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Abstract We study presentations for subalgebras of invariants of the coordinate al-
gebras of binary symmetric models of phylogenetic trees studied by Buczynska and
Wisniewski in (J. Eur. Math. Soc. 9:609–635, 2007). These algebras arise as toric
degenerations of projective coordinate rings of the moduli of weighted points on the
projective line, and projective coordinate rings of the moduli of quasiparabolic semi-
simple rank two bundles on the projective line.
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1 Introduction

Let T be an abstract trivalent tree with leaves V (T ), edges E(T ), and non-leaf ver-
tices I (T ), by trivalent we mean that the valence of v ∈ I (T ) is always three. Let ei

be the unique edge incident to the leaf i ∈ V (T ). Let Y be the unique trivalent tree
with three leaves. For each v ∈ I (T ) we pick an injective map iv : Y → T , sending
the unique member of I (Y ) to v. We denote the members of E(Y) by E, F , and G.
We say that two leaves e, f ∈ V (T ) are paired if they are connected to a common in-
ternal vertex. Members of V (T ) which are not paired are called lone leaves. We will
be concerned with properties of weightings of trivalent trees, defined as a functions

ω : E(T ) → Z≥0.
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The maps iv define pull-back operations on weightings by the formulas

i∗v (ω)(E) = ω(iv(E)),

i∗v (ω)(F ) = ω(iv(F )),

i∗v (ω)(G) = ω(iv(G)).

Definition 1.1 Let ST be the graded semigroup where ST [k] is the set of weightings
which satisfy the following conditions.

(1) For all v ∈ I (T ) the numbers i∗v (ω)(E), i∗v (ω)(F ) and i∗v (ω)(G) satisfy

|i∗v (ω)(E) − i∗v (ω)(F )| ≤ i∗v (ω)(G) ≤ |i∗v (ω)(E) + i∗v (ω)(F )|.
These are referred to as the triangle inequalities.

(2) i∗v (ω)(E) + i∗v (ω)(F ) + i∗v (ω)(G) is even.
(3)

∑
i∈V (T ) ω(ei) = 2k.

Note that because the triangle inequalities hold for the integers i∗v (ω)(E),

i∗v (ω)(F ), and i∗v (ω)(G) if and only if a triangle exists with these side lengths, the
condition is symmetric in E, F, and G. In [8] Speyer and Sturmfels show that the
semigroup algebras C[ST ] may be realized as projective coordinate rings of flat toric
deformations of Gr2(C

n) where n = |V (T )|, for the Plücker embedding. This semi-
group is also multigraded, with the grading given by the weights ω(ei) on the leaf
edges of the tree. For a vector of non-negative integers r = (r1, . . . , rn) we let ST [r]
be the set of weightings ω ∈ ST with ω(ei) = ri .

Definition 1.2 Let r : V (T ) → Z≥0 be a vector of non-negative integers. Let ST (r)
be the multigraded subsemigroup of ST formed by the pieces ST [kr].

In general we will focus on weightings of trivalent trees such that the vector of
edge weights r has an even total sum, because of the following proposition. The
proof provides a nice introduction to the study of weights on trivalent trees.

Proposition 1.3 Let T be a trivalent tree. If r has an odd total sum, then there is no
weighting of T satisfying the parity condition with edges weighted by r.

Proof Note that this is true by definition for T = Y. Suppose that the result holds for
every trivalent tree with n − 1 leaves, and consider a T with n leaves. Pick paired
leaves e, f in V (T ), and let T ′ be the trivalent tree obtained by forgetting e and
f , and the edges connected to them. Let g be the internal edge of T which shares
a vertex with f and g. Note that we may consider g a leaf of T ′. Any weighting ω

which satisfies parity also defines a weighting of T ′ by restriction. By the induction
hypothesis, ω|T ′ weights an even number of V (T ′) with odd numbers. There are two
cases, if g is weighted odd then by parity only one of e or f may be weighted odd. If
g is weighted even, then either both e and f are weighted odd, or neither is weighted
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odd. This shows that any weighting of T must have leaf weights which sum to an
even number. �

It follows from work in [8] that graded algebras C[ST (r)] are homogeneous coor-
dinate rings for projective embeddings of flat toric deformations of Gr2(C

n)//rT , the
weight variety of the Grassmannian of 2-planes associated to r, or equivalently Mr,
the moduli space of r-weighted points on CP 1 (see [6] for this connection). In [6]
this degeneration is used to construct presentations of the projective coordinate ring
of Mr for the Plücker embedding, and it is shown that these algebras are generated
in degree 1 and have relations generated by quadrics and cubics for certain T and r.
This is the starting point for the present paper. Forgetting the grading for a moment,
geometrically ST is the semigroup of lattice points in a cone PT in R

|E(T )|. The in-
equalities defining PT are given by the triangle inequalities, and the parity condition
defines a certain sublattice of Z

|E(T )|. Let T1 and T2 be trivalent trees with N1 and
N2 leaves, respectively. Identify the leaf 1 from T2 with the leaf N1 from T1, rela-
belling the leaves of T2 as follows, 2 → N1 +1, . . . ,N2 → N1 +N2 −1. This creates
a tree with a unique vertex of valence 2, replace this vertex and both of its incident
edges with a single edge, the resulting tree T1 ∗ T2 is trivalent. We call this operation
merging, see Figure 1 for an example. Let i ∈ V (T ), and denote the projection onto
the ei -th component of R

|E(T )| by πi. It is simple to check that

PT1∗T2 = PT1 ×πN1 =π1 PT2 .

