalize this result, let us have a look at nilpotent small Frat-
tini p-loops:

Proposition 2.3 Let Q be a p-loop. Then the following conditions are equivalent:

(i) Q is symplectic,
(ii) Q is nilpotent small Frattini,

(iii) Q is nilpotent central small Frattini.

Proof Clearly, (iii) implies (ii). Assume that (ii) holds. If |�(Q)| = 1 then Q is el-
ementary Abelian and (i) follows. Suppose that |�(Q)| = p, so �(Q) ∼= Zp . If Q

is elementary Abelian, (i) holds. Else 1 < Q′ = �(Q), and thus Q > Q′ = Q1 >

Q2 = 1 = Z0(Q) is the lower central series. In particular, Q2 ≤ Z0(Q), and so
Q′ = Q1 ≤ Z1(Q) = Z(Q), proving (i).

Finally, assume (i), that is, there is F ≤ Z(Q) such that |F | = p and Q/F is
elementary Abelian. Then �(Q) ≤ F , and (iii) follows. �

By [12] and [13], Moufang p-loops are nilpotent. By [20], conjugacy closed p-
loops are nilpotent. We therefore have:

Corollary 2.4 Let Q be a small Frattini loop that is Moufang or conjugacy closed.
Then Q is central small Frattini.

Lemma 2.5 Every two-element normal subloop is central.

Proof Let H = {1, h} be a normal subloop of Q. Since every inner mapping ϕ of Q

fixes H globally and ϕ(1) = 1, we have ϕ(h) = h. But Z(Q) = {x ∈ Q; ϕ(x) = x

for every inner mapping ϕ}, so H ≤ Z(Q) follows. �
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Hence, a 2-loop Q is symplectic precisely when it possesses a normal subloop F

of order 2 such that Q/F is an elementary Abelian group.

2.4 Conjugacy closed loops and symmetry of the associator mapping

Conditions relating the associator and commutator have been investigated already by
Bruck [2], in an analogy to the commutator calculus of group theory. The condition

2[x, y] = [x, y, x − y] (2.4)

is very natural for symplectic conjugacy closed p-loops, cf. Lemma 2.8, and it will
play an important role in our investigation of code loops.

We start with a characterization of conjugacy closed loops in terms of associators
and commutators, due to Kinyon, Kunen and Phillips:

Theorem 2.6 (Lemma 2.8 of [20]) A loop Q is conjugacy closed if and only if the
associator is a symmetric function of its arguments and all commutators are in the
nucleus of Q.

Since the commutators are in fact central in loops Vθ , by Lemma 2.2, we conclude
that symplectic p-loops are conjugacy closed if and only if the associator mapping is
symmetric.

Furthermore, by [7, Theorem 4.4 and Corollary 4.5], in any conjugacy closed loop
of nilpotency class two we have [u,v,w] = [uv,w][u,w]−1[v,w]−1. Hence

A(u,v,w) = C(u + v,w) − C(u,w) − C(v,w) (2.5)

holds in a symplectic p-loop with symmetric associator. This equation already hints
at combinatorial polarization (see below).

For p odd, symplectic conjugacy closed p-loops were characterized by Drápal [8]
by means of modifications of symplectic Abelian p-groups:

Theorem 2.7 (Theorem 7.1 of [8]) Let p be an odd prime, and let (G,+) be an
Abelian group containing a subgroup F of order p such that V = G/F is an el-
ementary Abelian group. Let f : V 3 → F be a symmetric trilinear form, and let
g : V 2 → F be an alternating bilinear form. Define a new multiplication ◦ on G by

x ◦ y = x + y + f (x + F,x + F,y + F)/2 + g(x + F,y + F).

Then (G,◦) = G[f,g] is a symplectic conjugacy closed p-loop. Furthermore, every
symplectic conjugacy closed p-loop is of the form G[f,g] for some G, f , g as above.

The group (G,+) from Theorem 2.7 is either an elementary Abelian p-group, or
it is the direct product of an elementary Abelian p-group with the cyclic group of
order p2.

For a loop element x and an integer n, define the left nth power x(n) of x by
x(n) = Ln

x(1). For instance, x(4) = x(x(xx)).
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Lemma 2.8 Let p be an odd prime, and let G, F , V = G/F , f , g and Q = G[f,g]
be as in Theorem 2.7. Then:

(i) x(p) = px for every x ∈ Q.
(ii) (G,+) is an elementary Abelian p-group if and only if x(p) = 0 for every x ∈ Q.

(iii) [x, y, z] = f (x, y, z) for every x, y, z ∈ Q.
(iv) Q satisfies 2[x, y] = [x, y, x − y] if and only if g = 0.
(v) If (G,+) is elementary Abelian then Q = Vθ , where θ : V 2 → F is given by

θ(u, v) = f (u,u, v)/2 + g(u, v).

Proof Induction on k shows that the left translation Lx in Q satisfies

Lk
x(y) = kx + y + kh(x, y) +

(
k

2

)

h(x, x),

where h(u, v) = f (u,u, v)/2 + g(u, v). In particular, L
p
x (y) = px + y and x(p) =

L
p
x (0) = px, since im(h) ⊆ F and F is of odd order p. This proves (i) and (ii).

Since g(x, y) + g(x + y, z) = g(y, z) + g(x, y + z), direct calculation yields

[x, y, z] = (f (x, x, y) + f (x + y, x + y, z) − f (y, y, z) − f (x, x, y + z))/2

= f (x, y, z),

proving (iii).
As g(x, y) = −g(y, x), we have

[x, y] = 2g(x, y) + (f (x, x, y) − f (y, y, x))/2

= 2g(x, y) + f (x, y, x − y)/2.

Using this formula and (iii), we see that (2.4) holds if and only if g = 0, establish-
ing (iv).

Assume that (G,+) is an elementary Abelian p-group, i.e., G = F × V . Since
f , g are defined modulo F and their images are contained in F , the multiplication
formula in G[f,g] becomes

(a,u) ◦ (b, v) = (a + b + f (u,u, v)/2 + g(u, v), u + v),

proving (v). �

2.5 Combinatorial polarization and n-applications

Combinatorial polarization has been introduced by Ward [31]. Proofs of all results
mentioned in this subsection can be found either in [31] or in [9].

The notion of an n-application was developed by Ferrero and Micali [11] as a
generalization of quadratic forms, which are precisely 2-applications. n-applications
were studied (especially the question whether every n-application must be a polyno-
mial mapping—the answer is “no”) in a series of four papers by Prószyński [27]–[28].
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Let V be a vector space over F , and P : V → F a mapping satisfying P(0) = 0.
For n ≥ 1, the nth derived form �nP : V n → F of P is defined by

�nP (u1, . . . , un) =
∑

{i1,...,im}⊆{1,...,n}
(−1)n−mP (ui1 + · · · + uim), (2.6)

where the summation runs over all nonempty subset of {1, . . . , n}.
Then �nP is clearly a symmetric form for every n > 1, and it is not hard to see

that the defining identity (2.6) is equivalent to the recurrence relation

�nP (u, v,w3, . . . ,wn)

= �n−1P(u + v,w3, . . . ,wn)

− �n−1P(u,w3, . . . ,wn) − �n−1P(v,w3, . . . ,wn). (2.7)

We say that P has combinatorial degree n if �nP �= 0 and �n+1P = 0. It is clear
from (2.7) that P has combinatorial degree n if and only if �nP �= 0 is a symmetric
n-additive form. In particular, when F is a prime field, P has combinatorial degree n

if and only if �nP �= 0 is a symmetric n-linear form.
A mapping P : V → F is a polynomial mapping if with respect to some basis

{e1, . . . , en} of V (and hence with respect to any basis of V ) we have P(
∑

λiei) ∈
F [λ1, . . . , λn]. A polynomial mapping is said to be reduced if each of its exponents
is smaller than |F |.

