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Abstract Suppose a group G acts properly on a simplicial complex Γ . Let l be
the number of G-invariant vertices, and p1,p2, . . . , pm be the sizes of the G-orbits
having size greater than 1. Then Γ must be a subcomplex of Λ = Δl−1 ∗ ∂Δp1−1

∗ · · · ∗ ∂Δpm−1. A result of Novik gives necessary conditions on the face numbers
of Cohen–Macaulay subcomplexes of Λ. We show that these conditions are also suf-
ficient, and thus provide a complete characterization of the face numbers of these
complexes.
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1 Introduction

One of the central problems in geometric combinatorics is that of characterizing the
face numbers of various classes of simplicial complexes. The Kruskal–Katona theo-
rem [5, 6] characterized the f -vectors of all simplicial complexes, while a result of
Stanley characterized the face numbers of all Cohen-Macaulay complexes [9]. One
fruitful line of inquiry since then has been in determining additional conditions on
the face numbers of complexes with certain types of symmetry.

In particular, let Γ be a simplicial complex on n vertices, and suppose G is a
group which acts on Γ . We say the action of G is proper if whenever F is a face of
Γ and gF = F for some g ∈ G, then gv = v for each vertex v ∈ F , i.e., whenever an
element of G fixes a face of Γ , it fixes that face pointwise. Let V ′ be the set of G-
invariant vertices of Γ , and let V1,V2, . . . , Vm be the G-orbits on the vertex set of Γ

with size greater than 1. If the action of G is proper, no face of Γ can contain any Vi ,
so Γ must be a subcomplex of Λ(l;p1,p2, . . . , pm) = Δl−1 ∗∂Δp1−1 ∗· · ·∗∂Δpm−1,
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where l = |V ′|, pi = |Vi |, ∗ denotes the join of complexes, Δk is the k-simplex, and
∂Δk is the boundary complex of Δk . (Note also that as each face of Γ must miss at
least one element of each Vi , the dimension of Γ is at most n − m − 1.)

Let S(a1, a2, . . . , ak) (for 0 ≤ ai ≤ ∞) denote the set of all monomials
x

c1
1 x

c2
2 · · ·xck

k with ci ≤ ai . For short, we will write S(∞r , ar+1, . . . , ak) for
S(a1, a2, . . . , ak) when ai = ∞ for 1 ≤ i ≤ r . A nonempty subset M of S(a1, a2,

. . . , ak) is called a multicomplex if it is closed under divisibility; that is, if whenever
μ|μ′ and μ′ ∈ M , then μ ∈ M . For M finite, let deg(M) = max{deg(μ) : μ ∈ M}.
The F -vector of a multicomplex M is F(M) = (F0,F1,F2, . . .), where Fi is the
number of elements in M of total degree i.

Recall that the h-vector of a (d − 1)-dimensional simplicial complex Γ is h(Γ ) =
(h0, h1, . . . , hd) defined by

∑d
i=0 hix

i = ∑d
i=0 fi−1x

i(1 − x)d−i , where fi is the
number of i-dimensional faces of Γ . In particular, the h-vector of Γ completely
determines the face numbers of Γ .

The following result is essentially due to Novik [8]. (In fact Novik considered the
case pi = pj for all i, j , but with slight modifications her proof gives the general
case, as we will address in Sect. 5.)

Theorem 1 Let Γ be a (d − 1)-dimensional Cohen–Macaulay complex having
n = l + ∑m

i=1 pi vertices, where p1,p2, . . . , pm ≥ 2, m, l ≥ 0, are arbitrary inte-
gers. If Γ is a subcomplex of Λ(l;p1,p2, . . . , pm), then there is a multicomplex
M ⊆ S(∞n−d−m,p1 − 1,p2 − 1, . . . , pm − 1) such that the h-vector of Γ is equal
to the F -vector of M .

The goal of this paper is to show the converse to this theorem. In fact, we establish
a slightly stronger result.

Theorem 2 Let l,m ≥ 0, p1,p2, . . . , pm ≥ 2 be arbitrary integers. Let n = l +∑m
i=1 pi and suppose d ≤ n−m. If M ⊆ S(∞n−d−m,p1 − 1,p2 − 1, . . . , pm − 1) is

a multicomplex such that deg(M) ≤ d , then there is a (d − 1)-dimensional shellable
subcomplex Γ of Λ(l;p1,p2, . . . , pm) such that h(Γ ) = F(M).

Combined with Theorem 1, this gives a generalization of a theorem of Stanley [9],
which asserts that h = (h0, h1, . . . , hd) is the h-vector of a Cohen–Macaulay com-
plex of dimension d − 1 if and only if h is the F -vector of some multicomplex
M ⊆ S(∞n−d).

Corollary 1 Let p1,p2, . . . , pm ≥ 2, m, l ≥ 0 be arbitrary integers, n = l+∑m
i=1 pi ,

and d ≤ n − m. Suppose F = (F0,F1, . . . ,Fd). Then the following are equivalent:

1. F is the h-vector of a shellable subcomplex of Λ(l;p1,p2, . . . , pm).
2. F is the h-vector of a Cohen–Macaulay subcomplex of Λ(l;p1,p2, . . . , pm).
3. F is the F -vector of a multicomplex in S(∞n−d−m,p1 − 1,p2 − 1, . . . , pm − 1).