Where the right hand side is the fibered product of the polytopes PT1 and PT2 over the
maps πN1 and π1. In particular this implies that all PT are fibered products of copies
of PY . This is reminiscent of the theory of moduli of structures on orientable surfaces,
where structures on a surface of high genus can be glued together from structures
on three-punctured spheres over a pair-of-pants decomposition. The reason for this
resemblance is not entirely accidental, see [5] for a moduli-of-surfaces interpretation
of spaces associated to the semigroup ST . Buczynska and Wisniewski define merging
in [3], where they show that a similar fibered product formula holds for a class of
semigroups of weightings which we will now introduce.

Definition 1.4 For a trivalent tree T let �(T ) be the polytope in R
|E(T )| formed

by the convex hull of weightings ω such that ω(e) ∈ {0,1} for all e ∈ E(T ), and
i∗v (ω)(E) + i∗v (ω)(F ) + i∗v (ω)(G) ∈ 2Z for all v ∈ I (T ).

It is shown in [3] (proposition 1.13) that �(T ) is a fibered product of |I (T )| copies
of �(Y). The lattice point semigroup of L�(T ) = �(T )+ . . .+�(T ) is isomorphic
to the following semigroup.

Definition 1.5 Let L be a positive integer. Let SL
T be the graded semigroup where

SL
T [k] is the set of weightings ω of T which satisfy

(1) For all v ∈ I (T ) the numbers i∗v (ω)(E), i∗v (ω)(F ) and i∗v (ω)(G) satisfy the tri-
angle inequalities.

(2) i∗v (ω)(E) + i∗v (ω)(F ) + i∗v (ω)(G) is even.
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(3) i∗v (ω)(E) + i∗v (ω)(F ) + i∗v (ω)(G) ≤ 2kL.

This last condition is referred to as the level condition.

Note that S1
T has a fibered product decomposition into copies S1

Y in a way com-
pletely analogous to ST . To see that the lattice points of �(T ) correspond with the
first graded piece of S1

T , one need only use the fibered product decomposition of both
objects. We observe that the lattice points of �(Y) are given by the degree 1 members
of S1

Y . In [3] Buczynska and Wisniewski study the algebras C[S1
T ], proving that they

are all deformation equivalent. However, they do not construct an analogue of the pro-
jective coordinate ring of the Grassmannian of two planes in this context, namely an
algebra for each n which flatly degenerates to the semigroup algebra C[S1

T ] for each
tree T with n leaves while preserving the multigrading defined by the edge weights
and the level.

In [10], Sturmfels and Xu show how to flatly deform the multigraded Cox-Nagata
ring RG to each C[S1

T ]. The structure of this ring was studied by Castravet and
Tevelev in [4] and by Mukai in [7]. Let R be a polynomial ring over C in 2n variables,

Fig. 1 Merging two trees
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and let G be a subspace of C
n of codimension d . There is an action of G on R which

generalizes the construction used by Nagata in his solution to Hilbert’s 14th problem.
When d ≥ 3 the invariant ring RG is isomorphic to the Cox ring of XG, the blow-up
of P

d−1 at n points determined by G, see [10] for a discussion of this connection. Let
K be the pullback of the canonical class on P

d−1, and let the Ei be the associated
distinguished classes of the blow-up. Then

Cox(XG) =
⊕

(�u,r)

H 0(XG, rK + (u1 − r)E1 + . . . + (un − r)En).

Sturmfels and Xu prove the following theorem.

Theorem 1.6 If G is generic and of codimension 2, RG flatly degenerates to C[S1
T ]

for each tree T with n leaves.

The ring RG comes equipped with a multigrading given by (r, �u) ∈ Z
n+1. We re-

label the (r, �u) component of RG with the multigrade (r,L) with L = (
∑n

i=1 ui)− r,

r1 = u1, . . . , rn−1 = un−1, and rn = (
∑n

i=1 ui)−r −un. This multigrade agrees with
the one on C[S1

T ] induced by the level L and the leaf weights under the flat defor-
mation, see [10] for details. Since the multigrading is given by the Picard Group
of the blow-up, we refer to it as the Picard grading, and we refer to the associ-
ated torus acting on the ring as the Picard torus. The analogue of the projective
coordinate rings C[Mr] in this context are the multigrade (r,L) Veronese subrings
RG(r,L), obtained by taking the direct sum of all components of RG with multigrade
a multiple of (r,L). These are the projective coordinate rings of the embeddings of
X(n−3,n), the blow-up of P

n−3 at n points, corresponding to various members of
P ic(X(n−3,n)). Let SL

T (r) be the subsemigroup of S1
T of pieces with multigrade a

multiple of (r,L). It follows that C[SL
T (r)] is a toric deformation of RG(r,L). Sturm-

fels and Xu point out that the ring C[Gr2(C
n)] is isomorphic as a multigraded algebra

to Cox(X(n−3,n−1)). This gives a common interpretation of both types of semigroups
of weighted trees considered here as toric deformations of projective coordinate rings
associated to embeddings of blow-ups of projective spaces. It was also noted in [10]
that by a theorem of Bauer [2], X(n−3,n) is related to N(0,n), the moduli space of
quasiparabolic semistable rank 2 bundles on P

1, by a sequence of flops. This implies
that these spaces share the same Cox ring, and that the algebras C[SL

T (r)] are toric
deformations of the projective coordinate rings associated to line bundles on N(0,n).

We study the degrees of presentation and relation generation for presentations of
a large class of the rings C[SL

T (r)], finding upper bounds for both of these numbers.
The techniques used are such that the same results immediately hold for C[ST (r)]
as well, in particular we give a different proof of a fundamental result of [6] on a
presentation of these rings. It follows that the same bounds on generator and relation
degrees also apply to RG(r,L) when G is of codimension 2 and 1, and C[Mr] as
well. In particular our results apply to the projective coordinate rings of a large class
of embeddings of blow-ups of P

n−3 at n and n − 1 points. From now on we assume
G is of codimension 2 unless otherwise indicated.
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1.1 Statement of Results

We now state the main results of the paper. We will be focusing on the following class
of SL

T (r).