Recall that all algebras in this paper are finite. The Lagrange interpolation theorem
therefore implies that every mapping F → F can be identified with a unique reduced
polynomial over F , and an induction on the dimension of V shows that the same
conclusion holds for every mapping V → F , cf. [9].

By a result of [31], the combinatorial degree of a reduced polynomial mapping
over Fp is equal to its polynomial degree. (The combinatorial degree of polynomial
mappings can be easily calculated over any field, cf. [30] or [9].)

We say that P : V → F is an n-application if �nP : V n → F is a symmetric
n-linear form, and

P(λu) = λnP (u)

for every λ ∈ F , u ∈ V .
We call a symmetric form f : V n → F characteristic, a term we coined in [9], if

f (u1, . . . , un) = 0 whenever ui1 = · · · = uip for some 1 ≤ i1 < · · · < ip ≤ n, where
p = char(F ).

The following three theorems were obtained (more generally) in [9]:

Theorem 2.9 Let V be a vector space over F , n ≥ 1 and P : V → F , P(0) = 0.
Then �nP : V n → F is a characteristic form.

Theorem 2.10 A reduced polynomial mapping P : V → F satisfies P(λu) =
λnP (u) for every λ ∈ F , u ∈ V if and only if the degree of every monomial of P

is congruent to n modulo |F | − 1.
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Theorem 2.11 Let {e1, . . . , ed} be a basis of V over Fp and let f : V n → Fp be a
characteristic n-linear form. Define P : V → Fp by

P(
∑

λiei) =
∑

0≤ti<p, t1+···+td=n

λ
t1
1 · · ·λtd

d

t1! · · · td ! f (t1 ∗ e1, . . . , td ∗ ed),

where ti ∗ ei means that ei is repeated as an argument of f precisely ti times.
Then P is a reduced homogeneous polynomial of degree n (and hence an n-

application) satisfying �nP = f .

Let us have a closer look at the case n = 3:

Proposition 2.12 Let {e1, . . . , ed} be a basis of V over Fp and let f : V 3 → Fp be a
characteristic trilinear form.

(i) If p > 3, there is a unique 3-application P : V → Fp satisfying �3P = f ,
namely

P(
∑

λiei) =
∑

i<j<k

λiλjλkf (ei, ej , ek)

+ 1

2

∑

i �=j

λ2
i λjf (ei, ei, ej ) + 1

6

∑

i

λ3
i f (ei, ei, ei).

(ii) If p = 3, then P : V → Fp defined by

P(
∑

λiei) =
∑

i<j<k

λiλjλkf (ei, ej , ek) + 1

2

∑

i �=j

λ2
i λjf (ei, ei, ej )

is a 3-application satisfying �3P = f , and any other 3-application R : V → Fp

satisfying �3R = f differs from P by a linear polynomial.
(iii) If p = 2, then P : V → Fp defined by

P(
∑

λiei) =
∑

i<j<k

λiλjλkf (ei, ej , ek)

is a 3-application satisfying �3P = f , and any other 3-application R : V → Fp

satisfying �3R = f differs from P by a quadratic polynomial.

Proof The three formulae are special cases of the general formula in Theorem 2.11,
where we use the fact that f (u,u,u) = 0 when p ≤ 3 and f (u,u, v) = 0 when p = 2.

Assume that R : V → Fp is another 3-application satisfying �3R = f . By The-
orem 2.10, every monomial of R has degree congruent to 3 modulo p − 1. Since
f = �3R is trilinear, R has (combinatorial) degree at most 3.

Suppose that p > 3. It follows that every monomial of R has degree 3. Then
R must coincide with P , else R − P is a cubic polynomial, and so 0 = f − f =
�3R − �3P = �3(R − P) �= 0, a contradiction.
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Now suppose that p = 3. It follows that every monomial of R has degree 3 or 1,
and we can argue as above that the cubic monomials of R and P coincide.

Similarly for p = 2. �

2.6 Linear codes and polarization

A linear code, often just a code, is a subspace of a vector space. Let U ≤ F
n
p be a

code. The Hamming weight |u| of u = (u1, . . . , un) ∈ U is the number of nonzero
coordinates ui of u.

A binary code U is said to be of level r if 2r divides |u| for every u ∈ U . Binary
codes of level 2 are known as doubly even. A code U is self-orthogonal if

∑
uivi = 0

for every u, v ∈ U .
Given two vectors u, v in F

n
2, we denote by u ∩ v the vector w such that wi = 1 if

and only if ui = 1 = vi .
Here is the crucial link between binary vectors and polarization:

Lemma 2.13 (Lemma 11.8 of [1]) Let U be a doubly even code and P : U → F2 a
mapping defined by P(u) = |u|/4 mod 2. Then

�2P(u, v) = |u ∩ v|/2 mod 2,

�3P(u, v,w) = |u ∩ v ∩ w| mod 2

for every u, v, w ∈ U .

And here is the universality of binary codes with respect to polarization:

Theorem 2.14 (Theorem 3.2 of [30]) Let V be a vector space over F2 and let P :
V → F2 be a mapping of combinatorial degree r + 1. Then there is a binary code U

isomorphic to V (as a vector space) and of level r such that P(u) = |u|/2r mod 2
for every u ∈ U .

In fact, we will only need a special case of Theorem 2.14 with r = 2, which has
been established already in [3].

3 The definitions

We are now going to define code loops in four ways. The main result of this paper is
to show that the four definitions are equivalent. Recall that x(n) stands for Ln

x(1).

Definition 3.1 (Code loops via polarization) Let V be a vector space over Fp ,
θ : V 2 → Fp a cocycle, and Q = Vθ . Suppose that there is P : V → Fp such that
Aθ = �3P , Cθ(u, v) = �2P(−u,v), and P(λu) = λ3P(u) for every λ ∈ Fp and u,
v ∈ V . If p ≥ 3, assume that x(p) = 1 for every x ∈ Q. Then Q is a code loop via
polarization.
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Definition 3.2 (Code loops via code) Let U be a code over Fp . If p = 2, assume that
U is doubly even. If p = 3, assume that

∑
ui = 0 for every u = (u1, . . . , un) ∈ U .

If p = 2, let θ : U2 → Fp be a cocycle satisfying

θ(u,u) = |u|
4

mod 2,

θ(u, v) + θ(v,u) = |u ∩ v|
2

mod 2,

θ(u, v) + θ(u + v,w) + θ(v,w) + θ(u, v + w) = |u ∩ v ∩ w| mod 2

for every u, v, w ∈ U . If p ≥ 3, define θ : U2 → Fp by θ(u, v) = ∑
u2

i vi .
Then Q = Uθ is a code loop via code.

