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Abstract Type-II matrices are nonzero complex matrices that were introduced in
connection with spin models for link invariants. Type-II matrices have been found in
connection with symmetric designs, sets of equiangular lines, strongly regular graphs,
and some distance regular graphs. We investigate weighted complete and strongly
regular graphs, and show that type-II matrices arise in this setting as well.
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1 Introduction

Spin models were introduced by Jones [11] to construct link invariants. Nomura [13]
found that matrices satisfying the type-II condition of Jones had nice properties, in
particular that a Bose–Mesner algebra (now known as the Nomura algebra) could
be constructed from any such type-II matrix. Because a spin model is contained in
its Nomura algebra, it is natural to consider type-II matrices within the Bose–Mesner
algebras of known association schemes. Chan and Godsil [5] investigated the strongly
regular graphs and found that up to six type-II matrices are found in their Bose–
Mesner algebras. Further, they showed that type-II matrices arise in connection with
other combinatorial structures, such as symmetric designs, sets of equiangular lines,
and antipodal distance regular graphs with diameter 3.

The goal of this paper is to demonstrate that type-II matrices are also found in
conjunction with certain weights that are regular (in the sense of Higman [8]) on
association schemes of rank 2 or 3. These are schemes in which the base graphs have
edges weighted by ±1 and satisfy suitable conditions to make the linear span of the
weighted adjacency matrices a semi-simple algebra.
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In Section 2, we define the terms necessary to make the previous paragraph in-
telligible. We have benefited from accessible treatments of this introductory material
in [10, 14], and [5]. First, we look at spin models and the closely related type-II ma-
trices. Then, we define association schemes, which are essentially synonymous with
Bose–Mesner algebras. We look next at the connection between type-II matrices and
association schemes, via the Nomura algebra. In the last part of this section, we define
regular weights on association schemes. Section 3 is a discussion of the type-II matri-
ces found in the rank 2 case, where a regular weight with values ±1 is equivalent to a
regular 2-graph. In Section 4, the rank 3 case is treated. Here the association scheme
is a complementary pair of strongly regular graphs. The general state of affairs is
given, and the remainder of the section is devoted to more explicit results pertaining
to the lattice graph family of strongly regular graphs. Section 6 contains additional
examples of ranks 2 and 3.

2 Preliminaries

To define spin models we require the notion of a Schur inverse. We will use the
term “Schur product” to denote entry-wise multiplication of matrices, also called the
Hadamard product. A matrix W with nonzero entries is Schur invertible, meaning it
has an inverse W(−) with respect to the Schur product. That is, W ◦ W(−) = J where
J is the all-ones matrix.

Definition An n by n complex matrix W is called a type-II matrix if it is Schur
invertible and

WW(−)T = nI.

Examples The following are well-known type-II matrices:

1. The character table of an Abelian group.
2. Hadamard matrices: entries are ±1 and HHT = nI .
3. Tensors of type-II matrices.
4. The Potts model: set α = −β−3 where β satisfies β2 + β−2 + √

n = 0.
W := αI + β(J − I ) is a type-II matrix.

A type-II matrix may be obtained from another by scaling and/or by permutation.
That is, if W is type II, Δ and Δ′ are invertible diagonal matrices, and P and P ′ are
permutation matrices, then ΔWΔ′ and PWP ′ are type-II matrices.

A spin model is a type-II matrix that satisfies an additional (“type III”) condition
which presents itself in a natural way via the Nomura algebra we define in the next
section.

2.1 The Nomura algebra

Let W be a type-II matrix. Define the column vectors [13]

(Wi/j )x = Wx,i · W(−)
x,j

= Wx,i

Wx,j

.
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Observe that this is just the Schur ratio of columns i and j , which will of course be
the all-ones vector when i = j .

Definition The Nomura algebra of a Schur-invertible square matrix W is

NW := {M ∈ Cn×n | Wi/j is an eigenvector of M for all i, j}.

The subscript will be suppressed when clarity allows. We have the following prop-
erties of N [13]:

1. N is a matrix algebra.
2. I ∈ N .
3. W is type II ⇐⇒ J ∈ N .
4. W is type II =⇒ N is commutative.
5. W is a spin model ⇐⇒ cW ∈ N for some nonzero scalar c.

Example For the Potts model, Wi/j (i �= j ) is a vector with entries α/β , β/α, and
n − 2 1’s. Since Wi/j is an eigenvector of W ∈ N , W is a spin model.

2.2 Association schemes

Let X be a finite set. Define a set of relations on X as matrices {Ai} with rows and
columns indexed by X, where i ranges over the indexing set I := {0,1, . . . , d}.

Definition A d-class association scheme X = (X, {Ai}, I) is a finite set X together
with a set of (0,1) matrices {Ai} indexed by the set I, satisfying:

1.
∑

i∈I
Ai = J .

2. A0 = I .
3. AT

i = Ai∗ for some i∗ ∈ I.
4. AiAj = AjAi .
5. AiAj = ∑

k pk
ijAk .

This last condition says that the linear span of the Ai over C is closed under multi-
plication. Thus A := 〈Ai〉 forms a commutative, associative matrix algebra called the
Bose–Mesner algebra of the scheme. The intersection numbers are the constants pk

ij

defined by (5). There is combinatorial significance to these which we do not make use
of here. The interested reader should see [2, 4, 6] for more. The intersection matrices,

Mj := (
pk

ij

)
i,k∈I

(j ∈ I),

store these numbers. More importantly, the regular representation Aj �→ Mj is an
isomorphism of (commutative) associative algebras; we take advantage of this fact to
calculate the character-multiplicity table of A. That is, A is semi-simple, thus decom-
poses into a direct sum of simple ideals. Commutativity ensures that the irreducible
constituents of the standard character are linear, the end result being that the eigen-
values and their multiplicities for {Aj } may be computed from {Mj }.
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The simplest association scheme is the 1-class scheme consisting of I and J − I .
As the latter is the adjacency matrix of the complete graph on X, we see that a 1-class
scheme is equivalent to Kn. The rank of a scheme is d + 1, the number of classes
including the trivial one.