A different generalization of Stanley’s theorem was given by Björner, Frankl, and
Stanley in [2] for the case of balanced complexes. Our proof of Theorem 2 shares a
similar structure to the sufficiency portion of their proof.
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2 Idea of the proof

For τ a face of some simplicial complex, denote by τ the set of all subsets of τ . Recall
that a (d − 1)-dimensional simplicial complex Γ is shellable if it is pure (i.e., all of
its facets have dimension d − 1) and there is an ordering of its facets (τ1, τ2, . . . , τr )

such that for 1 < i ≤ r , the complex τ i ∩ (∪j<iτ j ) is pure of dimension d − 2. Such
an ordering is then called a shelling of Γ . For L = (τ1, τ2, . . . , τr ) any ordering of the
facets of Γ , let TL(τi) denote the set of facets of τ i ∩ (∪j<iτ j

)
(which will be some

set of subsets of τi of size d − 1 if L is a shelling) for i > 1, and set TL(τ1) = ∅. We
then have the following nice characterization of the h-vector of Γ :

Proposition 1 [7] Let (h0, h1, . . . , hd) be the h-vector of Γ . If L is a shelling of Γ ,
then hi = |{τj : |TL(τj )| = i}|.

Now, suppose Γ is a simplicial complex with shelling L, and suppose K is a subset
of the set of facets of Γ . Let L′ = (τ ′

1, τ
′
2, . . . , τ

′
r ′) be the ordering of K inherited

from L. Suppose that TL′(τ ) = TL(τ) for each τ ∈ K . Then it follows immediately
that Γ ′ = ⋃r ′

i=1 τ ′
i is a shellable subcomplex of Γ with h-vector (h′

1, h
′
2, . . . , h

′
d),

where h′
i = |{τ ∈ K : |TL(τ)| = i}|.

For Γ a simplicial complex, let skeld(Γ ) denote its (d − 1)-skeleton, that is,
the set of faces of Γ of dimension no greater than d − 1. For M a multicom-
plex, let Md denote the set of monomials in M with degree no greater than d .
Throughout this section let Λ = Λ(l;p1,p2, . . . , pm) and S = S(∞n−d−m,p1 − 1,

p2 − 1, . . . , pm − 1).
To prove Theorem 2, we will construct a shelling L of skeld(Λ) and show that for

(F0,F1, . . . ,Fd) the F -vector of some multicomplex M in Sd , there is a subsequence
L′ = (τ ′

1, . . . , τ
′
r ) of L such that each TL′(τ ′

i ) = TL(τ ′
i ), and the number of τ ′

i with
|TL(τ ′

i )| = j is Fj . We then have a shellable subcomplex of skeld(Λ) with h-vector
equal to the F -vector of M .

To do this, we will establish a bijection σ between the set of facets of skeld(Λ) and
Sd with the property that |TL(τ)| = deg(σ (τ )). For M ⊆ Sd a multicomplex, let LM

be the restriction of L to σ−1(M). Then if TLM (τ) = TL(τ) for each τ ∈ σ−1(M),
LM gives a shelling of a subcomplex of skeld(Λ) (namely, the pure complex gener-
ated by the elements of LM ) with h-vector equal to the F -vector of M .

We will need to restrict our attention to a special class of multicomplexes.
Define a partial order on our monomials as follows. For μ = x

c1
1 x

c2
2 · · ·xck

k and

μ′ = x
d1
1 x

d2
2 · · ·xdk

k elements of S(a1, a2, . . . , ak) with deg(μ) = deg(μ′), say μ < μ′
if for some i, ci < di and cj = dj for all j > i (reverse lexicographical order
within degrees). For F = (F0,F1, . . .) the F -vector of some multicomplex M ⊆
S(a1, a2, . . . , ak), let Si,Fi

be the set of the first Fi degree i elements of S(a1, . . . , ak)

in the reverse lex order, and set IM = ⋃
i≥0 Si,Fi

. A result of Clements and Lindström
will allow us to replace M with IM :

Theorem 3 [4] Suppose M is a multicomplex in S(a1, a2, . . . , ak), where a1 ≥ a2 ≥
· · · ≥ ak . Then IM is a multicomplex.
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In particular, we may from now on assume that our multicomplex M has the prop-
erty that if deg(μ) = deg(μ′), μ < μ′, and μ′ ∈ M , then μ ∈ M (as IM clearly has
this property and F(IM) = F(M)). Thus, it will suffice to construct L and σ such
that whenever γ ∈ TL(τi), there exist j < i and divisor μ of σ(τi) such that γ ⊆ τj ,
deg(μ) = deg(σ (τj )), and σ(τj ) ≤ μ. Then if τi ∈ σ−1(M), the properties of M

require that σ(τj ) ∈ M , so τj ∈ σ−1(M), and then as γ ⊆ τj , TLM (τi) = TL(τi).

