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Abstract We classify and construct irreducible completely splittable representations
of affine and finite Hecke-Clifford algebras over an algebraically closed field of char-
acteristic not equal to 2.
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1 Introduction

Let F be an algebraically closed field of characteristic p and denote by Sn the
symmetric group on n letters. In [12], Mathieu gave the dimension of the irre-
ducible FSn-modules associated to the partitions λ = (λ1, . . . , λl) of n with length l

and λ1 − λl ≤ (l − p) by using the well-known Schur-Weyl duality. Subsequently,
Kleshchev [7] showed that these representations are exactly these whose restric-
tions to the subgroup Sk are semi-simple for any k ≤ n or equivalently on which
the Jucys-Murphy elements in FSn act semisimply. These FSn-modules are called
completely splittable in [7]. By using the modular branching rules for FSn (cf. [8]),
a formula for the dimensions of completely splittable modules was obtained in terms
of the paths in Young modular graphs, which recovers Mathieu’s result [12]. Gen-
eralizing the work in [7, 12], Ruff [17] classified the irreducible completely split-
table representations of degenerate affine Hecke algebras Hn (introduced by Drin-
feld [4] and Lusztig [11]). Over the complex field C, these Hn-modules were con-
structed and classified originally by Cherednik [2]. Generalizations were established
to affine Hecke algebras of type A in [3, 16] and to Khovanov-Lauda-Rouquier alge-
bras in [9].

J. Wan (�)
Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
e-mail: jw5ar@virginia.edu

mailto:jw5ar@virginia.edu


16 J Algebr Comb (2010) 32: 15–58

From now on let us assume p �= 2. This paper aims to classify and construct com-
pletely splittable representations of affine Hecke-Clifford algebras Hc

n over F. The
algebra Hc

n was introduced by Nazarov [14] (called affine Sergeev algebra) to study
the spin (or projective) representations of the symmetric group Sn or equivalently to
study the representations of the spin symmetric group algebra FS−

n . Our construction
is a generalization of Young’s seminormal construction of the irreducible representa-
tions of symmetric groups and affine Hecke algebras of type A (cf. [3, 16]). The ap-
proach is similar in spirit to the technique introduced by Okounkov and Vershik [15]
on symmetric groups over C.

Let us denote by x1, . . . , xn the polynomial generators of the algebra Hc
n (cf.

subsection 2.2 for the definition). According to Brundan and Kleshchev [1] (cf. [8,
Part II]), one can reduce the study of the finite dimensional Hc

n-modules to these
so-called integral modules on which the eigenvalues of x2

1 , . . . , x2
n are of the form

q(i) for i ∈ I (cf. (2.1) and (2.9) for notations). Then each finite dimensional Hc
n-

module M admits a decomposition as M = ⊕i∈InMi, where Mi is the simultaneous
generalized eigenspace for the commuting operators x2

1 , . . . , x2
n corresponding to the

eigenvalues q(i1), . . . , q(in). We call i a weight of M if Mi �= 0. By definition, a
finite dimensional Hc

n-module is completely splittable if the polynomial generators
x1, . . . , xn act semisimply.

Our work is based on several equivalent characterizations (cf. Proposition 3.6 for
precise statements) of irreducible completely splittable Hc

n-modules. In particular, an
irreducible Hc

n-module is completely splittable if and only if its restriction to the sub-
algebra Hc

(r,1n−r )
(cf. subsection 2.2 for notations) is semisimple for any 1 ≤ r ≤ n.

It follows that any irreducible completely splittable Hc
n-module is semisimple on re-

striction to the subalgebra of Hc
n generated by sk, ck, ck+1, xk, xk+1 (cf. subsection 2.2

for notations) which is isomorphic to Hc
2 for fixed 1 ≤ k ≤ n − 1. By exploring irre-

ducible Hc
2-modules, we obtain an explicit description of the action of the simple

transpositions sk on irreducible completely splittable Hc
n-modules and identify all

possible weights of irreducible completely splittable Hc
n-modules. This leads to the

construction of a family of irreducible completely splittable Hc
n-modules. It turns

out that these modules exhaust the non-isomorphic irreducible completely splittable
Hc

n-modules. We further show that these representations are parameterized by skew
shifted Young diagrams with precise constraints depending on p and give a dimen-
sion formula in terms of the associated standard Young tableaux. We remark that in
the special case when p = 0, our result confirms a conjecture of Wang and it has been
independently obtained by Hill, Kujawa, and Sussan [5].

Denote by Yn the finite Hecke-Clifford algebra Yn = Cn � FSn, where Cn is the
Clifford algebra over F generated by c1, . . . , cn subject to the relations c2

k = 1, ckcl =
−clck for 1 ≤ k �= l ≤ n. A Yn-module is called completely splittable if the Jucys-
Murphy elements L1, . . . ,Ln (cf. (6.1) for notations) act semisimply. There exists
a surjective homomorphism (cf. [14]) from Hc

n to Yn which maps xk to the Jucys-
Murphy elements Lk for 1 ≤ k ≤ n. By applying the results established for Hc

n to Yn,
we classify irreducible completely splittable Yn-modules and obtain a dimension for-
mula for these modules. We understand that an unpublished work of Kleshchev and
Ruff independently gave the classification of irreducible completely splittable Yn-
modules. In [1], irreducible representations of Yn over F are shown to be parame-
terized by p-restricted p-strict partitions of n. In this paper, we identify the subset
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� of p-restricted p-strict partitions of n which parameterizes irreducible completely
splittable Yn-modules. This together with a well-known Morita super-equivalence
between the spin symmetric group algebra FS−

n and Yn leads to an interesting family
of irreducible FS−

n -modules parameterized by � for which dimensions and charac-
ters can be explicitly described. In the special case when p = 0, we recover the main
result of [13] on the seminormal construction of all simple representations of FS−

n .
We observe that the L2

k,1 ≤ k ≤ n, act semisimply on the basic spin Yn-module
I (n) (cf. [1, (9.11)]) which is not completely splittable. On the other hand, Wang [18]
introduced the degenerate spin affine Hecke-Clifford algebras H− and established
an isomorphism between Hc

n and Cn ⊗ H− which sends x2
k to 2b2

k (cf. Section 7
for notations). As the generators b1, . . . , bn are anti-commutative, it is reasonable to
study the H−-modules on which the commuting operators b2

1, . . . , b
2
n act semisimply.

This is equivalent to studying Hc
n-modules on which x2

k ,1 ≤ k ≤ n, act semisimply
by using the isomorphism between Hc

n and Cn ⊗H−. Motivated by these observations,
we study and obtain a necessary condition in terms of weights for the classification
of irreducible Hc

n-modules on which x2
k , 1 ≤ k ≤ n, act semisimply; moreover, this

condition is conjectured to be sufficient, and the conjecture is verified when n = 2,3.
The paper is organized as follows. In Section 2, we recall some basics about super-

algebra and also the affine Hecke-Clifford algebras Hc
n. In Section 3, we analyze the

structure of completely splittable Hc
n-modules by studying their weights and a clas-

sification of irreducible completely splittable Hc
n-modules is obtained in Section 4.

In Section 5, we give a reinterpretation for weights of irreducible completely split-
table Hc

n-modules in terms of shifted Young diagrams. In Section 6, we classify the
irreducible completely splittable representations of finite Hecke-Clifford algebras. Fi-
nally, in Section 7 we introduce a larger category consisting of Hc

n-modules on which
x2
k act semisimply and state a conjecture for classification of modules in this larger

category.
Acknowledgments. I thank A. Kleshchev and especially my advisor W. Wang for

many helpful suggestions and discussions. I would also like to thank the referees for
their useful comments. This research is partly supported by Wang’s NSF grant.

2 Affine Hecke-Clifford algebras Hc
n

Recall that F is an algebraically closed field of characteristic p with p �= 2. Denote
by Z+ the set of nonnegative integers and let

I =
{

Z+, if p = 0,

{0,1, . . . ,
p−1

2 }, if p ≥ 3.
(2.1)

2.1 Some basics about superalgebras

We shall recall some basic notions of superalgebras, referring the reader to [1, §2-b].
Let us denote by v̄ ∈ Z2 the parity of a homogeneous vector v of a vector superspace.
By a superalgebra, we mean a Z2-graded associative algebra. Let A be a superalge-
bra. A A-module means a Z2-graded left A-module. A homomorphism f : V → W
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of A-modules V and W means a linear map such that f (av) = (−1)f̄ āaf (v). Note
that this and other such expressions only make sense for homogeneous a,f and the
meaning for arbitrary elements is to be obtained by extending linearly from the ho-
mogeneous case. Let V be a finite dimensional A-module. Let �V be the same
underlying vector space but with the opposite Z2-grading. The new action of a ∈ A
on v ∈ �V is defined in terms of the old action by a · v := (−1)āav. Note that the
identity map on V defines an isomorphism from V to �V .

A superalgebra analog of Schur’s Lemma states that the endomorphism algebra of
a finite dimensional irreducible module over a superalgebra is either one dimensional
or two dimensional. In the former case, we call the module of type M while in the
latter case the module is called of type Q.

Given two superalgebras A and B, we view the tensor product of superspaces
A ⊗ B as a superalgebra with multiplication defined by

(a ⊗ b)(a′ ⊗ b′) = (−1)b̄ā′
(aa′) ⊗ (bb′) (a, a′ ∈ A, b, b′ ∈ B).

Suppose V is an A-module and W is a B-module. Then V ⊗W affords A⊗B-module
denoted by V � W via

(a ⊗ b)(v ⊗ w) = (−1)b̄v̄av ⊗ bw, a ∈ A,b ∈ B,v ∈ V,w ∈ W.

If V is an irreducible A-module and W is an irreducible B-module, V � W

may not be irreducible. Indeed, we have the following standard lemma (cf. [7,
Lemma 12.2.13]).

Lemma 2.1 Let V be an irreducible A-module and W be an irreducible B-module.

(1) If both V and W are of type M, then V � W is an irreducible A ⊗ B-module of
type M.

(2) If one of V or W is of type M and the other is of type Q, then V � W is an
irreducible A ⊗ B-module of type Q.

(3) If both V and W are of type Q, then V � W ∼= X ⊕ �X for a type M irreducible
A ⊗ B-module X.

Moreover, all irreducible A ⊗ B-modules arise as constituents of V � W for some
choice of irreducibles V,W .

If V is an irreducible A-module and W is an irreducible B-module, denote by
V � W an irreducible component of V � W . Thus,

V � W =
{

V � W ⊕ �(V � W), if both V and W are of type Q,

V � W, otherwise.

