Recurrence formulas for Macdonald polynomials of type *A*

Michel Lassalle · Michael J. Schlosser

Received: 12 February 2009 / Accepted: 9 October 2009 / Published online: 13 November 2009 © Springer Science+Business Media, LLC 2009

Abstract We consider products of two Macdonald polynomials of type A, indexed by dominant weights which are respectively a multiple of the first fundamental weight and a weight having zero component on the kth fundamental weight. We give the explicit decomposition of any Macdonald polynomial of type A in terms of this basis.

Keywords Macdonald polynomials \cdot Pieri formula \cdot Multidimensional matrix inverse

1 Introduction

In the 1980s, Macdonald [6–8] introduced a class of orthogonal polynomials which are Laurent polynomials in several variables and generalize the Weyl characters of compact simple Lie groups. In the simplest situation, given a root system R, these polynomials are elements of the group algebra of the weight lattice of R, indexed by the dominant weights and depending on two parameters (q, t).

When *R* is of type A_n , these Macdonald polynomials are in bijective correspondence with the symmetric functions $\mathcal{P}_{\lambda}(q, t)$ indexed by partitions, introduced by Macdonald some years before [4, 5]. In fact, they correspond to $\mathcal{P}_{\lambda}(q, t)(x_1, \ldots, x_{n+1})$, for a partition $\lambda = (\lambda_1, \ldots, \lambda_n)$ of length *n*, with the n + 1 variables (x_1, \ldots, x_{n+1}) linked by the condition $x_1 \cdots x_{n+1} = 1$.

M. Lassalle (🖂)

Centre National de la Recherche Scientifique, Institut Gaspard-Monge, Université de Marne-la-Vallée, 77454 Marne-la-Vallée Cedex, France e-mail: lassalle@univ-mlv.fr url: http://igm.univ-mlv.fr/~lassalle

M.J. Schlosser Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Vienna, Austria e-mail: michael.schlosser@univie.ac.at url: http://www.mat.univie.ac.at/~schlosse The purpose of this article is to extend the result of [3], given for the symmetric functions $\mathcal{P}_{\lambda}(q, t)$, to the framework of the root system A_n .

More precisely, in [3, Theorem 4.1] we obtained a recurrence formula giving the symmetric function $\mathcal{P}_{(\lambda_1,...,\lambda_n)}(q, t)$ as a sum

$$\mathcal{P}_{(\lambda_1,\dots,\lambda_n)} = \sum_{\theta \in \mathbb{N}^{n-1}} C_{\theta_1,\dots,\theta_{n-1}} \mathcal{P}_{(\lambda_1+\theta_1,\dots,\lambda_{n-1}+\theta_{n-1})} \mathcal{P}_{\lambda_n-|\theta|}$$
(1.1)

with $|\theta| = \sum_{i=1}^{n-1} \theta_i$ and \mathbb{N} the set of nonnegative integers. This formula was obtained by inverting the "Pieri formula," which conversely expresses the product $\mathcal{P}_{(\lambda_1,\dots,\lambda_{n-1})}\mathcal{P}_{\lambda_n}$ as a sum

$$\mathcal{P}_{(\lambda_1,\dots,\lambda_{n-1})}\mathcal{P}_{\lambda_n} = \sum_{\theta \in \mathbb{N}^{n-1}} c_{\theta_1,\dots,\theta_{n-1}} \mathcal{P}_{(\lambda_1+\theta_1,\dots,\lambda_{n-1}+\theta_{n-1},\lambda_n-|\theta|)}.$$

Both expansions are identities between symmetric functions, valid for any number of variables.

These identities may also be written in terms of Macdonald polynomials of type A_n . For this purpose, let $\{\omega_i, 1 \le i \le n\}$ be the *n* fundamental weights of the root system A_n . Let P_{λ} denote the Macdonald polynomial associated with the dominant weight $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$. The recurrence formula (1.1), written for n + 1 variables (x_1, \ldots, x_{n+1}) linked by $x_1 \cdots x_{n+1} = 1$, yields

$$P_{\lambda} = \sum_{\theta \in \mathbb{N}^{n-1}} C_{\theta_1, \dots, \theta_{n-1}} P_{(\lambda_n - |\theta|)\omega_1} P_{\mu}$$
(1.2)

with $\mu = \sum_{i=1}^{n-2} (\lambda_i + \theta_i - \theta_{i+1}) \omega_i + (\lambda_{n-1} + \lambda_n + \theta_{n-1}) \omega_{n-1}$. This alternative formulation is obvious and does not bring anything new.

However the method of [3], when applied in the A_n root system framework, allows us to get a much stronger result. Indeed, let k be a fixed integer with $1 \le k \le n$. In this paper we shall write the Macdonald polynomial P_{λ} in terms of products $P_{r\omega_1}P_{\mu}$ with $\mu = \sum_{i=1}^{n} \mu_i \omega_i$ and $\mu_k = 0$. There are n such recurrence formulas, (1.2) being the particular case k = n of the latter.

This paper is organized as follows. In Sect. 2 we introduce our notation for the root system A_n and recall general facts about the corresponding Macdonald polynomials. Their Pieri formula, which involves a specific infinite-multidimensional matrix, is studied in Sect. 3, starting from the one given by Macdonald for the symmetric functions $\mathcal{P}_{\lambda}(q, t)$ [5, p. 340]. In Sect. 4 we invert the Pieri matrix by applying a particular multidimensional matrix inverse, given separately in the Appendix. This matrix inverse is equivalent to one previously obtained in [3, Sect. 2] by using operator methods. As a result of inverting the Pieri formula, we obtain recurrence formulas for A_n Macdonald polynomials. Finally, in Sect. 5 we detail the examples of the A_2 and A_3 cases and compare them to earlier results.

2 Macdonald polynomials of type A

The standard references for Macdonald polynomials associated with root systems are [6-8].

Let us consider the space \mathbb{R}^{n+1} endowed with the usual scalar product and the quotient space $V = \mathbb{R}^{n+1}/\mathbb{R}(1, ..., 1)$, where $\mathbb{R}(1, ..., 1)$ is the subspace spanned by the vector (1, ..., 1). Let $\varepsilon_1, ..., \varepsilon_{n+1}$ denote the images in V of the coordinate vectors of \mathbb{R}^{n+1} , linked by $\sum_{i=1}^{n+1} \varepsilon_i = 0$.

The root system of type A_n is formed by the vectors $\{\varepsilon_i - \varepsilon_j, i \neq j\}$. The positive roots are $\{\varepsilon_i - \varepsilon_j, i < j\}$, and the simple roots are $\varepsilon_i - \varepsilon_{i+1}$ for $1 \le i \le n$. The Weyl group is the symmetric group $W = S_{n+1}$ acting by permutation of the coordinates.

The weight lattice *P* is formed by integral linear combinations of the fundamental weights $\{\omega_i, 1 \le i \le n\}$ defined by $\omega_i = \varepsilon_1 + \dots + \varepsilon_i$. Let $\omega_i = 0$ for i = 0, n + 1. We denote by *P*⁺ the set of dominant weights $\lambda = \sum_{i=1}^n \lambda_i \omega_i$, which are nonnegative integral linear combinations of the fundamental weights.

There is the following correspondence between dominant weights and partitions. Given a dominant weight, if we write it as

$$\lambda = \sum_{i=1}^{n} \lambda_i \omega_i = \sum_{i=1}^{n+1} \mu_i \varepsilon_i,$$

the sequence $\mu = (\mu_1, \dots, \mu_{n+1})$ is a partition with length $\leq n + 1$. We have

$$\lambda_i = \mu_i - \mu_{i+1}$$
 and $\mu_i = \mu_{n+1} + \sum_{j=i}^n \lambda_j$.

Thus μ is defined up to μ_{n+1} , and two partitions μ , ν correspond to the same weight λ if and only if $\mu_1 - \nu_1 = \cdots = \mu_{n+1} - \nu_{n+1}$. We denote by C_{λ} the family of partitions thus defined.

Let *A* denote the group algebra over \mathbb{R} of the free Abelian group *P*. For each $\lambda \in P$, let e^{λ} denote the corresponding element of *A*, subject to the multiplication rule $e^{\lambda}e^{\mu} = e^{\lambda+\mu}$. The set $\{e^{\lambda}, \lambda \in P\}$ forms an \mathbb{R} -basis of *A*.

The Weyl group $W = S_{n+1}$ acts on P and on A. Let $W\lambda$ denote the orbit of $\lambda \in P$ and A^W the subspace of W-invariants in A. There are two important bases of A^W , both indexed by dominant weights. The first one is given by the orbit-sums

$$m_{\lambda} = \sum_{\mu \in W\lambda} e^{\mu}.$$

The second one is provided by the Weyl characters

$$\chi_{\lambda} = \delta^{-1} \sum_{w \in W} \det(w) e^{w(\lambda + \rho)}$$

with $\rho = \sum_{i=1}^{n} (n - i + 1)\varepsilon_i$ and $\delta = \sum_{w \in W} \det(w)e^{w(\rho)}$. The Macdonald polynomials $\{P_{\lambda}, \lambda \in P^+\}$ form another basis defined as the eigenvectors of a specific self-adjoint operator (which we do not describe here).

For $1 \le i \le n + 1$, define $x_i = e^{\varepsilon_i}$, so that the variables x_i are linked by $x_1 \cdots x_{n+1} = 1$. Then δ is the Vandermonde determinant $\prod_{i < j} (x_i - x_j)$. There is a correspondence between A^W and the symmetric polynomials restricted to n + 1 variables $x = (x_1, \dots, x_{n+1})$ linked by the previous condition.