An association scheme with 2 classes consists of a strongly regular graph and its
complement, along with the identity. This may in fact be taken as the definition of a
strongly regular graph, but the usual definition follows.

Definition A strongly regular graph (SRG) is a regular graph, neither complete nor
null, with the number of vertices adjacent to two given vertices, x and y, depending
only on whether or not x and y are adjacent.

In the context of an SRG, n = |X| will denote the number of vertices, k the va-
lency, and l = n − k − 1 the valency of the complement. The parameters of an SRG
are usually given as (n, k = p0

11,p
1
11,p

2
11), all others being determined by these. Be-

low we shall consider the pentagon, the triangular graphs, and the lattice graphs, all
of which are strongly regular.

2.3 Theorem of Nomura

The following theorem of Nomura and Jaeger et al. [10, 13] establishes a connection
between type-II matrices and association schemes.

Theorem 2.1 If W is a type-II matrix, NW is the Bose–Mesner algebra of an asso-
ciation scheme.

This means that NW is a commutative matrix algebra containing I and J , closed
under the Schur product, with a basis {Ai} of (0,1) matrices as in the previous sec-
tion. This result is important as it tells us that every spin model can be found inside
a Bose–Mesner algebra. As pointed out in [5], there are finitely many association
schemes for a given n.

2.4 Weights

In this section, we define regular weights on association schemes, which were intro-
duced by Higman [8] in the more general context of coherent configurations. The
intent here is to show that these constitute a nesting ground for type-II matrices that
are generally not spin models. The focus of this work is weights of full rank with
values ±1 on schemes of rank 2 and 3. Those of rank 2 are equivalent to regular
2-graphs which have been investigated by Taylor, Seidel, Bussemaker, and others
[3, 17, 19–21].

Definition A 2-graph (X,Δ) is a set X of vertices and a subset Δ of the triples from
X, called odd triples, such that every 4-set contains an even number of odd triples.
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A 2-graph is regular if each pair of vertices is in a fixed number of odd triples. We
refer to a regular 2-graph by its parameters (n, a), where n is the number of vertices,
and a is the number of odd triples containing a given pair.

From any simple graph Γ we may construct a 2-graph by designating the triples
with an odd number of edges from Γ to be the odd triples. As Δ is invariant under
Seidel switching—interchanging adjacencies and nonadjacencies for any vertex—we
see that a 2-graph may be viewed as a switching class of graphs. In fact, these two
sets are in one-to-one correspondence.

We form the Seidel matrix of a graph Γ by setting the (x, y) entry to be 0 if
x = y, −1 if x is adjacent to y, and 1 otherwise. Then switching Γ on a subset of
the vertices is accomplished via a similarity transform by a diagonal matrix with ±1
on the diagonal. Thus switching-equivalent graphs have the same spectrum, so the
spectrum of a 2-graph is well defined.

The Seidel matrix of a graph may also be interpreted as a weight (with values
±1) on the edges of the complete graph. In this interpretation, Higman’s notion of a
regular weight generalizes the regular 2-graph.

Let Ut be the set of complex t th roots of unity. A weight with values in Ut is
a 2-cochain ω ∈ C2(X,Ut ), which we will view as a matrix with rows and columns
indexed by X. In particular, this means that ω is Hermitian with unit diagonal and
that ω(−)T = ω. For the present paper, we work with t = 2, with one exception.

The support of a matrix M , supp(M), is the set of indices on which it is nonzero.
Weights with values in Ut are thus considered to have full support.

The standard coboundary operator defines a 3-cochain δω, giving a weight to each
triple of points, or triangle, by

δω(x, y, z) = ω(x, y)ω(x, z)ω(y, z).

We next define regularity of a weight ω on an association scheme X . It will be
convenient to refer to a triple of points (x, y, z) ∈ X3 as a triangle of type k

ij if (x, y)

belongs to class i (equivalently, Ai(x, y) = 1), (y, z) belongs to class j , and (x, z) to
class k. The weight of triangle (x, y, x) is δω(x, y, z). Next, for (x, z) in class k, we
put

βij (x, z,α) := ∣
∣
{
y | (x, y, z) has type k

ij and weight α
}∣
∣.

The weight ω is regular on X if, for fixed i, j , and α, βij (x, z,α) depends only on
the class k, not on the choice of (x, z) in that class. In this case, we write βk

ij (α).
The switching class of ω is the set of matrices obtained via similarity transform

by a diagonal matrix with entries in Ut . The importance of this is that switching-
equivalent weights have the same coboundary, and hence a regular weight is unique
up to switching.

Observe that a regular weight with values ±1 on the 1-class scheme given by Kn

represents a regular 2-graph, with β1
11(−1) the number of odd triples containing a

given pair of vertices.
Define the weighted adjacency matrices

Aω
i := ω ◦ Ai,
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noting that ω is just the sum of these. It follows from regularity that the Aω
i span a

matrix algebra with structure constants βk
ij . That is,

Aω
i Aω

j =
∑

k

βk
ijA

ω
k , where βk

ij =
∑

α

αβk
ij (α).

Observe that βk
ij is the sum of the weights of all triangles of type k

ij for a fixed (x, z)

in class k. Note also that
∑

α βk
ij (α) = pk

ij . The weighted intersection numbers are
therefore bounded in absolute value by the ordinary intersection numbers.