2.2 Affine Hecke-Clifford algebras Hc
n

Now we proceed to define the superalgebra we will be interested in. For n ∈ Z+,
the affine Hecke-Clifford algebra Hc

n is the superalgebra generated by even genera-
tors s1, . . . , sn−1, x1, . . . , xn and odd generators c1, . . . , cn subject to the following
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relations

s2
i = 1, sisj = sj si , sisi+1si = si+1sisi+1, |i − j | > 1, (2.2)

xixj = xjxi, 1 ≤ i, j ≤ n, (2.3)

c2
i = 1, cicj = −cj ci, 1 ≤ i �= j ≤ n, (2.4)

sixi = xi+1si − (1 + cici+1), (2.5)

sixj = xj si, j �= i, i + 1, (2.6)

sici = ci+1si, sici+1 = cisi , sicj = cj si, j �= i, i + 1, (2.7)

xici = −cixi, xicj = cj xi, 1 ≤ i �= j ≤ n. (2.8)

Remark 2.2 The affine Hecke-Clifford algebra Hc
n was introduced by Nazarov [14]

(called affine Sergeev algebra) to study the representations of CS−
n . The quantized

version of the Hc
n introduced later by Jones-Nazarov [6] to study the q-analogues of

Young symmetrizers for projective representations of the symmetric group Sn is often
also called affine Hecke-Clifford algebras.

For α = (α1, . . . , αn) ∈ Z
n+ and β = (β1, . . . , βn) ∈ Z

n
2 , set xα = x

α1
1 · · ·xα

n and

cβ = c
β1
1 · · · cβn

n . Then we have the following.

Lemma 2.3 [1, Theorem 2.2] The set {xαcβw | α ∈ Z
n+, β ∈ Z

n
2,w ∈ Sn} forms a

basis of Hc
n.

Denote by P c
n the superalgebra generated by even generators x1, . . . , xn and odd

generators c1, . . . , cn subject to the relations (2.3), (2.4) and (2.8). By Lemma 2.3,
P c

n can be identified with the subalgebra of Hc
n generated by x1, . . . , xn and

c1, . . . , cn. For a composition μ = (μ1,μ2, . . . ,μr) of n, we define Hc
μ to be the sub-

algebra of Hc
n generated by P c

n and sj ∈ Sμ = Sμ1 × · · ·× Sμr . Note that P c
n = Hc

(1n).
For each i ∈ I, set

q(i) = i(i + 1). (2.9)

Let us denote by RepI Hc
μ the category of so-called integral finite dimensional Hc

μ-

modules on which the x2
1 , . . . , x2

n have eigenvalues of the form q(i) for i ∈ I. For each
i ∈ I, denote by L(i) the 2-dimensional P c

1 -module with L(i)0̄ = Fv0 and L(i)1̄ =
Fv1 and

x1v0 = √
q(i)v0, x1v1 = −√

q(i)v1, c1v0 = v1, c1v1 = v0.

Note that L(i) is irreducible of type M if i �= 0, and irreducible of type Q if i = 0.
Moreover L(i), i ∈ I form a complete set of pairwise non-isomorphic irreducible
P c

1 -module in the category RepI P c
1 . Observe that P c

n
∼= P c

1 ⊗ · · · ⊗ P c
1 , and hence

we have the following result by Lemma 2.1.
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Lemma 2.4 [1, Lemma 4.8] The P c
n-modules

{L(i) = L(i1) � L(i2) � · · · � L(in)| i = (i1, . . . , in) ∈ I
n}

form a complete set of pairwise non-isomorphic irreducible P c
n-module in the cate-

gory RepI P c
n . Moreover, denote by γ0 the number of 1 ≤ j ≤ n with ij = 0. Then L(i)

is of type M if γ0 is even and type Q if γ0 is odd. Furthermore, dim L(i) = 2n−� γ0
2 �,

where � γ0
2 � denotes the greatest integer less than or equal to γ0

2 .

Remark 2.5 Note that each permutation τ ∈ Sn defines a superalgebra isomorphism
τ : P c

n → P c
n by mapping xk to xτ(k) and ck to cτ(k), for 1 ≤ k ≤ n. For i ∈ I

n, the
twist of the action of P c

n on L(i) with τ−1 leads to a new P c
n-module denoted by

L(i)τ with

L(i)τ = {zτ | z ∈ L(i)}, f zτ = (τ−1(f )z)τ, for any f ∈ P c
n, z ∈ L(i).

So in particular we have (xkz)
τ = xτ(k)z

τ and (ckz)
τ = cτ(k)z

τ . It is easy to see
that L(i)τ ∼= L(τ · i), where τ · i = (iτ−1(1), . . . , iτ−1(n)) for i = (i1, . . . , in) ∈ I

n and
τ ∈ Sn.

2.3 Intertwining elements for Hc
n

Following [14], we define the intertwining elements as

	k := sk(x
2
k − x2

k+1) + (xk + xk+1) + ckck+1(xk − xk+1), 1 ≤ k ≤ n. (2.10)

It is known that

	2
k = 2(x2

k + x2
k+1) − (x2

k − x2
k+1)

2, (2.11)

	kxk = xk+1	k,	kxk+1 = xk	k,	kxl = xl	k, (2.12)

	kck = ck+1	k,	kck+1 = ck	k,	kcl = cl	k, (2.13)

	j	k = 	k	j ,	k	k+1	k = 	k+1	k	k+1 (2.14)

for all admissible j, k, l with l �= k, k + 1 and |j − k| > 1.

3 Weights of completely splittable Hc
n-modules

In this section, we shall describe the weights of completely splittable Hc
n-modules.

3.1 Structure of completely splittable Hc
n-modules

For M ∈ RepI Hc
n and i = (i1, . . . , in) ∈ I

n, set

Mi = {z ∈ M | (x2
k − q(ik))

Nz = 0 for N 
 0,1 ≤ k ≤ n}.
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If Mi �= 0, then i is called a weight of M and Mi is called a weight space. Since the
polynomial generators x1, . . . , xn commute, we have

M =
⊕
i∈In

Mi. (3.1)

For i ∈ I and 1 ≤ m ≤ n, set


imM = {z ∈ M | (x2
j − q(i))Nz = 0, for N 
 0, n − m + 1 ≤ j ≤ n}.

One can show using (2.5) that

x2
k sk = skx

2
k+1 − (

xk(1 − ckck+1) + (1 − ckck+1)xk+1
)

(3.2)

x2
k+1sk = skx

2
k + (

xk+1(1 + ckck+1) + (1 + ckck+1)xk

)
. (3.3)

Hence 
im defines an exact functor


im : RepI H
c
n −→ RepI H

c
n−m,m.

Moreover as Hc
n−1,1-modules, we have

res
Hc

n

Hc
n−1,1

M = ⊕i∈I
iM. (3.4)

For i ∈ I and M ∈ RepI Hc
n, define

εi(M) = max{m ≥ 0 | 
imM �= 0}.

Lemma 3.1 [1, Lemma 5.4] Suppose that M ∈ RepI Hc
n is irreducible. Let i ∈ I and

m = εi(M). Then 
imM is isomorphic to L � ind
Hc

m

P c
m
L(im) for some irreducible L ∈

RepI Hc
n−m with εi(L) = 0.

Definition 3.2 A representation of Hc
n is called completely splittable if x1, . . . , xn act

semisimply.

Remark 3.3 Observe that if M ∈ RepI Hc
n is completely splittable, then for i ∈ I

n,

Mi = {z ∈ M | x2
k z = q(ik)z,1 ≤ k ≤ n}.

Lemma 3.4 Suppose that M ∈ RepI Hc
n is completely splittable and that Mi �= 0 for

some i ∈ I
n. Then ik �= ik+1 for all 1 ≤ k ≤ n − 1.

Proof Suppose ik = ik+1 for some 1 ≤ k ≤ n − 1. Let 0 �= z ∈ Mi . Since M is com-
pletely splittable, (x2

k − q(ik))z = 0 = (x2
k+1 − q(ik+1))z. This together with (3.2)

shows that

(x2
k − q(ik))skz = (x2

k − q(ik+1))skz = −(
xk(1 − ckck+1) + (1 − ckck+1)xk+1

)
z.
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and hence

(x2
k − q(ik))

2skz = −(
xk(1 − ckck+1) + (1 − ckck+1)xk+1

)
(x2

k − q(ik))z = 0.

Similarly, we see that

(x2
k+1 − q(ik+1))

2skz = 0.

Hence skz ∈ Mi . By Remark 3.3, we deduce that (x2
k − q(ik))skz = 0 and therefore(

xk(1 − ckck+1) + (1 − ckck+1)xk+1
)
z = 0.

This implies

2(x2
k + x2

k+1)z = (
xk(1 − ckck+1) + (1 − ckck+1)xk+1

)2
z = 0.

This means q(ik+1) = −q(ik) and hence q(ik) = q(ik+1) = 0 since ik = ik+1. There-
fore x2

k = 0 = x2
k+1 on Mi . Since xk, xk+1 act semisimply on Mi , xk = 0 = xk+1

on Mi . This implies xk+1skz = 0 since skz ∈ Mi as shown above. Then

(1 + ckck+1)z = xk+1skz − skxkz = 0.

This means 2z = (1 − ckck+1)(1 + ckck+1)z = 0. Hence z = 0 since p �= 2. This
contradicts the assumption that z �= 0. �

Corollary 3.5 Suppose that M ∈ RepI Hc
n is completely splittable. Then εi(M) ≤ 1

for any i ∈ I.

Proposition 3.6 Let M ∈ RepI Hc
n be irreducible. The following are equivalent.

(1) M is completely splittable.
(2) For any i ∈ I

n with Mi �= 0, we have ik �= ik+1 for all 1 ≤ k ≤ n − 1.

(3) The restriction res
Hc

n

Hc

(r,1n−r )

M is semisimple for any 1 ≤ r ≤ n.

(4) For any i ∈ I
n with Mi �= 0, we have Mi

∼= L(i) as P c
n-modules.

Proof By Lemma 3.4, (1) implies (2). Suppose (2) holds, then by Lemma 3.1 and
Corollary 3.5 we have 
iM is either zero or irreducible for each i ∈ I and hence

by (3.4) res
Hc

n

Hc
(n−1,1)

M is semisimple. Observe that if 
iM ∼= N � L(i) for some ir-

reducible N ∈ RepI Hc
n−1, then (2) also holds for N . This implies res

Hc
n−1

Hc
(n−2,1)

N is

semisimple. Therefore res
Hc

n

Hc
(n−2,1,1)

M is semisimple by (3.4). Continuing in this way

we see that the restriction res
Hc

n

Hc

(r,1n−r )

M is semisimple for any 1 ≤ r ≤ n, whence (3).