Definition 3.3 (Code loops via conjugacy closed loop) Let Q be a symplectic conju-
gacy closed p-loop satisfying 2[x, y] = [x, y, x − y]. If p ≥ 3, assume that x(p) = 1
for every x ∈ Q. If p = 3, assume also that [x, x, x] = 1 for every x ∈ Q. Then Q is
a code loop via conjugacy closed loop.

For odd primes we also define:

Definition 3.4 (Odd code loops via form) Let V be a vector space over Fp , p ≥ 3.
Let f : V 3 → Fp be a characteristic trilinear form, and let θ : V 2 → Fp be defined
by θ(u, v) = f (u,u, v)/2. Then Q = Vθ is an odd code loop via form.

4 Even code loops

Using existing literature, it is not difficult to establish the equivalence of the three
definitions of even code loops. We present a short proof with several novel ideas,
and we also show that even code loops can be characterized by seemingly weaker
conditions.

Throughout this section, let p = 2.
We start with an observation due to Aschbacher, cf. [1, Lemmas 12.11 and 12.18].

Lemma 4.1 Let Q = Vθ . Then A(u,u, v) = 0 = A(u,v, v) holds if and only

θ(u,u + v) = θ(u,u) + θ(u, v), and θ(u + v, v) = θ(u, v) + θ(v, v). (4.1)

Moreover, when (4.1) holds then C = �2P , where P(u) = θ(u,u).

Proof By Lemma 2.2, A(u,u, v) = 0 = A(u,v, v) is equivalent to (4.1). Then

θ(u + v,u) = θ(u + v, (u + v) + v) = θ(u + v,u + v) + θ(u + v, v),

so
θ(u + v,u + v) = θ(u + v, v) + θ(u + v,u)

= θ(u, v) + θ(v, v) + θ(u,u) + θ(v,u). (4.2)
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Thus, with P(u) = θ(u,u), we have �2P(u, v) = θ(u + v,u + v) + θ(u,u) +
θ(v, v) = θ(u, v) + θ(v,u) = C(u, v), again by Lemma 2.2. �

The following result shows that the associator mapping is obtained by polarization
under very weak assumptions:

Lemma 4.2 Let Q = Vθ and assume that A satisfies A(u,u, v) = A(u,v, v) = 0
and A(u,v,w) = A(u,w,v) for every u, v, w ∈ V . Then A = �3P , where P(u) =
θ(u,u).

Proof Let P(u) = θ(u,u). Then the equality �3P = A holds if and only if

θ(u,u) + θ(v, v) + θ(w,w) + θ(u + v,u + v) + θ(u + w,u + w)

+ θ(v + w,v + w) + θ(u + v + w,u + v + w)

= θ(u, v) + θ(u + v,w) + θ(v,w) + θ(u, v + w). (4.3)

From (4.2), we have

θ(u + v,u + v) = θ(u,u) + θ(u, v) + θ(v,u) + θ(v, v),

θ(u + w,u + w) = θ(u,u) + θ(u,w) + θ(w,u) + θ(w,w),

θ(u + v + w,u + v + w) = θ(u,u) + θ(u, v + w)

+ θ(v + w,u) + θ(v + w,v + w).

Upon substituting these three equalities into the left hand side of (4.3) and canceling
as many summands as possible, we obtain

θ(u,w) + θ(v,u) + θ(w,u) + θ(v + w,u) = θ(v,w) + θ(u + v,w).

After adding θ(v,u + w) to both sides and rearranging, we get

θ(v,u) + θ(v + u,w) + θ(u,w) + θ(v,u + w)

= θ(v,w) + θ(v + w,u) + θ(w,u) + θ(v,u + w),

which is merely A(v,u,w) = A(v,w,u). �

Proposition 4.3 (Even code loops via polarization) Let V be a vector space over
F2 and let θ : V 2 → F2 be a cocycle. The following conditions are equivalent for
Q = Vθ :

(i) Q is an even code loop via polarization, i.e., there is P : V → F2 such that
P(0) = 0, C = �2P , and A = �3P .

(ii) A = �3P , where P(u) = θ(u,u).
(iii) A satisfies A(u,u, v) = A(u,v, v) = 0 and A(u,v,w) = A(u,w,v).
(iv) A is a characteristic trilinear form.
(v) Q is Moufang.

(vi) Q is extra.
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Proof All derived forms are characteristic by Theorem 2.9, so (i) implies (iii). By
Lemma 4.2, (iii) implies (ii). When (ii) holds then C = �2P by Lemma 4.1, and
P(0) = θ(0,0) = 0, proving (i). Hence (i), (ii), (iii) are equivalent.

(v) is equivalent to (vi) since extra loops are precisely Moufang loops with squares
in the nucleus, by [4, Corollary 2], and we have (a,u)(a,u) = (θ(u,u),0) ∈ Z(Q).

(ii) ⇔ (v): Recall that �3P(u, v,w) = �2P(u+v,w)+�2P(u,w)+�2P(v,w),
C(u, v) = θ(u, v) + θ(v,u), and A(u,v,w) = θ(u, v) + θ(u + v,w) + θ(v,w) +
θ(u, v + w). When (ii) holds then C = �2P by Lemma 4.1, and so �3P = A is
equivalent to C(u + v,w) + C(u,w) + C(v,w) = A(u,v,w), which is

θ(w,u + v) + θ(u,w) + θ(w,u) + θ(w,v) = θ(u, v) + θ(u, v + w). (4.4)

With x = (a,u), y = (c,w), z = (b, v), the Moufang identity x(y(xz)) = ((xy)x)z

becomes

θ(u, v) + θ(w,u + v) + θ(u,u + v + w)

= θ(u,w) + θ(u + w,u) + θ(w,v). (4.5)

Now, Lemma 4.1 can be used whether (ii) or (v) is assumed, since Moufang loops are
diassociative. We therefore have

θ(u,u + v + w) = θ(u,u) + θ(u, v + w),

θ(u + w,u) = θ(u,u) + θ(w,u)

in either case, and these equations establish the equivalence of (4.4) and (4.5).
(v) ⇒ (iv): Assume that (v) holds. Then A = �3P with P(u) = θ(u,u), by (ii),

and so A is a characteristic form. It remains to show that A is trilinear. By [2,
Lemma VII.2.2], the right inner mapping R(x, y) is a pseudoautomorphism with
companion [x, y]. Since commutators are central in Vθ , R(x, y) is an automor-
phism. Using centrality of associators, we also note that R(x, y)t = (tx · y)(xy)−1 =
(t · xy)(xy)−1[t, x, y] = t[t, x, y], and so (rs)[rs, x, y] = R(x, y)(rs) = R(x, y)r ·
R(x, y)s = r[r, x, y] · s[s, x, y] = (rs)[r, x, y][s, x, y]. Upon canceling rs, we con-
clude that the associator mapping is trilinear.

Since (iv) trivially implies (iii), we are through. �

We are now ready for the characterization of even code loops:

Theorem 4.4 (Even code loops) Definitions 3.1–3.3 of even code loops are equiva-
lent.

Proof Let Q = Uθ be an even code loop via code. By Lemma 2.13, P : U →
F2 defined by P(u) = |u|/4 mod 2 satisfies �2P(u, v) = |u ∩ v|/2 mod 2 and
�3P(u, v,w) = |u ∩ v ∩ w| mod 2. By Lemma 2.2, we then have C = �2P ,
A = �3P , so Q is an even code loop via polarization.