The weighted Bose–Mesner algebra Aω := 〈Aω
i 〉 is a semi-simple associative alge-

bra, commutative if the scheme is symmetric and the weight is real valued. Again, the
regular representation Aω

j �→ Mω
j := (βk

ij )i,j∈I is an isomorphism of associative alge-
bras. The rank of a weight is the number of indices i for which Aω

i is nonzero. Since
our weights have full support, this coincides with the rank of the underlying associ-
ation scheme. In the present paper, the schemes will be rank 2 and 3 and symmetric.
Hence the Aω

i are simultaneously diagonalizable with eigenvalues and multiplicities
determined from Mω

i .

2.5 Trivial weights

A regular weight ω on a scheme X will be called trivial if Aω
i = ciAi with ci ∈ C,

for all i, as this implies Aω = A. It is possible that a regular weight ω on X is triv-
ial on some fission scheme of X , or more generally (remove axiom 4 and replace 2
by

∑
i∈Ω Ai = I,Ω ⊆ I) a coherent configuration that is a fission of X . A coherent

configuration (CC) is homogeneous if |Ω| = 1; an association scheme is therefore a
homogeneous, commutative CC. The algebra 〈Ai〉C is called the coherent (or cellu-
lar) algebra of the configuration [7, 12].

Definition The coherent closure of a matrix X, ccl(X), is the intersection of all co-
herent algebras containing X.

This is well defined because the intersection of two coherent algebras is coherent
and is nonempty because the full matrix algebra Mn(C) is coherent and contains X.

Proposition 2.1 Let ω be a regular weight on X = (X, {Ai}). Setting B := ccl(ω)

and letting Y := (X, {Bi}) be the underlying CC, we have:

1. ω is trivial on Y .
2. ω is trivial on a CC Z if and only if Z is a fission of Y .

Proof 1. Define matrices Aω
i (α) by

(
Aω

i (α)
)
x,y

:=
{

1 (Aω
i )x,y = α,

0 otherwise,

so that Aω
i = ∑

αAω
i (α). For all i and α, ccl(ω) contains Aω

i (α), by the Schur–
Wielandt principle (6.5 in [12]). Write Aω

i (α) = ∑
j cjBj . Because the Bj ’s have
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nonoverlapping supports, and entries on both sides of the equation are 0 or 1, cj = 0
or 1 for all j . Recalling that

∑

i,α

Aω
i (α) = J =

∑

j

Bj ,

we find that for each j , there exists i such that Aω
i (α) ◦ Bj �= 0. This im-

plies that cj = 1 in the expression for Aω
i (α) and that Aω

i (α) ◦ Bj = Bj . Thus
supp(Bj ) ⊆ supp(Aω

i (α)). We conclude that ω is constant on Bj and hence trivial
on Y .

2. Suppose that ω is trivial on Z = (X, {Ci}) with coherent algebra C . Then
ω ◦ Ci = αiCi for some αi ∈ Ut . We have

ω = ω ◦ J =
∑

i

ω ◦ Ci =
∑

i

αiCi ∈ C.

Now B ⊆ C by definition of coherent closure. It follows that Z is a fission of Y .
The other direction is immediate. �

Remark Switching does not fix ccl(ω). For example, five weights in the switching
class of the Petersen graph can be found with coherent closures of dimensions 3, 6,
15, 18, and 22.

Theorem 2.2 Let W = ∑
i αiA

ω
i be a type-II matrix in Aω where ω is regular with

values in Ut , αi ∈ C, and αt
i �= αt

j for i �= j . Then W is a spin model if and only if
Aω ⊆ NW .

Proof Suppose W ∈ N = NW . Since N is a coherent algebra, ccl(W) ⊆ N . W has
distinct entries on the supports of Aω

i and Aω
j for i �= j because for ui, uj ∈ Ut ,

αiui = αjuj =⇒ αi

αj

∈ Ut .

By the Schur–Wielandt principle, Aω
i ∈ ccl(W) ⊆ N for all i, and hence Aω ⊆ N . �

2.6 Type-II matrices in weighted Bose–Mesner algebras

As mentioned, two regular weights ω1 and ω2 on the association scheme A may
be equivalent under switching, meaning multiplying on the left and the right by a
diagonal matrix. In the type-II matrix literature, this is generally referred to as scaling
and is not restricted to ±1’s (nor to operating in the same way on rows and columns).
However, for our purposes, the scaling matrix will always have entries ±1 on the
diagonal.

Switching changes the edge weights but has no effect on the basic graphs of the un-
derlying association scheme. Let ω and ω′ be switching-equivalent weights such that
ω′ = DωD for some diagonal matrix D. The algebra Aω′

is isomorphic to Aω, and
both have A as the Bose–Mesner algebra of the underlying scheme. For any type-II
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matrix W in Aω, the equivalent type-II matrix W ′ := DWD is contained in Aω′
.

All of this is completely straightforward. Now, consider the Nomura algebras for W

and W ′. Scaling almost preserves the vectors Wi/j . Specifically, it preserves them up
to multiplication by −1. Hence the Nomura algebras NW and NW ′ are identical. It
can happen, and in the next section, we give an explicit example that W ′ is contained
in NW ′ = NW while W is not. A type-II matrix W is a spin model if and only if
cW ∈ NW . Technically, then, W ′ is a spin model while W is not, even though they
are equivalent.

The question of whether a given type-II matrix is equivalent to a spin model is
therefore not a trivial one, even when the explicit vectors Wi/j have been calculated.
One method, for which we are grateful to a referee, is to use the modular invariance
equation (see Proposition 12 in [10] and Section 3.2 in [1]) to test for spin models
inside NW , and if one is found, determine whether it is equivalent to W .