3 An illustrative example

At this point it will be helpful to look at a small but nontrivial example. Let d = 4 and
Λ = Λ(0;3,3) = ∂Δ2 ∗ ∂Δ2. The vertex set V of Λ decomposes into the vertex sets
P1 and P2 of the two copies of ∂Δ2. The faces of skel4(Λ) are precisely the subsets
of V of size 4 that do not contain either P1 or P2. Label the vertices of Λ as shown:

We want to build a shelling of skel4(Λ) and a correspondence σ between the facets
of skel4(Λ) and the elements of S = S(2,2) with the properties described at the end
of the last section. Given our use of the reverse lexicographical order on the set of
monomials, it is tempting to simply list the facets in reverse lex order LR (which will
indeed give a shelling) and for τ the ith facet of skel4(Λ) having |TLR

(τ)| = j , let
σ(τ) be the ith monomial in S(2,2) of degree j . In fact such an approach will work
in some simple cases. Here, however, it fails:

τ |TLR
(τ)| σ(τ) τ |TLR

(τ)| σ(τ)

1234 0 1 1256 2 x2
2

1245 1 x1 2356 3 x2
1x2

2345 2 x2
1 1456 3 x1x

2
2

1236 1 x2 3456 4 x2
1x2

2
1346 2 x1x2

In particular, consider the multicomplex M = {1, x1, x2, x
2
1 , x1x2, x

2
1x2}. Note

that M = IM , but LM = (1234,1245,2345,1236,1346,2356). Then TLM (2356) =
{235,236} �= TL(2356), and letting Γ = ⋃

τ∈σ−1(M) τ be the pure complex gener-
ated by the elements of LM , h(Γ ) = (1,2,3,0,0) �= F(M). The problem is that
TL(2356) = {235,236,256}, and these faces first appear in facets corresponding to
x2

1 , x2, and x2
2 . But σ(2356) = x2

1x2, the presence of which in M does not imply that
of x2

2 .
Let us examine the problem more closely. Notice that our ordering on the vertex

set has resulted in each facet ending in 5 corresponding to a monomial with greatest
variable x1, and any facet ending in 6 corresponding to a monomial with greatest
variable x2. This leads us to make the following definitions.
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Suppose we have a total order on the set of vertices of simplicial complex Λ and
label the elements of this set y1 < y2 < · · · accordingly. Then let

Λi :=
{
γ ∈ link

Λ
(yi) : γ ⊆ {y1, . . . , yi−1}

}
.

Similarly, if the variables in a multicomplex M are ordered x1 < x2 < · · ·, define

Mi := {
μ ∈ M : supp(μ) ⊆ {x1, . . . , xi} and μxi ∈ M

}
.

Now observe that any facet of skeld(Λ) is, for some i, of the form γ ∪ yi , where
γ ∈ skeld−1(Λi), and any element of Sd (aside from 1) is, for some i, of the form
μxi , where μ ∈ Sd−1

i .
Consider Λ6. This is isomorphic to Λ(0;3,2).
Note that our original ordering of facets gives a shelling of skel3(Λ6) and corre-

spondence σ ′ to elements of S(2,1), by taking σ ′(τ ) = σ(τ∪{6})
x2

.

τ |T (τ)| σ ′(τ )

123 0 1
134 1 x1
125 1 x2

235 2 x2
1

145 2 x1x2

345 3 x2
1x2

Here we see the same problem as before, occurring at 235. Naïvely we might note
that here we no longer have the nice correspondence between last variable and last
vertex we had in the larger ordering, but this deficiency is easily fixed by a simple
reordering of the vertex set. In fact, consider the shelling and map obtained if we
order our facets as if 4 > 5, while retaining our ordering on the monomials:

τ |T (τ)| σ ′(τ )

123 0 1
125 1 x1

235 2 x2
1

134 1 x2
154 2 x1x2

354 3 x2
1x2

It is simple to check that this correspondence has the property described at the
end of the previous section, and furthermore we can use this to fix our original at-
tempt, by reordering the facets ending in 6 to match our new ordering on the facets
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of skel3(Λ6):

τ |T (τ)| σ(τ) τ |T (τ)| σ(τ)

1234 0 1 2356 3 x2
1x2

1245 1 x1 1346 2 x2
2

2345 2 x2
1 1456 3 x1x

2
2

1236 1 x2 3456 4 x2
1x2

2
1256 2 x1x2

The example suggests that we should build our shelling and map σ inductively,
at each step making sure the vertices are ordered so that the last m vertices are from
P1,P2, . . . ,Pm, respectively. This is how we shall proceed.

4 Construction of the shelling and bijection

Let Λ = Λ(l;p1, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm. Let V ′ be the vertex set of the
Δl−1 in the construction of Λ and for 1 ≤ i ≤ m, let Pi be the vertex set of ∂Δpi−1.
For ease of a later induction argument, we will now allow pi = 1, in which case
we will take Pi to contain a solitary placeholder vertex which is contained in no
face of Λ. Similarly, we will allow S(a1, . . . , ak) where ai = 0, in which case the
variable xi appears in no monomial. Let V = V ′ ∪ (

⋃
i Pi), and let n = l + ∑ |Pi |.