Definition 1.7 We call the triple (T , r,L) admissible if L is even, r(i) is even for
every lone leaf i, and r(j) + r(k) is even for all paired leaves j , k.

Remark 1.8 The assumption that r has an even total sum implies that an even num-
ber, 2M of the entries of r are odd. Choosing T with 2M paired leaves then guar-
antees that (T , r,L) is admissible, provided that L is even. This is important for
constructing presentations of RG(r,L), since this ring always has a flat deformation
to C[SL

T (r)] for some admissible (T , r,L) when L is even. Also note that the second
Veronese subring of C[SL

T (r)] is the semigroup algebra associated to (T ,2r,2L),
which is always admissible.

Theorem 1.9 For (T , r,L) admissible with L > 2, C[SL
T (r)] is generated in de-

gree 1.

Theorem 1.10 For (T , r,L) admissible with L > 2, C[SL
T (r)] has relations gener-

ated in degree at most 3.

As a corollary we get the same results for ST (r) when (T , r) satisfy admissibility
conditions. These theorems are proved in Sections 2, 3, and 4. In Section 5 we look
at some special cases, and investigate what can go wrong when (T , r,L) is not an
admissible triple.

1.2 Outline of techniques

To prove Theorems 1.9 and 1.10 we use two main ideas. First, we employ the follow-
ing trivial but useful observation.

Proposition 1.11 Let (T , r,L) be admissible, then for any weighting ω ∈ SL
T (r),

ω(e) is an even number when e is not an edge connected to a paired leaf.

This allows us to drop the parity condition that i∗v (ω)(E) + i∗v (ω)(F ) + i∗v (ω)(G)

is even by forgetting the paired leaves and halving all remaining weights.

Fig. 2 Clipping the paired
leaves of T



J Algebr Comb (2010) 31: 467–489 473

Definition 1.12 Let c(T ) be the subtree of T given by forgetting all edges incident
to paired leaves. We call c(T ) a clipping of T .

Definition 1.13 Let UL
c(T )

(r) be the graded semigroup of weightings on c(T ) such

that the members of UL
c(T )

(r)[k] satisfy the triangle inequalities, the new level condi-
tion i∗v (ω)(E) + i∗v (ω)(F ) + i∗v (ω)(G) ≤ kL, and the following conditions.

1. ω(ei) = k
r(i)

2 for i a lone leaf of T .

2. k|r(i)−r(j)|
2 ≤ ω(e) ≤ k|r(i)+r(j)|

2 for e the unique edge of T connected to the vertex
which is connected to the paired leaves i and j .

3. ω(e) + kr(i)+kr(j)
2 ≤ kL.

Also, let UL
c(T )

be the graded semigroup of weightings which satisfy the triangle
inequalities and the new level condition for L. The following is a consequence of
these definitions.

Proposition 1.14 For (T , r,L) admissible,

UL
c(T )(r)

∼= SL
T (r)

as graded semigroups.

The next main idea is to undertake the analysis of UL
c(T )

(r) by first considering

the weightings i∗v (ω) ∈ UL
Y . After constructing an object in UL

Y , like a factorization
or a relation, we “glue” these objects back together along edges shared by the var-
ious iv(Y ) with the fibered product. We obtain information about UL

Y by studying
the geometry of the following polytope. Let P3(L) be the convex hull of (0,0,0),
(L

2 , L
2 ,0), (L

2 ,0, L
2 ), and (0, L

2 , L
2 ).

The graded semigroup of lattice points for P3(L) is clearly UL
Y . By a lattice equiv-

alence of polytopes P , Q ⊂ R
n with respect to a lattice � ⊂ R

n we mean a compo-
sition of translations by members of � and members of GL(�) ⊂ GLn(R) which
takes P to Q. If P and Q are lattice equivalent it is easy to show that they have
isomorphic graded semigroups of lattice points. When L is an even integer (admissi-
bility condition) the intersection of this polytope with any translate of the unit cube
in R

3, is, up to lattice equivalence, one of the polytopes shown in Figure 4.
In Section 2 we show that these polytopes are normal, and the relations of their

associated semigroups are generated in degree at most 3. In Sections 3 and 4 we will
lift these properties to UL

c(T )
(r), and therefore SL

T (r) for (T , r,L) admissible. Facts
about the six polytopes above also allow us to carry out a more detailed study of the
semigroups SL

T (r) in Section 5, for example they allow us to show the redundancy of
the cubic relations for certain (T , r,L).

We thank John Millson for introducing us to this problem, Ben Howard for many
useful and encouraging conversations and for first introducing us to the commuta-
tive algebra of semigroup rings, Larry O’Neil for several useful conversations on the
cone of triples which satisfy the triangle inequalities, the referees for many useful
suggestions, and Bernd Sturmfels for introducing us to Graver bases and shortening
the proof of Theorems 2.2 and 2.4.
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Fig. 3 P3(2L)

Fig. 4 Cube Polytopes

2 The Cube Semigroups

In this section we prove that the intersection of any translate of the unit cube of
R

3 with P3(L) produces a normal polytope whose semigroup of lattice points has
relations generated in degree at most 3 when L is even. Let P3 be the cone of triples
of nonnegative integers which satisfy the triangle inequalities, and let C(m1,m2,m3)

denote the unit cube rooted at (m1,m2,m3) ∈ R
3,

C(m1,m2,m3) = conv{(m1 + ε1,m2 + ε2,m3 + ε3)|εi ∈ {0,1}}.

We wish to classify the polytopes which have the presentation C(m1,m2,m3) ∩ P3.
Since P3 is symmetric we may assume that (m1,m2,m3) is ordered by magnitude
with m3 the largest. In this analysis we keep track of the triangle inequalities with the
quantities ni = mj + mk − mi . For example, a point (m1,m2,m3) is a member of P3
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if ni ≥ 0 for each i. Immediately we have the following inequalities.

n1 ≥ n2 ≥ n3, n2 ≥ 0.