If a weight ω is regular on a scheme X = (X, {Ai}) with values in Ut , then

(
Aω

i

)(−)T = (ω ◦ Ai)
T = ωT ◦ Ai∗ = Aω

i∗ ,

as ω is Hermitian. For a type-II matrix W in Aω , the condition WW(−)T = nI re-
duces to

∑

i

αiA
ω
i ·

∑

i

1

αi

Aω
i∗ = nI.

We apply this to rank 2 and 3 weights in Sections 3 and 4, respectively.

3 Rank 2 weights

Let ω be a regular weight on Kn with A1 = J − I and A the two-dimensional Bose–
Mesner algebra of n by n matrices. The fact that (I + Aω

1 )2 is in the span of I and
Aω

1 implies that the minimal polynomial of Aω
1 must be quadratic. We have

(
Aω

1

)2 = β0
11I + β1

11A
ω
1

= (n − 1)I + (
β1

11(1) − β1
11(−1)

)
Aω

1

= (n − 1)I + (n − 2a − 2)Aω
1 .

Thus, β1
11 = n − 2a − 2. In Section 5, we will encounter 2-graphs along with regular

weights on the lattice graphs. To avoid confusion, we will use C for the matrix of the
2-graph and write C2 = (n − 1)I + AC, where A = n − 2a − 2. Note that A is an
integer—we will need this in Section 5.2.

3.1 Type-II matrices associated with rank 2 weights

Let C be the matrix of a regular 2-graph (n, a) as above. C has entries ±1 off the
diagonal and is symmetric, and thus the matrix I + αC is type II if and only if

(I + αC)(I + 1/αC) = nI.
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But this occurs when α + 1
α

+ A = 0, which is equivalent to α2 + Aα + 1 = 0.
Hence there are exactly two type-II matrices associated with the regular 2-graph
when A2 �= 4, and exactly one otherwise. These type-II matrices are generalized
conference matrices, defined in [5], and this result is a special case of Theorem 7.3
of [5].

In summary, type-II matrices associated with regular 2-graphs are given by

I + αC where α = 1

2

(−A ±
√

A2 − 4
)
.

Remark When A = 0, we have the conference 2-graphs. The type-II matrices asso-
ciated with a conference 2-graph are I ± iC.

Example The 2-graph with parameters (n,A) = (16,−2) is unique. Using matrices
given in [3], we construct the associated type-II matrix W = I + C, where “+” rep-
resents 1, and “−” represents −1:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ − − − − − − + + + + + + + + +
− + − − + + + − − − + + + + + +
− − + − + + + + + + − − − + + +
− − − + + + + + + + + + + − − −
− + + + + − − − + + − + + − + +
− + + + − + − + − + + − + + − +
− + + + − − + + + − + + − + + −
+ − + + − + + + − − − + + − + +
+ − + + + − + − + − + − + + − +
+ − + + + + − − − + + + − + + −
+ + − + − + + − + + + − − − + +
+ + − + + − + + − + − + − + − +
+ + − + + + − + + − − − + + + −
+ + + − − + + − + + − + + + − −
+ + + − + − + + − + + − + − + −
+ + + − + + − + + − + + − − − +

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Computing N in Maple, we find that dim(N ) = 16 and that W is a spin model.
Regarding the discussion of switching in Section 2.6, let W ′ be the type-II matrix
obtained by switching W on any vertex. Then W ′ is not a spin model, as is easily seen
from the fact that the row sums are not constant, and therefore j (the all ones vector) is
not an eigenvector. The coherent closure of W is a rank 6 association scheme: Aω

2 (1)

splits into two (0,1) matrices which, along with the remaining Aω
i (α), form the basic

graphs of a non-p-polynomial scheme.
The type-II matrix W is a Hadamard matrix when α = ±1, and this happens pre-

cisely when A = ±2. The Nomura algebras for these have been investigated in [10].
There exist Hadamard matrices of order 2n whose Nomura algebras have dimen-
sion 2n; the example above is an instance of this family with n = 4. In fact, the
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Nomura algebra is a product of 4 copies of the trivial Bose–Mesner algebra. When
n ≥ 12 and n ≡ 4 (mod 8), the Nomura algebras are trivial.

Theorem 3.1 Let W be a type-II matrix associated with a rank 2 regular weight. If
W is not a Hadamard matrix, then NW is trivial.

Proof Let C be a matrix of the 2-graph with C1j = 1 for all j . (Use scaling to get
C into this form.) Put W = I + αC as before, and consider the set {Wi/1}. These are
eigenvectors for NW by definition and form a linearly independent set by (23) of [10].
For i �= j and i, j �= 1, we make the claim: if Wi/1 ⊥ Wj/1, then W is a Hadamard
matrix. Indeed,

Wi/1 · Wj/1 =
∑

k

Wi/1[k]Wj/1[k]

= Wii

Wi1
· Wij

Wi1
+ Wji

Wj1
· Wjj

Wj1
+

∑

k �=i,j

WkiWkj

Wk1Wk1

= 2

α2
Wij + α2C1iC1j +

∑

k �=1,i,j

CkiCkj

= 2

α
Cij + α2 − 1 +

∑

k

CkiCkj since Cii = 0 and C1i = 1,

= 2

α
Cij + α2 − 1 + ACij since the sum above is C2

ij ,

=
(

2

α
+ A

)

Cij + α2 − 1.