In terms of bases this correspondence may be described as follows. Let λ be any dominant weight, and let $x_1 \cdots x_{n+1} = 1$. All monomial symmetric functions $m_{\mu}(x_1, \ldots, x_{n+1})$ with $\mu \in C_{\lambda}$ are equal, and their common value is the orbitsum m_{λ} . Similarly, the Weyl character χ_{λ} is the common value of the Schur functions $s_{\mu}(x_1, \ldots, x_{n+1})$, $\mu \in C_{\lambda}$, whereas the Macdonald polynomial P_{λ} is the common value of the symmetric polynomials $\mathcal{P}_{\mu}(q, t)(x_1, \ldots, x_{n+1})$ with $\mu \in C_{\lambda}$ and $\mathcal{P}_{\mu}(q, t)$ the symmetric function studied in Chap. 6 of [5].

Given a positive integer r and a dominant weight λ , the "Pieri formula" expands the product

$$P_{r\omega_1} P_{\lambda} = \sum_{\rho} c_{\rho} P_{\lambda+\rho}$$

in terms of Macdonald polynomials, where the range of ρ and the values of the coefficients c_{ρ} are to be determined.

Let Q denote the root lattice spanned by the simple roots. For any vector τ , define

$$\Sigma(\tau) = C(\tau) \cap (\tau + Q)$$

with $C(\tau)$ the convex hull of the Weyl group orbit of τ . Since the orbit of $\omega_1 = \varepsilon_1$ is the set { $\varepsilon_i = \omega_i - \omega_{i-1}, 1 \le i \le n+1$ }, it is clear that $\Sigma(r\omega_1)$ is formed by vectors

$$\sum_{i=1}^{n+1} \theta_i (\omega_i - \omega_{i-1}) = \sum_{i=1}^n (\theta_i - \theta_{i+1}) \omega_i$$

with $\theta = (\theta_1, \dots, \theta_{n+1}) \in \mathbb{N}^{n+1}$ and $|\theta| = \sum_{i=1}^{n+1} \theta_i = r$.

By general results [8, (5.3.8), p. 104], it is known that the sum on the righthand side of the Pieri formula is restricted to vectors ρ such that $\rho \in \Sigma(r\omega_1)$ and $\lambda + \rho \in P^+$. In the next section we shall give a direct proof of this result and make the value of the coefficient c_{ρ} explicit.

3 Pieri formula

Let 0 < q < 1. For any integer r, the classical q-shifted factorial $(u; q)_r$ is defined by

$$(u;q)_{\infty} = \prod_{j\geq 0} (1 - uq^j), \qquad (u;q)_r = (u;q)_{\infty} / (uq^r;q)_{\infty}.$$

Let $u = (u_1, ..., u_m)$ be *m* indeterminates, and $\theta = (\theta_1, ..., \theta_m) \in \mathbb{N}^m$. For clarity of display, throughout this paper, any time such a pair (u, θ) is given, we shall implicitly assume *m* auxiliary variables $v = (v_1, ..., v_m)$ to be defined by $v_i = q^{\theta_i} u_i$.

Macdonald polynomials of type A_n satisfy the following Pieri formula.

Theorem 3.1 Let $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$ be a dominant weight, and $r \in \mathbb{N}$. For any $1 \le i \le n+1$, define

$$u_i = q^{\sum_{j=i}^n \lambda_j} t^{-i}$$

and for $\theta \in \mathbb{N}^{n+1}$,

$$d_{\theta}(u_1, \dots, u_{n+1}; r) = \frac{(q; q)_r}{(t; q)_r} \prod_{j=1}^{n+1} \frac{(t; q)_{\theta_j}}{(q; q)_{\theta_j}} \prod_{1 \le i < j \le n+1} \frac{(tv_i/v_j; q)_{\theta_j}}{(qv_i/v_j; q)_{\theta_j}} \frac{(qu_i/tv_j; q)_{\theta_j}}{(u_i/v_j; q)_{\theta_j}}.$$

We have

$$P_{r\omega_1}P_{\lambda} = \sum_{\substack{\theta \in \mathbb{N}^{n+1} \\ |\theta|=r}} d_{\theta}(u_1, \dots, u_{n+1}; r) P_{\lambda+\rho}$$

with $\rho = \sum_{i=1}^{n} (\theta_i - \theta_{i+1}) \omega_i$.

Proof In a first step, we write the Pieri formula for arbitrary $\mathcal{P}_{\mu}(q, t)$ with $\mu = (\mu_1, \ldots, \mu_n)$ being a partition having length $\leq n$. We start from [5, p. 340, (6.24)(i)] and [5, p. 342, Example 2(a)]. Replacing g_r by $(t; q)_r/(q; q)_r \mathcal{P}_{(r)}$, we have

$$\mathcal{P}_{(r)}\mathcal{P}_{\mu}=\sum_{\kappa\supset\mu}\varphi_{\kappa/\mu}\mathcal{P}_{\kappa},$$

where the skew-diagram $\kappa - \mu$ is a horizontal *r*-strip, i.e., has at most one node in each column. The Pieri coefficient $\varphi_{\kappa/\mu}$ is given by

$$\frac{(t;q)_r}{(q;q)_r}\varphi_{\kappa/\mu} = \prod_{1 \le i \le j \le l(\kappa)} \frac{f(q^{\kappa_i - \kappa_j}t^{j-i})}{f(q^{\kappa_i - \mu_j}t^{j-i})} \frac{f(q^{\mu_i - \mu_{j+1}}t^{j-i})}{f(q^{\mu_i - \kappa_{j+1}}t^{j-i})}$$
$$= \prod_{1 \le i \le j \le l(\kappa)} \frac{w_{\kappa_j - \mu_j}(q^{\kappa_i - \kappa_j}t^{j-i})}{w_{\kappa_{j+1} - \mu_{j+1}}(q^{\mu_i - \kappa_{j+1}}t^{j-i})}$$

with $f(u) = (tu; q)_{\infty}/(qu; q)_{\infty}$ and $w_s(u) = (tu; q)_s/(qu; q)_s$.

Since $\kappa - \mu$ is a horizontal strip, the length $l(\kappa)$ of κ is at most equal to n + 1, so we can write $\kappa = (\mu_1 + \theta_1, \dots, \mu_n + \theta_n, \theta_{n+1})$ with $|\theta| = r$. Then

$$\begin{aligned} \frac{(t;q)_r}{(q;q)_r} \varphi_{\kappa/\mu} &= \prod_{1 \le i \le j \le l(\kappa)} w_{\theta_j} (q^{\kappa_i - \kappa_j} t^{j-i}) \prod_{1 \le i < j \le l(\kappa) + 1} (w_{\theta_j} (q^{\mu_i - \kappa_j} t^{j-i-1}))^{-1} \\ &= \prod_{j=1}^{n+1} \frac{(t;q)_{\theta_j}}{(q;q)_{\theta_j}} \prod_{1 \le i < j \le n+1} \frac{(tv_i/v_j;q)_{\theta_j}}{(qv_i/v_j;q)_{\theta_j}} \frac{(qu_i/tv_j;q)_{\theta_j}}{(u_i/v_j;q)_{\theta_j}}, \end{aligned}$$

where for $1 \le i \le n+1$, we set $u_i = q^{\mu_i} t^{-i}$ and $v_i = q^{\kappa_i} t^{-i} = q^{\theta_i} u_i$.

In a second step we translate this result in terms of A_n Macdonald polynomials. Given the dominant weight λ , we choose $\mu = (\mu_1, \dots, \mu_{n+1})$ to be the unique

element of C_{λ} such that $\mu_{n+1} = 0$, i.e., with length $\leq n$. For $1 \leq i \leq n$, we have $\mu_i = \sum_{j=i}^n \lambda_j$. As for the partition κ (with length $\leq n + 1$), it belongs to C_{σ} with $\sigma = \sum_{k=1}^n (\kappa_k - \kappa_{k+1}) \omega_k = \sum_{k=1}^n (\lambda_k + \theta_k - \theta_{k+1}) \omega_k$. Hence the statement. \Box

Remark On the right-hand side of the Pieri formula, the condition $\lambda + \rho \in P^+$ is necessarily satisfied as soon as $d_{\theta}(u_1, \ldots, u_{n+1}; r) \neq 0$. Using the correspondence between dominant weights and partitions, this may be verified on the Pieri formula

$$\mathcal{P}_{(r)}\mathcal{P}_{\mu} = \sum_{\kappa = (\mu_1 + \theta_1, \dots, \mu_n + \theta_n, \theta_{n+1})} \varphi_{\kappa/\mu} \mathcal{P}_{\kappa}$$

We only have to show that $\varphi_{\kappa/\mu}$ necessarily vanishes when the multiinteger κ is not a partition. But then there is an index *i* such that $\kappa_i < \kappa_{i+1}$, so that the factor $(qu_i/tv_{i+1}; q)_{\theta_{i+1}}$ in $\varphi_{\kappa/\mu}$ writes out as

$$(1-q^{1+\mu_i-\kappa_{i+1}})\cdots(1-q^{\mu_i-\mu_{i+1}})$$

Due to $\kappa_i < \kappa_{i+1}$, this product would be $\neq 0$ only if $\mu_i < \mu_{i+1}$, which is impossible since μ is a partition.