Let Q = Vθ be an even code loop via polarization. Then the associator mapping is
symmetric, commutators are in the nucleus, and hence Q is a symplectic conjugacy
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closed 2-loop by Theorem 2.6. Since Q is Moufang by Proposition 4.3, it is diasso-
ciative, and hence the condition (2.4) holds trivially. Thus Q is an even code loop via
conjugacy closed loop.

Finally, assume that Q is an even code loop via conjugacy closed loop. Since Q

is a symplectic 2-loop, Q = Vθ for some θ . By Theorem 2.6, A is symmetric. By
(2.5), A(u,u, v) = C(0, v) − C(u, v) − C(u, v) = 0, so A is characteristic. Proposi-
tion 4.3 then implies that A = �3P , C = �2P , and P(0) = 0 for some P : V → F2

of combinatorial degree at most 3. By [3] or by Theorem 2.14, there is a doubly even
code U isomorphic to V such that P(u) = |u|/4 mod 2. As above, we calculate
�2P(u, v) = |u ∩ v|/2 mod 2, �3P(u, v,w) = |u ∩ v ∩ w| mod 2, and so Q is an
even code loop via code by Lemma 2.2. �

5 A universal code construction

In order to show the equivalence of Definitions 3.1–3.3 for even code loops, we
needed Theorem 2.14 (with r = 2) to obtain doubly even codes with prescribed Ham-
ming weights of codewords and their intersections. Theorem 5.6 below will play an
analogous role in the odd case.

Lemma 5.1 For b1, . . . , bp−1 ∈ Fp , the system of equations

11a1 + 21a2 + · · · + (p − 1)1ap−1 = b1

12a1 + 22a2 + · · · + (p − 1)2ap−1 = b2
...

. . .
...

1p−1a1 + 2p−1a2 + · · · + (p − 1)p−1ap−1 = bp−1

has a unique solution a1, . . . , ap−1 ∈ Fp .

Proof The determinant of the system is essentially a Vandermonde determinant,

∣
∣
∣
∣
∣
∣
∣
∣
∣

11 21 · · · (p − 1)1

12 22 · · · (p − 1)2

...
. . .

1p−1 2p−1 · · · (p − 1)p−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 · 2 · · · (p − 1) ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
11 21 · · · (p − 1)1

...
. . .

1p−2 2p−2 · · · (p − 1)p−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and thus is equal to 1 · 2 · · · (p − 1) · ∏0<i<j<p(i − j) �≡ 0 (mod p). �

For a field F let F ∗ = F \ {0} denote the multiplicative group of F .
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Lemma 5.2 Given b1, . . . , bp−1 ∈ Fp , there exists an n ≤ (p − 1)2 and x1, . . . ,
xn ∈ F

∗
p such that

n∑

i=1

xr
i = br (5.1)

holds for every 1 ≤ r ≤ p − 1. Moreover, we can assume that each i ∈ F
∗
p occurs less

than p times among x1, . . . , xn, and under this assumption n is uniquely determined
and x1, . . . , xn are uniquely determined up to their order.

Proof Assume that x1, . . . , xn satisfy (5.1) for every 1 ≤ r ≤ p − 1. Should some
i ∈ F

∗
p occur at least p times among x1, . . . , xn, we could delete p occurrences of i

from x1, . . . , xn without affecting the sums (5.1). We can therefore assume that each
i ∈ F

∗
p occurs among x1, . . . , xn precisely ai times, where 0 ≤ ai < p. Consequently,

n ≤ (p − 1)2.
With ai as above, the condition (5.1) is equivalent to

1ra1 + 2ra2 + · · · + (p − 1)rap−1 = br

for every 1 ≤ r ≤ p − 1, and we are done by Lemma 5.1. �

Let A = (aij ) be an n × m matrix and B an r × s matrix. Let A ⊗ B be their
Kronecker product, that is, the nr × ms block matrix

⎛

⎜
⎝

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

⎞

⎟
⎠ .

Denote by A⊗t the Kronecker power A ⊗ · · · ⊗ A, where A appears t times.
The following result is well known and easy to prove, cf. [22, 2.4.13]:

Lemma 5.3 Let A be an n × n matrix and B an m × m matrix. Then |A ⊗ B| =
|A|m · |B|n.

Corollary 5.4 Let A be an n × n matrix and t ≥ 1. Then |A⊗t | = |A|tnt−1
.

Lemma 5.2 is a special case (d = 1) of this result:

Lemma 5.5 Let d ≥ 1, and for every 1 ≤ λ1, . . . , λd ≤ p − 1 let bλ1,...,λd
∈ Fp . Then

there exists an n ≤ (p − 1)d+1 and x1 = (x1,i ), . . . , xd = (xd,i) ∈ (F∗
p)n such that

n∑

i=1

x
λ1
1,i · · ·xλd

d,i = bλ1,...,λd
(5.2)

for every 1 ≤ λ1, . . . , λd ≤ p − 1. Moreover, we can assume that each d-tuple
(j1, . . . , jd) ∈ (F∗

p)d appears less than p times among (x1,i , . . . , xd,i), 1 ≤ i ≤ n,
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and under this assumption n is uniquely determined and x1, . . . , xd are uniquely
determined up to a simultaneous permutation of coordinates 1, . . . , n.

Proof Assume that x1, . . . , xd satisfy (5.2) for every 1 ≤ λ1, . . . , λd ≤ p − 1. Should
some j = (j1, . . . , jd) ∈ (F∗

p)d occur at least p times among (x1,i , . . . , xd,i), we could
delete p corresponding coordinates from each xk without affecting the sums (5.2). We
can therefore assume that each j ∈ (F∗

p)d occurs among (x1,i , . . . , xd,i) precisely aj

times, where 0 ≤ aj < p. Consequently, n ≤ (p − 1)d+1.
Just as in the proof of Lemma 5.2, we can write down the system of (p−1)d linear

equations in variables aj . For d = 2, we get, with r = p − 1,

1111a1,1 +· · ·+ 11r1a1,r +· · ·+ r111ar,1 +· · ·+ r1r1ar,r = b1,1
. . .

. . .
. . .

...

111ra1,1 +· · ·+ 11rra1,r +· · ·+ r11rar,1 +· · ·+ r1rrar,r = b1,r

. . .
. . .

. . .
...

1r11a1,1 +· · ·+ 1r r1a1,r +· · ·+ rr11ar,1 +· · ·+ rr r1ar,r = br,1
. . .

. . .
. . .

...

1r1ra1,1 +· · ·+ 1r rra1,r +· · ·+ rr1rar,1 +· · ·+ rr rrar,r = br,r .

The coefficients in the system correspond to the matrix A ⊗ A, where

A =
⎛

⎜
⎝

11 · · · r1

...
. . .

...

1r · · · rr

⎞

⎟
⎠ .

For a general d ≥ 1, it is now easy to see that we obtain a system with coefficient
matrix A⊗d . We know from the proof of Lemma 5.1 that |A| �≡ 0 (mod p), and thus
|A⊗d | �≡ 0 (mod p) by Corollary 5.4. �

Lemma 5.5 produces vectors x1, . . . , xd of optimal (shortest possible) length solv-
ing (5.2) for every 1 ≤ λ1, . . . , λd ≤ p − 1. We now allow λi = 0, too, but we do
not claim anymore that the construction is optimal. While evaluating (5.2) with zero
exponents, we adopt the convention 00 = 1.