All nondiagonal entries of C are ±1. Hence Wi/1 ⊥ Wj/1 only when 2
α

+ A +
α2 − 1 = 0 or − 2

α
− A + α2 − 1 = 0. Since α is a root of x2 + Ax + 1, the first case

implies 2
α

+ A − Aα − 2 = 0, which gives α = 1 or − 2
A

. The second case implies
2
α

+ A + Aα + 2 = 0, giving α = −1 or − 2
A

. If α = − 2
A

, then A = ±2 and α = ±1.
Thus both cases reduce to α = ±1, and W is a Hadamard matrix. This proves the
claim.

When W is not Hadamard, the vectors Wi/1 for i > 1 must all belong to the same
eigenspace of any matrix in NW . Hence NW has only two eigenspaces, and is there-
fore of dimension 2. �

Remark Combining this theorem with the results on Hadamard matrices above, we
conclude that the only possibly interesting Nomura algebras associated with regular
2-graphs occur when A = ±2 and n < 12 or n ≡ 0 (mod 8).
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4 Rank 3 weights

For a given SRG Γ , suppose that we have on hand a regular weight ω, with the
notation as in Section 2.4. The weighted intersection matrices are written

Mω
0 = I, Mω

1 =
⎛

⎝
1

k A B

C D

⎞

⎠ , Mω
2 =

⎛

⎝
1

C D

l E F

⎞

⎠ .

The parameters A–F are standing in for the corresponding βk
ij ’s for convenience. It

can be shown [8] that C = Bl/k and E = Dl/k.

4.1 Type-II matrices in Aω

Theorem 4.1 The weighted Bose–Mesner algebra Aω of a regular weight with val-
ues in Ut on a strongly regular graph contains type-II matrices I + αAω

1 + βAω
2 ,

where

α = 1

2

(
X ±

√
X2 − 4

)
, β = 1

2

(
Z ±

√
Z2 − 4

)
,

with

X = − l

k
BY − A − l

k
D,

Z = −DY − B − F,

and Y a root of the cubic

l

k
BDY 3 +

[(
l

k
− 1

)(

D2 − B2 l

k

)

+ l

k
BF + DA − 1

]

Y 2

+
[(

1 − 2l

k

)

AB + AF +
(

l

k

(

1 − 2l

k

)

− 2

)

BD +
(

l

k
− 2

)

DF

]

Y

−
(

A + l

k
D

)2

− (B + F)2 + 4 = 0.

Proof Set W = I +αAω
1 +βAω

2 with arbitrary complex numbers α and β . Requiring
that W be type II means WW(−)T = nI . This gives

WW(−)T = (
I + αAω

1 + βAω
2

)
(

I + 1

α
Aω

1 + 1

β
Aω

2

)

,

nI = I +
(

α + 1

α

)

Aω
1 +

(

β + 1

β

)

Aω
2 + (

Aω
1

)2

+
(

α

β
+ β

α

)

Aω
1 Aω

2 + (
Aω

2

)2
.
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The products (Aω
1 )2, Aω

1 Aω
2 = Aω

2 Aω
1 , and (Aω

2 )2 may all be read from the intersec-
tion matrices above. We have:

(
Aω

1

)2 = kI + AAω
1 + BAω

2 ,

Aω
1 Aω

2 = l

k
BAω

1 + DAω
2 ,

(
Aω

2

)2 = lI + l

k
DAω

1 + FAω
2 .

Now, setting X := α + 1
α

, Y := α
β

+ β
α

, and Z := β + 1
β

, we have

nI = (1 + k + l)I +
(

X + A + l

k
BY + l

k
D

)

Aω
1

+ (Z + B + DY + F)Aω
2 ,

which implies

X + A + l

k
BY + l

k
D = 0 and (1)

Z + B + DY + F = 0. (2)

We see that

(2Y − XZ)2 = (
X2 − 4

)(
Z2 − 4

)
, (3)

and substituting into (3) for X and Z using (1) and (2) gives the required cubic in Y . �

Remarks

1. Exactly one of the equations: 2Y = XZ ± √
(X2 − 4)(Z2 − 4) holds, and this de-

termines which roots should be taken for α and β . Hence, the maximum number of
distinct pairs (α,β) is 6. We shall see examples shortly that realize this maximum
and also cases in which only two distinct solutions are found.

2. If α,β ∈ {±1}, then W is a Hadamard matrix, and the remarks in Section 3.1
apply.

5 L2(n)

The lattice graphs are rectangular grids with the lattice points as vertices. Two are
adjacent if and only if they have exactly one coordinate in common. The SRG pa-
rameters, for n ≥ 2, are L2(n) = (n2,2(n − 1), n − 2,2). Note that when n = 2, the
graph is strongly regular but imprimitive: the complement is not connected.

In this section we find all type-II matrices lying in the weighted Bose–Mesner
algebra of a lattice graph. In this instance, we know precisely what the regular weights
are—they are tensors of regular 2-graphs.
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Theorem 5.1 (See[15]) If ω is a nontrivial regular weight with full support on the
lattice graph L2(n), then n is even, and ω = ω1 ⊗ω2, where δω1 and δω2 are regular
2-graphs with the same parameters.

Under a suitable ordering of the vertices, the adjacency matrices for the lattice
graph have the form

A1 = I ⊗ (J − I ) + (J − I ) ⊗ I,

A2 = (J − I ) ⊗ (J − I ).

For the remainder of this section, we let ω be a regular weight on L2(n), which
according to the theorem, must have the form

ω = (I + C1) ⊗ (I + C2)

= I ⊗ I + I ⊗ C2 + C1 ⊗ I + C1 ⊗ C2,

where Ci (i = 1,2) is a matrix of a regular 2-graph δωi with parameters (n, a).