Now assume (3) holds. In particular, res
Hc

n

Hc
(1n)

M is semisimple, that is, M is isomor-

phic to a direct sum of L(i) as P c
n-modules. It is clear that x1, . . . , xn act semisimply

on L(i) for each i ∈ I
n, whence (1).



J Algebr Comb (2010) 32: 15–58 23

Clearly (1) holds if (4) is true. Now suppose (1) holds and we shall prove (4) by
induction on n. Suppose Mi �= 0 for some i ∈ I

n. Observe that Mi ⊆ 
inM �= 0.
By Lemma 3.1 and Corollary 3.5, 
inM

∼= N � L(in) for some irreducible
N ∈ RepI Hc

n−1. This means Mi
∼= Ni′ � L(i), where i′ = (i1, . . . , in−1). Note that

N is completely splittable and hence by induction N
i
′ ∼= L(i1) � · · · � L(in−1).

Therefore Mi
∼= L(i1) � · · · � L(in). �

Remark 3.7 Note that Hc
n possesses an automorphism σn which sends sk to −sn−k ,

xl to xn+1−k and cl to cn+1−l for 1 ≤ k ≤ n − 1 and 1 ≤ l ≤ n. Moreover σn induces
an algebra isomorphism for each composition μ = (μ1, . . . ,μm) of n

σμ : Hc
μ −→ H

c
μt ,

where μt = (μm, . . . ,μ1). Given M ∈ Hc
μt , we can twist with σμ to get a Hc

μ-module
Mσμ . Observe that for Hc

n-module M , we have

(
res

Hc
n

Hc

(r,1n−r )

Mσn
)σ(1n−r ,r) ∼= res

Hc
n

Hc

(1n−r ,r)

M.

Hence M ∈ RepI Hc
n is irreducible completely splittable if and only if res

Hc
n

Hc

(1n−r ,r)

M

is semisimple for any 1 ≤ r ≤ n by Proposition 3.6.

Corollary 3.8 Let M ∈ RepI Hc
n be irreducible completely splittable. Then the re-

striction res
Hc

n

Hc

(1k−1,2,1n−k−1)

M is semisimple for any 1 ≤ k ≤ n − 1. Hence M is semi-

simple on restriction to the subalgebra generated by sk, xk, xk+1, ck, ck+1 which is
isomorphic to Hc

2 for fixed 1 ≤ k ≤ n − 1.

Proof By Proposition 3.6, res
Hc

n

Hc

(k+1,1n−k−1)

M is semisimple. Hence

res
Hc

n

Hc

(1k−1,2,1n−k−1)

M = res
Hc

(k+1,1n−k−1)

Hc

(1k−1,2,1n−k−1)

(
res

Hc
n

Hc

(k+1,1n−k−1)

M
)

is semisimple by Remark 3.7. �

3.2 The weight constraints

Suppose that M ∈ RepI Hc
n is completely splittable and that Mi �= 0 for some i ∈ I

n.
By Lemma 3.4, ik �= ik+1 for 1 ≤ k ≤ n−1. It follows from Remark 3.3 that x2

k −x2
k+1

acts as the nonzero scalar q(ik)−q(ik+1) on Mi for each 1 ≤ k ≤ n−1. So we define
linear operators 
k and �k on Mi such that for any z ∈ Mi ,


kz := −
(xk + xk+1

x2
k − x2

k+1

+ ckck+1
xk − xk+1

x2
k − x2

k+1

)
z, (3.5)

�kz :=
(√√√√1 − 2(x2

k + x2
k+1)

(x2
k − x2

k+1)
2

)
z =

(√
1 − 2(q(ik) + q(ik+1))

(q(ik) − q(ik+1))2

)
z. (3.6)
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Both 
k and �k make sense as linear operators on L(i) for i ∈ I
n whenever ik �= ik+1

for 1 ≤ k ≤ n.

Proposition 3.9 The following holds for i, j ∈ I.

(1) If i = j ± 1, then the irreducible P c
2 -module L(i) � L(j) affords an irreducible

Hc
2-module denoted by V (i, j) with the action s1z = 
1z for any z ∈ L(i) �

L(j). The Hc
2-module V (i, j) has the same type as the P c

2 -module L(i) � L(j).
Moreover, it is always completely splittable.

(2) If i �= j ± 1, the Hc
2-module V (i, j) := ind

Hc
2

P c
2
L(i) � L(j) is irreducible and has

the same type as the P c
2 -module L(i) � L(j). It is completely splittable if and

only if i �= j (and recall i �= j ± 1).
(3) Every irreducible module in the category RepI Hc

2 is isomorphic to some V (i, j).

Proof (1). It is routine to check s1x1 = x2s1 − (1 + c1c2) and s1c1 = c2s1, hence it
remains to prove s2

1 = 1 on V (i, j). Indeed, for z ∈ L(i) � L(j), we have

s2
1z = 
2

1z = 2(x2
1 + x2

2)

(x2
1 − x2

2)2
v = 2(q(i) + q(j))

(q(i) − q(j))2
z = z,

where the last identity follows from the definition of q(i) and the assumption
i = j ± 1. It is clear that EndP c

2
(L(i) � L(j)) ∼= EndHc

2
(V (i, j)). Hence V (i, j)

has the same type as the P c
2 -module L(i) � L(j). Since x1, x2 act semisimply on

L(i) � L(j), V (i, j) is completely splittable.
(2). Assume that i �= j ±1 and that M is a nonzero proper submodule of V (i, j) =

ind
Hc

2
P c

2
L(i)�L(j). Observe that V (i, j) = 1⊗ (L(i)�L(j))⊕ s1 ⊗ (L(i)�L(j)) as

vector spaces. Without loss of generality, we can assume M contains a nonzero vector
v of the form v = 1⊗u+ s1 ⊗u or v = 1⊗u− s1 ⊗u for some 0 �= u ∈ L(i)�L(j).
Otherwise, we can replace v by v + s1v or v − s1v since either of them is nonzero.
By (3.2),

x2
1v = 1 ⊗ x2

1u ± s1 ⊗ x2
2u ∓ 1 ⊗ (

x1(1 − c1c2) + (1 − c1c2)x2
)
u

= 1 ⊗ q(i)u ± q(j)s1 ⊗ u ∓ 1 ⊗ (
x1(1 − c1c2) + (1 − c1c2)x2

)
u.

This together with (x2
1 − q(j))v ∈ M shows that

1 ⊗
(
(q(i) − q(j))u ± (

x1(1 − c1c2) + (1 − c1c2)x2
)
u
)

∈ M.

Since 1 ⊗ ((q(i) − q(j))u ± (x1(1 − c1c2) + (1 − c1c2)x2)u) ∈ L(i) � L(j) and M

is a proper Hc
2-submodule of V (i, j), we have

(q(i) − q(j))u ± [x1(1 − c1c2) + (1 − c1c2)x2]u = 0

and therefore

(q(i) − q(j))2u = (x1(1 − c1c2) + (1 − c1c2)x2)
2u.
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This together with (x1(1 − c1c2) + (1 − c1c2)x2)
2u = 2(x2

1 + x2
2)u shows that

2(q(i) + q(j)) = (q(i) − q(j))2.

This contradicts the assumption i �= j ± 1 and hence V (i, j) is irreducible.
Note that if i �= j , then V (i, j) has two weights, that is, (i, j) and (j, i). By Propo-

sition 3.6, we see that res
Hc

2
P c

2
V (i, j) is semisimple and is isomorphic to the direct sum

of L(i) � L(j) and L(j) � L(i). This means

HomP c
2
(L(i) � L(j), res

Hc
2

P c
2
V (i, j)) ∼= EndP c

2
(L(i) � L(j)).

By Frobenius reciprocity we obtain

EndHc
2
(V (i, j)) ∼= HomP c

2
(L(i) � L(j), res

Hc
2

P c
2
V (i, j)) ∼= EndP c

2
(L(i) � L(j)).

Hence V (i, j) has the same type as the P c
2 -module L(i) � L(j).

Now suppose i = j . This implies that (i, i) is a weight of V (i, i) and hence V (i, i)

is not completely splittable by Lemma 3.4. By Proposition 3.6, res
Hc

2
P c

2
V (i, i) is not

semisimple. Note that res
Hc

2
P c

2
V (i, i) has two composition factors and both of them are

isomorphic to L(i) � L(i). Therefore the socle of res
Hc

2
P c

2
V (i, i) is simple and isomor-

phic to L(i)�L(i). Hence HomP c
2
(L(i)�L(i), res

Hc
2

P c
2
V (i, i)) ∼= EndP c

2
(L(i)�L(i)).

By Frobenius reciprocity we obtain

EndHc
2
(V (i, i)) ∼= HomP c

2
(L(i) � L(i), res

Hc
2

P c
2
V (i, i)) ∼= EndP c

2
(L(i) � L(i)).

Hence V (i, i) has the same type as the P c
2 -module L(i) � L(i).

(3). Suppose M ∈ RepI Hc
2 is irreducible, then there exist i, j ∈ I such that

L(i) � L(j) ⊆ res
Hc

2
P c

2
M . By Frobenius reciprocity M is an irreducible quotient of

the induced module ind
Hc

2
P c

2
L(i) � L(j). If i �= j ± 1, then M ∼= ind

Hc
2

P c
2
L(i) � L(j)

since ind
Hc

2
P c

2
L(i)�L(j) is irreducible by (2); otherwise using the fact that 
2

1 = 1 on

L(i) � L(j) one can show that the vector space

L := span
{
s1 ⊗ u − 1 ⊗ 
1u | u ∈ L(i) � L(j)

}
is a Hc

2-submodule of ind
Hc

2
P c

2
L(i) � L(j) and it is isomorphic to V (j, i). It is easy

to check the quotient ind
Hc

2
P c

2
L(i) � L(j)/L is isomorphic to V (i, j). Hence M ∼=

V (i, j). �

Observe from the proof above that if i �= j, j ± 1 then the completely splittable
Hc

2-module V (i, j) has two weights (i, j) and (j, i) and moreover s1 − 
1 gives a
bijection between the associated weight spaces. This together with Corollary 3.8 and
Proposition 3.9 leads to the following.
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Corollary 3.10 Let M ∈ RepI Hc
n be irreducible completely splittable. Suppose 0 �=

v ∈ Mi for some i = (i1, . . . , in) ∈ I
n. The following holds for 1 ≤ k ≤ n − 1.