Theorem 5.6 (Universal code construction) Let d ≥ 1, and for every 0 ≤ λ1, . . . ,
λd ≤ p − 1 let bλ1,...,λd

∈ Fp . Then there exists an n > 0 and vectors x1 = (x1,i ), . . . ,
xd = (xd,i) ∈ F

n
p such that (5.2) holds for every 0 ≤ λ1, . . . , λd ≤ p − 1. It is possible

to choose x1, . . . , xd so that they are linearly independent and hence generate a code
of length n and dimension d .

Proof We will build the vectors x1, . . . , xd inductively, starting with empty vectors
x1, . . . , xd , or with some linearly independent vectors x1, . . . , xd , if linear indepen-
dence is desired.

Given a subset I of X = {1, . . . , d}, we say that (5.2) holds for I if it holds for
every 0 ≤ λ1, . . . , λd ≤ p − 1 such that λi �= 0 whenever i ∈ I . Given a subset I of
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the power set 2X , we say that (5.2) holds for I if it holds for every I ∈ I . Note that,
for trivial reasons, (5.2) holds for I = ∅.

For the inductive step, assume that (5.2) holds for some I ⊆ 2X . Further assume
that I is an upset in 2X with respect to inclusion, that is, if I ∈ I and I ⊆ J ∈ 2X then
J ∈ I . Let I be a maximal subset of X such that I �∈ I . We now extend the vectors
x1, . . . , xd so that (5.2) holds for the upset I ∪ {I }:

Extend all vectors xi with i �∈ I by suitably many zeros. This will guarantee that
(5.2) remains valid for I , no matter how {xi; i ∈ I } will be extended later, since for
every J ∈ I there is i ∈ J \ I . By Lemma 5.5, we can extend the vectors {xi; i ∈ I }
so that (5.2) holds for I , too.

Starting with I = ∅ and repeating the inductive step 2d times in any suitable or-
der (the first step will therefore be with I = X), we conclude that (5.2) holds for
I = 2X . �

6 Odd code loops: Forms versus codes

In this section we show that odd code loops via forms are precisely odd code loops
via codes.

Lemma 6.1 Let Q = Uθ be an odd code loop via code. Then Q is an odd code loop
via form.

Proof Define f : U3 → Fp by f (u, v,w) = 2
∑

uiviwi . Then θ(u, v) = ∑
u2

i vi =
f (u,u, v)/2. Moreover, f is clearly symmetric and trilinear. When p = 3, we have
f (u,u,u) = ∑

u3
i = ∑

ui = 0 by assumption on U , so f is characteristic. �

To prove the converse of Lemma 6.1, we need to construct a code from a charac-
teristic trilinear form. The following easy lemma shows that it suffices to do this on a
basis:

Lemma 6.2 Let Q = Vθ be an odd code loop via form f : V 3 → Fp , with θ(u, v) =
f (u,u, v)/2. Let {e1, . . . , ed} be a basis of V , and let ϕ : V → V ′, ej �→ xj be an
isomorphism of vector spaces. Assume that frst = f (er , es, et ) = ∑

i xr,ixs,ixt,i for
every 1 ≤ r ≤ s ≤ t ≤ d . Then θ(u, v) = (1/2)

∑
i (ϕ(u)i)

2ϕ(v)i for every u, v ∈ V .

Proposition 6.3 Odd code loops via forms are precisely odd code loops via codes.

Proof In view of Lemma 6.1, it remains to show that odd code loops via forms are
odd code loops via codes.

Let Q = Vθ , f , {e1, . . . , ed}, frst be as in Lemma 6.2. By the same lemma, our
task is to construct a basis x1, . . . , xd of a code over Fp so that frst = ∑

i xr,ixs,ixt,i

for every 1 ≤ r ≤ s ≤ t ≤ d . In other words, we need to construct linearly independent
vectors x1, . . . , xd so that



602 J Algebr Comb (2010) 31: 585–611

∑

i

xr,ixs,ixt,i = frst , for 1 ≤ r < s < t ≤ d,

∑

i

x2
r,ixs,i = frrs,

∑

i

xr,ix
2
s,i = frss, for 1 ≤ r < s ≤ d, (6.1)

∑

i

x3
r,i = frrr ,

∑

i

x2
r,i = 0, for 1 ≤ r ≤ d.

When p > 3, this is immediately accomplished by Theorem 5.6. When p = 3, we
have

∑
i x

3
r,i = ∑

i xr,i , and thus instead of
∑

i x
3
r,i = frrr we demand

∑
i xr,i = frrr

in (6.1). So even when p = 3 we are done by Theorem 5.6, and the resulting code
satisfies

∑
i xr,i = frrr = 0, since f is characteristic. �

Note that we could construct a self-orthogonal code in the proof of Proposition 6.3,
if needed, by imposing the additional condition

∑
i xr,ixs,i = 0 for 1 ≤ r < s ≤ d .

6.1 Compatibility with Richardson’s definition

In [29], Richardson defined odd code loops and suggested a generalization. Here is
his definition:

Let U be a self-orthogonal code over Fp , and let z ∈ U be such that:

(i) all coordinates of z are nonzero,
(ii) z is invariant under all permutation matrices found in the automorphism group

of U .

For u, v ∈ U , let θ(u, v) = ∑
z−1
i u2

i vi . Then Q = (U, z) = Uθ defined on Fp × U

by (2.1) is an odd code loop in the sense of Richardson.

Lemma 6.4 Every odd code loop in the sense of Richardson is an odd code loop via
form.

Proof Let Q = (U, z) be an odd code loop in the sense of Richardson. Consider g :
U3 → Fp , g(u, v,w) = ∑

z−1
i uiviwi . Then θ(u, v) = g(u,u, v), and g is symmetric

trilinear. When p = 3, we have g(u,u,u) = ∑
i z

−1
i u3

i = ∑
i ziui = 0, since U is

self-orthogonal, and so g is characteristic. �

But not every odd code loop via form is an odd code loop in the sense of Richard-
son, as Example 6.5 shows.

Example 6.5 Let F = F5, α a generator of F ∗, and V a 3-dimensional vector space
over F with basis {e1, e2, e3}. Let f : V 3 → F be the symmetric trilinear form de-
fined by

f111 = α, f112 = α3, f113 = 0, f122 = 0, f123 = 0,

f133 = 1, f222 = 1, f223 = α, f233 = 0, f333 = 1,

where we write fijk instead of f (ei, ej , ek). Then one can verify (by computer) that
f satisfies f (v, v, v) �= 0 for every 0 �= v ∈ V .
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Let Q = Vθ , where θ(u, v) = f (u,u, v)/2. Then Q is an odd code loop via form
such that Aθ(v, v, v) = f (v, v, v) �= 0 for every 0 �= v ∈ V .

Let (U, z) be an odd code loop in the sense of Richardson, and let g(u, v,w) =
∑

z−1
i uiviwi . Then (U, z) is an odd code loop via form, and we therefore have

A(z, z, z) = g(z, z, z) = ∑
z2
i = 0 by Lemma 2.8 (iii). Hence Q is not isomorphic

to (U, z).

On the other hand, Richardson suggested to generalize his definition to encom-
pass all loops Q = Vθ with θ(u, v) = f (u,u, v), where f : V 3 → Fp is symmetric
trilinear. This generalization coincides with our definition via form when p > 3, but
when p = 3 we impose the additional constraint f (u,u,u) = 0 for every u, i.e., we
demand that f is characteristic. In view of Theorem 2.9, this constraint is necessary
if we wish to maintain a connection to combinatorial polarization.

