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Abstract The paper deals with σ -games on grid graphs (in dimension 2 and more)
and conditions under which any completely symmetric configuration of lit vertices
can be reached – in particular the completely lit configuration – when starting with
the all-unlit configuration. The answer is complete in dimension 2. In dimension ≥ 3,
the answer is complete for the σ+-game, and for the σ−-game if at least one of the
sizes is even. The case σ−, dimension ≥ 3 and all sizes odd remains open.

Keywords Sigma-games · Chebychev polynomials · Commutative algebra

1 Introduction

A nice combinatorial game is the following. Suppose you have a graph whose vertices
can be lit or unlit (equivalently on or off). When you push on a vertex, its state as
well as the state of its neighbors changes. This kind of game is called a σ+-game.
A configuration of such a game played on a graph G = (V ,E) is an element of F

V
2 ,

whose v-th coordinate is 0 if the vertex v is unlit and 1 otherwise.
You start with the all-off configuration. Can you find a sequence of pushes such

that you get the all-on configuration? The rather unexpected answer is that it is always
possible to find such a sequence. Indeed Sutner proved [6].
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Fig. 1 The two usual kinds of neighborhood used for playing a σ -game on a chessboard – they lead to
two distinct grid graphs.

Theorem 1.1 (Sutner’s theorem) The all-on configuration can always be achieved
starting from the all-off configuration for a σ+-game on any graph G = (V ,E).

It is possible to define a similar game, the σ−-game, for which pushing on a vertex
changes the state of all its neighbors but not its own state. In this case, things become
harder since it is not always possible to find a sequence achieving the all-on configu-
ration when starting from the all-off configuration. Simple examples are provided by
complete graphs with an odd number of vertices, paths with 1 mod 4 vertices, etc.

σ -games have been intensively studied, and it not possible to give here the whole
list of references on this topic (see the article [5] for an extensive bibliography).
Here we focus on the case when the graph is a grid graph. Note that σ -games on
grid graphs have already been studied ([4] or [1], among many others) but for other
questions (for instance, the number of distinct configurations that can be reached from
a given one). Usually, two kinds of neighborhood are considered for the grid graph:
if the grid graph is seen as a chessboard (the squares being the vertices), two squares
sharing a common edge are neighbors; depending whether two squares in contact by
their corners are or are not declared to be neighbors, we get one or the other kind of
neighborhood. The first kind of neighborhood is denoted by � and the second one
by �. See Figure 1. We will consider these kinds of neighborhood, but also many
others.

In 2002, the French magazine “Pour la Science” published an article written by
Jean-Paul Delahaye and dealing with the σ−-game on grid graphs [2] (see also an
updated version of this article in the book [3]). The game was defined on a chess-
board and the neighbors of a square were the adjacent squares, having a corner in
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common being enough to be neighbor. Hence a square could have 8, 5 or 3 neighbors,
depending whether the square was or was not on the border or in the corner of the
chessboard (except if one dimension of the chessboard is 1, in which case the number
of neighbors is 2 or 1). We are here precisely in the case of the �-neighborhood.

In this article, a conjecture of a reader – Nicolas Vaillant – was proposed. Recall
that the 2-valuation of a number n is the largest j such that 2j is a divisor of n.

Conjecture (Vaillant’s conjecture): The all-on configuration cannot be achieved
starting from the all-off configuration for a σ−-game played on an n × m chessboard
if and only if n and m are odd and such that m + 1 and n + 1 have the same 2-
valuation.

In the present paper, we prove a general theorem (Theorem 3.8, Section 3) that
gives a necessary and sufficient condition for a σ -game played on an n × m chess-
board to be such that any doubly symmetric configuration can be achieved. The ap-
proach will be purely algebraic. Vaillant’s conjecture is a consequence of this the-
orem. In particular, we get a sufficient and necessary condition for the all-on con-
figuration to be achieved by a σ−-game played on the grid. Such existence results,
common for σ+-games, are extremely rare for σ−-games.