Let S = S(∞n−d−m,p1 − 1,p2 − 1, . . . , pm − 1).
As we will be changing the ordering on the vertices at different steps of our in-

duction, we will require some additional notation. For O denoting a total ordering
y1 < y2 < · · · < yn of V , let Λk,O be Λk , as defined in the previous section, with
respect to ordering O . (The ordering x1, x2, . . . , xn−d will remain fixed, so Sk may
remain as above.)

Recall that one characterization of a shelling L = (τ1, τ2, . . . , τr ) is that for
each i, there exists a face R(τi) of τi such that τi − (

⋃
j<i τj ) = {γ ⊆ τi :

R(τi) ⊆ γ }. (Note in particular that |TL(τi)| = |Ri(τ)|.) Examining the two shellings
of skel4(Λ(0;3,3)) in our example in the last section, we see that both yield the same
R(τ) for each facet τ of skel4(Λ). It will be helpful to determine the exact structure
of the R(τ) in the shelling obtained by listing the facets of skeld(Λ) in the reverse
lexicographical order.

Let τ be a facet of skeld(Λ), and O an ordering of V . If the corresponding reverse
lexicographical ordering of the facets of Λ is a shelling, the corresponding subset
R(τ) of τ should be the unique minimal subset of τ contained in no earlier facet. In
other words, any subset of τ which does not contain R(τ) should appear in an earlier
facet; in particular, for any v ∈ R(τ), τ − v must appear in an earlier facet. Such
facet would have the form (τ − v) ∪ w where w < v and w /∈ τ . There are two ways
to find such a facet. First, there may be w < v which is contained in a part of the
partition Pj with τ ∩ Pj �= Pj − w, in which case (τ − v) ∪ w is a facet of skeld(Λ).
So let full(τ ) = {i : |Pi ∩ τ | = |Pi | − 1} (the notation is meant to suggest that full(τ )
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collects the indices of the sets Pi such that τ ∩Pi is “full” in the sense that no further
elements of Pi could be added without leaving Λ), and let sO(τ) be the first element
(with respect to order O) of V − τ not appearing in Pj with j ∈ full(τ ) if such an
element exists, otherwise set sO(τ) = ∞. Let τ>sO(τ) = {y ∈ τ : y > sO(τ)}; this
contains all v such that we may find a w < v, w /∈ τ and w not in a “full” part of the
partition.

On the other hand, suppose each w < v, w /∈ τ , is in some Pj such that j ∈ full(τ ).
For such a w, (τ − v) ∪ w is a facet of skeld(Λ) if and only if v ∈ Pj . So for i ∈
full(τ ), set miss(τ, i) be the element of Pi not in τ , and let UO(τ) = {y : y ∈ Pj and
y > miss(τ, j) for some j ∈ full(τ )}.

Finally, let RO(τ) = τ>(sO(τ)) ∪ UO(τ). From the discussion above it follows that
any subset of τ not containing RO occurs in an earlier facet; on the other hand, it is
simple to check that RO(τ) is not itself contained in any earlier facet. Thus, if L =
(τ1, τ2, . . . , τr ) is the reverse lex order on the facets of skeld(Λ), τi − (

⋃
j<i τj ) =

{γ ⊆ τ : RO(τi) ⊆ γ }. Our inductively built shelling will share this structure.

Example 1 Let Λ = Λ(1;5,4,3), with vertex ordering O as shown:

Consider the face τ = {y1, y2, y4, y5, y6, y9, y11, y12} (Fig. 1). Then full(τ ) = {2},
miss(τ,2) = y3, UO(τ) = {y6, y9, y12} (Fig. 2), sO(τ) = y7, and, finally, τ>sO(τ) =
{y9, y11, y12} (Fig. 3). So RO(τ) = {y6, y9, y11, y12}.

We are now ready to prove our central theorem. Recall that for L = (τ1, τ2, . . . , τt )

a shelling, TL(τi) denotes the set of facets of τ i ∩ (
⋃

j<i τ j ).

Fig. 1 τ

Fig. 2 UO(τ)
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Fig. 3 τ>sO(τ)

Theorem 4 Let Λ and S be as above, and let O be an ordering y1 < y2 < · · · < yn

of V such that for 1 ≤ i ≤ m, yn−m+i ∈ Pi . Let 1 ≤ d ≤ n − m. Then there exist
a shelling L = (τ1, τ2, . . . , τt ) of skeld(Λ) and bijection σ from the set of facets of
skeld(Λ) to Sd such that:

1. τi − (
⋃

j<i τj ) = {γ ⊆ τ : RO(τ) ⊆ γ }.
2. deg(σ (τi)) = |TL(τi)|.
3. If γ ∈ TL(τi), then there exist j < i and μ|σ(τi) such that γ ⊆ τj , deg(μ) =

deg(σ (τj )), and σ(τj ) ≤ μ.