(1) If ik = ik+1 ± 1, then skv = 
kv.
(2) If ik �= ik+1 ± 1, then 0 �= (sk − 
k)v ∈ Msk ·i and hence sk · i is a weight of M .

Definition 3.11 Let i ∈ I
n. For 1 ≤ k ≤ n − 1, the simple transposition sk is called

admissible with respect to i if ik �= ik+1 ± 1.

Let W(Hc
n) be the set of weights i ∈ I

n of irreducible completely splittable Hc
n-

modules. By Corollary 3.10, if i ∈ W(Hc
n) and sk is admissible with respect to i,

then sk · i ∈ W(Hc
n); moreover i and sk · i must occur as weights in an irreducible

completely splittable Hc
n-module simultaneously.

Lemma 3.12 Let i ∈ W(Hc
n). Suppose that ik = ik+2 for some 1 ≤ k ≤ n − 2.

(1) If p = 0, then ik = ik+2 = 0, ik+1 = 1.
(2) If p ≥ 3, then either ik = ik+2 = 0, ik+1 = 1 or ik = ik+2 = p−3

2 , ik+1 = p−1
2 .

Proof Suppose i occurs in the irreducible completely splittable Hc
n-module M and

ik = ik+2 for some 1 ≤ k ≤ n − 2. If ik �= ik+1 ± 1, then sk · i is a weight of M

with the form (· · · , u,u, · · · ) by Corollary 3.10. This contradicts Lemma 3.4. Hence
ik = ik+1 ±1. This together with Corollary 3.10 shows that sk = 
k and sk+1 = 
k+1
on Mi and by (2.8) we have

sksk+1sk − sk+1sksk+1

= 1

(a − b)(b − a)(a − b)
(xk + xk+2)(6x2

k+1 + 2xkxk+2)

+ 1

(a − b)(b − a)(a − b)
ckck+2(xk − xk+2)(6x2

k+1 − 2xkxk+2) (3.7)

on Mi , where a = q(ik) = q(ik+2) and b = q(ik+1). This implies that for z ∈ Mi ,

(xk + xk+2)(6x2
k+1 + 2xkxk+2)z + ckck+2(xk − xk+2)(6x2

k+1 − 2xkxk+2)z = 0.

(3.8)

On Mi , xk, xk+2 act semisimply and x2
k , x2

k+2 act as scalars q(ik), q(ik+2). Hence
Mi admits a decomposition Mi = N1 ⊕ N2, where N1 = {z ∈ Mi | xkz = xk+2z =
±√

q(ik)z} and N2 = {z ∈ Mi | xkz = −xk+2z = ±√
q(ik)z}. Applying the iden-

tity (3.8) to N1 and N2, we obtain

2
√

q(ik)
(
6q(ik+1) + 2q(ik)

) = 0. (3.9)

By the fact that ik+1 = ik ± 1, and the definition of q(ik) and q(ik+1), one can check
that (3.9) is equivalent to the following

ik+1 = ik − 1,
√

ik(ik + 1)(4ik − 2)ik = 0 (3.10)



J Algebr Comb (2010) 32: 15–58 27

or

ik+1 = ik + 1,
√

ik(ik + 1)(4ik + 6)(ik + 1) = 0. (3.11)

(1). If p = 0, since ik, ik+1 are nonnegative there is no solution for the equation (3.10)
and the solution of (3.11) is ik = 0, ik+1 = 1.
(2). If p ≥ 3, since 1 ≤ ik, ik+1 ≤ p−3

2 there is no solution for the equation (3.10) and

the solutions of (3.11) are ik = 0, ik+1 = 1 or ik = p−3
2 , ik+1 = p−1

2 . �

Lemma 3.13 Let i ∈ W(Hc
n). Suppose ik = il for some 1 ≤ k < l ≤ n. Then ik + 1 ∈

{ik+1, . . . , il−1}.

Proof Suppose ik = il = u for some 1 ≤ k < l ≤ n. Without loss of generality, we
can assume u /∈ {ik+1, . . . , il−1}. If u = 0, then 1 ∈ {ik+1, . . . , il−1}; otherwise we
can apply admissible transpositions to i to obtain an element in W(Hc

n) of the form
(· · · ,0,0, · · · ), which contradicts Lemma 3.4.

Now assume u ≥ 1 and u + 1 /∈ {ik+1, . . . , il−1}. If u − 1 does not appear between
ik+1 and il−1 in i, then we can apply admissible transpositions to i to obtain an ele-
ment in W(Hc

n) of the form (· · · , u,u, · · · ), which contradicts Lemma 3.4. If u − 1
appears only once between ik+1 and il−1 in i, then we can apply admissible transpo-
sitions to i to obtain an element in W(Hc

n) of the form (· · · , u,u − 1, u, · · · ), which
contradicts Lemma 3.12. Hence u − 1 appears at least twice between ik+1 and il−1

in i. This implies that there exist k < k1 < l1 < l such that

ik1 = il1 = u − 1, {u,u − 1} ∩ {ik1+1, . . . , il1−1} = ∅.

An identical argument shows that there exist k1 < k2 < l2 < l1 such that

ik2 = il2 = u − 2, {u,u − 1, u − 2} ∩ {ik2+1, . . . , il2−1} = ∅.

Continuing in this way, we obtain k < s < t < l such that

is = it = 0, {u,u − 1, . . . ,1,0} ∩ {is+1, . . . , it−1} = ∅,

which is impossible as shown at the beginning. �

Proposition 3.14 Let i ∈ W(Hc
n). Then

(1) ik �= ik+1 for all 1 ≤ k ≤ n − 1.
(2) If p ≥ 3, then p−1

2 appears at most once in i.
(3) If ik = il = 0 for some 1 ≤ k < l ≤ n, then 1 ∈ {ik+1, . . . , il−1}.
(4) If p = 0 and ik = il ≥ 1 for some 1 ≤ k < l ≤ n, then {ik − 1, ik + 1} ⊆

{ik+1, . . . , il−1}.
(5) If p ≥ 3 and ik = il ≥ 1 for some 1 ≤ k < l ≤ n, then either of the following

holds:
(a) {ik − 1, ik + 1} ⊆ {ik+1, . . . , il−1},
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(b) there exists a sequence of integers k ≤ r0 < r1 < · · · < rp−3
2 −ik

< q <

tp−3
2 −ik

< · · · < t1 < t0 ≤ l such that iq = p−1
2 , irj = itj = ik + j and ik + j

does not appear between irj and itj in i for each 0 ≤ j ≤ p−3
2 − ik .

Proof (1). It follows from Lemma 3.4.
(2). If p−1

2 appears more than once in i, then it follows from Lemma 3.13 that p+1
2

appears in i which is impossible since p+1
2 /∈ I.

(3). It follows from Lemma 3.13.
(4). Now suppose p = 0 and ik = il = u ≥ 1 for some 1 ≤ k < l ≤ n. Without loss

of generality, we can assume u /∈ {ik+1, . . . , il−1}. By Lemma 3.13 we have u + 1 ∈
{ik+1, . . . , il−1} and hence it suffices to show u − 1 ∈ {ik+1, . . . , il−1}. Now assume
u − 1 /∈ {ik+1, . . . , il−1}. Then u + 1 must appear in the subsequence (ik+1, . . . , il−1)

at least twice, otherwise we can apply admissible transpositions to i to obtain an
element in W(Hc

n) of the form (· · · , u,u + 1, u · · · ) which contradicts Lemma 3.12.
Hence there exist k < k1 < l1 < l such that

ik1 = il1 = u + 1, u + 1 does not appear between ik1 and il1 in i.

Since u /∈ {ik+1, . . . , il−1} ⊇ {ik1+1, . . . , il1−1}, a similar argument gives k2, l2 with
k1 < k2 < l2 < l1 such that

ik2 = il2 = u + 2, u + 2 does not appear between ik2 and il2 in i.

Continuing in this way we see that any integer greater than u will appear in the
subsequence (ik+1, . . . , il−1) which is impossible. Hence u − 1 ∈ {ik+1, . . . , il−1}.

(5). Suppose p ≥ 3 and 1 ≤ ik = il = u ≤ p−3
2 for some 1 ≤ k < l ≤ n and u− 1 /∈

{ik+1, . . . , il−1}. Clearly there exist k ≤ r0 < t0 ≤ l such that

ir0 = it0 = u,u /∈ {ir0+1, . . . , it0−1}.
An identical argument used for proving (2) shows that there exists a sequence of
integers

k ≤ r0 < r1 < · · · < rp−3
2 −u

< tp−3
2 −u

< · · · < t1 < t0 ≤ l

such that

rj = tj = u + j, {u,u + 1, . . . , u + j} ∩ {irj +1, . . . , itj −1} = ∅

for each 0 ≤ j ≤ p−3
2 − u. Since ir p−3

2 −u
= it p−3

2 −u
= p−3

2 , by Lemma 3.13 there

exists r p−3
2 −u

< q < tp−3
2 −u

such that iq = p−1
2 . �

4 Classification of irreducible completely splittable Hc
n-modules

In this section, we shall give an explicit construction and a classification of irreducible
completely splittable Hc

n-modules.
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Recall that for i ∈ I
n and 1 ≤ k ≤ n − 1, the simple transposition sk is said to

be admissible with respect to i if ik �= ik+1 ± 1. Define an equivalence relation ∼
on I

n by declaring that i ∼ j if there exist sk1 , . . . , skt for some t ∈ Z+ such that
j = (skt · · · sk1) · i and skl

is admissible with respect to (skl−1 · · · sk1) · i for 1 ≤ l ≤ t .
Denote by W ′(Hc

n) the set of i ∈ I
n satisfying the properties (3), (4) and (5) in

Proposition 3.14. Observe that if i ∈ W ′(Hc
n) and sk is admissible with respect to i,

then the properties in Proposition 3.14 hold for sk · i and hence sk · i ∈ W ′(Hc
n). This

means there is an equivalence relation denoted by ∼ on W ′(Hc
n) inherited from the

equivalence relation ∼ on I
n. For each i ∈ W ′(Hc

n), set

Pi = {τ = skt · · · sk1 | skl
is admissible with respect to

skl−1 · · · sk1 · i,1 ≤ l ≤ t, t ∈ Z+}. (4.1)

Lemma 4.1 Let � ∈ W ′(Hc
n)/ ∼ and i ∈ �. Then the map

ϕ : Pi → �,τ �→ τ · i
is bijective.