From now on, we fix some integer $1 \le k \le n$. Substituting $r - |\theta|$ for θ_k , the Pieri formula may be written in the more explicit form

$$P_{r\omega_1}P_{\lambda} = \sum_{\substack{\theta = (\theta_1, \dots, \theta_{k-1}, \dots, \theta_{k+1}, \dots, \theta_{n+1}) \in \mathbb{N}^n \\ |\theta| \le r}} \hat{d}_{\theta}(u_1, \dots, u_{n+1}; r) P_{\lambda + \rho}$$

with

$$\rho = \sum_{\substack{1 \le i \le n \\ i \ne k-1, k}} (\theta_i - \theta_{i+1})\omega_i + \theta_{k-1}\omega_{k-1} + (r - |\theta|)(\omega_k - \omega_{k-1}) - \theta_{k+1}\omega_k$$

and

$$\hat{d}_{\theta}(u_{1}, \dots, u_{n+1}; r) = \frac{(q; q)_{r}}{(t; q)_{r}} \frac{(t; q)_{r-|\theta|}}{(q; q)_{r-|\theta|}} \prod_{\substack{j=1\\j \neq k}}^{n+1} \frac{(t; q)_{\theta_{j}}}{(q; q)_{\theta_{j}}}$$

$$\times \prod_{\substack{1 \le i < j \le n+1\\j \neq k}} \frac{(tv_{i}/v_{j}; q)_{\theta_{j}}}{(qv_{i}/v_{j}; q)_{\theta_{j}}} \frac{(qu_{i}/tv_{j}; q)_{\theta_{j}}}{(u_{i}/v_{j}; q)_{\theta_{j}}}$$

$$\times \prod_{\substack{i=1\\i=1}}^{k-1} \frac{(tv_{i}/v_{k}; q)_{r-|\theta|}}{(qv_{i}/v_{k}; q)_{r-|\theta|}} \frac{(qu_{i}/tv_{k}; q)_{r-|\theta|}}{(u_{i}/v_{k}; q)_{r-|\theta|}}.$$

Here u_i , v_i $(1 \le i \le n + 1)$ are as in Theorem 3.1, except $v_k = q^{r-|\theta|}u_k$. The sum is restricted to $|\theta| \le r$ since $1/(q;q)_s = 0$ for s < 0.

In a second step, we concentrate on the situation $\lambda_k = 0$. Then each term on the right-hand side vanishes unless $\theta_{k+1} = 0$. Indeed, if $\lambda_k = 0$, one has $u_k = tu_{k+1}$ and $v_{k+1} = q^{\theta_{k+1}}u_{k+1}$. Hence, for i = k and j = k+1, the factor $(qu_i/tv_j; q)_{\theta_j}$ evaluates as

$$(qu_k/tv_{k+1};q)_{\theta_{k+1}} = (q^{1-\theta_{k+1}};q)_{\theta_{k+1}} = \delta_{\theta_{k+1},0}$$

Therefore, if $\lambda_k = 0$, the Pieri formula can be written as

$$P_{r\omega_{1}} P_{\lambda} = \sum_{\substack{\theta = (\theta_{1}, \dots, \theta_{k-1}, 0, 0, \theta_{k+2}, \dots, \theta_{n+1}) \in \mathbb{N}^{n-1} \\ |\theta| \le r}} \tilde{d}_{\theta}(u_{1}, \dots, u_{k-1}, u_{k}, u_{k+2}, \dots, u_{n+1}; k, r) P_{\lambda+\rho}$$

with

$$\rho = \sum_{\substack{1 \le i \le n \\ i \ne k-1, k, k+1}} (\theta_i - \theta_{i+1})\omega_i + \theta_{k-1}\omega_{k-1} + (r - |\theta|)(\omega_k - \omega_{k-1}) - \theta_{k+2}\omega_{k+1}$$

and

$$\begin{split} \tilde{d}_{\theta}(u_{1},\ldots,u_{k-1},u_{k},u_{k+2},\ldots,u_{n+1};k,r) \\ &= \frac{(q;q)_{r}}{(t;q)_{r}}\frac{(t;q)_{r-|\theta|}}{(q;q)_{r-|\theta|}} \prod_{\substack{i=1\\i\neq k,k+1}}^{n+1} \frac{(t;q)_{\theta_{i}}}{(q;q)_{\theta_{i}}} \prod_{\substack{1 \le i < j \le n+1\\i\neq k,k+1\\j\neq k,k+1}} \frac{(tv_{i}/v_{j};q)_{\theta_{j}}}{(qv_{i}/v_{j};q)_{\theta_{j}}} \frac{(qu_{i}/tv_{j};q)_{\theta_{j}}}{(u_{i}/v_{j};q)_{\theta_{j}}} \\ &\times \prod_{i=1}^{k-1} \frac{(tv_{i}/v_{k};q)_{r-|\theta|}}{(qv_{i}/v_{k};q)_{r-|\theta|}} \frac{(qu_{i}/tv_{k};q)_{r-|\theta|}}{(u_{i}/v_{k};q)_{r-|\theta|}} \prod_{j=k+2}^{n+1} \frac{(tv_{k}/v_{j};q)_{\theta_{j}}}{(qv_{k}/v_{j};q)_{\theta_{j}}} \frac{(qu_{k}/t^{2}v_{j};q)_{\theta_{j}}}{(u_{k}/tv_{j};q)_{\theta_{j}}} \end{split}$$

Here the notation is the same as before, including $v_k = q^{r-|\theta|}u_k$. For $j \ge k+2$, we have used

$$\begin{aligned} &\frac{(tv_k/v_j;q)_{\theta_j}}{(qv_k/v_j;q)_{\theta_j}} \frac{(qu_k/tv_j;q)_{\theta_j}}{(u_k/v_j;q)_{\theta_j}} \frac{(tv_{k+1}/v_j;q)_{\theta_j}}{(qv_{k+1}/v_j;q)_{\theta_j}} \frac{(qu_{k+1}/tv_j;q)_{\theta_j}}{(u_{k+1}/v_j;q)_{\theta_j}} \\ &= \frac{(tv_k/v_j;q)_{\theta_j}}{(qv_k/v_j;q)_{\theta_j}} \frac{(qu_k/t^2v_j;q)_{\theta_j}}{(u_k/tv_j;q)_{\theta_j}},\end{aligned}$$

which is a direct consequence of $v_{k+1} = u_{k+1} = u_k/t$.

In a third step, we perform some relabeling in order to remove the two 0's appearing in θ . For that purpose, for *n* indeterminates $(u_0, u_1, \ldots, u_{n-1})$ and $\theta = (\theta_1, \ldots, \theta_{n-1}) \in \mathbb{N}^{n-1}$, we define

$$D_{\theta}(u_{0}, u_{1}, \dots, u_{n-1}; k, r)$$

$$= (q/t)^{|\theta|} \frac{(t^{2}u_{0}; q)_{|\theta|}}{(qtu_{0}; q)_{|\theta|}} \prod_{i=1}^{n-1} \frac{(t; q)_{\theta_{i}}}{(q; q)_{\theta_{i}}} \frac{(q^{|\theta|+1}u_{i}; q)_{\theta_{i}}}{(q^{|\theta|}tu_{i}; q)_{\theta_{i}}}$$

$$\times \prod_{1 \le i < j \le n-1} \frac{(tv_i/v_j; q)_{\theta_j}}{(qv_i/v_j; q)_{\theta_j}} \frac{(qu_i/tv_j; q)_{\theta_j}}{(u_i/v_j; q)_{\theta_j}} \\ \times \prod_{i=1}^{k-1} \frac{(u_i/u_0; q)_{\theta_i}}{(qu_i/tu_0; q)_{\theta_i}} \frac{(qu_i/tu_0; q)_{\theta_i-r+|\theta|}}{(u_i/u_0; q)_{\theta_i-r+|\theta|}} \frac{(u_i/tu_0; q)_{\theta_i-r+|\theta|}}{(qu_i/t^2u_0; q)_{\theta_i-r+|\theta|}} \\ \times \prod_{i=k}^{n-1} \frac{(tu_i/u_0; q)_{\theta_i}}{(qu_i/u_0; q)_{\theta_i}}.$$

Lemma If we write

$$w_{i} = \begin{cases} q^{-r}t^{-2}, & i = 0, \\ q^{-r}u_{i}/tu_{k}, & 1 \le i \le k-1, \\ q^{-r}u_{i+2}/tu_{k}, & k \le i \le n-1, \end{cases}$$

we have

$$D_{\theta}(w_0, w_1, \dots, w_{n-1}; k, r)$$

= $\tilde{d}_{(\theta_1, \dots, \theta_{k-1}, 0, 0, \theta_k, \dots, \theta_{n-1})}(u_1, \dots, u_{k-1}, u_k, u_{k+2}, \dots, u_{n+1}; k, r).$

Proof Merely by substitution, and using $v_k = q^{r-|\theta|}u_k$, we only have to prove

$$\begin{split} (q/t)^{|\theta|} &\frac{(q^{-r};q)_{|\theta|}}{(q^{1-r}/t;q)_{|\theta|}} \prod_{j=k+2}^{n+1} \frac{(q^{|\theta|-r+1}u_j/tu_k;q)_{\theta_j}}{(q^{|\theta|-r}u_j/u_k;q)_{\theta_j}} \frac{(t^2u_j/u_k;q)_{\theta_j}}{(qtu_j/u_k;q)_{\theta_j}} \\ &\times \prod_{i=1}^{k-1} \frac{(q^{|\theta|-r+1}u_i/tu_k;q)_{\theta_i}}{(q^{|\theta|-r}u_i/u_k;q)_{\theta_i}} \frac{(tu_i/u_k;q)_{\theta_i}}{(qu_i/u_k;q)_{\theta_i}} \\ &\times \prod_{i=1}^{k-1} \frac{(qu_i/u_k;q)_{\theta_i-r+|\theta|}}{(tu_i/u_k;q)_{\theta_i-r+|\theta|}} \frac{(u_i/u_k;q)_{\theta_i-r+|\theta|}}{(qu_i/tu_k;q)_{\theta_i-r+|\theta|}} \\ &= \frac{(q;q)_r}{(t;q)_r} \frac{(t;q)_{r-|\theta|}}{(q;q)_{r-|\theta|}} \prod_{i=1}^{k-1} \frac{(tv_i/q^{r-|\theta|}u_k;q)_{r-|\theta|}}{(qv_i/q^{r-|\theta|}u_k;q)_{r-|\theta|}} \frac{(qu_i/tq^{r-|\theta|}u_k;q)_{r-|\theta|}}{(u_i/q^{r-|\theta|}u_k;q)_{r-|\theta|}} \\ &\times \prod_{j=k+2}^{n+1} \frac{(tq^{r-|\theta|}u_k/v_j;q)_{\theta_j}}{(q^{r-|\theta|+1}u_k/v_j;q)_{\theta_j}} \frac{(qu_k/t^2v_j;q)_{\theta_j}}{(u_k/tv_j;q)_{\theta_j}}. \end{split}$$