We conclude this section by showing that the special vector z in Richardson’s de-
finition is in fact not needed, since the all-1 vector can always take its place, possibly
on account of a longer self-orthogonal code.

Recall that the radical of a symmetric trilinear form f : V 3 → Fp is the subspace
Rad(f ) = {u ∈ V ; f (u, v,w) = 0 for every v, w ∈ V }. In Richardon’s definition, the
codeword z belongs to the radical of the associated form g(u, v,w) = ∑

z−1
i uiviwi .

Indeed, g(z,u, v) = ∑
uivi = 0 thanks to self-orthogonality.

Lemma 6.6 Let V be a self-orthogonal code with basis {e1, . . . , ed+1}, f : V 3 → Fp

a characteristic trilinear form, and z ∈ V ∩ Rad(f ). Then there is a self-orthogonal
code V ′ containing the all-1 vector 1, and there is an isomorphism ϕ : V → V ′ such
that ϕ(z) = 1, ϕ(ei) = xi for every i, and

∑
i xr,ixs,ixt,i = f (er , es, et ) for every

1 ≤ r , s, t ≤ d + 1.

Proof Without loss of generality, let z = ed+1. We need to construct linearly in-
dependent vectors x1, . . . , xd+1 generating a self-orthogonal code such that (6.1)
holds and xd+1 = 1. By Theorem 5.6, there exist vectors x1, . . . , xd satisfying (6.1),
∑

i xr,ixs,i = 0 for every 1 ≤ r < s ≤ d , and
∑

i xr,i = 0 for every 1 ≤ r ≤ d . (When
p = 3 we use the assumption frrr = 0.)

Having xd+1 = 1 imposes additional conditions on the vectors x1, . . . , xd .
Namely, the first equation of (6.1) yields

∑
i xr,ixs,i = frs(d+1) = 0 (which al-

ready holds), the second yields
∑

i x
2
r,i = frr(d+1) = 0 (which already holds), the

third yields
∑

i xr,i = fr(d+1)(d+1) = 0 (which already holds), the fourth yields
∑

i x
3
d+1,i = f(d+1)(d+1)(d+1) = 0, and the fifth equation of (6.1) yields

∑
i x

2
d+1,i =

0. To make xd+1 orthogonal to all other basis vectors, we must have
∑

xr,i = 0 for
every 1 ≤ r ≤ d (which already holds). To make xd+1 self-orthogonal, we demand
∑

i xd+1,i = 0. We accomplish
∑

i xd+1,i = ∑
i x

2
d+1,i = ∑

i x
3
d+1,i = 0 at once by

extending x1, . . . , xd by suitably many zeros so that the length of V ′ is divisible
by p. �
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7 Odd code loops: Forms versus polarization

Lemma 7.1 Let p ≥ 3, and let Q = Vθ be such that the associator map A is
a characteristic trilinear form. Let P be the unique homogeneous cubic poly-
nomial V → Fp satisfying �3P = A. Then A(u,u,u) = C(2u,u) = 6P(u) and
2�2P(−u,v) = A(u,v,u − v) holds for every u, v ∈ V .

Proof The existence and uniqueness of P follow from Proposition 2.12. We have

A(u,u,u) = θ(u,u) + θ(2u,u) − θ(u,u) − θ(u,2u) = C(2u,u),

by Lemma 2.2, and

A(u,u,u) = �3P(u,u,u) = P(3u) − 3P(2u) + 3P(u)

= (27 − 3 · 8 + 3)P (u) = 6P(u)

since P is homogeneous and cubic.
Let p > 3. The equality 2�2P(−u,v) = A(u,v,u − v) holds if and only if

2�2P(−u,v) = �3P(u, v,u − v)

= �2P(u + v,u − v) − �2P(u,u − v) − �2P(v,u − v),

which holds if and only if

2P(−u + v) − 2P(−u) − 2P(v)

= P(2u) − P(u + v) − P(u − v) − P(2u − v)

+ P(u) + P(u − v) − P(u) + P(v) + P(u − v)

= P(2u) − P(u + v) − P(2u − v) + P(u − v) + P(v).

Using P(λu) = λ3P(u) again, the above equality is equivalent to

3P(−u + v) − 3P(v) − 6P(u) + P(u + v) + P(2u − v) = 0. (7.1)

Using A(u,u,u) = 6P(u) and the symmetry and trilinearity of A, we have

3P(−u + v) = (3/6)(−A(u,u,u) + 3A(u,u, v) − 3A(u,v, v) + A(v, v, v)),

−3P(v) = (−3/6)A(v, v, v),

−6P(u) = (−6/6)A(u,u,u),

P (u + v) = (1/6)(A(u,u,u) + 3A(u,u, v) + 3A(u,v, v) + A(v, v, v)),

P (2u − v) = (1/6)(8A(u,u,u) − 12A(u,u, v) + 6A(u,v, v) − A(v, v, v)),

so (7.1) holds.
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Let p = 3 and u = ∑
λiei , v = ∑

μiei . By Proposition 2.12 (ii) and P(−u) =
−P(u), we have

2�2P(−u,v) = 2(P (v − u) + P(u) − P(v))

=
∑

i �=j

A(ei, ei, ej )[(μi − λi)
2(μj − λj ) + λ2

i λj − μ2
i μj ]

+ 2
∑

i<j<k

A(ei, ej , ek)[(μi − λi)(μj − λj )(μk − λk)

+ λiλjλk − μiμjμk].
On the other hand, since A(w,w,w) = 6P(w) = 0, we have

A(u,v,u − v) =
∑

i,j,k

λiμj (λk − μk)A(ei, ej , ek)

=
∑

i �=j

A(ei, ei, ej )[λiμi(λj − μj )

+ λiμj (λi − μi) + λjμi(λi − μi)]
+

∑

i<j<k

A(ei, ej , ek)[λiμj (λk − μk)

+ λiμk(λj − μj ) + λjμi(λk − μk)

+ λjμk(λi − μi) + λkμi(λj − μj ) + λkμj (λi − μi)].
A tedious comparison of the coefficients of A(ei, ei, ej ) and A(ei, ej , ek) in the two
expressions then yields 2�2P(−u,v) = A(u,v,u − v). �

Lemma 7.2 Every odd code loop via form is an odd code loop via polarization.

Proof Assume that Q = Vθ is an odd code loop via form f , θ(u, v) = f (u,u, v)/2.
By Lemma 2.8(ii), x(p) = 1 for every x ∈ Q. Using Lemma 2.8(iii) with g = 0,
we get A = f . By Lemma 7.1, there is a (unique) homogeneous cubic polyno-
mial P : V → Fp such that �3P = A. We therefore have P(λu) = λ3P(u), so
it remains to show that C(u, v) = �2P(−u,v), which by Lemma 7.1 is equiva-
lent to 2C(u, v) = A(u,v,u − v). But we have 2C(u, v) = 2θ(u, v) − 2θ(v,u) =
f (u,u, v) − f (v, v,u) = f (u, v,u − v) = A(u,v,u − v). �

Proposition 7.3 Odd code loops via form are precisely odd code loops via polariza-
tion.