5.1 Kronecker products

Since Kronecker products of type-II matrices are type II, we will always have
type-II matrices in Aω that are products of type-II matrices related to the constituent
2-graphs. Explicitly, we observe that

W := (I + αC1) ⊗ (I + αC2)

(with α2 + Aα + 1 = 0 as in Section 3.1) is type II. Expanding, we have

W = I ⊗ I + α(I ⊗ C2 + C1 ⊗ I ) + α2(C1 ⊗ C2)

= In2 + αAω
1 + α2Aω

2 .

We conclude that W ∈ Aω .
Note that there are two possibilities for α, giving two type-II matrices of this form,

but (I + α1C1) ⊗ (I + α2C2) does not lie in Aω when α1 �= α2.
We are now interested in finding all type-II matrices in Aω , referring back to

Theorem 4.1. (This discussion ends with Theorem 5.3, should the reader wish to get
it over with.) From [15], the intersection matrices for Aω have the form

Mω
1 =

⎛

⎝
1

2(n − 1) A 2
n − 1 2A

⎞

⎠ , Mω
2 =

⎛

⎝
1

n − 1 2A

(n − 1)2 (n − 1)A A2

⎞

⎠ .

Here, as in Section 3, the parameter A is related to the 2-graph parameters by
A = n − 2a − 2. Replacing k, l,B,D,F with their counterparts from these, Theo-
rem 4.1 gives

α = 1

2

(
X ±

√
X2 − 4

)
, β = 1

2

(
Z ±

√
Z2 − 4

)
,
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with

X = −(n − 1)Y − nA, Z = −2AY − A2 − 2, (4)

and Y a root of

(Y + A)
[
2A(n − 1)Y 2 + (

A2(n − 3) − (n − 2)2)Y

− A
(
n2 + A2 + 4

)] = 0, (5)

taking matching signs in the expressions for α and β when 2Y − XZ =
−√

(X2 − 4)(Z2 − 4) and opposite signs when 2Y − XZ = √
(X2 − 4)(Z2 − 4).

Clearly Y = −A is a solution. This gives X = −A,Z = A2 − 4 and is precisely
the case in which W is a tensor product. This is formalized in the following lemma.

Lemma 5.2 Let Γ be the lattice graph SRG(n2,2(n− 1), n− 2,2) and suppose that
W = I + αAω

1 + βAω
2 is a type-II matrix in Aω. The following are equivalent:

1. W = (I + γC1) ⊗ (I + γC2) for some γ ∈ C.
2. α = γ , β = γ 2, where γ 2 + Aγ + 1 = 0.
3. α

β
+ β

α
= −A.

Proof 1 ⇒ 2: Expanding (I + γC1) ⊗ (I + γC2) to In2 + γ (I ⊗ C2 + C1 ⊗ I ) +
γ 2C1 ⊗ C2 gives α = γ and β = γ 2. Since W(−) = (I + 1

γ
C1) ⊗ (I + 1

γ
C2),

WW(−)T = (I + γC1) ⊗ (I + γC2) · (I + 1/γC1) ⊗ (I + 1/γC2)

= (I + γC1)(I + 1/γC1) ⊗ (I + γC2)(I + 1/γC2)

= [
I + (γ + 1/γ )C1 + C2

1

] ⊗ [
I + (γ + 1/γ )C2 + C2

2

]
.

Substituting C2
i = (n − 1)I + ACi , we have

WW(−)T = [
nI + (γ + 1/γ + A)C1

] ⊗ [
nI + (γ + 1/γ + A)C2

]

= n2In2 + n(γ + 1/γ + A)(I ⊗ C2 + C1 ⊗ I ) + (γ + 1/γ + A)2C1 ⊗ C2

= n2In2 + n(γ + 1/γ + A)Aω
1 + (γ + 1/γ + A)2Aω

2 .

Since W is type II, this must equal n2In2 , thus γ + 1/γ = −A, and γ 2 + Aγ + 1 = 0
follow from linear independence of Aω

1 and Aω
2 .

2 ⇒ 1: Immediate.
2 ⇒ 3: Given γ 2 +Aγ +1 = 0, the roots of x2 +Ax +1 are γ and 1/γ . Assuming

that α = γ and β = γ 2, we have

α

β
+ β

α
= 1

γ
+ γ = −A.
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3 ⇒ 2: Suppose 3 holds, and solve for β:

β = 1

2

(−Aα ±
√

A2α2 − 4α2
)

= α

(−A ± √
A2 − 4

2

)

,

and thus β = αγ where γ 2 + Aγ + 1 = 0. It remains to show that α = γ . Re-
turning to (4) with Y = −A, we have X = −A. So α + 1/α = −A, and α is a
root of x2 + Ax + 1. Now α = γ or α = 1/γ . In the latter case, β = αγ = 1, so
Z = β + 1/β = 2. But from (4), Z = A2 − 2 forcing A = ±2. This implies γ = ±1,
and thus γ = 1/γ . �

It is natural to ask when A and/or Aω are contained in NW . The following obser-
vation addresses this question for the lattice graph when W is a tensor of type-II’s.
From Proposition 7 of [10] we have:

W = W1 ⊗ W2 =⇒ NW = NW1 ⊗ NW2 .

We claim: If W = U ⊗ V with U and V n × n type-II matrices and A the Bose–
Mesner algebra for a lattice graph L2(n), then A ⊆ NW .