We have obviously

$$\frac{(q^{|\theta|-r+1}u_i/tu_k;q)_{\theta_i}}{(q^{|\theta|-r}u_i/u_k;q)_{\theta_i}}\frac{(u_i/u_k;q)_{\theta_i-r+|\theta|}}{(qu_i/tu_k;q)_{\theta_i-r+|\theta|}} = \frac{(qu_i/tq^{r-|\theta|}u_k;q)_{r-|\theta|}}{(u_i/q^{r-|\theta|}u_k;q)_{r-|\theta|}}.$$

Using the identities

$$\frac{(aq^{-n};q)_n}{(bq^{-n};q)_n} = \frac{(q/a;q)_n}{(q/b;q)_n} (a/b)^n,$$

 $\underline{\textcircled{O}}$ Springer

$$\frac{(a;q)_n}{(b;q)_n}\frac{(b;q)_{n-k}}{(a;q)_{n-k}} = \frac{(q^{1-n}/a;q)_k}{(q^{1-n}/b;q)_k}(a/b)^k,$$

we get

$$\frac{(tu_i/u_k;q)_{\theta_i}}{(qu_i/u_k;q)_{\theta_i}}\frac{(qu_i/u_k;q)_{\theta_i-r+|\theta|}}{(tu_i/u_k;q)_{\theta_i-r+|\theta|}} = \frac{(q^{1-\theta_i}u_k/tu_i;q)_{r-|\theta|}}{(q^{-\theta_i}u_k/u_i;q)_{r-|\theta|}}(t/q)^{r-|\theta|}$$
$$= \frac{(tv_i/q^{r-|\theta|}u_k;q)_{r-|\theta|}}{(qv_i/q^{r-|\theta|}u_k;q)_{r-|\theta|}}.$$

Similarly, we obtain

$$(t/q)^{\theta_j} \frac{(q^{|\theta|-r+1}u_j/tu_k;q)_{\theta_j}}{(q^{|\theta|-r}u_j/u_k;q)_{\theta_j}} = \frac{(tq^{r-|\theta|}u_k/v_j;q)_{\theta_j}}{(q^{r-|\theta|+1}u_k/v_j;q)_{\theta_j}},$$

$$(q/t)^{\theta_j} \frac{(t^2u_j/u_k;q)_{\theta_j}}{(qtu_j/u_k;q)_{\theta_j}} = \frac{(qu_k/t^2v_j;q)_{\theta_j}}{(u_k/tv_j;q)_{\theta_j}}.$$

Finally, we have proved the following Pieri formula.

Theorem 3.2 Let $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$ be a dominant weight, and $r \in \mathbb{N}$. Assume $\lambda_k = 0$ for some fixed $1 \le k \le n$. Define

$$u_{i} = \begin{cases} q^{-r}t^{-2}, & i = 0, \\ q^{-r+\sum_{j=i}^{k-1}\lambda_{j}}t^{k-i-1}, & 1 \le i \le k-1, \\ q^{-r-\sum_{j=k+1}^{i+1}\lambda_{j}}t^{k-i-3}, & k \le i \le n-1. \end{cases}$$

We have

$$P_{r\omega_1} P_{\lambda} = \sum_{\substack{\theta = (\theta_1, \dots, \theta_{n-1}) \in \mathbb{N}^{n-1} \\ |\theta| \le r}} D_{\theta}(u_0, u_1, \dots, u_{n-1}; k, r) P_{\lambda+\rho}$$

with

$$\rho = \sum_{i=1}^{k-2} (\theta_i - \theta_{i+1})\omega_i + \theta_{k-1}\omega_{k-1} + (r - |\theta|)(\omega_k - \omega_{k-1}) - \theta_k\omega_{k+1} + \sum_{i=k+2}^n (\theta_{i-2} - \theta_{i-1})\omega_i.$$

Remark For k = 1, 2 (resp. k = n, n - 1), the first (resp. the last) sum in the above expression of ρ must be understood as zero. This convention will be kept in the next sections.

4 A recurrence formula

Given two multiintegers $\beta = (\beta_1, ..., \beta_{n-1})$ and $\kappa = (\kappa_1, ..., \kappa_{n-1}) \in \mathbb{Z}^{n-1}$, we write $\beta \ge \kappa$ for $\beta_i \ge \kappa_i$ $(1 \le i \le n-1)$. We say that an infinite (n-1)-dimensional matrix $F = (f_{\beta\kappa})_{\beta,\kappa\in\mathbb{Z}^{n-1}}$ is lower-triangular if $f_{\beta\kappa} = 0$ unless $\beta \ge \kappa$. When all $f_{\kappa\kappa} \ne 0$, there exists a unique lower-triangular matrix $G = (g_{\kappa\gamma})_{\kappa,\gamma\in\mathbb{Z}^{n-1}}$ such that

$$\sum_{\beta \ge \kappa \ge \gamma} f_{\beta\kappa} g_{\kappa\gamma} = \delta_{\beta\gamma}$$

for all $\beta, \gamma \in \mathbb{Z}^{n-1}$, where $\delta_{\beta\gamma}$ is the usual Kronecker symbol. We refer to *F* and *G* as mutually inverse.

Such a pair of infinite multidimensional inverse matrices is given in the Appendix, as a corollary of [3, Theorem 2.7] (and, in fact, equivalent to the latter). This result is essential for our purpose.

Given *n* indeterminates $(u_0, u_1, \ldots, u_{n-1})$, $\theta = (\theta_1, \ldots, \theta_{n-1}) \in \mathbb{N}^{n-1}$, and $k, r \in \mathbb{N}$ with $1 \le k \le n$, we define

$$\begin{split} C_{\theta_{1},...,\theta_{n-1}}(u_{0},u_{1},\ldots,u_{n-1};k,r) \\ &= q^{|\theta|} \frac{(t^{2}u_{0};q)_{|\theta|}}{(qtu_{0};q)_{|\theta|}} \prod_{i=1}^{n-1} \frac{(q/t;q)_{\theta_{i}}}{(q;q)_{\theta_{i}}} \frac{(qu_{i};q)_{\theta_{i}}}{(qtu_{i};q)_{\theta_{i}}} \\ &\times \prod_{1 \leq i < j \leq n-1} \frac{(qv_{i}/tv_{j};q)_{\theta_{j}}}{(qv_{i}/v_{j};q)_{\theta_{j}}} \frac{(tu_{i}/v_{j};q)_{\theta_{j}}}{(u_{i}/v_{j};q)_{\theta_{j}}} \\ &\times \prod_{i=1}^{k-1} \frac{(u_{i}/tu_{0};q)_{\theta_{i}}}{(qu_{i}/t^{2}u_{0};q)_{\theta_{i}}} \frac{(qtu_{0}/u_{i};q)_{r}}{(t^{2}u_{0}/u_{i};q)_{r}} \frac{(tu_{0}/u_{i};q)_{r}}{(qu_{0}/u_{i};q)_{r}} \prod_{i=k}^{n-1} \frac{(tu_{i}/u_{0};q)_{\theta_{i}}}{(qu_{i}/u_{0};q)_{\theta_{i}}} \\ &\times \frac{1}{\Delta(v)} \det_{1 \leq i,j \leq n-1} \left[v_{i}^{n-j-1} \left(1 - t^{j-1} \frac{1 - tv_{i}}{1 - v_{i}} \prod_{s=1}^{n-1} \frac{v_{i} - u_{s}}{v_{i} - tu_{s}} \right) \right] \end{split}$$

with $\Delta(v)$ the Vandermonde determinant $\prod_{1 \le i < j \le n-1} (v_i - v_j)$. Here is our main result.

Theorem 4.1 Let $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$ be a dominant weight. Assume $\lambda_k = 0$ for some fixed $1 \le k \le n$. For any positive integer $r \le \lambda_{k-1}$, the weight

$$\lambda^{(r)} = \lambda + r(\omega_k - \omega_{k-1}) = \lambda + r\varepsilon_k$$

is dominant. Define

$$u_{i} = \begin{cases} q^{-r}t^{-2}, & i = 0, \\ q^{-r + \sum_{j=i}^{k-1} \lambda_{j}}t^{k-i-1}, & 1 \le i \le k-1, \\ q^{-r - \sum_{j=k+1}^{i+1} \lambda_{j}}t^{k-i-3}, & k \le i \le n-1. \end{cases}$$

We have

$$P_{\lambda^{(r)}} = \sum_{\substack{\theta = (\theta_1, \dots, \theta_{n-1}) \in \mathbb{N}^{n-1} \\ |\theta| \le r}} C_{\theta}(u_0, u_1, \dots, u_{n-1}; k, r) P_{(r-|\theta|)\omega_1} P_{\lambda+\rho}$$

with

$$\rho = \sum_{i=1}^{k-2} (\theta_i - \theta_{i+1})\omega_i + \theta_{k-1}\omega_{k-1} - \theta_k\omega_{k+1} + \sum_{i=k+2}^n (\theta_{i-2} - \theta_{i-1})\omega_i.$$

Remark The weight $\lambda + \rho$ has no component on ω_k . Further, similarly as in Theorem 3.1 (see the remark following the proof of that theorem), the condition $\lambda + \rho \in P^+$ is necessarily satisfied in Theorem 4.2 as soon as $C_{\theta}(u_0, u_1, \dots, u_{n-1}; k, r) \neq 0$. We omit the details which involve a tedious case-by-case analysis.