If n3 < −2 then no member of C(m1,m2,m3) can belong to P3. If n3 ≥ −2 then
there are six distinct possibilities, we list each case along with the standard lattice
members of C(m1,m2,m3) ∩ P3 − (m1,m2,m3).

Condition C(m1,m2,m3) ∩ P3 − (m1,m2,m3)

n3 = −2 (1,1,0)

n3 = −1 (1,1,0), (0,1,0), (1,0,0), (1,1,1)

n1 = n2 = n3 = 0 (1,1,0), (0,1,1), (1,0,1), (1,1,1), (0,0,0)

n1 > 0, n2 = n3 = 0 (1,1,0), (0,1,1), (1,0,1), (1,1,1), (0,0,0), (0,0,1)

n1, n2 > 0, n3 = 0 (1,1,0), (0,1,1), (1,0,1), (1,1,1), (0,0,0), (0,0,1), (0,1,0)

ni > 0 all lattice points of the cube

The figure below illustrates these arrangements.
Now we will see what happens when we intersect P3 with the half space defined

by the inequality v1 + v2 + v3 ≤ 2L to get P3(2L). The reader may want to refer
to Figure 6 for this part. The convex set C(m1,m2,m3) ∩ P3(2L) can be one of the
above polytopes (up to lattice equivalence), or one of them intersected with the half
plane v1 + v2 + v3 ≤ 2L. Note that a vertex v in C(m1,m2,m3) ∩ P3(2L) lying on a
facet of P3 necessarily satisfies v1 + v2 + v3 = 0 mod 2. In Figure 6 these points are
colored black.

The hyperplane defined by the equation v1 + v2 + v3 = 2L must intersect these
polytopes at collections of three black points. If we assume that the lower left
corner is (0,0,0), these points have coordinates {(1,1,0), (1,0,1), (0,1,1)}, or

Fig. 5 Primitive cube semigroups



476 J Algebr Comb (2010) 31: 467–489

Fig. 6 Cube semigroups with
the lattice v1 + v2 + v3 = 0 mod
2

Fig. 7 New Possibilities for
C(m1,m2,m3) ∩ P3(2L)

{(1,0,0), (0,1,0), (0,0,1)}. Figure 6 represents the new possibilities we must con-
sider. The polytope pictured lower center in Figure 7 is the only case which is not
lattice equivalent to one pictured in Figure 5. It is rooted at (0,0,0) and occurs only
when L = 1 (level condition is 2). The point (1,1,1) in its second Minkowski sum
cannot be expressed as the sum of two lattice points of degree one, so this is not a
normal polytope. This is the reason we stipulate that L > 2 in Theorem 1.9.

Now we analyze each C(m1,m2,m3)∩P3(2L). Since lattice equivalent polytopes
have isomorphic semigroups of lattice points, it suffices to investigate the polytopes
listed in Figure 5.

Caution 2.1 In [3], Buczynska and Wisniewski study a normal polytope with the
same vertices as the non-normal polytope mentioned above. This is possible because
they are using the lattice v1 + v2 + v3 = 0 mod 2, not the standard lattice.

2.1 Graver Bases of the unit Cube

We make use of the computational algebra package 4ti2, [1] to compute the Graver
basis of the toric ideal of the unit 3-cube. Material on the Gröbner theory of toric
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ideals coming from polytopes can be found in [9].

(1,0,0) + (1,1,1) = (1,0,1) + (1,1,0) (0,1,0) + (1,1,1) = (0,1,1) + (1,1,0)
(0,0,0) + (1,1,1) = (0,0,1) + (1,1,0) (0,0,1) + (1,1,1) = (0,0,1) + (1,0,1)
(0,0,0) + (1,1,1) = (0,1,0) + (1,0,1) (0,0,1) + (1,1,0) = (0,1,0) + (1,0,1)
(0,0,0) + (1,1,1) = (0,1,1) + (1,0,0) (0,0,1) + (1,1,0) = (0,1,1) + (1,0,0)
(0,1,0) + (1,0,1) = (0,1,1) + (1,0,0) (0,0,0) + (1,1,0) = (0,1,0) + (1,0,0)
(0,0,0) + (1,0,1) = (0,0,1) + (1,0,0) (0,0,0) + (0,1,1) = (0,0,1) + (0,1,0)

(0,1,0) + (1,0,0) + (1,1,1) = (0,0,1) + (1,1,0) + (1,1,0)
(0,0,0) + (1,1,1) + (1,1,1) = (0,1,1) + (1,0,1) + (1,1,0)
(0,0,1) + (1,0,0) + (1,1,1) = (0,1,0) + (1,0,1) + (1,0,1)
(0,0,1) + (0,0,1) + (1,1,0) = (0,0,0) + (0,1,1) + (1,0,1)
(0,0,0) + (0,1,1) + (1,1,0) = (0,1,0) + (0,1,0) + (1,0,1)
(0,0,0) + (1,0,1) + (1,0,1) = (0,1,1) + (1,0,0) + (1,0,0)
(0,0,1) + (0,1,0) + (1,1,1) = (0,1,1) + (0,1,1) + (1,0,0)
(0,0,0) + (0,0,0) + (1,1,1) = (1,0,0) + (0,1,0) + (0,0,1)

Operating on this set of monomials, one can show that the toric ideal of every
sub-polytope of the unit 3-cube which is not a simplex has a square-free Gröbner
basis. This, combined with the fact that the sub-polytopes with n3 = −2 and −1 are
unimodular simplices shows the following theorem.