Proof By the definitions of Pi and the equivalence relation ∼ on W ′(Hc
n), one can

check that ϕ is surjective. Note that if τ, σ ∈ Pi then σ−1τ ∈ Pi . Therefore, to check
the injectivity of ϕ, it suffices to show that for τ ∈ Pi if τ · i = i then τ = 1. Associated
to each j ∈ W ′(Hc

n), there exists a unique table �(j) whose ath column consists of all
numbers k with jk = a and is increasing for each a ∈ I. Since j ∈ W ′(Hc

n), jk �= jk+1
and hence k and k + 1 are in different columns in �(j) for each 1 ≤ k ≤ n − 1. This
means each simple transposition sk can naturally act on the table �(j) by switching
k and k + 1 to obtain a new table denoted by sk · �(j). It is clear that

sk · �(j) = �(sk · j), 1 ≤ k ≤ n − 1. (4.2)

Since τ ∈ Pi , we can write τ = skt skt−1 · · · sk1 so that skl
is admissible with respect

to skl−1 · · · sk1 · i for each 1 ≤ l ≤ t . Observe that skl−1 · · · sk1 · i ∈ W ′(Hc
n) and hence

there exists a table �(skl−1 · · · sk1 · i) as defined above for 1 ≤ l ≤ t . By (4.2) we have

skl
· �(skl−1 · · · sk1 · i) = �(skl

skl−1 · · · sk1 · i)
for 1 ≤ l ≤ t . This implies

τ · �(i) = skt · · · sk1 · �(i) = �(skt · · · sk1 · i) = �(i).

Therefore τ = 1. �

Before stating the main theorem of this section, we need the following two
lemmas. Let M ∈ RepI Hc

n be irreducible completely splittable and suppose Mi �=
0 for some i = (i1, . . . , in) ∈ I

n. Recall the linear operators 
k and �k on Mi

from (3.5) and (3.6). If sk is admissible with respect to i, then ik �= ik+1 ± 1 and
hence 2(q(ik) + q(ik+1)) �= (q(ik) − q(ik+1))

2. This implies that on Mi the linear
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operator �k acts as a nonzero scalar and hence is invertible. Therefore we can define
the linear map 	̂k as follows:

	̂k : Mi −→ M,

z �→(sk − 
k)
1

�k

z.

Lemma 4.2 Let M ∈ RepI Hc
n be irreducible completely splittable. Assume that

Mi �= 0 and that sk is admissible with respect to i for some i = (i1, . . . , in) ∈ I
n

and 1 ≤ k ≤ n − 1. Then,

(1) 	̂k satisfies

	̂kxk = xk+1	̂k, 	̂kxk+1 = xk	̂k, 	̂kxl = xl	̂k, (4.3)

	̂kck = ck+1	̂k, 	̂kck+1 = ck	̂k, 	̂kcl = cl	̂k, (4.4)

for 1 ≤ l ≤ n with |k − l| > 1. Hence for each z ∈ Mi , 	̂k(z) ∈ Msk ·i .
(2) 	̂2

k = 1, and hence 	̂k : Mi → Msk ·i is a bijection.
(3)

	̂j 	̂l = 	̂l	̂j if |j − l| > 1, (4.5)

	̂j 	̂j+1	̂j = 	̂j+1	̂j 	̂j+1. (4.6)

whenever both sides are well-defined.

Proof (1) Recalling the intertwining element 	k from (2.10), we see that

	̂k = 	k

1

x2
k − x2

k+1

1

�k

. (4.7)

This together with (2.12) and (2.13) implies (4.3) and (4.4). By (4.3), we have for any
z ∈ Mi ,

(x2
k − q(ik+1))	̂kz = 0, (x2

k+1 − q(ik))	̂kz = 0, (x2
l − q(il))	̂kz = 0,

for all l �= k, k + 1.

This means 	̂kz ∈ Msk ·i .
(2) By (2.11) and (4.7), one can check that for z ∈ Mi ,

	̂2
kz = 	2

k

1

(x2
k − x2

k+1)(x
2
k+1 − x2

k )

1

�2
k

z =
(

1 − 2(x2
k + x2

k+1)

(x2
k − x2

k+1)
2

) 1

�2
k

z = z.

Hence 	̂2
k = 1 and so 	̂k is bijective.

(3). If |j − l| > 1 and both 	̂j 	̂l and 	̂l	̂j are well-defined on Mi , then
by (2.12) and (4.7) we see that

	̂j 	̂l = 	j	l

1

�j�l(x
2
j − x2

j+1)(x
2
l − x2

l+1)
,
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	̂l	̂j = 	l	j

1

�l�j (x
2
l − x2

l+1)(x
2
j − x2

j+1)
.

This together with (2.14) implies (4.5). By (4.7), one can check that if both
	̂k	̂k+1	̂k and 	̂k+1	̂k	̂k+1 are well-defined on Mi then

	̂k	̂k+1	̂k = C	k	k+1	k,

	̂k+1	̂k	̂k+1 = C	k+1	k	k+1,

where C is the scalar

C = 1

(a − b)(a − c)(b − c)

√
1 − 2(a + b)

(a − b)2

√
1 − 2(a + c)

(a − c)2

√
1 − 2(b + c)

(b − c)2

with a = q(ik), b = q(ik+1), c = q(ik+2). Hence (4.6) follows from (2.14). �

Remark 4.3 Suppose that M ∈ RepIH
c
n is completely splittable. By Lemma 4.2, if

Mi �= 0 and j ∼ i, then Mj �= 0.

Lemma 4.4 Let M ∈ RepI Hc
n be irreducible completely splittable. Suppose that

Mi �= 0 for some i ∈ I
n and τ ∈ Pi . Write τ = skt · · · sk1 so that skl

is admissible
with respect to skl−1 · · · sk1 · i for 1 ≤ l ≤ t . Then

	̂τ := 	̂kt · · · 	̂k1 : Mi −→ Mτ ·i

is a bijection satisfying xk	̂τ = 	̂τ xτ(k) and ck	̂τ = 	̂τ cτ(k) for 1 ≤ k ≤ n. More-
over 	̂τ does not depend on the choice of the expression skt · · · sk1 for τ .

Proof Since skl
is admissible with respect to skl−1 · · · sk1 · i for 1 ≤ l ≤ t , each 	̂kl

is a well-defined bijection from Mskl−1 ·sk1 ·i to Mskl ·sk1 ·i by Lemma 4.2 and hence 	̂τ

is bijective. By (4.5) and (4.6), 	̂τ does not depend on the choice of the expression
skt · · · sk1 for τ . Using (4.3) and (4.4), we obtain xk	̂τ = 	̂τ xτ(k) and ck	̂τ = 	̂τ cτ(k)

for 1 ≤ k ≤ n. �

Suppose i ∈ W ′(Hc
n). Recall the definition of L(i)τ from Remark 3.7 for τ ∈ Pi .

Denote by Di the P c
n-module defined by

Di = ⊕τ∈Pi
L(i)τ . (4.8)

The following theorem is the main result of this paper.

Theorem 4.5 Suppose i, j ∈ W ′(Hc
n). Then,

(1) Di affords an irreducible Hc
n-module via

skz
τ =

{

kz

τ + �kz
skτ , if sk is admissible with respect to τ · i,


kz
τ , otherwise,

(4.9)
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for 1 ≤ k ≤ n − 1, z ∈ L(i) and τ ∈ Pi . It has the same type as the irreducible
P c

n -module L(i).
(2) Di ∼= Dj if and only if i ∼ j .
(3) Every irreducible completely splittable Hc

n-module in RepI Hc
n is isomorphic to

Di for some i ∈ W ′(Hc
n). Hence the equivalence classes W ′(Hc

n)/ ∼ parametrize
irreducible completely splittable Hc

n-modules in the category RepI Hc
n.

Proof (1). To show the formula (4.9) defines a Hc
n-module structure on Di , we need

to check the defining relations (2.2), (2.5), (2.6) and (2.7) on L(i)τ for each τ ∈ Pi .
One can show using (2.8) that


kxk − xk+1
k = −(1 + ckck+1). (4.10)

For 1 ≤ k ≤ n − 1, (xτ−1(k)z)
skτ = xk+1z

skτ by Remark 2.5 and hence if sk is admis-
sible with respect to τ · i, then

skxkz
τ = sk(xτ−1(k)z)

τ

= 
k(xτ−1(k)z)
τ + �k(xτ−1(k)z)

skτ

= 
kxkz
τ + xk+1�kz

skτ

= (
kxk − xk+1
k)z
τ + xk+1(
kz

τ + �kz
skτ )

= −(1 + ckck+1)z
τ + xk+1skz

τ by (4.10).

Otherwise we have

skxkz
τ = sk(xτ−1(k)z)

τ = 
k(xkz
τ )

= (
kxk − xk+1
k)z
τ + xk+1
kz

τ

= −(1 + ckck+1)z
τ + xk+1skz

τ by (4.10).

Therefore (2.5) holds. It is routine to check (2.6) and (2.7).
It remains to prove (2.2). It is clear by (2.6) that sksl = slsk if |l − k| > 1, so it

suffices to prove s2
k = 1 and sksk+1sk = sk+1sksk+1. For the remaining of the proof,

let us fix τ ∈ Pi and set j = τ · i. One can check using (2.8) and (4.9) that

s2
k zτ =

{
(
2

k + �2
k)z

τ , if sk is admissible with respect to j = τ · i

2

kz
τ , otherwise.

Hence if sk is admissible with respect to j = τ · i, then

s2
k zτ = 
2

kz
τ + �2

kz
τ =

(2(x2
k + x2

k+1)

(x2
k − x2

k+1)
2

)
zτ +

(
1 − 2(x2

k + x2
k+1)

(x2
k − x2

k+1)
2

)
zτ = zτ .

Otherwise we have jk = jk+1 ± 1. This implies 2(q(jk) + q(jk+1)) = (q(jk) −
q(jk+1))

2 and hence

s2
k zτ = 
2

kz
τ = 2(q(jk) + q(jk+1))

(q(jk) − q(jk+1))2
zτ = zτ .
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Therefore s2
k = 1 on Di for 1 ≤ k ≤ n−1. Next we shall prove sksk+1sk = sk+1sksk+1

for 1 ≤ k ≤ n − 2. Set ŝk = sk − 
k for 1 ≤ k ≤ n − 1. It is clear by (4.9) that

ŝkz
τ =

{
�kz

skτ , if sk is admissible with respect to j = τ · i,
0, otherwise.