As another application, we obtain

Any doubly symmetric configuration can be achieved starting from the all-off
configuration for a σ+-game played on a chessboard for both the �- and the �-
neighborhoods.

A doubly symmetric configuration is a configuration that is invariant by the sym-
metries with respect to the two medians of the sides of the chessboard. Let us be more
precise. Each vertex is identified with a (i, j) ∈ {0, . . . , n − 1} × {0, . . . ,m − 1}.

Definition 1.2 A configuration Y = (yi,j ) on a grid graph n×m is said to be doubly
symmetric if

yi,j = yn−1−i,j = yi,m−1−j = yn−1−i,m−1−j for all i, j .

The statements above (Vaillant’s conjecture and the one concerning doubly sym-
metric configurations for σ+-games) are not only true for the two usual kinds of
neighborhood (� and �), but also for many others.

The paper also deals with the case of n1 × n2 × . . . × nd grids, where d ≥ 3. We
then speak about completely symmetric configurations. Each vertex is identified with
a (i1, . . . , id ) ∈ �d

j=1{0, . . . , nj − 1}.

Definition 1.3 A configuration Y = (yj1,...,jd
) on a d-dimensional grid graph is said

to be completely symmetric if

yj1,...,ji−1,ji ,ji+1,...,jd
= yj1,...,ji−1,ni−1−ji ,ji+1,...,jd

for all i, j1, j2, . . . , jd .
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We will then prove the following result in Section 4 (in a slightly more general
form, Theorem 4.1), but with a different approach than that of Section 3:

Any completely symmetric configuration can be achieved starting from the all-off
configuration for a σ+-game played on a d-dimensional grid for both the �- and the
�-neighborhoods.

It is also proved for many other kinds of neighborhoods. The result also holds in
the case of a σ−-game when at least one of the ni is even. Note that the question
whether there is a simple condition for the existence of a completely symmetric con-
figuration when all dimensions are odd for the σ−-game remains unsettled (when
d ≥ 3, since the d = 2 case is settled in this paper). Maybe this is due to the lack of
an algebraic approach for this case.

2 Basic notions and notation

Throughout this paper, we shall denote by k a field. It will be of characteristic 2
starting from Subsection 3.2. We denote by F2 an algebraic closure of F2. For n ≥ 1,
denote by Jn the n × n matrix (with coefficients in k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

1
. . .

. . . 0
...

0
. . .

. . .
. . . 0

... 0
. . .

. . . 1
0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with 1’s directly above and under the diagonal, and 0’s everywhere else.
A game G on the n × m grid (the squares of which can be lit or unlit) is given

by the following. To each vertex v of the grid, we associate a set of vertices whose
state change if we push on the vertex v. Equivalently, one may give a nm × nm

matrix M with coefficients in F2 (the field with two elements), defined by the fol-
lowing property: let 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m be integers. Then the coeffi-
cient of the (i, j)-th column and the (k, l)-th line of M is 0 if pressing on the ver-
tex (i, j) does not change the state of the vertex (k, l), and 1 otherwise. We call
M the generalized adjacency matrix of the game G. We will often assume that
M commutes with Jn ⊗ Im and In ⊗ Jm. The matrix M can then be written as
a sum of scalar multiples of J r

n ⊗ J s
m, where r and s are in N (cf. Lemma 3.5).

For instance a σ−-game played on an n × m chessboard with a �-neighborhood
has a generalized adjacency matrix M = Jn ⊗ Jm + Jn ⊗ Im + In ⊗ Jm (which
of course commutes with Jn ⊗ Im and In ⊗ Jm). Similarly, a σ+-game played on
an n × m chessboard with a �-neighborhood has a generalized adjacency matrix
M = In ⊗ Im + Jn ⊗ Im + In ⊗ Jm (which of course commutes with Jn ⊗ Im and
In ⊗ Jm). In the sequel, we will often denote the matrix Jn ⊗ Im simply by Jn when
no confusion can arise.
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All games will be assumed to be symmetric, i.e. that pressing on the vertex (i, j)

changes the state of the vertex (i′, j ′) if and only if pressing on the vertex (i′, j ′)
changes the state of the vertex (i, j).