Theorem 2.2 Suppose L �= 1, then for all (m1,m2,m3), if C(m1,m2,m3) ∩ P3(2L)

is non-empty then it is a normal lattice polytope.

Remark 2.3 This theorem implies, among other things, that if ω ∈ U2L
Y [k], then

ω =
k∑

i=1

Wi

for Wi ∈ P3(2L) with the property that each

Wi = X + (ε1, ε2, ε3)

with εj ∈ {0,1} for all i for a fixed X ∈ R
3. It is easy to show that

X = (ω(E)

k
�, ω(F)

k
�, ω(G)

k
�).

Therefore each Wi is (
ω(E)

k
,

ω(F )
k

,
ω(G)

k
) with either floor or ceiling applied to each

entry.

Now we move on to relations. Let S(m1,m2,m3) be the semigroup of lattice points
for C(m1,m2,m3) ∩ P3(2L) − (m1,m2,m3). Once again it suffices to treat the cases
represented in Figure 5.
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Theorem 2.4 All relations for the semigroup S(m1,m2,m3) are reducible to
quadrics and cubics.

Proof By Proposition 4.13 of [9], a Graver basis for any subpolytope P of the unit 3-
cube is obtained by taking the members of the Graver basis of the unit 3-cube which
have entries in the lattice points of P . Since these are all quadrics and cubics, we are
done. �

Up to equivalence and after accounting for redundancy, all relations considered
here are of the form

(1,0,0) + (0,1,0) = (1,1,0) + (0,0,0)

(1,0,1) + (0,1,0) = (1,1,1) + (0,0,0)

(1,0,1) + (1,1,0) = (1,1,1) + (1,0,0)

(1,1,1) + (1,1,1) + (0,0,0) = (1,1,0) + (1,0,1) + (0,1,1),

with the last one the only degree 3 relation, we refer to it as the “degenerated Segre
Cubic” (see [6]).

3 Proof of Theorem 1.9

In this section we use Theorem 2.2 to prove that UL
c(T )

(r) is generated in degree 1,
which then proves Theorem 1.9. For each v ∈ I (T ) we have the morphism of graded
semigroups

i∗v : UL
c(T )(r) → UL

Y .

Given a weight ω ∈ UL
c(T )

(r) we factor i∗v (ω) for each v ∈ I (c(T )) using Theo-
rem 2.2. Then special properties of the weightings obtained by this procedure will
allow us to glue the factors of the i∗v (ω) back together along merged edges to obtain a
factorization of ω. First we must make sure that our factorization procedure does not
disrupt the conditions at the edges of c(T ).

Lemma 3.1 Let ω ∈ UL
c(T )

(r)[k], and let v ∈ I (T ) be connected to a leaf of
c(T ) at E. If i∗v (ω) = η1 + . . . + ηk is any factorization of i∗v (ω) with ηi ∈
C( i∗v (ω)(E)

k
�,  i∗v (ω)(F )

k
�,  i∗v (ω)(G)

k
�), then ηi(E) satisfies the appropriate edge con-

dition for elements in UL
c(T )

(r)[1].

Proof If E is attached to a lone leaf of T then i∗v (ω)(E) = kr(e) for iv(E) = e,
e ∈ V (T ). By Remark 2.3

ηi(E) = r(e)� = r(e)
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or

ηi(E) = r(e)� + 1 = r(e) + 1.

Since
∑k

i=1 ηi(E) = kr(e) we must have ηi(E) = r(e) for all i. If E is a stalk of
paired leaves i and j in T then we must have

k
|r(i) − r(j)|

2
≤ ωY (E) ≤ k

|r(i) + r(j)|
2

.

Note that both bounds are divisible by k. Since floor preserves lower bounds we have

|r(i) − r(j)|
2

≤  i∗v (ω)(E)

k
�,

and since ceiling preserves upper bounds we have

� i∗v (ω)(E)

k
� ≤ |r(i) + r(j)|

2
.

Therefore each ηi satisfies

|r(i) − r(j)|
2

≤ ηi(E) ≤ |r(i) + r(j)|
2

. �

Now that we can safely use Theorem 2.2 with each i∗v : UL
c(T )

(r) → UL
Y , we will

establish tools to extend factorization properties of UL
Y to UL

c(T )
(r) by exploiting the

fibered product structure of the ambient semigroup UL
c(T )

. The following concept
allows us to control conditions on the edges of two trees we wish to merge.

Definition 3.2 We say that a list of nonnegative integers {X1, . . . ,Xn} is balanced if
|Xi − Xj | = 1 or 0 for all i, j .

Lemma 3.3 If two lists {X1, . . . ,Xn} and {Z1, . . . ,Zm} are balanced, have the same
total sum, and n = m, then they are the same list up to permutation.

Proof Let C1 be the smallest member of {X1, . . . ,Xn}, and C2 be the smallest mem-
ber of {Z1, . . . ,Zn}. Let S be the total sum of either list. Both lists are balanced, so we
must have S = nC1 + k1 = nC2 + k2, where k1 and k2 are non-negative integers less
than or equal to n. Suppose without loss of generality that k2 − k1 is non-negative,
then it must be divisible by n. By assumption, this can only happen if k2 = k1, in
which case C1 = C2, and the lists have the same members. �

Proposition 3.4 The semigroup UL
c(T )

(r) is generated in degree 1.