If jk − jk+1 = ±1, jk+1 − jk+2 = ±1 or jk − jk+2 = ±1, then ŝk ŝk+1̂sk = 0 =
ŝk+1̂skŝk+1 on L(i)τ ; otherwise, one can show using (3.6) that

ŝk ŝk+1̂skz
τ =

(√
1 − 2(a + b)

(a − b)2

√
1 − 2(b + c)

(b − c)2

√
1 − 2(a + c)

(a − c)2

)
zτ = ŝk+1̂skŝk+1z

τ ,

for any z ∈ L(i), where a = q(jk), b = q(jk+1), c = q(jk+2). Hence

ŝk ŝk+1̂skz
τ = ŝk+1̂skŝk+1z

τ , for any z ∈ L(i),1 ≤ k ≤ n − 2. (4.11)

Fix 1 ≤ k ≤ n− 2. If jk �= jk+2, then 1
(x2

k −x2
k+1)(x

2
k −x2

k+2)(x
2
k+1−x2

k+2)
acts as the nonzero

scalar 1
(a−b)(a−c)(b−c)

on L(i)τ . Recalling the intertwining elements 	k from (2.10),
we see that

ŝk = 	k

1

x2
k − x2

k+1

.

This together with (2.14) shows that for any z ∈ L(i),

ŝk ŝk+1̂skz
τ = 	k	k+1	k

1

(x2
k − x2

k+1)(x
2
k − x2

k+2)(x
2
k+1 − x2

k+2)
zτ ,

and

ŝk+1̂skŝk+1z
τ = 	k+1	k	k+1

1

(x2
k − x2

k+1)(x
2
k − x2

k+2)(x
2
k+1 − x2

k+2)
zτ .

Hence by (4.11) we see that for any z ∈ L(i),

(	k	k+1	k − 	k+1	k	k+1)
1

(x2
k − x2

k+1)(x
2
k − x2

k+2)(x
2
k+1 − x2

k+2)
zτ = 0,

A tedious calculation shows that

	k	k+1	k − 	k+1	k	k+1

= (sksk+1sk − sk+1sksk+1)(x
2
k − x2

k+1)(x
2
k − x2

k+2)(x
2
k+1 − x2

k+2).

Therefore we obtain that if jk �= jk+2 then

sksk+1skz
τ = sk+1sksk+1z

τ , for any z ∈ L(i).

Now assume jk = jk+2, then by Lemma 3.12 we have either jk = jk+2 = 0, jk+1 = 1
or jk = jk+2 = p−3

2 , jk+1 = p−1
2 . Hence sk = 
k and sk+1 = 
k+1 on L(i)τ . We see
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from the proof of Lemma 3.12 that sksk+1sk = sk+1sksk+1. Therefore Di affords a
Hc

n-module by the formula (4.9).
Suppose N is a nonzero irreducible submodule of Di , then Nj �= 0 for some

j ∈ I
n. This implies (Di)j �= 0 and hence j ∼ i. Since τ · i ∼ i ∼ j , by Remark 4.3

we see that Nτ ·i �= 0 for all τ ∈ Pi . Observe that (Di)τ ·i ∼= L(τ · i) is irreducible as a
P c

n-module for τ ∈ Pi . Therefore Nτ ·i = (Di)τ ·i for τ ∈ Pi and hence N = Di . This
means Di is irreducible.

We shall show that Di has the same type as L(i). Suppose � ∈ EndHc
n
(Di). Note

that for each τ ∈ Pi and 1 ≤ k ≤ n − 1, if sk is admissible with respect to τ · i, then
for any z ∈ L(i),

�k�(zskτ ) = �(�kz
skτ ) = �(skz

τ − 
kz
τ ) = sk�(zτ ) − 
k�(zτ ). (4.12)

Since sk is admissible with respect to j := τ · i, jk �= jk+1 ± 1 and hence �k acts as
a nonzero scalar on L(i)skτ . By (4.12) we see that �(zskτ ) is uniquely determined
by �(zτ ) for any τ ∈ Pi . Since each τ can be written as τ = skt · · · sk1 so that skl

is
admissible with respect to skl−1 · · · sk1 · i, we deduce �(zτ ) is uniquely determined
by �(z) for any z ∈ L(i). Therefore � is uniquely determined by its restriction to
the P c

n-submodule L(i). Clearly the image of restriction of � to L(i) is contained in
L(i) by Lemma 4.1. This implies

dimF EndHc
n
(Di) ≤ dimF EndP c

n
(L(i)). (4.13)

One the other hand, it is routine to check that each P c
n-endomorphism ρ : L(i) →

L(i) induces a Hc
n-endomorphism ⊕τ∈Pi

ρτ : Di → Di , where ρτ (zτ ) = (ρ(z))τ .
Therefore

dimF EndHc
n
(Di) ≥ dimF EndP c

n
(L(i)).

This together with (4.13) shows dimF EndHc
n
(Di) = dimF EndP c

n
(L(i)) and hence

Di has the same type as P c
n-module L(i).

(2). If Di ∼= Dj , then (Di)j �= 0 and hence i ∼ j . Conversely, by Lemma 4.1, there
exists σ ∈ Pi such that j = σ · i. By Remark 2.5, we have L(j) ∼= L(i)σ and hence
there exists a linear map φ : L(j) → L(i) such that the map L(j) → L(i)σ , u �→
(φ(u))σ is a P c

n-isomorphism. For each π ∈ Pj , set

φπ : L(j)π −→ L(i)πσ

uπ �→ (φ(u))πσ .

It is routine to check that

⊕π∈Pj
φπ : Dj −→ Di

is a nonzero Hc
n-homomorphism. This means Di ∼= Dj since both of them are irre-

ducible.
(3). Suppose M ∈ RepI Hc

n is irreducible completely splittable with Mi �= 0 for
some i ∈ I

n. By Proposition 3.6, there exists a P c
n-isomorphism ψ : Mi → L(i). By
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Lemma 4.4, for each τ ∈ Pi , there exists a bijection 	̂τ : Mi → Mτ ·i . Now for τ ∈ Pi ,
define

ψτ : L(i)τ −→ Mτ ·i , zτ �→ 	̂τ (ψ(z)).

By Lemma 4.4, the bijection 	̂τ satisfies 	̂τ xk = xτ(k)	̂τ , 	̂τ ck = cτ(k)	̂τ for 1 ≤
k ≤ n. Hence for z ∈ L(i), τ ∈ Pi and 1 ≤ k ≤ n,

ψτ (xkz
τ ) = ψτ ((xτ−1(k)z)

τ ) = 	̂τ (ψ(xτ−1(k)z))

= 	̂τ (xτ−1(k))ψ(z) = xk	̂τ (ψ(z)) = xkψ
τ (zτ ).

Similarly one can show that ψτ (ckz
τ ) = ckψ

τ (zτ ). Therefore ψτ is a P c
n-homomor-

phism. By Proposition 3.14 we have W(Hc
n) ⊆ W ′(Hc

n) and hence i ∈ W ′(Hc
n). By the

fact that ψτ is a P c
n-module homomorphism for each τ ∈ Pi , one can easily check

that

⊕τ∈Pi
ψτ : Di −→ M

is a Hc
n-module isomorphism.

Remark 4.6 Observe that Theorem 4.5 confirms a slightly modified version of [10,
Conjecture 52]. Leclerc defined a completely splittable representation to be one on
which the x2

k ,1 ≤ k ≤ n act semisimply.
�

By Proposition 3.14 we have W(Hc
n) ⊆ W ′(Hc

n). By Theorem 4.5 we obtain the
following.

Corollary 4.7 We have W(Hc
n) = W ′(Hc

n).

5 A diagrammatic classification

In this section, we shall give a reinterpretation of irreducible completely splittable
Hc

n-modules in terms of Young diagrams.
Let λ = (λ1, . . . , λl) be a partition of the integer |λ| = λ1 + · · · + λl , where λ1 ≥

· · · ≥ λl ≥ 1. Denote by l(λ) the number of nonzero parts in λ. It is known that the
partition λ can be drawn as Young diagrams.

A strict partition λ (i.e. with distinct parts) can be identified with the shifted Young
diagram which is obtained from the ordinary Young diagram by shifting the kth row
to the right by k − 1 squares, for all k > 1. For example, let λ = (4,2,1), the corre-
sponding shifted Young diagram is

From now on, we shall always identify strict partitions with their shifted Young
diagrams. If λ and μ are strict partitions such that μk ≤ λk for all k, we write μ ⊆ λ.
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A skew shifted Young diagram λ/μ is defined to be the diagram obtained by removing
the shifted Young diagram μ from λ for some strict partitions μ ⊆ λ (see examples
below). Note that any skew shifted Young diagram is a union of connected compo-
nents. Moreover, different pairs of strict partitions may give an identical skew shifted
Young diagram.

A placed skew shifted Young diagram (c, λ/μ) consists of a skew shifted Young
diagram λ/μ and a content function c : {boxes of λ/μ} −→ Z+ which is increasing
from southwest to northeast in each connected component of λ/μ and satisfies the
following:

(1) c(A) = c(B), if and only if A and B are on the same diagonal,
(2) c(A) = c(B) + 1, if and only if A and B are on the adjacent diagonals,

(3) c(A) = 0, if the box A is located in λ/μ as and there is no box below A.

A standard tableau of the shape λ/μ is a labeling of the skew shifted Young diagram
λ/μ with the numbers 1,2, . . . , |λ|− |μ| such that the numbers strictly increase from
left to right along each row and down each column. If T is a tableau of the shape
λ/μ, denote by T (k) the box of λ/μ labeled by k in T for 1 ≤ k ≤ |λ| − |μ|.

Example 5.1 Let λ = (9,8,5,2,1) and μ = (7,5,4). The skew shifted Young dia-
gram λ/μ is as follows:

A standard tableau T of shape λ/μ:

A placed skew shifted Young diagram (c, λ/μ):

satisfying (c(T (1)), . . . , c(T (9))) = (7,5,0,4,6,1,8,7,0).
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Remark 5.2 For each shifted Young diagram λ, there exists one and only one content
function cλ defined by setting the contents of boxes on the first diagonal to be 0.
Moreover, each placed skew shifted Young diagram can be obtained by removing
a shifted Young diagram μ associated with cμ from the shifted Young diagram λ

associated with cλ for some strict partitions μ ⊆ λ.
If we modify the definition of placed skew shifted Young diagram by allowing

non-integer contents and by adding that the difference between contents of two boxes
is an integer if and only if they belong to the same connected component, then
placed skew shifted Young diagrams may be used for the study of “non-integral”
Hc

n-modules.