Proof We make use of the multidimensional matrix inverse given in the Appendix. Let $\beta = (\beta_1, \dots, \beta_{n-1}), \kappa = (\kappa_1, \dots, \kappa_{n-1}), \gamma = (\gamma_1, \dots, \gamma_{n-1}) \in \mathbb{Z}^{n-1}$. If we define

$$f_{\beta\kappa} = C_{\beta_1 - \kappa_1, \dots, \beta_{n-1} - \kappa_{n-1}} (q^{|\kappa|} u_0, q^{\kappa_1 + |\kappa|} u_1, \dots, q^{\kappa_{n-1} + |\kappa|} u_{n-1}; k, r - |\kappa|),$$

$$g_{\kappa\gamma} = D_{\kappa_1 - \gamma_1, \dots, \kappa_{n-1} - \gamma_{n-1}} (q^{|\gamma|} u_0, q^{\gamma_1 + |\gamma|} u_1, \dots, q^{\gamma_{n-1} + |\gamma|} u_{n-1}; k, r - |\gamma|),$$

by this result, the infinite lower-triangular multidimensional matrices $(f_{\beta\kappa})_{\beta,\kappa\in\mathbb{Z}^{n-1}}$ and $(g_{\kappa\gamma})_{\kappa,\gamma\in\mathbb{Z}^{n-1}}$ are mutually inverse.

Now let us replace λ_i in Theorem 3.2 by $\lambda_i + \gamma_i - \gamma_{i+1}$ for $1 \le i \le k-2$, λ_{k-1} by $\lambda_{k-1} + \gamma_{k-1}$, λ_{k+1} by $\lambda_{k+1} - \gamma_k$, λ_i by $\lambda_i + \gamma_{i-2} - \gamma_{i-1}$ for $k+2 \le i \le n$, and r by $r - |\gamma|$. Then u_0 is replaced by $q^{|\gamma|}u_0$, and u_i by $q^{\gamma_i + |\gamma|}u_i$ for $1 \le i \le n-1$. In explicit terms, we are considering the identity

$$P_{(r-|\gamma|)\omega_1} P_{\lambda+\tilde{\gamma}} = \sum_{\substack{\theta = (\theta_1, \dots, \theta_{n-1}) \in \mathbb{N}^{n-1} \\ |\theta| \leq r}} D_{\theta} \left(q^{|\gamma|} u_0, q^{\gamma_1 + |\gamma|} u_1, \dots, q^{\gamma_{n-1} + |\gamma|} u_{n-1}; k, r-|\gamma| \right) P_{\lambda+\tilde{\gamma}+\rho}$$

with

$$u_{i} = \begin{cases} q^{-r}t^{-2}, & i = 0, \\ q^{-r + \sum_{j=i}^{k-1}\lambda_{j}}t^{k-i-1}, & 1 \le i \le k-1, \\ q^{-r - \sum_{j=k+1}^{i+1}\lambda_{j}}t^{k-i-3}, & k \le i \le n-1, \end{cases}$$

and

$$\rho = \sum_{i=1}^{k-2} (\theta_i - \theta_{i+1})\omega_i + \theta_{k-1}\omega_{k-1} + (r - |\theta|)(\omega_k - \omega_{k-1}) - \theta_k\omega_{k+1} + \sum_{i=k+2}^n (\theta_{i-2} - \theta_{i-1})\omega_i,$$

$$\tilde{\gamma} = \sum_{i=1}^{k-2} (\gamma_i - \gamma_{i+1})\omega_i + \gamma_{k-1}\omega_{k-1} - \gamma_k\omega_{k+1} + \sum_{i=k+2}^n (\gamma_{i-2} - \gamma_{i-1})\omega_i.$$

After substituting the summation indices $\theta_i \mapsto \kappa_i - \gamma_i$ for $1 \le i \le n - 1$, we obtain exactly

$$\sum_{\kappa \in \mathbb{Z}^{n-1}} g_{\kappa\gamma} y_{\kappa} = w_{\gamma} \quad (\gamma \in \mathbb{Z}^{n-1})$$

with

$$y_{\kappa} = P_{\lambda + \tilde{\kappa}}, \qquad w_{\gamma} = P_{(r - |\gamma|)\omega_1} P_{\lambda + \tilde{\gamma}}$$

and

$$\tilde{\kappa} = \sum_{i=1}^{k-2} (\kappa_i - \kappa_{i+1})\omega_i + \kappa_{k-1}\omega_{k-1} + (r - |\kappa|)(\omega_k - \omega_{k-1}) - \kappa_k\omega_{k+1} + \sum_{i=k+2}^n (\kappa_{i-2} - \kappa_{i-1})\omega_i.$$

This immediately yields the inverse relation

$$\sum_{\beta \in \mathbb{Z}^{n-1}} f_{\beta\kappa} w_{\beta} = y_{\kappa} \quad (\kappa \in \mathbb{Z}^{n-1}).$$

We conclude by setting $\kappa_i = 0$ for all $1 \le i \le n - 1$.

Finally, by the substitutions $r \to \lambda_k$ and $\lambda_{k-1} \to \lambda_{k-1} + \lambda_k$, we obtain the following very remarkable expansion.

Theorem 4.2 Let $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$ be a dominant weight, and $k \in \mathbb{N}$ fixed with $1 \le k \le n$. Define

$$u_{i} = \begin{cases} q^{-\lambda_{k}}t^{-2}, & i = 0, \\ q^{\sum_{j=i}^{k-1}\lambda_{j}}t^{k-i-1}, & 1 \le i \le k-1, \\ q^{-\sum_{j=k}^{i+1}\lambda_{j}}t^{k-i-3}, & k \le i \le n-1, \end{cases}$$

and $\mu = \lambda - \lambda_k (\omega_k - \omega_{k-1}) = \lambda - \lambda_k \varepsilon_k$. We have

$$P_{\lambda} = \sum_{\substack{\theta = (\theta_1, \dots, \theta_{n-1}) \in \mathbb{N}^{n-1} \\ |\theta| \le \lambda_k}} C_{\theta}(u_0, u_1, \dots, u_{n-1}; k, \lambda_k) P_{(\lambda_k - |\theta|)\omega_1} P_{\mu+\rho}$$

with

$$\rho = \sum_{i=1}^{k-2} (\theta_i - \theta_{i+1})\omega_i + \theta_{k-1}\omega_{k-1} - \theta_k\omega_{k+1} + \sum_{i=k+2}^n (\theta_{i-2} - \theta_{i-1})\omega_i.$$

Remark Observe that the weights μ and $\mu + \rho$ have no component on ω_k .

The special case k = n is worth writing out explicitly.

Corollary Let $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$ be a dominant weight. Define $u_0 = q^{-\lambda_n} t^{-2}$ and $u_i = q^{\sum_{l=i}^{n-1} \lambda_l} t^{n-i-1}$ $(1 \le i \le n-1)$. We have

$$P_{\lambda} = \sum_{\substack{\theta = (\theta_1, \dots, \theta_{n-1}) \in \mathbb{N}^{n-1} \\ |\theta| \le \lambda_n}} C_{\theta}(u_0, u_1, \dots, u_{n-1}; n, \lambda_n) P_{(\lambda_n - |\theta|)\omega_1} P_{\mu}$$

with $\mu = \sum_{i=1}^{n-2} (\lambda_i + \theta_i - \theta_{i+1}) \omega_i + (\lambda_{n-1} + \lambda_n + \theta_{n-1}) \omega_{n-1}.$

. .

The reader may check that this is exactly Theorem 4.1 of [3] (with $n \mapsto n - 1$), written for $x_1 \cdots x_{n+1} = 1$, up to the normalization $Q_{\lambda} = b_{\lambda} P_{\lambda}$ with

$$b_{\lambda} = \prod_{1 \le i \le j \le n} \frac{(q^{\sum_{l=i}^{j-1} \lambda_l} t^{j-i+1}; q)_{\lambda_j}}{(q^{1+\sum_{l=i}^{j-1} \lambda_l} t^{j-i}; q)_{\lambda_j}} = \prod_{1 \le i \le j \le n} \frac{(tu_i/u_j; q)_{\lambda_j}}{(qu_i/u_j; q)_{\lambda_j}}$$

where we set $u_n = 1/t$.

5 Examples

In this section we write out the formulas in Theorem 4.2 explicitly for n = 2, 3.