Proof Recall that by Remark 2.3, for any edge E ∈ Y the edge weights of a factor-

ization i∗v (ω) = η1 + . . . ηk satisfy ηi(E) =  i∗v (ω)(E)

k
� or � i∗v (ω)(E)

k
�. Take any two v1,

v2 which share a common edge E in c(T ). Let ω ∈ UL
c(T )

(r)[k] and let {η1
1, . . . , η

1
k}

and {η2
1, . . . , η

2
k} be factorizations of i∗v1

(ω) and i∗v2
(ω) respectively. Then the lists
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{η1
1(E), . . . , η1

k(E)} and {η2
1(E), . . . , η2

k(E)} are balanced and have the same sum, so
by Lemma 3.3 they are the same list up to some permutation. We may glue factors
η1

i and η2
j when η1

i (E) = η2
j (E), the above observation guarantees that any η1

i has

an available partner η2
j . The proposition now follows by induction on the number of

v ∈ I (c(T )). This implies Theorem 1.9. �

4 Proof of Theorem 1.10

In this section we show how to get all relations in UL
c(T )

(r) from those lifted from UL
Y .

The procedure follows the same pattern as the proof of Theorem 1.9. We consider the
image of a relation ω1 + . . . + ωn = η1 + . . . + ηn under a map i∗v : UL

c(T )
(r) → UL

Y ,
using Theorem 2.4 we convert this to a trivial relation using relations of degree at
most 3. We then give a recipe for lifting each of these relations back to UL

c(T )
(r). The

result is a way to convert ω1 + . . . + ωn = η1 + . . . + ηn to a relation which is trivial
over the trinode v using quadrics and cubics. In this way we take a general relation
to a trivial relation one v ∈ I (c(T )) at a time.

Definition 4.1 A set of degree 1 elements {ω1, . . . ,ωk} in UL
c(T )

(r) is said to be
balanced when the set {ω1(E), . . . ,ωk(E)} is balanced for all E ∈ c(T ). A relation
ω1 + . . . + ωk = η1 + . . . + ηk in UL

c(T )
(r) is said to be balanced when {ω1, . . . ,ωk}

and {η1, . . . , ηk} are balanced.

The following lemmas show that we need only consider balanced relations.

Lemma 4.2 Any list of non-negative integers S = {X1, . . . ,Xn} can be converted to
a balanced list T = {Y1, . . . , Yn} with

∑n
i=1 Yi = ∑n

i=1 Xi by replacing a pair Xi

and Xj with Xi+Xj

2 � and �Xi+Xj

2 � a finite number of times.

Proof Let d(S) be the difference between the maximum and minimum elements of S.
It is clear that with a finite number of exchanges

{Xi,Xj } → {Xi + Xj

2
�, �Xi + Xj

2
�}

We get a new set S′ with d(S) > d(S′), unless d(S) = 1 or 0. Since this happens if
and only of S is balanced, the lemma follows by induction. �

Lemma 4.3 Let

ω1 + . . . + ωk = η1 + . . . + ηk

be a relation in UL
c(T )

(r). Then it can be converted to a balanced relation

ω′
1 + . . . + ω′

k = η′
1 + . . . + η′

k

using only degree 2 relations.
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Fig. 8 Component subtrees
about a vertex

Proof First we note that we may use the proof of Theorem 1.9 to factor the weighting
ω1 +ω2 into ω′

1 +ω′
2 so that {ω′

1,ω
′
2} is balanced. Using this and Lemma 4.2 we can

find

ω′
1 + . . . + ω′

k = ω1 + . . . + ωk

such that the set {ω′
1(E), . . . ,ω′

k(E)} is balanced for some specific E, employing only
degree 2 relations. Observe that if {ω1(F ), . . . ,ωk(F )} is balanced for some F , the
same is true for {ω′

1(F ), . . . ,ω′
k(F )}, after a series of degree 2 applications of 1.9.

This shows that we may inductively convert {ω1, . . . ,ωk} to {ω′
1, . . . ,ω

′
k} with the

property that {ω′
1(E), . . . ,ω′

k(E)} is a balanced list for all edges E, using only degree
2 relations. Applying the same procedure to the ηi then proves the lemma. �

The next lemma shows how we lift a balanced relation in UL
Y to one in UL

c(T )
(r).

Lemma 4.4 Let {ω1 . . .ωk} be a balanced set of elements in UL
c(T )

(r). Let i∗v (ω1) +
. . . + i∗v (ωk) = η1 + . . . + ηk be a balanced degree k relation in the appropriate
S(m1,m2,m3) ⊂ UL

Y . Then the ηi may be lifted to weightings of c(T ) giving a rela-
tion of degree k in UL

c(T )
(r) which agrees with the relation above when i∗v is applied,

and is a permutation of i∗
v′(ω1) . . . i∗

v′(ωk) for v′ �= v.

Proof Let c(T )(E) be the unique connected subtrivalent tree of c(T ) which includes
v and has the property that any path γ ⊂ c(T )(E) with endpoints at a vertex v′ �= v in
c(T )(E) and v includes the edge E (see Figure 8), define c(T )(F ) and c(T )(G) in
the same way. To make η′

1 . . . η′
k over c(T ), note that the list {i∗

c(T )(E)
(ωi)(E)} is the

same as the list {ηi(E)} up to permutation, because they are both balanced lists with
the same sum and the same number of elements, so we may glue these weightings
together to make a tuple over c(T ). �
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Suppose we are given a balanced relation

ω1 + . . . + ωk = η1 + . . . + ηk.

We can pick any v ∈ I (c(T )), and consider the relation

i∗v (ω1) + . . . + i∗v (ωk) = i∗v (η1) + . . . + i∗v (ηk).

We convert this to a trivial relation using a series of relations in the appro-
priate S(m1,m2,m3), then lift the result back to UL

c(T )
(r). For any v′ �= v in

I (c(T )), this process only permutes the members of {i∗
v′(ω1), . . . , i

∗
v′(ωk)} and

{i∗
v′(η1), . . . , i

∗
v′(ηk)}, which does not change whether or not this was a balanced rela-

tion. In this way, we may convert any balanced relation in UL
c(T )

(r) to a trivial relation
one v ∈ I (c(T )) at a time.