For each n ∈ Z+, denote by P S(n) the set of placed skew shifted Young diagrams
with n boxes and set

�(n) := {((c, λ/μ),T ) | (c, λ/μ) ∈ P S(n), T is a standard tableau of shape λ/μ}.
For each ((c, λ/μ),T ) ∈ �(n), define

F ((c, λ/μ),T ) := (c(T (1)), . . . , c(T (n))). (5.1)

A vector i ∈ Z
n+ is said to be splittable if it satisfies that if ik = il = u for some 1 ≤

k < l ≤ n then u = 0 implies 1 ∈ {ik+1, . . . , il−1} and u ≥ 1 implies {ik − 1, ik + 1}
⊆ {ik+1, . . . , il−1}. Denote by ∇(n) the subset of I

n consisting of splittable vectors.

Lemma 5.3 The map F in (5.1) sends �(n) to ∇(n).

Proof Suppose ((c, λ/μ),T ) ∈ �(n), we need to show that (c(T (1)), . . . , c(T (n)))

is splittable. Suppose c(T (k)) = c(T (l)) = u for some 1 ≤ k < l ≤ n. Without loss of
generality, we can assume that u /∈ {c(T (k + 1)), . . . , c(T (l − 1))}. This means that
there is a configuration in T of the form

.

Since (c, λ/μ) is a placed skew shifted Young diagram and T is standard, there exists
a box labeled by j located in T as in the configuration

for some k < j < l and moreover c(T (j)) = u + 1. If u = 0, then there is no box be-
low the box labeled by k and c(T (j)) = 1. This implies 1 ∈ {c(T (k+1)), . . . , c(T (l−
1))}. If u ≥ 1, then there is a box labeled by t below the box labeled by k and
c(T (t)) = u − 1, that is, T contains the following configuration
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for some k < s �= t < l. This implies that {u − 1, u + 1} ⊆ {c(T (k + 1)), . . . ,

c(T (l − 1))}. Hence (c(T (1)), . . . , c(T (n))) ∈ ∇(n). �

Given i ∈ ∇(n), by induction on n we can produce a pair G(i) = ((c, λ/μ),T ) ∈
�(n) satisfying c(T (k)) = ik for 1 ≤ k ≤ n. If n = 1, let G(i) be a box labeled by
1 with content i1. Assume inductively that G(i′) = ((c′, λ′/μ′), T ′) ∈ �(n − 1) is
already defined, where i′ = (i1, . . . , in−1) ∈ ∇(n − 1). Set u = in.
Case 1: (c′, λ′/μ′) contains neither a box with content u − 1 nor a box with content
u + 1. Adding a new component consisting of one box labeled by n with content u

to T ′, we obtain a new placed skew shifted Young diagram (c, λ/μ) and a standard
tableau T of shape λ/μ. Set G(i) = ((c, λ/μ),T ).
Case 2: (c′, λ′/μ′) contains boxes with content u − 1 but no box with content u + 1.
This implies u + 1 /∈ {i1, . . . , in}. Since (i1, . . . , in) is splittable, u does not appear in
i′ and hence u − 1 appears only once in i′ by Lemma 3.13. Therefore there is no box
of content u and only one box denoted by A with content u − 1 in ((c′, λ′/μ′), T ′).
So we can add a new box labeled by n with content u to the right of A to obtain
a new tableau T of shape (c, λ/μ). Set G(i) = ((c, λ/μ),T ). Observe that there is
no box above A in the column containing A since there is no box of content u in
((c′, λ′/μ′), T ′). Hence G(i) ∈ �(n).
Case 3: (c′, λ′/μ′) contains boxes with content u + 1 but no box with content u − 1.
This implies u − 1 /∈ {i1, . . . , in}. Since (i1, . . . , in) is splittable, u does not appear in
i′ and hence u+1 appears only once in i′ by Lemma 3.13. Therefore ((c′, λ′/μ′), T ′)
contains only one box denoted by B with content u + 1 and no box with content u.
This means there is no box below B in ((c′, λ′/μ′), T ′). Adding a new box labeled
by n with content u below B , we obtain a new tableau T of shape (c, λ/μ). Set
G(i) = ((c, λ/μ),T ). Clearly G(i) ∈ �(n).
Case 4: (c′, λ′/μ′) contains boxes with contents u − 1 and u + 1. Let C and D be
the last boxes on the diagonals with content u − 1 and u + 1, respectively. Suppose
C is labeled by s and D is labeled by t . Then is = u − 1, it = u + 1 and moreover
u − 1 /∈ {it+1, . . . , in−1}, u + 1 /∈ {is+1, . . . , in−1}. Since in = u, by Lemma 3.13 we
see that u /∈ {it+1, . . . , in−1} and u /∈ {is+1, . . . , in−1}. This implies that there is no
box below C and no box to the right of D in ((c′, λ′/μ′), T ′). Moreover C and D

must be of the following shape

.

Add a new box labeled by n to the right of D and below C to obtain a new tableau T

of shape (c, λ/μ). Set G(i) = ((c, λ/μ),T ). It is clear that G(i) ∈ �(n).
Therefore we obtain a map

G : ∇(n) −→ �(n) (5.2)

satisfying i = (c(T (1)), . . . , c(T (n))) if G(i) = ((c, λ/μ),T ). In this case, we will
say that G(i) affords the placed skew shifted Young diagram (c, λ/μ).
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Example 5.4 Suppose n = 5. The map G maps the splittable vector i = (1,2,0,1,0) ∈
∇(5) to the pair ((c, λ/μ),T ) ∈ �(5) with

(c, λ/μ) = , T = .

Proposition 5.5 The map G in (5.2) is a bijection from ∇(n) to �(n) with inverse F .

Proof It is clear that F ◦ G(i) = i for any i ∈ ∇(n) by (5.2). It remains to prove that
G ◦ F ((c, λ/μ),T ) = ((c, λ/μ),T ) for any ((c, λ), T ) ∈ �(n). We shall proceed by
induction on n. Denote by A the box labeled by n in T . Removing A from (c, λ/μ)

and T , we obtain a new pair ((c′, λ′/μ′), T ′) ∈ �(n − 1). By induction we see that

G ◦ F (((c′, λ′/μ′), T ′)) = ((c′, λ′/μ′), T ′).

This means G((c(T (1)), . . . , c(T (n − 1)))) = ((c′, λ′/μ′), T ′). By adding a box de-
noted by B labeled by n with content c(T (n)) to ((c′, λ′/μ′), T ′) by the procedure
for defining G , we obtain G((c(T (1)), . . . , c(T (n)))). One can check case by case
that B coincides with A and hence G((c(T (1)), . . . , c(T (n)))) = ((c, λ/μ),T ). This
means G ◦ F ((c, λ/μ),T ) = G((c(T (1)), . . . , c(T (n)))) = ((c, λ/μ),T ). �

Lemma 5.6 Suppose i, j ∈ ∇(n). Then i ∼ j if and only if G(i) and G(j) afford the
same placed skew shifted Young diagram.

Proof Suppose that G(i) and G(j) afford the same placed skew shifted Young
diagram (c, λ/μ). This means that there exist standard tableaux T and S of
shape λ/μ such that (i1, . . . , in) = (c(T (1)), . . . , c(T (n))) and (j1, . . . , jn) =
(c(S(1)), . . . , c(S(n))). We shall prove i ∼ j by induction on n. Let T0 be the tableau
of shape λ/μ obtained by filling in the numbers 1, . . . , n from left to right along the
rows, starting from the first row and going down. Clearly T0 is standard and hence
we have (c(T0(1)), . . . , c(T0(n))) ∈ ∇(n) by Lemma 5.3. Let A be the last box of
the last row of λ/μ. Then in T0, A is occupied by n. Suppose in T , A is occupied
by the number k. Clearly k + 1 and k do not lie on adjacent diagonals in T , hence
the transposition sk is admissible with respect to i. So we can apply sk to swap k and
k+1, then to swap k+1 and k+2, and finally we obtain a new standard tableau T1 in
which A is occupied by n and moreover i ∼ (c(T1(1)), . . . , c(T1(n))). Observe that A

is occupied by n in both T1 and T0. Hence both G((c(T1(1)), . . . , c(T1(n − 1)))) and
G((c(T0(1)), . . . , c(T0(n− 1)))) contains the placed skew shifted Young diagram ob-
tained by removing A from (c, λ/μ). By induction we have (c(T1(1)), . . . , c(T1(n −
1))) is equivalent to (c(T0(1)), . . . , c(T0(n−1))) and then (c(T1(1)), . . . , c(T1(n))) ∼
(c(T0(1)), . . . , c(T0(n))). Therefore we obtain i ∼ (c(T0(1)), . . . , c(T0(n))). Simi-
larly, we can apply the above argument to P to obtain j ∼ (c(T0(1)), . . . , c(T0(n))).
Hence i ∼ j .

Conversely, it suffices to check the case when j = sk · i, where sk is admis-
sible with respect to i for some 1 ≤ k ≤ n − 1. This is reduced to show that
G((i1, . . . , ik−1, ik, ik+1)) and G((i1, . . . , ik−1, ik+1, ik)) afford the same placed skew
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shifted Young diagram. Suppose G((i1, . . . , ik−1)) affords the placed skew shifted
Young diagram (c, λ/μ). Since sk is admissible with respect to i, we have ik �=
ik+1 ± 1 and hence the resulting placed skew shifted Young diagram obtained by
adding two boxes with contents ik, ik+1 in two different orders to (c, λ/μ) via the
procedure for defining G are identical. �

5.1 A diagrammatic classification for p = 0

In this subsection, we assume that p = 0. By Proposition 3.14, W ′(Hc
n) consists of

all splittable vectors in Z
n+ and hence W ′(Hc

n) = ∇(n). Recall the definition of Hc
n-

module Di from Theorem 4.5 for i ∈ W ′(Hc
n). Suppose (c, λ/μ) ∈ P S(n), by Propo-

sition 5.5 there exists i ∈ W ′(Hc
n) such that G(i) affords (c, λ/μ). Let

D(c,λ/μ) = Di. (5.3)

Note that if j ∈ W ′(Hc
n) satisfies that G(j) also affords (c, λ/μ), then i ∼ j by

Lemma 5.6 and hence the Hc
n-module D(c,λ/μ) is unique (up to isomorphism) by

Theorem 4.5(2).
For (c, λ/μ) ∈ P S(n), denote by γ0(c, λ/μ) the number of boxes with content

zero in (c, λ/μ) and let f λ/μ be the number of standard tableaux of shape λ/μ.
The following is a Young diagrammatic reformulation of Theorem 4.5 for p = 0.