Proof Since NW = NU ⊗ NV and every Nomura algebra contains I and J , we have
I ⊗ I , A1 := I ⊗ (J − I ) + (J − I ) ⊗ I , and A2 := (J − I ) ⊗ (J − I ) all contained
in NW . Under a suitable ordering of vertices, these three matrices form a standard
basis for A. �

5.2 Type-II matrices

To summarize, we have seen thus far that Aω for the lattice graph always contains
type-II matrices which are tensors of type-II’s related to the constituent 2-graphs of ω.
The Nomura algebras are tensors of the corresponding Nomura algebras and are spin
models under the conditions of Theorem 2.2. We now show that Aω contains type-II
matrices which are not tensors, as suggested by Lemma 5.2.

Theorem 5.3 The weighted Bose–Mesner algebra of a regular weight of rank 3 on
L2(n) (n > 2) contains precisely 2 type-II matrices when A = 0, 3 when A = ±2,
and 6 otherwise. At most 2 of these are tensors.

Proof Consider the quadratic factor in (5), and label it Q. The discriminant of Q is

(
A2(n − 3) − (n − 2)2)2 + 8A2(n − 1)

(
n2 + A2 + 4

)
,

which may be rewritten as

A4(n + 1)2 + A2(6
(
n3 + n2) − 8

) + (n − 2)4
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and is therefore positive for n ≥ 2. Equation (5) thus has three distinct real solutions
unless −A is a root of Q. Evaluating Q at Y = −A gives An(A2 − 4). Hence the
exceptional cases are A = 0,±2.

Suppose now that A �= 0,±2. Since X and Z are both linear in Y , we have three
distinct real values for X and for Z, respectively. As α satisfies α2 − Xα + 1 = 0,
distinct values of X yield distinct values of α, and each X gives two solutions for α

unless X = ±2. We conclude that there are 6 distinct pairs (α,β) except when X and
Z are both ±2.

Suppose further that X = ±2, Z = ±2. In each of the four cases, we use (4) to
equate two expressions for Y . The case X = Z = 2 gives

nA + 2

−(n − 1)
= A2 + 4

−2A
=⇒ A = −2 or A = 2(n − 1)

n + 1
.

However, A �= −2 by assumption, and clearly

0 <
2(n − 1)

n + 1
< 2.

Recalling that A is an integer, we have A = 1. But then 2(n−1) = n+1, which gives
n = 3, contradicting the fact that n is even by Theorem 5.1.

The case X = 2, Z = −2 gives

nA + 2

−(n − 1)
= A2

−2A
=⇒ A = − 4

n + 1
.

This requires n = 1 or n = 3, neither of which is possible.
The remaining two cases are similar and lead to no solutions. �

We next analyze the exceptional cases to Theorem 5.3.
Case A = 0. Equation (5) becomes −(n − 2)2Y 2 = 0, which implies (X,Y,Z) =

(0,0,−2). We conclude that α = ±i, β = −1, and we have exactly two type-II ma-
trices.

Case A = 2. Q becomes

4(n − 1)Y 2 − (n − 4)2Y − 2
(
n2 + 8

)
,

so (5) has solutions Y = −2 (twice) and Y = n2+8
4(n−1)

. If Y = −2, (X,Y,Z) =
(−2,−2,2), yielding (α,β) = (−1,1). The third root gives

X = −n2 + 8n + 8

4
, Z = −n2 + 6n + 2

n − 1
,

and we have two pairs (α,β), taking like signs for the radicals since 2Y − XZ > 0.
Case A = −2. This case is identical to A = 2 except for signs.
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Table 1 Exceptional cases for L2(n)

X Y Z (α,β) W a tensor?

A = 0 0 0 −2 (±i,−1) Y

A = 2 −2 −2 2 (−1,1) Y

− n2+8n+8
4

n2+8
4(n−1)

− n2+6n+2
n−1 2 solutions N

A = −2 2 2 2 (1,1) Y
n2+8n+8

4 − n2+8
4(n−1)

− n2+6n+2
n−1 2 solutions N

Table 1 summarizes these exceptional cases.

Remarks

1. The case A = 0 gives the conference 2-graphs. Here, N is a product of Span(I, J )

by Theorem 3.1 because the only type-II matrices are tensors of the form
I + iC1 ⊗ I + iC2, and the constituent type-II’s are clearly not Hadamard ma-
trices.

2. The 2-graphs with A = −2 and A = 2 are complements. Recall that the matrix Ci

representing the 2-graph is taken as the (0,±1) adjacency matrix of a graph. Ac-
cordingly, replacing the 2-graph with its complement amounts to swapping −Ci

and Ci . Forming ω = (I − C1) ⊗ (I − C2), we see that the entries of Aω
1 are

negated while Aω
2 remains the same. Hence the type-II matrices associated with

these complementary pairs of 2-graphs have −α and β as coefficients. The case
A = −2 and the final two rows of the table are therefore redundant.

3. The type-II’s that are not tensors could be generalized Kronecker products as de-
fined in [9]. The examples given in Tables 2, 3, 4 of the next section, by Lemma 4.3
of [9], are not generalized Kronecker products.

6 Examples

6.1 L2(n)

As noted in Section 5, the Nomura algebra for a non-tensored type-II matrix may be
nontrivial, even when the constituent 2-graphs produce only Potts models.

6.1.1 Lattice graphs from regular 2-graphs with A = 0 and n ≤ 50

Nontrivial regular 2-graphs with n ≤ 50 and A = 0 occur for n = 10, 26, and 50 [3].
These all have trivial Nomura algebras by Remark 1 of Section 5.2.