Using the generalized adjacency matrix M , to say that a configuration can be
achieved by the game G starting from the all-off configuration is equivalent to say
that this configuration (or more precisely the column vector of size nm associated
to it) is in the image of M . We shall repeatedly use this elementary remark without
further mention.

We extend all these notions also for grids of dimensions ≥ 3.
Let us also recall the classical proof of Sutner’s theorem (Theorem 1.1), which is

valid for any kind of graph. The following lemma is an elementary result.

Lemma 2.1 Let U be a finite dimensional linear space over k, endowed with a
symmetric non-degenerate bilinear form, and let φ be a self-adjoint endomorphism
U → U . We have

Im φ = (Ker φ)⊥ .

Theorem 1.1 is a straightforward consequence of Lemma 2.1, applied to k = F2,
U = F

V
2 and to φ being the adjacency matrix of G plus the identity matrix. Indeed,

it is then enough to prove that if we push on a subset S of vertices that keeps the
configuration in the all-off state, then S has cardinality even. But this is obvious since
each vertex of G[S] must be of odd degree (otherwise some vertices of S would be
on) and since the number of odd degree vertices in any graph is always even.

We can reformulate this last sentence as a lemma, which will be useful in the proof
of Theorem 4.1, in the particular case of grid graphs. The matrix M is the ‘generalized
adjacency matrix’ of the game, defined in the beginning of this section.

Lemma 2.2 In the case of a σ+-game, the number of nonzero entries of any element
of Ker M is even.

3 Doubly symmetric configurations on chessboards (or 2-dimensional grids)

3.1 Some algebra

In this section, we introduce the technical material needed in the proof of the main
theorem (Theorem 3.8, Section 3).

Let us begin with a key lemma.
Let A be a factorial ring, and p ∈ A a prime element. For any nonzero x ∈ A, we

denote by vp(x) the highest power of p dividing x.

Lemma 3.1 Let p,q, r and s be nonnegative integers. Consider the (local) k-
algebras A = k[X]/Xp and B = k[Y ]/Y q . Denote by x (resp. by y) the class of
X (resp. of Y ) in A (resp. in B). In A ⊗k B , we still denote by x the element x ⊗ 1,
and similarly for y. Let u = x − y ∈ A ⊗k B . Then the element xrys is divisible by u

if and only if r + s ≥ inf{p,q}. What is more, the same statement holds if we replace
u by cx + dy + terms of order at least 2, where c, d are nonzero elements of k.
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Proof. Assume that p ≤ q . Suppose that r is positive. From the relation (x −
y)(xrys−1) = xr+1ys−1 −xrys , we deduce that xrys is divisible by x −y if and only
if xr+1ys−1 is so. Thus, we are reduced to the case where s = 0. If r ≥ inf{p,q} = p,
then xr = 0, so one implication of the statement is obvious. Conversely, assume that
xr is divisible by u. Write xr = (x −y)v, for some v in A⊗k B . We have a morphism

f : A ⊗k B −→ A,

x 	→ x,

y 	→ x.

Applying f to the previous equality, we get xr = 0, hence r ≥ p, qed. For the last
assertion, assume that u = cx + dy + λx + μy, where λ,μ lie in the maximal ideal
M of A ⊗k B . Clearly, we may assume that c = d = 1. Put x′ = x(1 + λ) and y′ =
−y(1 + μ). Then u = x′ − y′ and k[x′, y′] equals A ⊗k B . Indeed, the obvious map

f : A ⊗k B −→ k[x′, y′],

x 	→ x′,

y 	→ y′

is injective, hence an isomorphism by dimension reasons. Note that injectivity can
be seen the following way: if a is an element of Mn (where n is a positive integer,
and M denotes as before the maximal ideal of A ⊗k B), we have f (a) = a modulo
Mn+1. The second result of the lemma now follows by an application of the preceding
statement to x′ and y′. Indeed, xrys is divisible by u if and only if x′ry′s is so. �

We can now state and prove the main proposition of this subsection.