Again, condition (1) is sufficient to show that L is a shelling. Theorem 2 follows
from (2) and (3), the proof of the latter requiring our precise definition of RO .

Proof of Theorem 4 We will proceed by induction on d . Suppose d = 1, and note
that by assumption if we have any pi = 1, the elements of these Pi must occur after
all the other vertices in our order. Furthermore, not every vertex may be contained in
such a Pi , as then we would have n−m = m−m = 0 < d . So let yk be the last vertex
not contained in such a Pi , and let L = (y1, y2, . . . , yk), σ(y1) = 1, and σ(yi) = xi−1
for 1 < i ≤ k. Properties (1)–(3) immediately follow.

Now, suppose 1 < d ≤ n − m. Set τ 0
1 = {y1, y2, . . . , yd}. By the properties of

our order on V , τ 0
1 does not contain any Pi and hence is a facet of skeld(Λ). Set

σ(τ 0
1 ) = 1.

Any other facet τ of skeld(Λ) has the form τ = τ ′ ∪ yd+k , where τ ′ ∈
skeld−1(Λd+k,O) for some k > 0. Similarly, any element of Sd aside from 1 is of
the form μxk , where μ ∈ Sd−1

k for some k ≥ 1.
Suppose d + k ≤ n − m. Then at least one vertex from each Pj occurs after yd+k ,

so the union of yd+k and any (d − 1)-subset of the preceding vertices is in Λ, i.e.,
skeld−1(Λd+k,O) is the (d − 2)-skeleton of the simplex on the first d + k − 1 ver-
tices in V . Then the ordering Ok on these vertices inherited from the original order
on V satisfies the conditions of our theorem, so by induction there exist a shelling
of skeld−1(Λd+k,Ok

) and map σk from its set of facets to Sd−1(∞d+k−1−(d−1)) =
Sd−1(∞k) = Sd−1

k satisfying (1)–(3). Call this shelling Lk = (Gk
1,G

k
2, . . . ,G

k
rk

).
On the other hand, suppose d + k = n − m + i for some 1 ≤ i ≤ m. If pi = 1,

then skeld−1(Λd+k,O) = ∅, as yd+k is the sole element of Pi and thus is not
in any face of Λ. Otherwise, skeld−1(Λd+k,O) = skeld−1(Λ(l + ∑

j>i(pj − 1);
p1,p2, . . . , pi−1,pi − 1)) with pi − 1 ≥ 1. In this case, the restriction of the order
on V does not quite meet the conditions of the theorem. Let yk be the largest element
of Pi − yd+k with respect to O (this set is not empty as we are assuming pi ≥ 2).
Define a new order Ok by y1 <k y2 <k · · · <k ŷk <k · · · <k yd+k−1 <k yk (i.e., take



J Algebr Comb (2010) 32: 99–112 107

Fig. 4 G

Fig. 5 RO12 (G)

the original order but set yt <k yk for all yt �= yk , as in the example in the previous
section). This new order satisfies the conditions of our theorem, and so by induc-
tion we have a shelling Lk = (Gk

1,G
k
2, . . . ,G

k
rk

) of skeld−1(Λd+k,Ok
) and map σk

from the set of its facets to Sd−1(∞d+k−1−(d−1)−i , p1 − 1, . . . , pi−1 − 1,pi − 2) =
Sd−1(∞n−m−d ,p1 − 1, . . . , pi−1 − 1,pi − 2) = Sd−1

k satisfying (1)–(3).
For 1 ≤ k ≤ n − d such that yd+k is not in Pj with pj = 1, set τ k

i = Gk
i ∪ yd+k

and σ(τ k
i ) = σ(Gk

i )xk for each 1 ≤ i ≤ rk . We claim that the listing of facets L =
(τ 0

1 , τ 1
1 , . . . , τ 1

r1
, τ 2

1 , . . . , τ 2
r2

, . . .) and σ satisfy (1)–(3) for any τ k
i .

(1) The k = 0 case is immediate. Now suppose k > 0. Set Rk
i = ROk

(Gk
i ) ∪ yd+k .

We will first show that τ k
i − (

⋃
k′<k τk′

j ∪ (
⋃

j<i τ
k
j )) = {γ ⊆ τ k

i : Rk
i ⊆ γ } and then

that Rk
i = RO(τk

i ).

Example 2 Let Λ, O , and τ be as in Example 1. Then τ = G ∪ y12, where G ∈
skel7(Λ12) = skel7(Λ(3;5,3)). In the new ordering O12, y9 becomes the last vertex,
so labeling the ith vertex in this ordering y′

i , we have y′
i = yi for i < 9, y′

9 = y10,
y′

10 = y11, and y′
11 = y9. Observe that RO(τ) = RO12(G) ∪ y12 (see Figs. 4 and 5).