Proposition 4.5 Let N be the maximum degree of relations needed to generate all re-
lations in the semigroups S(m1,m2,m3). Then the semigroup UL

c(T )
(r) has relations

generated in degree bounded by N .

This proposition, coupled with Theorem 2.4 proves Theorem 1.10. We recap the con-
tent of the last two sections with the following theorem.

Theorem 4.6 Let (T , r,L) be admissible. Then the ring C[UL
c(T )

(r)] has a presen-
tation

0 −−−−→ I −−−−→ C[X] −−−−→ C[UL
c(T )

(r)] −−−−→ 0

where X is the set of degree 1 elements of UL
c(T )

(r), and I is the ideal generated by
two types of binomials,

[ω1] ◦ . . . ◦ [ωn] − [η1] ◦ . . . ◦ [ηn].

(1) Binomials where n ≤ 3, i∗v (ω1) + . . . + i∗v (ωn) = i∗v (η1) + . . . + i∗v (ηn) is
a balanced relation in UL

Y for some specific v, and {i∗
v′(ω1), . . . , i

∗
v′(ωn)} =

{i∗
v′(η1), . . . , i

∗
v′(ηn)} for v �= v′.

(2) Binomials where n = 2 and i∗v (ω1) + i∗v (ω2) = i∗v (η1) + i∗v (η2) such that
{i∗v (ω1), i

∗
v (ω2)} is balanced for all v ∈ I (c(T )).

This induces a presentation for C[SL
T (r)] by isomorphism.

Corollary 4.7 The same holds for C[ST (r)].

Proof For each pair (T , r) it is easy to show that there is a number N(T , r), such
that any weighting ω which satisfies the triangle inequalities on T and has ω(ei) =
ri must have ω(e) ≤ N(T , r) for e ∈ E(T ). Because of this SL

T (r) = ST (r) for L

sufficiently large. �
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5 Special Cases and Observations

In this section we collect results on some special cases of C[SL
T (r)]. In particular we

study some instances when cubic relations are unnecessary, we give some examples
where the semigroup is not generated in degree 1, we analyze the case when L is
allowed to be odd, and we give instances where cubic relations are necessary.

5.1 The Caterpillar Tree

One consequence of the proof of Theorem 2.4 is that a semigroup UL
c(T )

(r) which
omits or only partially admits the semigroup S(0,0,0) or S(L − 1,L − 1,0) as an
image of one of the morphisms i∗v manages to avoid degree 3 relations entirely. The
next proposition illustrates one such example, the semigroups of weightings on the
caterpillar tree, pictured below.

Proposition 5.1 Let T0 be the caterpillar tree, and let r(i) be even for all i ∈ V (T0).
Then S2L

T0
(r) is generated in degree 1, with relations generated by quadrics.

Proof We catalogue the weights i∗v (ω) which can appear in degree 1. For the sake
of simplicity we divide all weights by 2. Suppose iv(G) is an external edge, then
i∗v (ω)(E) and i∗v (ω)(F ) satisfy the following inequalities

i∗v (ω)(E) ≤ i∗v (ω)(F ) + r(i)

i∗v (ω)(F ) ≤ i∗v (ω)(E) + r(i)

i∗v (ω)(E) + i∗v (ω)(F ) + r(i) ≤ 2L

where i∗v (ω)(G) = r(i). These conditions define a polytope in R
2 with vertices

(L,L − r(i)), (L − r(i),L), (r(i),0) and (0, r(i)). Pictured below is the case L = 9,
2r(i) = 6.

When two edges are external, the polytope is an integral line segment. Note that
the intersection of any lattice cube in R

2 with the above polytope is a simplex or
a unit square. Both of these polytopes have at most quadrics for relations in their
semigroup of lattice points. Hence the argument used to prove Theorem 1.10 shows
that U2L

c(T0)
(r) needs only quadric relations. �

Fig. 9 The Caterpillar tree
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Fig. 10 The case L = 9,
2r(i) = 6

Corollary 5.2 If L > 1, and r is a vector of nonnegative integers, the ring
RG(2L,2r) has a presentation with defining ideal generated by quadrics. In partic-
ular, the second Veronese subring of any RG(r,L) has such a presentation if L > 1.
Note that the same applies to C[M2r].

5.2 Counterexamples to Degree 1 generation

Now we’ll see examples of (r, T ,L) such that SL
T (r) is not generated in degree 1.

We will begin by defining a certain class of paths in the tree T . Let T have an even
number of leaves. We claim that there is a set of edges A(T ) ⊂ E(T ) the members of
which are assigned odd numbers by any weighting ω which assigns an odd number to
each leaf of T . It suffices to establish the stronger result that the parity of members of
V (T ) determines the parity of every edge in T . To see this, first note that the parity of
two edges of a trinode determines the parity of the third edge, an induction argument
on the number of edges in T does the rest.

Proposition 5.3 Let T be as above. The set A(T ) is a union of edges from disjoint
paths in T .

Proof Exactly two out of three edges in each trinode can be assigned an odd number,
by the parity condition. This establishes the proposition. �

From now on we let O(T ) denote the set of paths established by the previous
proposition.

Proposition 5.4 Let (r, T ,L) be such that the edges connected to the endpoints of
each member of O(T ) are given the same parity by r. Assume further that there is a
γ ∈ O(T ) such that end points of γ are connected to edges e and f with r(e) and
r(f ) odd. If there is a degree 2 weighting which assigns 0 to any edge in γ , then
S2L

T (r) is not generated in degree 1.
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Fig. 11 E2 and E3 are lone
leaves connected by an element
of O(T )

Proof All degree 1 elements must assign odd numbers to the edges in γ. No two odd
numbers add to 0. �

Corollary 5.5 For simplicity, let L > 1. Let �1 be the n-vector of 1’s. The semigroup
S2L

T (�1) is generated in degree 1 if and only if T has the property that no leaf is lone.