5.1 The root system A_2

For k = 2, we have $u_0 = q^{-\lambda_2}/t^2$, $u_1 = q^{\lambda_1}$, and

$$C_{\theta}(u_{0}, u_{1}; 2, r) = q^{\theta} \frac{(t^{2}u_{0}; q)_{\theta}}{(qtu_{0}; q)_{\theta}} \frac{(q/t; q)_{\theta}}{(q; q)_{\theta}} \frac{(qu_{1}; q)_{\theta}}{(qtu_{1}; q)_{\theta}} \frac{(u_{1}/tu_{0}; q)_{\theta}}{(qu_{1}/t^{2}u_{0}; q)_{\theta}} \\ \times \frac{(qtu_{0}/u_{1}; q)_{r}}{(t^{2}u_{0}/u_{1}; q)_{r}} \frac{(tu_{0}/u_{1}; q)_{r}}{(qu_{0}/u_{1}; q)_{r}} \left(1 - \frac{1 - tv_{1}}{1 - v_{1}} \frac{v_{1} - u_{1}}{v_{1} - tu_{1}}\right).$$

After some simplifications, we obtain

$$P_{\lambda_1\omega_1+\lambda_2\omega_2} = \sum_{\theta\in\mathbb{N}} C_{\theta}^{(2)}(\lambda) P_{(\lambda_2-\theta)\omega_1} P_{(\lambda_1+\lambda_2+\theta)\omega_1}$$

with

$$C_{\theta}^{(2)}(\lambda) = C_{\theta}(u_0, u_1; 2, \lambda_2)$$

= $t^{\theta} \frac{(q^{\lambda_2 - \theta + 1}; q)_{\theta}}{(tq^{\lambda_2 - \theta}; q)_{\theta}} \frac{(1/t; q)_{\theta}}{(q; q)_{\theta}} \frac{(q^{\lambda_1 + 1}; q)_{\theta}}{(tq^{\lambda_1 + 1}; q)_{\theta}}$

.

$$\times \frac{(tq^{\lambda_1};q)_{\lambda_2+\theta}}{(q^{\lambda_1+1};q)_{\lambda_2+\theta}} \frac{(tq^{\lambda_1+1};q)_{\lambda_2}}{(t^2q^{\lambda_1};q)_{\lambda_2}} \frac{1-q^{\lambda_1+2\theta}}{1-q^{\lambda_1+\theta}}$$

This result may be compared with the Jing-Józefiak classical result [1], more precisely, with its restriction to three variables (x_1, x_2, x_3) subject to $x_1x_2x_3 = 1$. Namely, given a partition (μ_1, μ_2) , the Macdonald symmetric function $\mathcal{P}_{(\mu_1, \mu_2)}(q, t)$ is given by

$$\mathcal{P}_{(\mu_1,\mu_2)} = \sum_{\theta \in \mathbb{N}} \mathcal{C}_{\theta}(\mu) \mathcal{P}_{(\mu_2-\theta)} \mathcal{P}_{(\mu_1+\theta)}$$

with

$$\begin{aligned} \mathcal{C}_{\theta}(\mu) &= \frac{(tq^{\mu_1 - \mu_2 + 1}; q)_{\mu_2}}{(t^2 q^{\mu_1 - \mu_2}; q)_{\mu_2}} \frac{(q^{\mu_2 - \theta + 1}; q)_{\theta}}{(tq^{\mu_2 - \theta}; q)_{\theta}} \frac{(tq^{\mu_1 - \mu_2}; q)_{\mu_2 + \theta}}{(q^{\mu_1 - \mu_2 + 1}; q)_{\mu_2 + \theta}} \\ &\times t^{\theta} \frac{(1/t; q)_{\theta}}{(q; q)_{\theta}} \frac{(q^{\mu_1 - \mu_2 + 1}; q)_{\theta}}{(tq^{\mu_1 - \mu_2 + 1}; q)_{\theta}} \frac{1 - q^{\mu_1 - \mu_2 + 2\theta}}{1 - q^{\mu_1 - \mu_2 + \theta}}. \end{aligned}$$

Our formula is equivalent to the main result of [1] by the correspondence $\lambda_1 = \mu_1 - \mu_1$ μ_2 , $\lambda_2 = \mu_2$ between dominant weights and partitions, recalled in Sect. 2. For k = 1, we have $u_0 = q^{-\lambda_1}/t^2$, $u_1 = q^{-\lambda_1 - \lambda_2}/t^3$, and

$$C_{\theta}(u_{0}, u_{1}; 1, r) = q^{\theta} \frac{(t^{2}u_{0}; q)_{\theta}}{(qtu_{0}; q)_{\theta}} \frac{(q/t; q)_{\theta}}{(q; q)_{\theta}} \frac{(qu_{1}; q)_{\theta}}{(qtu_{1}; q)_{\theta}} \frac{(tu_{1}/u_{0}; q)_{\theta}}{(qu_{1}/u_{0}; q)_{\theta}} \times \left(1 - \frac{1 - tv_{1}}{1 - v_{1}} \frac{v_{1} - u_{1}}{v_{1} - tu_{1}}\right).$$

After some simplifications, we obtain

$$P_{\lambda_1\omega_1+\lambda_2\omega_2} = \sum_{\theta\in\mathbb{N}} C_{\theta}^{(1)}(\lambda) P_{(\lambda_1-\theta)\omega_1} P_{(\lambda_2-\theta)\omega_2}$$

with

$$\begin{split} C_{\theta}^{(1)}(\lambda) &= C_{\theta}(u_{0}, u_{1}; 1, \lambda_{1}) \\ &= t^{\theta} \frac{(1/t; q)_{\theta}}{(q; q)_{\theta}} \frac{(q^{\lambda_{1}}; 1/q)_{\theta}}{(tq^{\lambda_{1}-1}; 1/q)_{\theta}} \frac{(q^{\lambda_{2}}; 1/q)_{\theta}}{(tq^{\lambda_{2}-1}; 1/q)_{\theta}} \frac{(t^{3}q^{\lambda_{1}+\lambda_{2}-1}; 1/q)_{\theta}}{(t^{2}q^{\lambda_{1}+\lambda_{2}-1}; 1/q)_{\theta}} \\ &\times \frac{1 - t^{3}q^{\lambda_{1}+\lambda_{2}-2\theta}}{1 - t^{3}q^{\lambda_{1}+\lambda_{2}-\theta}}. \end{split}$$

We thus recover exactly the result of Perelomov, Ragoucy, and Zaugg [9, Theorem 1(a)].

5.2 The root system A_3

For k = 1, 2, 3, our formulas in Theorem 4.2 write respectively as

$$P_{\lambda_1\omega_1+\lambda_2\omega_2+\lambda_3\omega_3} = \sum_{(i,j)\in\mathbb{N}^2} C_{ij}^{(1)}(\lambda) P_{(\lambda_1-i-j)\omega_1} P_{(\lambda_2-i)\omega_2+(\lambda_3+i-j)\omega_3}$$

$$= \sum_{(i,j)\in\mathbb{N}^2} C_{ij}^{(2)}(\lambda) P_{(\lambda_2-i-j)\omega_1} P_{(\lambda_1+\lambda_2+i)\omega_1+(\lambda_3-j)\omega_3}$$
$$= \sum_{(i,j)\in\mathbb{N}^2} C_{ij}^{(3)}(\lambda) P_{(\lambda_3-i-j)\omega_1} P_{(\lambda_1+i-j)\omega_1+(\lambda_2+\lambda_3+j)\omega_2}.$$

In order to make these expansions explicit, we need to evaluate the determinant of the 2 by 2 matrix A given by

$$A_{kl} = v_k^{2-l} \left(1 - t^{l-1} \frac{1 - tv_k}{1 - v_k} \frac{v_k - u_1}{v_k - tu_1} \frac{v_k - u_2}{v_k - tu_2} \right)$$

with $v_1 = q^i u_1, v_2 = q^j u_2$.

More precisely, we need to compute the quotient of this determinant by the Vandermonde determinant $v_1 - v_2 = q^i u_1 - q^j u_2$. There is no evidence that this quotient may be written in canonical form. Inspired by the explicit result of [2, Theorem 1] (see below), we write this quotient of determinants as

$$\begin{aligned} \frac{\det A}{q^i u_1 - q^j u_2} &= \frac{(t-1)^2}{(t-q^i)(t-q^j)} \\ &\times \left(\frac{1-q^{2i}u_1}{1-q^i u_1}\frac{1-q^{2j}u_2}{1-q^j u_2} \left(1+t^{-1}\frac{1-q^i}{1-q^i u_1/t u_2}\frac{1-q^j}{1-q^j u_2/t u_1}\right) \\ &- \left(q^i u_1 + q^j u_2\right)\frac{1-q^i}{1-q^i u_1}\frac{1-q^j}{1-q^j u_2}\frac{1-q^i/t}{1-q^i u_1/t u_2}\frac{1-q^j/t}{1-q^j u_2/t u_1}\right).\end{aligned}$$

The above identity (which is not trivial) may be easily verified by using any formal calculus software.

Next, for $(i, j) \in \mathbb{N}^2$, we define

$$\begin{aligned} \nabla_{ij}(u_0, u_1, u_2) \\ &= q^{i+j} \frac{(t^2 u_0; q)_{i+j}}{(qtu_0; q)_{i+j}} \frac{(1/t; q)_i}{(q; q)_i} \frac{(u_1; q)_i}{(qtu_1; q)_i} \frac{(1/t; q)_j}{(q; q)_j} \\ &\times \frac{(u_2; q)_j}{(qtu_2; q)_j} \frac{(q^{i-j+1} u_1/tu_2; q)_j}{(q^{i-j+1} u_1/u_2; q)_j} \frac{(tq^{-j} u_1/u_2; q)_j}{(q^{-j} u_1/u_2; q)_j} \\ &\times \left(\frac{1-q^{2i} u_1}{1-u_1} \frac{1-q^{2j} u_2}{1-u_2} \left(1+t^{-1} \frac{1-q^i}{1-q^i u_1/tu_2} \frac{1-q^j}{1-q^j u_2/tu_1} \right) \right. \\ &- \left(q^i u_1 + q^j u_2 \right) \frac{1-q^i}{1-u_1} \frac{1-q^j}{1-u_2} \frac{1-q^i/t}{1-q^i u_1/tu_2} \frac{1-q^j/t}{1-q^j u_2/tu_1} \right). \end{aligned}$$