6.1.2 Lattice graphs from regular 2-graphs with A �= 0 and n ≤ 50

Nontrivial regular 2-graphs with A �= 0 and n ≤ 50 occur for n = 16, 28, 36 [3, 19]. In
the first two cases, there is a unique regular 2-graph. For n = 36, 227 nonisomorphic
regular 2-graphs are known.
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Table 2 Parameters for the
regular 2-graph with n = 16 n A α β

16 2 −1 1

16 2 −49 ± 20
√

6 − 59
5 ± 24

5

√
6

Table 3 Parameters for the regular 2-graph with n = 28

n A α β

28 6 −3 ± 2
√

2 17 ∓ 12
√

2

28 6 − 238
3 ± 5

3

√
1009 ± 2

3

√
20465 ± 595

√
1009 − 457

27 ± 20
27

√
1009 ± 2

27

√
152930 ± 4570

√
1009

Table 4 Parameters for the
regular 2-graphs with n = 36 n A α β

36 2 −1 1

36 2 −199 ± 60
√

11 − 757
35 ± √

11

Tables 2–4 show the 2-graph parameters and the coefficients α and β for type-II
matrices associated with L2(n).

Like signs are taken for α and β in row 2 of Table 2, giving a total of 3 type-II’s
for (n,A) = (16,2). In the first row, W is a Hadamard matrix, and N has dimension
16 but is the product of 4 copies of the trivial Nomura algebra [5, 10]. (The example
from Section 3.1 is an instance of this.) In the second row, N is found to be trivial.

For row 1 of Table 3, we know by Theorem 3.1 that the Nomura algebras for
the constituent 2-graphs are trivial. For the lattice graph, N is thus the product of
Span(I, J ). Row 2 represents the type-II’s that are not tensors. Only 4 of the 64
possible ± combinations actually occur. If the reader will kindly allow a slightly
cryptic presentation, these shall be expressed as the following ordered pairs where
each integer should be interpreted as a binary numeral: (3,3), (1,1), (6,4), (4,6).
For example, (6,4) is (110,100) which indicates + + − for α and + − − for β . We
have a total of 6 type-II’s for (n,A) = (28,6). Nomura algebras for row 2 have not
been determined.

Row 1 of Table 4 represents a Hadamard matrix, and since n ≡ 4 (mod 8), we
know by Theorem 3.1 that N is a product of Span(I, J ). Row 2 shows a pair of
type-II’s that are not tensors. The best hope for a nontrivial Nomura algebra comes
from pairing two nonisomorphic 2-graphs to form ω. Therefore there are

(227
2

)
cases

to look at, of which only a few have been computed, revealing nothing of interest.

6.2 S4(q)

A family of regular weights with values ±1, ±i, constructed using the projective
symplectic group S4(q), is described in [15].

Let Γ be SRG(q3 + q2 + q + 1, q(q + 1), q − 1, q + 1) from the rank 3 action of
S4(q) on the totally isotropic lines of the symplectic geometry. For q an odd prime
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power, there is a regular weight of rank 3 on Γ with intersection matrices given by

Mω
1 =

⎛

⎝
0 1 0

q(q + 1) 0 ±(q + 1)

0 ±q2 0

⎞

⎠ , Mω
2 =

⎛

⎝
0 0 1
0 ±q2 0
q3 0 ±q(q − 1)

⎞

⎠

(“+” if q ≡ 1 (mod 4) and “−” if q ≡ 3 (mod 4)).
The type-II matrices in Aω are I + αAω

1 + βAω
2 , where

α2 = −β(βq2 + 1)

β + q2
, β = −q2 − 1 ± √

(q2 + 1)2 − 4

2
when q ≡ 1 (mod 4),

and

α2 = β(βq2 − 1)

β − q2
, β = q2 + 1 ± √

(q2 + 1)2 − 4

2
when q ≡ 3 (mod 4).

These have been explicitly constructed for q = 3,5, and in both cases the Nomura
algebra is Span(I, J ).

6.3 T (5)

Let Γ be SRG(10,3,0,1), which is the well-known Petersen graph. A regular weight
of rank 3 on Γ is determined by the action of the alternating group A5 on the pairs
from {1,2, . . . , n} as described in [15]. This example appears also in [8] and [18].
Borrowing Seidel’s construction, we set

A :=

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

and B := J − I − A. The adjacency matrices for the Petersen graph and T (5) are
given by

A1 :=
(

A I

I B

)

and A2 := J − I − A1,

respectively. The weighted adjacency matrices are

Aω
1 =

(
A I

I −B

)

and Aω
2 =

(
B A − B

A − B A

)

with the type-II matrices in Aω given by

α2 = (3 − 4i)/5, β = i and α2 = (3 + 4i)/5, β = −i,

both of which yield trivial Nomura algebras.
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This example is the smallest in a family of SRGs known as the triangular graphs.
The vertices are the unordered pairs from an n-set. Two of these pairs are adjacent
if and only if they have exactly one element in common. The SRG parameters are
T (n) = (

(
n
2

)
,2(n − 2), n − 2,4) for n ≥ 4. The complement of the Petersen graph

is T (5).
Other examples of regular weights in the triangular graph family exist. In [16]

these are viewed in the context of the Johnson scheme, so ranks higher than 3 are
considered. These cases have not yet been explored for type-II matrices.

6.4 A2n

The alternating group A2n acts transitively on the pairs of disjoint n-sets, or bisec-
tions. This action has rank n

2 + 1 when n is even and rank n+1
2 when n is odd, giv-

ing association schemes of the same ranks. The case n = 5 is of interest here, as
this is when the association scheme has rank 3. The group action affords the SRG
Γ = (126,25,8,4). A regular weight on Γ can be constructed with the intersection
matrices

Mω
1 =

⎛

⎝
1

25 8 4
16 3

⎞

⎠ and Mω
2 =

⎛

⎝
1

16 3
100 12 6

⎞

⎠ .

There are 6 type-II matrices, as in Theorem 4.1, two of them real-valued.
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