Proof First note that the if portion of this statement is taken care of by Theorem 1.9.
Suppose now that T has lone leaves. Then two of these leaves are connected by a
member γ of O(T ). Pick any non-leaf edge e in γ, and consider the weighting ω

which assigns 0 to e and 2 to every other edge in T . We have ω ∈ S2L
T (�1)[2] for any

L, and by Proposition 5.4 ω cannot be factored. �

Remark 5.6 Trees with the property that no leaf is lone are called good trees in [6],
where they were introduced for the purpose of proving the analogue of Corollary 5.5
for ST (�1).

5.3 The Case when L is odd

When the level L is odd, the polytope P3(L) is no longer integral, however its
Minkowski square P3(2L) is integral, so clearly there are elements of P3(2L) which
cannot be integrally factored, specifically the corners. This observation has a gener-
alization.

Definition 5.7 Let IP3(L) be the convex hull of the integral points of P3(L). Let 	

be the set of elements in the graded semigroup of lattice points of P3(L) such that
1

deg(Q)
Q ∈ P3(L) \ IP3(L).

Let (E,F,G) = Q ∈ P3(L) be integral with L odd, and suppose E, F , or G ≥
L−1

2 + 1. Then, by the triangle inequalities we must have F + G ≥ L−1
2 + 1, so

E + F + G ≥ L + 1, a contradiction. This shows that IP3(L) is contained in the
intersection of P3(L) with the halfspaces defined by E,F,G ≤ L−1

2 , this identifies
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Fig. 12 The Polytope IP3(5)

IP3(L) as the convex hull of the set

{(0,0,0), (
L − 1

2
,
L − 1

2
,0), (

L − 1

2
,0,

L − 1

2
), (0,

L − 1

2
,
L − 1

2
),

(
L − 1

2
,
L − 1

2
,1), (

L − 1

2
,1,

L − 1

2
), (1,

L − 1

2
,
L − 1

2
)}.

The polytope IP3(5) is pictured above.

Proposition 5.8 Any Q ∈ 	 cannot be integrally factored.

Proof This follows from the observation that if Q = E1 + . . .+En then 1
n
Q is in the

convex hull of {E1, . . . ,En}. �

A factorization of any element ω such that i∗v (ω) = Q gives a factorization of Q.
So any ω ∈ UL

c(T )
(r) with a i∗v (ω) ∈ 	 is necessarily an obstruction to generation in

degree 1, this also turns out to be a sufficient obstruction criteria.

Theorem 5.9 Let T and r satisfy the same conditions as admissibility, and let L �= 2.
Then UL

c(T )
(r) is generated in degree 1 if and only if

i∗v (ω) ∈ UL
Y \ 	

for all v ∈ I (c(T )), ω ∈ UL
c(T )

(r). In this case all relations are generated by those of
degree at most 3.

Proof We analyze IP3(L) in the same way we did P3(2L). The reader can verify
that the integral points of C(m1,m2,m3) ∩ P3(L) are the same as the integral points
of C(m1,m2,m3) ∩ IP3(L). The possibilities are represented by slicing the cubes in
Figure 6 along the plane formed by the upper right or lower left collection of three
non-filled dots, depending on the cube, and then restricting to the convex hull of the
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remaining integral points. All cases are lattice equivalent to one of the polytopes listed
in Figure 5, after considering two- and one-dimensional cases as faces of neighboring
three-dimensional polytopes. Since any element of UL

Y not in 	 is necessarily a lattice
point of a Minkowski sum of IP3(L), the theorem follows by the same arguments
used to prove Theorems 1.9 and 1.10. �

5.4 Necessity of Degree 3 Relations

Now we show that there are large classes of admissible (T , r,L) which require degree
3 relations. We will exhibit a degree 3 weighting which has only two factorizations.
The tree T with weight ωT is pictured below, it is an element of ST (�2). In all that
follows all weightings are considered to have been halved.

Notice that ωT has 3-way symmetry about the central trinode, we will exploit this
by considering the tree T ′ with restricted weighting ωT ′ pictured in Figure 14. We
find the weightings that serve as a degree 1 factors of ωT ′ . First of all, any degree 1
weighting which divides ωT ′ must be as in Figure 15.

It suffices to find the possible values of X and Z. Both must be less than or equal to
2, which shows that Z can be either 2 or 1. This implies that two factors have Z = 2

Fig. 13 ωT

Fig. 14 ωT ′

Fig. 15
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Fig. 16

Fig. 17 Grafting two tree
weightings

and one factor has Z = 1. For X, we note that X = 0 cannot be paired with Z = 2
because of the triangle inequalities. This implies that X cannot equal 2, and that both
factors with Z = 2 have X = 1, and Z = 1 is paired with X = 0. This shows that
there are exactly two possibilities determined by the value of X, both are shown in
Figure 16. Any factorization of ωT is determined by its values on the central trinode,
and these values must be weights composed entirely of 0 and 1. There are exactly
two such variations, making the Degenerated Segre Cubic.

We have not specified a level L for this weighting, but the same argument applies
for any level large enough to admit ωT as a weighting in degree 3. For any tree
T ∗, edge e∗ ∈ tree∗, and weight ωT ∗ we can create a new weight on a larger tree
by adding a vertex in the middle of e∗, attaching a new leaf edge at that vertex, and
weighting the both sides of the split e∗ with ωT ∗(e∗), and the new edge with 0. Using
this procedure on any (T ∗, e∗,ωT ∗), and (T , e,ωT ) for any edge e ∈ T , can create
a new weighted tree by identifying the new 0-weighted edges. On the level of the
combinatorics of the trees, this construction is called the graft of two pointed trees,
and was introduced in Definition 2.25 of [3]. An example is pictured in Figure 17. In
this way many examples of unremovable degree 3 relations can be manufactured.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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