Proposition 3.2 Assume that k is algebraically closed. Let P,Q,R,S be four poly-
nomials (in k[X]). Consider the k-algebras A = k[X]/P and B = k[Y ]/Q. Denote
by x (resp. by y) the class of X (resp. of Y ) in A (resp. in B). Let U be an ele-
ment of k[X,Y ]. Put u = U(x,y) ∈ A⊗k B . Assume the following: for every α,β ∈ k

such that P(α) = Q(β) = 0 and U(α,β) = 0, we have that ∂U
∂X

(α,β) 
= 0 and that
∂U
∂Y

(α,β) 
= 0. Then u divides R(x)S(y) if and only if the following holds: for every
α, β as above, denote by p (resp. q , r , s) the multiplicity of α (resp. β , α, β) as a
root of P (resp. Q, R, S). Then r + s ≥ inf{p,q}.

Proof. Write P = (X − α1)
m1 ...(X − αd)md . The Chinese Remainder Theorem en-

sures that the natural morphism

A −→ k[X]/(X − α1)
m1 × ... × k[X]/(X − αd)md

is an isomorphism. Using the similar isomorphism for B , we are immediately re-
duced to the case where P = (X − α)p and Q = (Y − β)q . If U(α,β) 
= 0, then u
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is invertible in A ⊗k B , hence the proposition is true in this case. If U(α,β) = 0,
then replacing P by P(X + α) and Q by Q(Y + β), we may assume that α = β = 0,
i.e. that P = Xp and Q = Yq . We may also assume that R and S are powers of
X (indeed, if T is a polynomial such that T (0) 
= 0, then T (x) (resp. T (y)) is in-
vertible in A (resp. in B)). The content of the proposition then boils down to that
of Lemma 3.1, since the hypothesis about partial derivatives ensures that u is of the
form cx + dy + higher order terms. �

Lemma 3.3 Let P,Q ∈ k[X] be two polynomials. Put A = k[X]/P (X) and B =
k[Y ]/Q(Y ). Denote by x (resp. by y) the class of X (resp. of Y ) in A (resp. in B). Let
u be an element of A ⊗k B . Let U ∈ k[X,Y ] be a polynomial such that u = U(x,y).
Assume that α ∈ k is a root of multiplicity ≥ 2 of P , and let β ∈ k be any root of Q.
Then the partial derivative ∂U

∂X
(α,β) is independent of the choice of U .

Proof. Indeed, any other U ′ satisfying u = U ′(x, y) is of the form U ′ = U +
R(X,Y )P (X) + S(X,Y )Q(Y ), and the hypothesis about α implies that ∂U

∂X
(α,β) =

∂U ′
∂X

(α,β). �

Definition 3.4 Under the hypothesis of Lemma 3.3, we shall denote ∂U
∂X

(α,β), which
is independent of the choice of U , by ∂u

∂x
(α,β).

3.2 Preliminaries on Chebychev polynomials

Chebychev polynomials modulo 2 are classical tools in the study of σ -games on grid
graphs in dimension 2 (see [7] for instance, or [4], where they are called Fibonacci
polynomials). We recall in this subsection their definition and some of their proper-
ties.

3.2.1 Classical Chebychev polynomials

The usual Chebychev polynomials are elements of Z[X] defined as follows.
Set P0 = 2 and P1 = X. Then, define Pn inductively by the formula

Pn+1 = XPn + Pn−1.

This formula will be called the Chebychev relation.
The Pn’s satisfy the following well-known properties, valid for all nonnegative

integers n and m:

i) Pn(X + X−1) = Xn + X−n,

ii) PnPm = Pn+m + P|n−m|.