Returning now to the proof, suppose that γ ⊆ τ k
i and Rk

i ⊆ γ . Then yd+k ∈ γ , so

γ cannot be in any τ k′
i for k′ < k. On the other hand, as γ − yd+k contains ROk

(Gk
i ),

there is no j < i such that Gk
j contains γ − yd+k . Hence γ is not in any τ k

j for j < i,

so γ can occur in no facet appearing before τ k
i .

We next show that any subset of τ k
i not containing Rk

i is contained in an earlier
facet. Suppose Rk

i � γ ⊆ τ k
i . Then there is at least one element of Rk

i not in γ . If
some such element is in ROk

(Gk
i ), then γ − yd+k is a face of Gk

i not containing
ROk

(Gk
i ), so there is j < i such that γ − yd+k ⊆ Gk

j , and then γ ⊆ τ k
j . Otherwise,

γ = τ k
i − yd+k = Gk

i . Now, there is clearly some r < d + k such that yr /∈ Gk
i . Sup-

pose, in order to obtain a contradiction, that for each such r , Gk
i ∪ yr is not a facet of

skeld(Λ), i.e., Gk
i ∪yr contains some Ps . Then d+k = n−m+j for some j > 1 (oth-
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erwise, Gk
i cannot contain any element of the form yn−m+s for 1 ≤ s ≤ m, and adding

any vertex before yd+k cannot complete Ps ). But then there are at least |Pj ′ | − 1 ele-
ments of each Pj ′ occurring before yd+k in our ordering for each 1 ≤ j ′ ≤ m, so Gk

i

must contain at least |Pj ′ | − 1 elements of each Pj ′ , in addition to all of V ′. Hence
d = |Gk

i | + 1 ≥ l + ∑
(|Pj ′ | − 1) + 1 ≥ n − m + 1, a contradiction. Hence, there is

some r < d + k such that Gk
i ∪ yr is a facet of Λd . This facet occurs before τ k

i and
contains γ .

It remains to show that Rk
i = RO(τk

i ) for k > 0. We first confirm that yd+k ∈
RO(τk

i ). If yd+k > sO(τ k
i ), then yd+k is in RO(τk

i ), so suppose yd+k < sO(τ k
i ).

Then as yd+k is the greatest element of τ k
i , τ k

i must consist of all elements of
V − ⋃

j∈full(τ k
j ){miss(τ k

i , j)} less than yd+k . Suppose d + k ≤ n − m. Then τ k
i can-

not contain the largest element of any Pi , so in particular miss(τ k
i , j) > yd+k for any

j ∈ full(τ k
i ). Thus, τ k

i is just the first d elements of V , i.e., τ 0
1 . But k > 0, so we must

have d + k = n − m + j for some j , and in particular yd+k is the largest element
of Pj . But then j ∈ full(τ k

i ) and yd+k > miss(τ k
i , j), so yd+k ∈ UO(τk

i ) ⊆ RO(τk
i ).

We next show that RO(τk
i ) − yd+k = ROk

(Gk
i ). Suppose d + k ≤ n − m. In this

case our orderings O and Ok are the same, so sOk
(Gk

i ) = sO(τ k
i ). Furthermore, as τ k

i

cannot contain the largest element of any Pj , UO(τk
i ) = ∅. Thus RO(τk

i ) − yd+k =
ROk

(Gk
i ).

On the other hand, suppose d + k = n − m + j . Observe that the vertices corre-
sponding to the indices in full(Gk

i ) are the same as those corresponding to the indices
in full(τ k

i ), and as yk is the largest element of Pj −yd+k (with respect to both orders),
with Ok matching O on all the other vertices, UO(τk

i ) and UOk
(Gk

i ) agree, except
for the possible presence of yd+k in the former.

Suppose sOk
(Gk

i ) < yk . Then sO(τ k
i ) = sOk

(Gk
i ). Furthermore, for y ∈ Gk

i ,
y > sO(τk

i ) if and only if y >k sO(τ k
i ). Thus RO(τk

i ) − yd+k = ROk
(Gk

i ).
On the other hand, suppose sOk

(Gk
i ) ≥ yk . As yk is the greatest element of

Pj − yd+k , any other element y of Pj − yd+k is less than sOk
(Gk

i ) in both orders.
Thus, either (i) all of these elements are in Gk

i , or (ii) exactly one is missing, and
every other element of Pj − yd+k is in Gk

i .
Case (i): Every element of Pj − yd+k less than yk is in Gk

i . Then yk cannot be
in Gk

i , and in particular yk = miss(Gk
i , j) = miss(τ k

i , j). Thus sO(τ k
i ) = sOk

(Gk
i ) (as

the changing of the position of yk in the order will have no effect on s). Furthermore,
sO(τ k

i ) �= yk , and yk /∈ τ k
i . Then for y ∈ Gk

i , y >k sOk
(Gk

i ) if and only if y > sO(τk
i ).

Thus RO(τk
i ) − yd+k = ROk

(Gk
i ).

Case (ii): Gk
i contains every element of Pj except some y < yk . Then in particular

yk ∈ Gk
i , so sO(τ k

i ) = sOk
(Gk

i ) > yk . It now only remains to check the membership
of yk in Rk

i and RO(τk
i ). But yk ∈ UOk

(Gk
i ) = UO(τk

i ) and is thus in both Rk
i and

RO(τk
i ). Hence, (1) is proved.