Proof It remains to show that an odd code loop Q = Vθ via polarization of P :
V → Fp is an odd code loop via form.

Since A = �3P is symmetric, Theorem 2.6 implies that Q is a symplectic
conjugacy closed p-loop. By Theorem 2.7, Q = G[f,g] for some Abelian group



606 J Algebr Comb (2010) 31: 585–611

(G,+), symmetric trilinear form f and an alternating bilinear form g. By Lemma
2.8(iii), f = A = �3P is characteristic trilinear, so P is a 3-application. By Propo-
sition 2.12, there is a homogeneous cubic polynomial R : V → Fp that differs from
P by a linear polynomial. Hence �3P = �3R, �2P = �2R, and Lemma 7.1 yields
2�2P(−u,v) = 2�2R(−u,v) = A(u,v,u − v). We have C(u, v) = �2P(−u,v)

by assumption, and so 2C(u, v) = A(u,v,u − v). Lemma 2.8(iv) then implies
that g = 0. Since x(p) = 1 for every x ∈ Q, (G,+) is elementary Abelian by
Lemma 2.8(ii), and we are done by Lemma 2.8(v). �

8 Odd code loops: Forms versus conjugacy closed loops

Proposition 8.1 Odd code loops via form are precisely odd code loops via conjugacy
closed loop.

Proof When Q = Vθ is an odd code loop via form f , we can view it as the loop
G[f,0] of Theorem 2.7, where (G,+) = (Fp × U,+) is elementary Abelian. By
Lemma 2.8, x(p) = 1 for every x ∈ Q, and (2.4) holds. When p = 3, A(x,x, x) =
f (x, x, x) = 0. Hence Q is a code loop via conjugacy closed loop.

Conversely, let Q be an odd code loop via conjugacy closed loop. By Theorem 2.7
and Lemma 2.8, we can assume that Q = Vθ where θ(u, v) = f (u,u, v)/2+g(u, v),
f is symmetric trilinear and g is alternating bilinear. The assumption [x, x, x] = 1
then guarantees that A = f is characteristic even when p = 3, and since (2.4) holds,
we have g = 0 by Lemma 2.8. Thus Q is a code loop via form f . �

In summary:

Theorem 8.2 (Odd code loops) The four definitions 3.1–3.4 of odd code loops are
equivalent.

9 Some basic properties of odd code loops

The properties of odd code loops established by Richardson in [29, pp. 1468–9] re-
main valid for our odd code loops. In fact, Richardson’s proofs can be used almost
verbatim, accounting merely for a change in notation. We restate them here for the
sake of completeness.

An element of a loop is power-associative if it generates an associative subloop,
i.e., a group. A loop is power-associative if each of its elements is power-associative.

Lemma 9.1 Let Vθ = F ×V be a loop such that A(au,bv, cw) = abcA(u, v,w) for
every a, b, c ∈ F and u, v, w ∈ V . Then x ∈ Vθ is power-associative if and only if
A(x,x, x) = 0.

Proof If x is power-associative then certainly A(x,x, x) = 0. Conversely, as-
sume that A(u,u,u) = 0 for some x = (a,u) ∈ V . Since (a,u)(b, v) = (a + b +
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θ(u, v), u + v), any element in the subloop generated by x is of the form (a1, a2u),
where a1, a2 ∈ F . Now, A(a2u,b2u, c2u) = a2b2c2A(u,u,u) = 0 for every a2, b2,
c2 ∈ F by our assumption, and so x is power-associative. �

Corollary 9.2 When p = 3, odd code loops are power-associative.

Proof Consider an odd code loop via form f . Then A = f is characteristic, and we
are done by Lemma 9.1. �

Lemma 9.3 An odd code loop is commutative if and only if it is an elementary
Abelian p-group.

Proof Let Q = Vθ be an odd code loop via form f . The commutator and associator
mappings are related according to (2.4). Thus, if Q is associative, it is commuta-
tive. Conversely, assume that Q is commutative. Then 2θ(u,−v) = A(u,u,−v) =
−A(u,u, v) = −2θ(u, v) = −2θ(v,u) = −2A(v, v,u) = −2A(−v,−v,u) =
−2θ(−v,u) = −2θ(u,−v), so θ(u,−v) = 0 for every u, v ∈ V . �

Corollary 9.4 Assume that p > 3. Then an odd code loop is power-associative if and
only if it is an elementary Abelian p-group.

Proof Let Q = Vθ be a power-associative odd code loop. Then 0 = A(u − v,u −
v,u − v) = A(u,u,u) + 3A(u,v, v) − 3A(u,u, v) − A(v, v, v) = −3A(u,v,u) −
3A(u,v,−v) = −6C(u, v) by (2.4). Hence Q is an elementary Abelian p-group by
Lemma 9.3. �

We conclude this section with a solution to the isomorphism problem for code
loops:

Theorem 9.5 (Theorem 12.17 of [1]) Let Vθ , Vϑ be even code loops. Then Vθ is iso-
morphic to Vϑ if and only if (Pθ ,Cθ ,Aθ ) is conjugate to (Pϑ,Cϑ,Aϑ) under GL(V ),
that is, there is ϕ ∈ GL(V ) such that Pθ(u) = Pϑ(ϕu), Cθ(u, v) = Cϑ(ϕu,ϕv), and
Aθ(u, v,w) = Aϑ(ϕu,ϕv,ϕw) for every u, v, w ∈ V .

Theorem 9.6 (Theorem 7.2 of [8]) Let Vθ1 , Vθ2 be odd code loops via characteristic
trilinear forms f1, f2 : V 3 → Fp , respectively. Then there exists an isomorphism
Vθ1 → Vθ2 that maps Fp × 0 onto Fp × 0 if and only if f1, f2 are similar, that is,
there is ϕ ∈ GL(V ) such that f1(u, v,w) = f2(ϕu,ϕv,ϕw) for every u, v, w ∈ V .

10 Concluding remarks

10.1 Realizing characteristic trilinear forms as associators of code loops

When p is odd, every characteristic trilinear form V 3 → Fp can be trivially realized
as the associator of an odd code loop, by Definition 3.4. An analogous result is true
for p = 2:
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Proposition 10.1 Let V be a vector space over Fp , θ : V 2 → Fp a cocycle, and Vθ

a code loop. Then Aθ is a characteristic trilinear form.
Conversely, given a characteristic trilinear form f : V 3 → Fp , there is a cocycle

θ : V 2 → Fp such that Q = Vθ is a code loop and Aθ = f . When p > 2, it suffices to
take θ(u, v) = f (u,u, v)/2. When p = 2, it suffices to take

θ(
∑

λiei,
∑

μkek) =
∑

i<j

λiλjμkf (ei, ej , ek), (10.1)

where {e1, . . . , ed} is a basis of V .

Proof There is nothing to show in the odd case.
When Vθ is an even code loop then Aθ is a characteristic trilinear form by Propo-

sition 4.3. Conversely, let f : V 3 → F2 be a characteristic trilinear form, and let θ be
defined as in (10.1). Then

θ(
∑

λiei,
∑

μjej ) =
∑

i<j<k

(λiλjμk + λiλkμj + λjλkμi)f (ei, ej , ek). (10.2)

With u = ∑
λiei , v = ∑

μjej , w = ∑
νkek , we have

Aθ(u, v,w) = θ(u, v) + θ(u + v,w) + θ(v,w) + θ(u, v + w)

=
∑

i<j<k

cijkf (ei, ej , ek),

where

cijk = λiλjμk + λiλkμj + λjλkμi

+ (λi + μi)(λj + μj )νk + (λi + μi)(λk + μk)νj

+ (λj + μj )(λk + μk)νi

+ μiμjνk + μiμkνj + μjμkνi

+ λiλj (μk + νk) + λiλk(μj + νj ) + λjλk(μi + νi)

= λiμjνk + μiλjμk + λiμkνj + μiλkνj + λjμkνi + μjλkνi

=
∑

i �=j �=k �=i

λiμj νk.