Property i) in fact characterizes the Chebychev polynomials, and ii) is an easy conse-
quence of i).
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3.2.2 Chebychev polynomials modulo 2

From now on, k will be assumed to have characteristic 2. It is readily seen that all
Pn’s are divisible by X modulo 2. For a nonnegative integer n, we thus define Qn to
be the reduction modulo 2 of Pn+1

X
, seen as an element of k[X]. Note that the Qn’s

also satisfy the Chebychev relation. We shall now study some elementary divisibility
properties of these polynomials. First of all, an easy induction shows that Qn is di-
visible by X if and only if n is odd. From point ii) of the preceding subsection, we
have that Q2n−1 = XQ2

n−1. This implies a formula useful in the sequel. Take an odd
positive integer n. Write n + 1 = 2j η, with η odd. The preceding formula, applied
several times, then yields Qn = X2j −1Q2j

η−1. Since η − 1 is even, we have that Qη−1
is not divisible by X, hence the relation:

vX(Qn) = 2j − 1.

We also get the following. Let n be odd, and let R 
= X be a (monic) prime polynomial
dividing Qn. From the relation Qn = XQ2

n−1
2

, we infer that

vR(Qn) = 2vR(Qn−1
2

)

and

vX(Qn) = 1 + 2vX(Qn−1
2

).

Those relations are basically the only facts we shall need about Chebychev polyno-
mials.

3.3 Statement and proof of the main theorem

It is an elementary exercise to check that the characteristic polynomial of Jn is Qn.
Let ei (i = 0, . . . , n − 1) denote the i’th basis vector of kn. Consider the linear map


n : k[X]/Qn −→ kn

Xi + (Qn) 	−→ J i
n(e0).

This map is well-defined by the Cayley-Hamilton theorem, since Qn is the char-
acteristic polynomial of Jn. It is readily checked that it is surjective, hence an isomor-
phism (this amounts to saying that the characteristic and minimal polynomials of Jn

coincide). In the sequel, we will identify kn with k[X]/Qn using 
n. We shall denote
by xn the class of X in k[X]/Qn. One sees that, under the isomorphism given by 
n,
ei corresponds to Qi(xn). Furthermore, the action of Jn on k[X]/Qn is simply given
by multiplication by xn.

Lemma 3.5 Let f be an endomorphism of the k-vector space k[X]/Qn ⊗k k[Y ]/Qm

commuting with multiplication by xn and ym (more precisely, xn ⊗ 1 and 1 ⊗ ym).
Then f is given by multiplication by f (1).

Proof. Easy verification. �
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Definition 3.6 (central configuration) The central configuration of the n × m grid is
defined the following way: put cn := Qn−1

2
(xn) if n is odd, cn := Qn

2
(xn)+Qn

2 −1(xn)

if n is even, and define dm similarly with respect to ym. Then the central configuration
is c = cndm. It consists of the central square if n and m are both odd, of the 2 central
squares if exactly one of the two integers n and m is odd, and of the 4 central squares
if n and m are both even.

The central configuration is of course doubly symmetric.

Lemma 3.7 Every doubly symmetric configuration in k[X]/Qn ⊗k k[Y ]/Qm is di-
visible by the central one. Moreover, if n and m are both odd, then the central config-
uration is divisible by the all-on configuration.

Proof. Let us prove the first assertion. It suffices to show that en−1−i + ei =
Qn−1−i (xn) + Qi(xn) is divisible by cn in k[X]/Qn(X) for any n ≥ 1 and any
integer i satisfying 0 ≤ i ≤ �n/2� − 1. This is an easy descending induction on i,
using the relation Qk+1 = XQk + Qk−1. Let us now handle the second assertion.
It suffices to prove it for the 1-dimensional case. The all-on configuration is then∑

i=0,...,n−1 Qi(xn). Let us compute this sum. Put Ri(X) = Q0(X)+Q1(X)+ . . .+
Qi(X). One has the relation Ri+1 = XRi + Ri−1 + 1. From this, we infer that the
polynomials Si := XRi + 1 satisfy the Chebychev relations. Hence Si can be ex-
pressed as a linear combination of Qi and Qi+1. Since S0 = X + 1 = Q0 + Q1 and
S1 = X2 + X + 1 = Q1 + Q2, we find that Si = Qi + Qi+1 for all i. We thus have