(2) Note that |TL(τ k
i )| = |RO(τk

i )| = |ROk
(Gk

i )| + 1. Then as |ROk
(Gk

i )| =
deg(σk(G

k
i )) by induction, (2) follows from the definition of σ .

(3) The k = 0 case is trivial. Suppose k > 0 and γ ∈ TL(τ k
i ). Then γ is obtained

from τ k
i by removing some element of RO(τk

i ). Suppose that the element is not yd+k .
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Then γ − yd+k ∈ TLk
(Gk

i ). Thus, there exist j < i and divisor μ of σk(G
k
i ) such that

γ − yd+k ∈ Gk
j , deg(μ) = deg(σk(G

k
j )), and σk(G

k
j ) ≤ μ. Then γ ∈ τ k

j , μxk is a

divisor of σ(τ k
i ), deg(μxk) = deg(σ (τ k

j )), and σ(τ k
j ) ≤ μxk .

On the other hand, suppose γ = τ k
i − yd+k . We claim that there exists a facet τ r

t

for some r < k such that deg(σ (τ r
t )) ≤ deg(σ (τ k

i )) and γ ⊂ τ r
t . From this it will

follow that (3) is satisfied with τ r
t playing the role of τj in the theorem’s statement.

Case 1: yd+k ∈ UO(τk
i ), where yd+k ∈ Pj . Then let τ ′ = γ ∪miss(τ k

i , j). Note that
sO(τ ′) = sO(τ k

i ) and full(τ k
i ) = full(τ ′). Suppose y ∈ RO(τ ′) and y �= miss(τ k

i , j).
We will show that y ∈ RO(τk

i ). Note that y ∈ τ k
i , and if y > sO(τ ′), then y > sO(τk

i ),
so y ∈ RO(τk

i ). On the other hand, if y ∈ UO(τ ′), then y ∈ UO(τk
i ), as miss(τ ′, q) ≥

miss(τ k
i , q) for all q ∈ full(τ ′) = full(τ k

i ). Thus y ∈ RO(τk
i ). So every element of

RO(τ ′) − miss(τ k
i , j) is in RO(τk

i ), and as yd+k is in RO(τk
i ) but not τ ′, RO(τ ′) −

miss(τ k
i , j) ⊆ RO(τk

i ) − yd+k . Hence |RO(τ ′)| ≤ |RO(τk
i )|.

Example 3 Again take Λ, O , and τ as in Example 1, and consider γ = τ −y12. Then
RO(τ ′) = {y9, y11}, see Figs. 6, 7 and 8.

Case 2: yd+k /∈ UO(τk
i ). Let τ ′ = γ ∪ sO(τ k

i ) (and recall that since k > 0, we have
seen that yd+k ∈ RO(τk

i ), so we must have sO(τ k
i ) < yd+k). Then sO(τ ′) > sO(τ k

i ).
Suppose y ∈ RO(τ ′) and y �= sO(τ k

i ). Again, y ∈ τ k
i ; we will show that y ∈ RO(τk

i ).
If y > sO(τ ′), then y > sO(τk

i ), so y ∈ RO(τk
i ). On the other hand, suppose y ∈

UO(τ ′). If y ∈ UO(τk
i ), then y ∈ RO(τk

i ). So finally suppose y is in UO(τ ′) but not

Fig. 6 G

Fig. 7 τ ′

Fig. 8 RO(τ ′)
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in UO(τk
i ). Then for some q , τ ′ contains all but one element, b, of Pq , y ∈ Pq , and

y > b, but τ k
i is missing at least 2 elements of Pq . The only element of τ k

i which is
not in τ ′ is yd+k > y, so b /∈ τ k

i . Then as q /∈ full(τ k
i ), b ≥ sO(τ k

i ). Thus y > sO(τk
i ),

and so y ∈ RO(τk
i ). Thus, every element of RO(τ ′) − sO(τ k

i ) is in RO(τk
i ), and as

before we see that RO(τ ′) − sO(τ k
i ) ⊆ RO(τk

i ) − yd+k . Hence |RO(τ ′)| ≤ |RO(τk
i )|.

In either case, τ ′ is a facet of skeld(Λ) containing γ and by construction must be
equal to τ r

t for some r < k. Since |RO(τ ′)| ≤ |RO(τk
i )|, deg(σ (τ ′)) ≤ deg(σ (τ k

i )).
If r = 0, σ(τ ′) = 1, a divisor of σ(τ k

i ). Otherwise, σ(τ ′) is some monomial in
x1, . . . , xr . Let μ be the reverse lexicographically largest divisor of σ(τ k

i ) whose
degree is the same as that of σ(τ ′). Then xk divides μ, and as the support of σ(τ ′) is
in variables less than xk , σ(τ ′) < μ. Thus (3) is proved. �

5 Theorem 1

The proof of Theorem 1 is essentially that given by Novik in [8] for the pi = pj case,
so we here give an abbreviated account with the necessary modifications, referring
the reader to [8] for full details.