Since f (u,u, v) = 0, we conclude that Aθ = f . Then Vθ is an even code loop, by
Proposition 4.3. �

The somewhat mysterious formula (10.1) is an interpretation of f (u,u, v)/2
over F2. Indeed, take a characteristic trilinear form f : V 3 → F2, and note that
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f (
∑

λiei,
∑

λjej ,
∑

μkek)

= 2
∑

i<j

λiλjμkf (ei, ej , ek) +
∑

λ2
i μjf (ei, ei, ej ) = 2

∑

i<j

λiλjμkf (ei, ej , ek)

with respect to some basis {e1, . . . , ed} of V .
It is therefore not unreasonable to say that a characteristic trilinear form f can

be realized as an associator Aθ of a code loop by setting θ(u, v) equal to “half of
f (u,u, v)” in both the odd and even cases.

10.2 The mapping P

When p = 2, Definition 3.1 reduces to A = �3P , C = �2P , and P(0) = 0. But
Proposition 4.3(iii) shows that seemingly much weaker conditions are sufficient.
Roughly speaking, the condition A(u,u, v) = 0 = A(u,v, v) forces the loop Q to be
diassociative, while A(u,v,w) = A(u,w,v) implies that A is a symmetric function,
and thus that Q is a conjugacy closed loop. In particular, the polarization relations
are obtained for free.

Our results imply that the mapping P satisfies �4P = 0 for every p, which is
certainly not obvious from Definition 3.1.

An interesting question is how much freedom do we have in choosing P in Defi-
nition 3.1 for a given code loop Vθ .

When p > 3, P is uniquely determined already by the condition �3P = A, by
Proposition 2.12. (This also means that the unpleasant sign change in C(u, v) =
�2P(−u,v) cannot be disposed of.) Moreover, if f : V 3 → Fp is a characteristic
trilinear form such that θ(u, v) = f (u,u, v)/2, we have

P(u) = A(u,u,u)/6 = f (u,u,u)/6 = θ(u,u)/3,

by Lemma 7.1.
When p = 2, P is determined up to a linear polynomial with zero constant term

(since �3P = A, �2P = C, and P(0) = 0 is assumed). Moreover, it is possible
to choose P as P(u) = θ(u,u)(= θ(u,u)/3), by Proposition 4.3. With this choice,
P(u) = θ(u,u) is the squaring map, as (a,u)(a,u) = (θ(u,u),0) holds in an even
code loop Vθ .

When p = 3, P is determined up to a linear polynomial R satisfying R(λu) =
λ3R(u) already by the condition �3P = A, by Proposition 2.12. Moreover, un-
less P = 0, there is no a ∈ F

∗
3 for which P(u) = aθ(u,u) works, since θ(u,u) =

f (u,u,u)/2 = 0.

10.3 Weak forms of associativity

It is a coincidence that symplectic conjugacy closed 2-loops are precisely symplectic
Moufang 2-loops. One of the messages of this paper is that the investigation of code
loops should follow the trail of conjugacy closed loops, not Moufang loops.

The condition (2.4) of Definition 3.3 holds automatically when p = 2, since even
code loops are diassociative.
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Power-associativity of odd code loops for p = 3 is an artifact of combinatorial
polarization, and it has to be explicitly enforced in Definitions 3.2–3.4 (by the as-
sumptions

∑
ui = 0, [x, x, x] = 1, and f is characteristic, respectively). It is perhaps

not obvious that the condition [x, x, x] = 1 is independent of the remaining assump-
tions in Definition 3.3, but the following example shows that it is:

Example 10.2 Let V be a vector space over F3 with basis {e1, e2}. Let f : V 3 → F3
be the symmetric trilinear form defined by f (ei, ej , ek) = 0 for every 1 ≤ i, j , k ≤ 2,
except for f (e2, e2, e2) = 1. Let (G,+) be the elementary Abelian 3-group F3 × V ,
and let Q = G[f,0] be as in Theorem 2.7. Then by Theorem 2.7 and Lemma 2.8, Q

is a symplectic conjugacy closed 3-loop in which (2.4) holds and x(3) = 1 for every
x ∈ Q, but [x, x, x] = f (x, x, x) does not vanish for some x ∈ Q.

Finally, let us have a look at the condition

x(p) = 1 (10.3)

from Definitions 3.1, 3.3.
We claim that if (10.3) holds in a code loop Q then the seemingly stronger condi-

tion L
p
x (y) = y holds as well. For p = 2, this is obvious from diassociativity of Q.

When p ≥ 3, note that the proof of Lemma 2.8 in fact shows not only that (G,+) is
elementary Abelian precisely when (10.3) holds, but also that (G,+) is elementary
Abelian precisely when L

p
x (y) = y.

We remark that (10.3) must be dropped from Definitions 3.1, 3.3 for p = 2, else
we would only obtain elementary Abelian 2-groups, by Proposition 4.3.

The following example shows that (10.3) is independent of the remaining condi-
tions in Definition 3.1:

Example 10.3 As in [7], let (Q,∗) be defined on Z25 by x∗y = x+y+5x2y. Then Q

is a symplectic conjugacy closed loop in which x(5) = 1 does not hold for all x ∈ Q.
But the mapping P : Z5 → Z5, x �→ 2x3 satisfies P(λu) = λ3P(u), �3P = A, and
C(−u,v) = �2P(u, v) for every u, v ∈ Z5.

Lastly, the condition (10.3) on left powers can in code loops be replaced by the
condition R

p
x (1) = 1 on right powers. Indeed, induction on k in G[f,g] yields

Rk
x(y) = y + kx + g(y, x)k + g(x, x)k(k − 1)/2

+ f (y, y, x)k/2 + f (y, x, x)(k − 1)k/2

+ f (x, x, x)(k − 1)k(2k − 1)/12,

and thus R
p
x (y) = y + px + f (x, x, x)(p − 1)p(2p − 1)/12. Since p divides (p −

1)p(2p − 1)/12 when p > 3, we get R
p
x (y) = px + y for p > 3, and we see that

R
p
x (0) = 0 holds if and only if (G,+) is an elementary Abelian p-group. When

p = 3, we are done by Corollary 9.2.
However, there exists a symplectic conjugacy closed 3-loop of order 9 in which

x(xx) = 1 holds but (xx)x = 1 does not. To see what happens when (10.3) is dropped
from Definition 3.3, see [8].
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24. Nagy, G.P., Vojtěchovský, P.: The Moufang loops of order 64 and 81. J. Symbolic Comput. 42(9),

871–883 (2007)
25. Nagy, P., Strambach, K.: Schreier loops. Czechoslovak Math. J. 58(133(3)), 759–786 (2008)
26. Pflugfelder, H.O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, vol. 7.

Heldermann, Berlin (1990)
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