Rn−1 = Qn−1 + Qn + 1

X
= Pn + Pn+1 + X

X2
=

Pn−1
2

Pn+1
2

+ Pn+1
2

Pn+1
2

X2
,

where the last equality follows from property ii) of Subsection 3.2.1. Rewriting the
last expression in terms of the Qi ’s, we have Rn−1 = Qn−3

2
Qn−1

2
+ Q2

n−1
2

. Hence the

all-on configuration equals Qn−1
2

(xn)(Qn−1
2

(xn) + Qn−3
2

(xn)) = cn(cn + Qn−3
2

(xn)).

It is enough to show that Qn−1
2

(xn)+Qn−3
2

(xn) is invertible in k[X]/Qn(X), i.e. that

Qn−1
2

(X)+Qn−3
2

(X) and Qn(X) = XQ2
n−1

2
(X) are coprime. Let T be a monic prime

polynomial dividing these two polynomials. Certainly T is not X since the constant
term of Qn−1

2
(X) + Qn−3

2
(X) is 1. But then T divides both Qn−1

2
(X) and Qn−3

2
(X),

which are coprime. �

Theorem 3.8 Let n and m be integers. Let G be a game on the n×m grid (identified
with F2[X]/Qn ⊗F2 F2[Y ]/Qm) which commutes with the elementary games Jn and
Jm. Let f be the endomorphism of F2[X]/Qn ⊗F2 F2[Y ]/Qm given by G – it corre-
sponds to the generalized adjacency matrix M of G. By Lemma 3.5, f is then given
by multiplication by u := f (1). For any α ∈ F2 (resp. β ∈ F2), which is a root of Qn

(resp. Qm), such that u(α,β) = 0, we assume the following.
If α (resp. β) is a root of multiplicity ≥ 2 of Qn (resp. Qm), then ∂u

∂x
(α,β) 
= 0

(resp. ∂u
∂y

(α,β) 
= 0) (these quantities are well-defined thanks to Lemma 3.3).
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Then any doubly symmetric configuration can be achieved starting from the all-
off configuration for the game G if and only if the three following conditions do not
simultaneously hold: n and m are both odd, u(0,0) = 0 and v2(n + 1) = v2(m + 1).

Remark 3.9 In the case where n and m are both odd, the fact that any doubly symmet-
ric configuration can be achieved is equivalent to the fact that the all-on configuration
can be achieved; this is the content of Lemma 3.7.

Remark 3.10 Let us be more precise concerning how the theorem implies Vaillant’s
conjecture, stated in the beginning of the paper. This is the �-case

u = ym + xn + ymxn.

The condition about partial derivatives is here obvious: indeed, put U = X+Y +XY .
We have ∂U

∂X
= 1 + Y , so that the condition may fail only for β = 1. But U(X,1) = 1

has no root in F2.
For the �-case

u := ym + xn,

we see that the conclusion is identical.
In the case of a σ+-game with the usual neighborhoods defined in the intro-

duction (the � and the � neighborhoods), i.e. when u := ym + xn + 1 or u =
ym + xn + ymxn + 1, we have u(0,0) = 1. Hence, any doubly symmetric configu-
ration can always be achieved.

Proof of Theorem 3.8. Put k = F2. Let A = k[X]/Qn and B = k[Y ]/Qm. By
Lemma 3.7, it is enough to show that the central configuration can be obtained. Over
fields, the formation of the image of a linear map commutes with scalar extension.
Thus, there is no harm in replacing k by an algebraic closure of k. Let U ∈ k[X,Y ]
be such that U(xn, ym) = u. Assume the hypothesis about partial derivatives holds.
If α is a simple root of Qn, then Q′

n(α) 
= 0. Because k is infinite, we can then
replace U by U + λQn(X), for a suitable λ ∈ k, in such a way that the partial deriv-
atives of U with respect to X are nonzero when evaluated at (α,β), where α runs
through the simple roots of Qn and β through the roots of Qm, submitted to the con-
dition u(α,β) = 0. We can then do the same for partial derivatives with respect to
Y . By doing so, we get a U ∈ k[X,Y ] such that U(xn, ym) = u and ∂U