It is readily verified that we have

$$\frac{C_{ij}(u_0, u_1, u_2; 1, r)}{\nabla_{ij}(u_0, u_1, u_2)} = \frac{(tu_1/u_0; q)_i}{(qu_1/u_0; q)_i} \frac{(tu_2/u_0; q)_j}{(qu_2/u_0; q)_j},$$

$$\frac{C_{ij}(u_0, u_1, u_2; 2, r)}{\nabla_{ij}(u_0, u_1, u_2)} = \frac{(u_1/tu_0; q)_i}{(qu_1/t^2u_0; q)_i} \frac{(qtu_0/u_1; q)_r}{(t^2u_0/u_1; q)_r} \frac{(tu_0/u_1; q)_r}{(qu_0/u_1; q)_r} \frac{(tu_2/u_0; q)_j}{(qu_2/u_0; q)_j}
\frac{C_{ij}(u_0, u_1, u_2; 3, r)}{\nabla_{ij}(u_0, u_1, u_2)} = \frac{(u_1/tu_0; q)_i}{(qu_1/t^2u_0; q)_i} \frac{(qtu_0/u_1; q)_r}{(t^2u_0/u_1; q)_r} \frac{(tu_0/u_1; q)_r}{(qu_0/u_1; q)_r}
\times \frac{(u_2/tu_0; q)_j}{(qu_2/t^2u_0; q)_j} \frac{(qtu_0/u_2; q)_r}{(t^2u_0/u_2; q)_r} \frac{(tu_0/u_2; q)_r}{(qu_0/u_2; q)_r}.$$

Now, by Theorem 4.2 the respective recurrence coefficients are determined to be

$$C_{ij}^{(1)}(\lambda) = C_{ij} (q^{-\lambda_1}/t^2, q^{-\lambda_1 - \lambda_2}/t^3, q^{-\lambda_1 - \lambda_2 - \lambda_3}/t^4; 1, \lambda_1),$$

$$C_{ij}^{(2)}(\lambda) = C_{ij} (q^{-\lambda_2}/t^2, q^{\lambda_1}, q^{-\lambda_2 - \lambda_3}/t^3; 2, \lambda_2),$$

$$C_{ij}^{(3)}(\lambda) = C_{ij} (q^{-\lambda_3}/t^2, q^{\lambda_1 + \lambda_2}t, q^{\lambda_2}; 3, \lambda_3).$$

The cases k = 1, 2 are new. For k = 3, we recover the first author's earlier result in [2, Theorem 1], more precisely, the restriction of this result to four variables (x_1, x_2, x_3, x_4) subject to $x_1x_2x_3x_4 = 1$. Namely, given a partition (μ_1, μ_2, μ_3) and $u = q^{\mu_1 - \mu_2}$, $v = q^{\mu_2 - \mu_3}$, the Macdonald symmetric function $\mathcal{P}_{(\mu_1, \mu_2, \mu_3)}(q, t)$ is given by

$$\mathcal{P}_{(\mu_1,\mu_2,\mu_3)} = \sum_{(i,j)\in\mathbb{N}^2} \mathcal{C}_{ij}(\mu)\mathcal{P}_{(\mu_3-i-j)}\mathcal{P}_{(\mu_1+i,\mu_2+j)}$$

with

$$\begin{split} \mathcal{C}_{ij}(\mu) &= t^{i+j} \frac{(1/t;q)_i}{(q;q)_i} \frac{(1/t;q)_j}{(q;q)_j} \frac{(tuv;q)_i}{(qt^2uv;q)_i} \frac{(v;q)_j}{(qtv;q)_j} \frac{(q^{-j}t^2u;q)_i}{(q^{-j}tu;q)_i} \frac{(qu;q)_i}{(qtu;q)_i} \\ &\times \frac{(t;q)_{\mu_1-\mu_2+i-j}}{(q;q)_{\mu_1-\mu_2+i-j}} \frac{(t;q)_{\mu_2+j}}{(q;q)_{\mu_2+j}} \frac{(t;q)_{\mu_3-i-j}}{(q;q)_{\mu_3-i-j}} \frac{(q;q)_{\mu_1-\mu_2}}{(t;q)_{\mu_1-\mu_2}} \\ &\times \frac{(q;q)_{\mu_2-\mu_3}}{(t;q)_{\mu_2-\mu_3}} \frac{(q;q)_{\mu_3}}{(t;q)_{\mu_3}} \frac{(q^{i-j}t^2u;q)_{\mu_2+j}}{(q^{i-j+1}tu;q)_{\mu_2+j}} \frac{(qtu;q)_{\mu_2-\mu_3}}{(t^2u;q)_{\mu_2-\mu_3}} \\ &\times \frac{(qt^2uv;q)_{\mu_3}}{(t^3uv;q)_{\mu_3}} \frac{(qtv;q)_{\mu_3}}{(t^2v;q)_{\mu_3}} \frac{1-q^{2i}tuv}{1-tuv} \frac{1-q^{2j}v}{1-v} \\ &\times \left(1+u\frac{1-q^i}{1-q^{i}u}\frac{1-q^{-j}}{1-q^{-j}t^2u} \left(t-v(q^itu+q^j)\frac{t-q^i}{1-q^{2i}tuv}\frac{t-q^j}{1-q^{2j}v}\right)\right) \end{split}$$

The reader may check our formula is indeed equivalent to [2, Theorem 1] by using the correspondence $\lambda_1 = \mu_1 - \mu_2$, $\lambda_2 = \mu_2 - \mu_3$, $\lambda_3 = \mu_3$ between dominant weights and partitions.

6 Final remark

The Macdonald polynomial P_{λ} , $\lambda = \sum_{i=1}^{n} \lambda_i \omega_i$, is in bijective correspondence with the symmetric function $\mathcal{P}_{\mu}(x_1, \ldots, x_{n+1})$ with $\mu = (\mu_1, \ldots, \mu_n)$, $\mu_i = \sum_{j=i}^{n} \lambda_j$,

subject to the condition $x_1 \cdots x_{n+1} = 1$. Therefore the *n* recurrence relations that we have obtained for P_{λ} may be expressed in terms of $\mathcal{P}_{\mu}(x_1, \dots, x_{n+1})$, subject to $x_1 \cdots x_{n+1} = 1$.

One may wonder whether this restriction can be removed. Equivalently, given some fixed integer $1 \le k \le n$, is it possible to expand the symmetric function \mathcal{P}_{μ} in terms of products $\mathcal{P}_{(r)}\mathcal{P}_{\rho}$ for partitions $\rho = (\rho_1, \dots, \rho_n)$ satisfying $\rho_k = \rho_{k+1}$?

Such a development has been obtained in [3] for k = n, in which case $\rho_n = \rho_{n+1} = 0$. However, this method cannot be used for other values of k.

Actually, the Pieri expansion of $\mathcal{P}_{(r)}\mathcal{P}_{\rho}$ involves symmetric functions \mathcal{P}_{σ} with $\sigma - \rho$ a horizontal *r*-strip. Hence some of these partitions σ have length $l(\sigma) = n + 1$. The only exception occurs for k = n since in that case $\rho_n = 0$ entails $l(\sigma) \le n$.

Therefore, except for k = n, the Pieri multiplication does not conserve the space generated by $\{\mathcal{P}_{\kappa}, l(\kappa) \leq n\}$, and it is not possible to define a Pieri matrix to invert.

This difficulty does not arise in the A_n framework. Then the Pieri matrix can be defined, because the condition $x_1 \cdots x_{n+1} = 1$ and the property [5, (4.17), p. 325]

$$\mathcal{P}_{(\sigma_1,\dots,\sigma_{n+1})}(x_1,\dots,x_{n+1}) = (x_1\cdots x_{n+1})^{\sigma_{n+1}} \mathcal{P}_{(\sigma_1-\sigma_{n+1},\dots,\sigma_n-\sigma_{n+1},0)}(x_1,\dots,x_{n+1})$$

allow us to deal with partitions of length n + 1.

Acknowledgements We thank the anonymous referees for helpful comments. The second author was partly supported by FWF Austrian Science Fund grants P17563-N13 and S9607.

Appendix: A multidimensional matrix inverse

The following result (equivalent to one previously given in [3]) is crucial to obtain the recursion formula in Sect. 4.

Lemma Let t, u_0, u_1, \ldots, u_n be indeterminates, and $r, k \in \mathbb{N}$ with $1 \le k \le n + 1$. Define

$$\begin{split} f_{\beta\kappa} &= q^{|\beta| - |\kappa|} \frac{(t^2 u_0; q)_{|\beta|}}{(qtu_0; q)_{|\beta|}} \frac{(qtu_0; q)_{|\kappa|}}{(t^2 u_0; q)_{|\kappa|}} \prod_{i=1}^n \frac{(q/t; q)_{\beta_i - \kappa_i}}{(q; q)_{\beta_i - \kappa_i}} \frac{(q^{\kappa_i + |\kappa| + 1} u_i; q)_{\beta_i - \kappa_i}}{(q^{\kappa_i + |\kappa| + 1} tu_i; q)_{\beta_i - \kappa_i}} \\ &\times \prod_{i=1}^{k-1} \frac{(u_i/tu_0; q)_{\beta_i}}{(qu_i/t^2 u_0; q)_{\beta_i}} \frac{(qu_i/tu_0; q)_{\kappa_i}}{(u_i/u_0; q)_{\kappa_i}} \\ &\times \prod_{i=1}^{k-1} \frac{(u_i/u_0; q)_{|\kappa| - r + \kappa_i}}{(qu_i/tu_0; q)_{|\kappa| - r + \kappa_i}} \frac{(qu_i/t^2 u_0; q)_{|\kappa| - r + \kappa_i}}{(u_i/tu_0; q)_{|\kappa| - r + \kappa_i}} \\ &\times \prod_{i=k}^n \frac{(tu_i/u_0; q)_{\beta_i}}{(qu_i/u_0; q)_{\beta_i}} \frac{(qu_i/u_0; q)_{\kappa_i}}{(tu_i/u_0; q)_{\kappa_i}} \\ &\times \prod_{1 \le i < j \le n} \frac{(q^{\beta_i - \beta_j + 1} u_i/tu_j; q)_{\beta_j - \kappa_j}}{(q^{\beta_i - \beta_j + 1} u_i/u_j; q)_{\beta_j - \kappa_j}} \frac{(q^{\kappa_i - \beta_j} tu_i/u_j; q)_{\beta_j - \kappa_j}}{(q^{\kappa_i - \beta_j} u_i/u_j; q)_{\beta_j - \kappa_j}} \frac{1}{q^{\beta_i} u_i - q^{\beta_j} u_j} \end{split}$$