Let Λ = Λ(l;p1,p2, . . . , pm), and let Γ be a (d − 1)-dimensional Cohen–
Macaulay subcomplex of Λ. Let Pi and V ′ be as defined in the previous section and
label the vertices of Λ with variables x1, x2, . . . , xn, ordered so that xi ∈ Pi for 1 ≤
i ≤ m, and xi ∈ V ′ for n− l +1 ≤ i ≤ n. Let k be a field and k[x] = k[x1, x2, . . . , xn].
Recall that the Stanley–Reisner ideal of Γ , IΓ , is the ideal generated by squarefree
monomials xi1xi2 · · ·xis such that {xi1, xi2, . . . , xis } is not a face of Γ .

For g ∈ GLn(k), g defines an automorphism of k[x] by g(xj ) = ∑n
i=1 gij xi .

We say g possesses the Kind–Kleinschmidt condition if for every facet of Γ ,
{xi1, xi2, . . . , xir }, the submatrix of g−1 obtained by taking the intersection of the
rows numbered i1, i2, . . . , ir with the last d columns has rank r . For such a g, let
J (g,Γ ) = gIΓ + 〈xn−d+1, . . . , xn〉. Such a g exists as long as k is infinite.

Finally, for I an ideal in k[x], let Bs(I ) = {μ ∈ S(∞n) : μ /∈ spank({μ′ : μ ≺
μ′} ∪ I )}, where ≺ is the order given by μ ≺ μ′ if either deg(μ) < deg(μ′) or
deg(μ) = deg(μ′) and μ′ < μ in our original order on monomials (notice the re-
versal). The crux of the proof lies in the fact that Bs(J (g,Γ )) is a multicomplex and
that F(Bs(J (g,Γ ))) = h(Γ ). We additionally make use of the fact Bs(J (g,Γ )) =
Bs(gIΓ ) ∩ S(∞n−d). It thus suffices to construct a matrix g satisfying the Kind–
Kleinschmidt condition such that Bs(gIΓ ) does not contain x

pi

i for 1 ≤ i ≤ m.
To do this we first pass to a larger field. Let K = k(yij ,wij , zij ) be the field

of rational functions in
∑

i (pi − 1)2 + l2 + l(
∑

i pi) variables, where Y = (yij ),
W = (wij ), and Z = (zij ) are (

∑
i (pi − 1)) × (

∑
i (pi − 1)), l × l, and (

∑
i pi) × l

matrices, respectively. Let E = (Eij ) be the m × (
∑

i (pi − 1)) matrix, where

Eij =
{

1 if xj−m ∈ Pi,

0 otherwise.
(1)
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Define

g−1 =

⎡

⎢
⎢
⎣

[
Im −EY

0 Y

]

Z

0 W

⎤

⎥
⎥
⎦ so that g =

⎡

⎢
⎢
⎣

[
Im E

0 Y−1

]

∗

0 W−1

⎤

⎥
⎥
⎦ .

Now, for each i, Pi /∈ Γ , so IΓ contains
∏

xj ∈Pi
xj . Then gIΓ contains

∏

xj ∈Pi

g(xj ) =
∏

xj ∈Pi

(

xi +
∑

k>m

gkjxk

)

= x
pi

i +
∑{

αμμ : μ ≺ x
pi

i

}
.

Thus x
pi

i /∈ Bs(gIΓ ), so Bs(J ) ⊆ S(p1 − 1,p2 − 1, . . . , pm − 1,∞n−d−m).
It remains only to show that g satisfies the Kind–Kleinschmidt condition. Note that

the ith row of EY is equal to the sum of the rows of Y indexed (in the larger matrix g)
by j > m such that xj ∈ Pi . Since no facet of Λ contains Pi , and the entries of Y , W ,
and Z are algebraically independent, it then follows that for {xi1, xi2, . . . , xid } a facet
of Γ , the determinant of the submatrix of g−1 defined by the intersection of the last
d columns and the rows numbered i1, . . . , id is nonzero, so the Kind–Kleinschmidt
condition holds.

6 Remarks

Note that the class of Cohen–Macaulay subcomplexes of Λ(l;p1,p2, . . . , pm) is
larger than that of Cohen–Macaulay complexes having proper G action with cor-
responding orbit structure. Thus, one does not expect our conditions to be sufficient
for face numbers of Cohen–Macaulay complexes with proper group action. Indeed,
in [10] Stanley showed necessary conditions on the h-vectors of centrally symmetric
Cohen–Macaulay complexes not implied by our conditions, which were later general-
ized by Adin in [1] to the case of Cohen–Macaulay complexes with proper Zp-action.
It would be of interest to determine sufficient conditions in this more restricted case.

As mentioned in the introduction, Corollary 1 is similar in structure to a result of
Björner, Frankl, and Stanley in [2], which characterizes the f -vectors of balanced
complexes. In fact, since the first draft of this paper a common generalization of both
results has been shown, see [3].
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