∂X
(α,β) 
= 0,

∂U
∂Y

(α,β) 
= 0 for any α ∈ k (resp. β) which is a root of Qn (resp. Qm) and such that
u(α,β) = 0. We now want to apply Proposition 3.2. Let α, β ∈ k be as before. Put
P := Qn, Q := Qm, p := vX−α(P ), q := vY−β(Q). Put R := Qn

2
(X) + Qn

2 −1(X) if
n is even, R := Qn−1

2
(X) if n is odd. Similarly, put S := Qm

2
(Y ) + Qm

2 −1(Y ) if m is

even, S := Qm−1
2

(Y ) if m is odd. Put r := vX−α(R) and s := vY−β(S). If n is even,
we compute:

XR2 = XQn
2
(X)2 + XQn

2 −1(X)2

= Qn+1(X) + Qn−1(X) = XQn(X).
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Hence p = 2r . If n is odd, we then have 1 + 2r = p if α = 0 and 2r = p otherwise,
as proved in Section 3.2. Similarly, we get relations between s and q . To finish the
proof, we have to show that the relation r + s ≥ inf{p,q} (for every α and β) is
equivalent to the fact that the three conditions of the theorem do not simultaneously
hold. Assume that n is even. If s ≥ r , then r + s ≥ 2r = inf{p,q}. If s < r , then
r + s ≥ 2s + 1 ≥ q = inf{p,q}. Hence the relation is valid in this case. In the same
way, it is valid if m is even. Assume now that n and m are both odd. If α 
= 0, then
2r = p, and we conclude as before that the relation holds. In the same way, it holds
if β 
= 0. Assume now that α = β = 0 (hence that u(0,0) = 0). Then 1 + 2r = p

and 1 + 2s = q , hence the relation r + s ≥ inf{p,q} holds if and only if p and q are
distinct, which in view of Section 3.2 amounts to saying that v2(n + 1) 
= v2(m + 1).

�

4 Completely symmetric configurations on d-dimensional grids

We extend in this section some of the previous results.

Theorem 4.1 Let G be a game on the n1 × . . . × nd grid that commutes with the
elementary games Jni

for i = 1, . . . , d . If G is a σ+-game, then any completely sym-
metric configuration can be achieved starting from the all-off configuration.

Note that the dimension 2 case is also covered, giving an alternative proof of some
statements already proved in the previous section for σ+-games.

The following lemma plays a crucial role in the proof. In a sense, it proves the
theorem above for the 1-dimensional case. Denote by S the map

F
n
2 −→ F

�n/2�
2

(y0, . . . , yn−1) 	−→
(y0 + yn−1, y1 + yn−2, . . . , yn/2−1 + yn/2)

if n is even,
(y0 + yn−1, y1 + yn−2, . . . , y(n−3)/2 + y(n+1)/2, y(n−1)/2)

if n is odd,

and by c the map

F
n
2 → F2

(y0, . . . , yn−1) 	→
n−1∑
i=0

yi

Lemma 4.2 Let F be a linear subspace of F
n
2 such that JnF ⊆ F and F ⊆ Ker c.

Then F ⊆ Ker S.

F ⊆ Ker c reads also any element of F has an even number of nonzero en-
tries. Note the similarity with the statement of Lemma 2.2. Indeed, we will apply
Lemma 4.2 to some linear spaces constructed from M .
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Proof of Lemma 4.2. Suppose that there is x in F with a i such that xi 
= xn−1−i .
Since J r

nx ∈ F for any positive integer r , we can assume that i = 0.
We have Jnx ∈ F , hence c(Jnx) = 0 and

x1 + (x0 + x2) + . . . + (xn−3 + xn−1) + xn−2 = 0,

whence x0 + xn−1 = 0, a contradiction.
Therefore, for all x ∈ F and all i = 0, . . . , n − 1, we have xi = xn−1−i .
When n is odd, xn−1

2
= 0 is then a direct consequence of the fact that any element

of F has an even number of nonzero entries. �

We now restate Lemma 4.2 in a slightly more general form, which will suit the
proof scheme of Theorem 4.1.