$$\times \det_{1 \le i, j \le n} \left[\left(q^{\beta_i} u_i \right)^{n-j} \left(1 - t^{j-1} \frac{(1 - q^{\beta_i + |\kappa|} t u_i)}{(1 - q^{\beta_i + |\kappa|} u_i)} \prod_{s=1}^n \frac{(q^{\beta_i} u_i - q^{\kappa_s} u_s)}{(q^{\beta_i} u_i - q^{\kappa_s} t u_s)} \right) \right]$$

and

$$g_{\kappa\gamma} = \left(\frac{q}{t}\right)^{|\kappa| - |\gamma|} \frac{(t^2 u_0; q)_{|\kappa|}}{(qtu_0; q)_{|\kappa|}} \frac{(qtu_0; q)_{|\gamma|}}{(t^2 u_0; q)_{|\gamma|}} \prod_{i=1}^n \frac{(t; q)_{\kappa_i - \gamma_i}}{(q; q)_{\kappa_i - \gamma_i}} \frac{(q^{\gamma_i + |\kappa| + 1} u_i; q)_{\kappa_i - \gamma_i}}{(q^{\gamma_i + |\kappa| + 1} u_i; q)_{\kappa_i - \gamma_i}} \\ \times \prod_{i=1}^{k-1} \frac{(u_i/u_0; q)_{\kappa_i}}{(qu_i/tu_0; q)_{\kappa_i}} \frac{(qu_i/t^2 u_0; q)_{\gamma_i}}{(u_i/tu_0; q)_{\gamma_i}} \\ \times \prod_{i=1}^{k-1} \frac{(qu_i/tu_0; q)_{|\kappa| - r + \kappa_i}}{(u_i/u_0; q)_{|\kappa| - r + \kappa_i}} \frac{(u_i/tu_0; q)_{|\kappa| - r + \kappa_i}}{(qu_i/t^2 u_0; q)_{|\kappa| - r + \kappa_i}} \\ \times \prod_{i=k}^n \frac{(tu_i/u_0; q)_{\kappa_i}}{(qu_i/u_0; q)_{\kappa_i}} \frac{(qu_i/u_0; q)_{\gamma_i}}{(tu_i/u_0; q)_{\gamma_i}} \\ \times \prod_{1 \le i < j \le n} \frac{(q^{\kappa_i - \kappa_j} tu_i/u_j; q)_{\kappa_j - \gamma_j}}{(q^{\kappa_i - \kappa_j + 1} u_i/u_j; q)_{\kappa_j - \gamma_j}} \frac{(q^{\gamma_i - \kappa_j + 1} u_i/tu_j; q)_{\kappa_j - \gamma_j}}{(q^{\gamma_i - \kappa_j} u_i/u_j; q)_{\kappa_j - \gamma_j}}.$$

Then the infinite lower-triangular n-dimensional matrices $(f_{\beta\kappa})_{\beta,\kappa\in\mathbb{Z}^n}$ and $(g_{\kappa\gamma})_{\kappa,\gamma\in\mathbb{Z}^n}$ are mutually inverse.

Proof Given two nonzero sequences (ξ_{κ}) and (ζ_{κ}) and a pair of matrices $(f_{\beta\kappa})$ and $(g_{\kappa\gamma})$ which are mutually inverse, it is easily checked (using the trivial relation $\frac{\xi_{\beta}}{\xi_{\gamma}}\delta_{\beta\gamma} = \delta_{\beta\gamma}$) that the matrices $(f_{\beta\kappa}\xi_{\beta}/\zeta_{\kappa})$ and $(g_{\kappa\gamma}\zeta_{\kappa}/\xi_{\gamma})$ are mutually inverse. We choose

$$\xi_{\kappa} = \left(\frac{q}{t}\right)^{|\kappa|} \frac{(t^2 u_0; q)_{|\kappa|}}{(qtu_0; q)_{|\kappa|}} \prod_{i=1}^{k-1} \frac{(u_i/tu_0; q)_{\kappa_i}}{(qu_i/t^2 u_0; q)_{\kappa_i}} \prod_{i=k}^n \frac{(tu_i/u_0; q)_{\kappa_i}}{(qu_i/u_0; q)_{\kappa_i}} \\ \times \prod_{1 \le i < j \le n} \frac{(qu_i/u_j; q)_{\kappa_i - \kappa_j}}{(tu_i/u_j; q)_{\kappa_i - \kappa_j}} \frac{(u_i/u_j; q)_{\kappa_i - \kappa_j}}{(qu_i/tu_j; q)_{\kappa_i - \kappa_j}},$$

$$\zeta_{\kappa} = \left(\frac{q}{t}\right)^{|\kappa|} \frac{(t^2 u_0; q)_{|\kappa|}}{(qtu_0; q)_{|\kappa|}} \prod_{i=1}^{k-1} \frac{(u_i/u_0; q)_{\kappa_i}}{(qu_i/tu_0; q)_{\kappa_i}} \\ \times \prod_{i=1}^{k-1} \frac{(qu_i/tu_0; q)_{|\kappa| - r + \kappa_i}}{(u_i/u_0; q)_{|\kappa| - r + \kappa_i}} \frac{(u_i/tu_0; q)_{|\kappa| - r + \kappa_i}}{(qu_i/t^2 u_0; q)_{|\kappa| - r + \kappa_i}} \\ \times \prod_{i=k}^n \frac{(tu_i/u_0; q)_{\kappa_i}}{(qu_i/u_0; q)_{\kappa_i}} \prod_{1 \le i < j \le n} \frac{(qu_i/u_j; q)_{\kappa_i - \kappa_j}}{(tu_i/u_j; q)_{\kappa_i - \kappa_j}} \frac{(u_i/u_j; q)_{\kappa_i - \kappa_j}}{(qu_i/tu_j; q)_{\kappa_i - \kappa_j}}$$

together with the pair of mutually inverse matrices $(f_{\beta\kappa})$ and $(g_{\kappa\gamma})$ as defined in [3, Theorem 2.7].

Several elementary manipulations of *q*-shifted factorials eventually lead to the result in the desired form. To give a sample (concentrating only on the products over $\prod_{1 \le i \le n}$ of *q*-shifted factorials), we use the simplification

$$\frac{(q^{\kappa_i-\kappa_j+1}u_i/tu_j;q)_{\beta_i-\kappa_i}}{(q^{\kappa_i-\kappa_j+1}u_i/u_j;q)_{\beta_i-\kappa_i}}\frac{(q^{\kappa_i-\beta_j}tu_i/u_j;q)_{\beta_i-\kappa_i}}{(q^{\kappa_i-\beta_j}u_i/u_j;q)_{\beta_i-\kappa_j}}} \times \frac{(qu_i/u_j;q)_{\beta_i-\beta_j}}{(tu_i/u_j;q)_{\beta_i-\beta_j}}\frac{(u_i/u_j;q)_{\beta_i-\beta_j}}{(qu_i/tu_j;q)_{\beta_i-\beta_j}}\frac{(tu_i/u_j;q)_{\kappa_i-\kappa_j}}{(qu_i/u_j;q)_{\kappa_i-\kappa_j}}\frac{(qu_i/tu_j;q)_{\kappa_i-\kappa_j}}{(u_i/u_j;q)_{\kappa_i-\kappa_j}} \\ = \frac{(qu_i/tu_j;q)_{\beta_i-\kappa_j}}{(qu_i/u_j;q)_{\beta_i-\kappa_j}}\frac{(u_i/u_j;q)_{\kappa_i-\beta_j}}{(tu_i/u_j;q)_{\kappa_i-\beta_j}}\frac{(qu_i/u_j;q)_{\beta_i-\beta_j}}{(qu_i/tu_j;q)_{\beta_i-\beta_j}}\frac{(tu_i/u_j;q)_{\kappa_i-\kappa_j}}{(u_i/u_j;q)_{\kappa_i-\kappa_j}} \\ = \frac{(q^{\beta_i-\beta_j+1}u_i/tu_j;q)_{\beta_j-\kappa_j}}{(q^{\beta_i-\beta_j+1}u_i/u_j;q)_{\beta_j-\kappa_j}}\frac{(q^{\kappa_i-\beta_j}tu_i/u_j;q)_{\beta_j-\kappa_j}}{(q^{\kappa_i-\beta_j}u_i/u_j;q)_{\beta_j-\kappa_j}} \\ \end{aligned}$$

in the computation of $f_{\beta\kappa}$ in the lemma.

References

- 1. Jing, N.H., Józefiak, T.: A formula for two-row Macdonald functions. Duke Math. J. 67, 377–385 (1992)
- Lassalle, M.: Explicitation des polynômes de Jack et de Macdonald en longueur trois. C. R. Acad. Sci. Paris Sér. I Math. 333, 505–508 (2001)
- Lassalle, M., Schlosser, M.J.: Inversion of the Pieri formula for Macdonald polynomials. Adv. Math. 202, 289–325 (2006)
- 4. Macdonald, I.G.: A new class of symmetric functions. Sém. Lothar. Comb. 20, Article B20a (1988)
- 5. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon, Oxford (1995)
- Macdonald, I.G.: Symmetric Functions and Orthogonal Polynomials. University Lecture Series, vol. 12. Am. Math. Soc., Providence (1998)
- Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Comb. 45, Article B45a (2000)
- Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Oxford University Press, Oxford (2003)
- Perelomov, A.M., Ragoucy, E., Zaugg, P.: Quantum integrable systems and Clebsch–Gordan series: II. J. Phys. A Math. Gen. 32, 8563–8576 (1999)