Lemma 4.3 Let V be any F2-vector space. Let F be a linear subspace of V ⊗ F
n
2

such that (Id ⊗ Jn)(F ) ⊆ F and F ⊆ Ker (Id ⊗ c). Then (Id ⊗S)(F ) ⊆ V ⊗F
�n/2�
2

is zero.

Proof. Let φ be any linear form on V . The lemma is a direct consequence of
Lemma 4.2 once we have noticed that (φ ⊗ Id)(F ) ⊆ F

n
2 satisfies the conditions

of Lemma 4.2 for F , and that the following diagram commutes:

V ⊗ F
n
2

φ⊗Id

Id⊗S

V ⊗ F
�n/2�
2

φ⊗Id

F
n
2

S

F
�n/2�
2 .

The vector space (Id ⊗ S)(F ) is thus killed by all linear forms on V , hence is
zero. �

Proof of Theorem 4.1. Let M be the generalized adjacency matrix of the game G.
The hypothesis that M commutes with all Jni

’s ensures that M is a linear combination
of matrices of the form J

i1
n1 ⊗ . . . ⊗ J

id
nd

– the proof of this fact is the same as that
of Lemma 3.5. Define N := Ker M . Note that N is stable by all Jni

. Denote by

Si : F
ni

2 −→ F
�ni/2�
2 (resp. ci : F

ni

2 −→ F2) the map defined in the same way as S

(resp. c), for n = ni .
We have the following property.

Let i ∈ {0,1, . . . , d}. Then

S1 ⊗ S2 ⊗ . . . ⊗ Si ⊗ ci+1 ⊗ ci+2 ⊗ . . . ⊗ cd(N) = {0}.
Indeed, it is true for i = 0, according to Lemma 2.2.
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The other cases are true by induction. Suppose that the property is true for i ≥ 0.
Define

F := S1 ⊗ S2 ⊗ . . . ⊗ Si ⊗ Id ⊗ ci+2 ⊗ ci+3 ⊗ . . . ⊗ cd(N).

F is a linear subspace of V ⊗ F
ni+1
2 where V = F

�n1/2�
2 ⊗ . . . ⊗ F

�ni/2�
2 . We

have (IdV ⊗Jni+1)F ⊆ F , and, by induction, (IdV ⊗ ci+1)(F ) = {0}. We apply
Lemma 4.3 and get that (IdV ⊗ Si+1)(F ) = {0}, which exactly means

S1 ⊗ S2 ⊗ . . . ⊗ Si+1 ⊗ ci+2 ⊗ ci+3 ⊗ . . . ⊗ cd(N) = {0}.
The statement of the theorem for the σ+-game is a direct consequence of the

property above for i = d : apply Lemma 2.1 to get that any completely symmetric
configuration is in the image of M . �

The previous theorem has a nice corollary concerning σ−-games in any dimen-
sion.

Corollary 4.4 Let G be a d-dimensional σ−-game on a n1 × . . . × nd grid, with
n1 even. Assume it can be written as a finite sum

∑
i1,...,id

λi1,...,id J
i1
n1 ⊗ . . . ⊗ J

id
nd

(λi1,...,id ∈ F2), where λ1,0,...,0 = 1 and where all other λi1,...,id equal 0 except pos-
sibly when at least one of the ij , j ≥ 2, equals 1. Then every completely symmetric
configuration can be achieved starting from the all-off configuration.

Proof. Define the game M ′ := J−1
n1

M . The hypothesis of the corollary ensures that
M ′ is the generalized adjacency matrix of a σ+-game. Theorem 4.1 applies to M ′.
The result follows, for the space of completely symmetric configurations is stable
by Jn1 . �
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