Theorem 5.7 Suppose that (c, λ/μ) ∈ P S(n) and write γ0 = γ0(c, λ/μ).
(1) D(c,λ/μ) is type M if γ0 is even and is type Q if γ0 is odd. Moreover,

dimD(c,λ/μ) = 2n−� γ0
2 �f λ/μ.

(2) The Hc
n-modules D(c,λ/μ) for (c, λ/μ) ∈ P S(n) form a complete set of pair-

wise non-isomorphic irreducible completely splittable Hc
n-modules in RepI Hc

n.

Proof (1) Suppose (c, λ/μ) ∈ P S(n) and G(i) affords (c, λ/μ) for some i ∈ W(Hc
n).

By Proposition 5.5, we have i = (c(T (1)), . . . , c(T (n))) and hence the number of 1 ≤
k ≤ n with ik = 0 is equal to γ0. This together with Lemma 2.4 and Theorem 4.5(1)
shows that Di is type M if γ0 is even and is type Q if γ0 is odd. Denote by |Pi |
the number of elements contained in Pi . By Lemma 5.6, there exists a one-to-one
correspondence between the set of weights in W(Hc

n) equivalent to i and the set of
standard tableaux of shape λ/μ. Hence f λ/μ = |Pi | by Lemma 4.1. This together
with Lemma 2.4 and Theorem 4.5 shows that

dimD(c,λ/μ) = dimDi = 2n−� γ0
2 �|Pi | = 2n−� γ0

2 �f λ/μ.

(2) It follows from Proposition 5.5, Lemma 5.6 and Theorem 4.5. �

5.2 A diagrammatic classification for p ≥ 3

In this subsection, we assume p ≥ 3. Set

W1(H
c
n) =

{
i ∈ W(Hc

n) |ik − 1 ∈ {ik+1, . . . , il−1} whenever
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1 ≤ ik = il ≤ p − 3

2
with 1 ≤ k < l ≤ n

}
,

W2(H
c
n) =

{
i ∈ W(Hc

n) | there exist 1 ≤ k < l ≤ n such that 1 ≤ ik = il ≤ p − 3

2
,

ik − 1 /∈ {ik+1, . . . , il−1}
}
.

Observe that W(Hc
n) is the disjoint union of W1(H

c
n) and W2(H

c
n). Moreover if i ∈

Wk(H
c
n) and j ∼ i, then j ∈ Wk(H

c
n) for k = 1,2. For each u ∈ Z+ and m ≥ 1, let

P S u(m) be the set of placed skew shifted Young diagrams (c, λ/μ) with m boxes
such that the contents of boxes of λ/μ are smaller than or equal to u. For n ∈ Z+, set

�1(n) = {((c, λ/μ),T ) | (c, λ/μ) ∈ P S p−1
2

(n),

T is a standard tableau of shape λ/μ}.
By Lemma 3.13, we see that W1(H

c
n) ⊆ ∇(n).

Proposition 5.8 The restriction of the map G in (5.2) to W1(H
c
n) gives a bijection

G1 : W1(H
c
n) → �1(n). Moreover, i ∼ j ∈ W1(H

c
n) if and only if G1(i) and G1(j)

afford the same placed skew shifted Young diagram.

Proof Observe that W1(H
c
n) can be identified with the subset of ∇(n) consisting of

splittable vectors whose parts are less than or equal to p−1
2 . Hence by Proposition 5.5,

the restriction G1 of the map G establishes a bijection between W1(H
c
n) and �1(n).

Now the rest of the Proposition follows from Lemma 5.6. �

For each i ∈ W2(H
c
n), denote by 1 ≤ ui ≤ p−3

2 the minimal integer such that there
exist 1 ≤ k < l ≤ n satisfying ik = il = ui and ui − 1 /∈ {ik+1, . . . , il−1}. By the defi-
nition of W2(H

c
n), we see that ui always exists.

Lemma 5.9 Let i ∈ W2(H
c
n) and write u = ui .

(1) There exists a unique sequence of integers 1 ≤ r0 < r1 < . . . < rp−3
2 −u

< q <

tp−3
2 −u

< . . . < t1 < t0 ≤ n such that

(a) iq = p−1
2 , irj = itj = u + j for 0 ≤ j ≤ p−3

2 ,
(b) ia �= u − 1 for all r0 ≤ a ≤ t0,
(c) ib ≤ u − 1 for all b �= r0, r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t1, t0.

(2) i ∼ (i ′, u,u + 1, . . . ,
p−3

2 ,
p−1

2 ,
p−3

2 , . . . , u + 1, u,u − 1, . . . , u − m) for some
i′ ∈ ∇(n − p + 2u − m) whose parts are less than u and some 0 ≤ m ≤ u.

Proof (1) By Proposition 3.14, there exists a sequence of integers r0 < r1 < · · · <

rp−3
2 −u

< q < tp−3
2 −u

< · · · < t1 < t0 such that iq = p−1
2 , irj = itj = u+ j , and u+ j

does not appear between irj and itj in i for each 0 ≤ j ≤ p−3
2 − u. Hence it suffices

to prove (1)(c). Assume that ib = u + k for some 0 ≤ k ≤ p−3
2 − u and some b /∈
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{r0, . . . , r p−3
2 −u

, q, t p−3
2 −u

, . . . , t0}. Since u + k does not appear between irk and itk ,

we see that either b < rk or b > tk . Now assume b < rk . Since ib = u + k = irk ,
by Lemma 3.13 there exists b1 with b < b1 < rk and ib1 = u + k + 1. Again since
ib1 = u + k + 1 = irk+1 , using Lemma 3.13 there exists b2 with b1 < b2 < rk+1 such
that ib2 = u + k + 2. Continuing in this way, we finally obtain an integer f satisfying
f < rp−3

2 −u−1 and if = p−3
2 . By Lemma 3.13, p−1

2 appears between if and ir p−3
2 −u

.

So p−1
2 appears at least twice in i since iq = p−3

2 and q > rp−3
2 −u

. This contradicts

Proposition 3.14. An identical argument holds for the case when b > tk . Therefore
ib ≤ u − 1 for all b /∈ {r0, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0}.

(2) As shown in (1), there exists a sequence of integers r0 < r1 < . . . < rp−3
2 −u

<

q < tp−3
2 −u

< . . . < t1 < t0 such that iq = p−1
2 , irj = itj = u + j for 0 ≤ j ≤ p−3

2 .

If u − 1 does not appear after it0 in i, then ia ≤ u − 2 for all a ∈ {r0, r0 +
1, . . . , n} \ {r0, r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0} by (1)(c). By applying admissi-

ble transpositions we can swap ik with il in i for all k ∈ {r0, r0 + 1, . . . , n} \
{r0, r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0} and l ∈ {r0, r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0}.

Finally we obtain an element of the form (. . . , u,u + 1, . . . ,
p−3

2 ,
p−1

2 ,
p−3

2 , . . . ,

u + 1, u).
Now assume u − 1 appears after it0 in i. Since ib �= u for all b > t0 by (1)(c), we

see that u − 1 appears at most once after it0 in i by Lemma 3.13. Therefore there
exists a unique l1 > t0 such that il1 = u − 1. If u − 2 does not appear after il1 , then
ia ≤ u−3 for all a ∈ {r0, r0 +1, . . . , n} \ {r0, r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0, l1} by

(1)(c). Hence we can apply admissible transpositions to i to obtain an element of the
form (. . . , u,u + 1, . . . ,

p−3
2 ,

p−1
2 ,

p−3
2 , . . . , u + 1, u,u − 1).

Now assume u−2 appears after il1 . Since u−1 appears only once with il1 = u−1
after it0 in i, we see that ib �= u − 1 for all b > l1 and hence u − 2 appears at most
once after il1 in i by Lemma 3.13. This means there exists a unique l2 > l1 such that
il2 = u − 2. By repeating the above process, we arrive at the claim in (2). �

By Lemma 5.9, for i ∈ W2(H
c
n), there exists a unique vector î as follows

î = (i1, . . . , ir0, . . . , îr1, . . . , îq , . . . , ît1 , . . . , ît0 , . . . , in), (5.4)

which is obtained by removing ir1 , . . . , ir p−3
2 −ui

, iq , it p−3
2 −ui

, . . . , it1, it0 from i.

Lemma 5.10 The following holds for i, j ∈ W2(H
c
n).

(1) î has a unique part equal to ui and all other parts are less than ui .

(2) î is splittable.

(3) î ∼ ĵ if i ∼ j .

Proof (1). It follows from the definition of î.
(2). Suppose i ∈ W2(H

c
n). By Lemma 5.9, there exists a unique sequence of inte-

gers r0 < r1 < . . . < rp−3
2 −u

< q < tp−3
2 −u

< . . . < t1 < t0 such that iq = p−1
2 , irj =
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itj = u + j for 0 ≤ j ≤ p−3
2 and ia �= u − 1, ib ≤ u − 1 for all r0 ≤ a ≤ t0 and

b �= r0, r1, . . . , r p−3
2 −u

, q, t p−3
2 −u

, . . . , t1, t0. Assume ik = il = v for some k < l /∈
{r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0}. To show î is splittable, we need to show that if

v = 0 then 1 appears between ik and il in î and if 1 ≤ v ≤ u − 1 then v − 1 and
v + 1 appear between ik and il in î. One can easily check the case when v = 0.
Now assume v ≥ 1. If 1 ≤ v < u − 1, by the choice of u there exist k < s, t < l

such that is = v − 1, it = v + 1. Observe that v − 1 < u − 2, v + 1 ≤ u − 1. Hence
s, t �= r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t0. This means v − 1 and v + 1 appear between

ik and il in î. Now assume v = u − 1. Since there are no parts equal to u before ir0

and after it0 in i, it follows from Lemma 3.13 that u − 1 appears at most once be-
fore ir0 and after it0 in i, respectively. This together with the fact that ia �= u − 1 for
r0 < a < t0 shows a < r0 and b > t0. By the choice of u, there exists a < c < b such
that ic = u − 2. This together with ir0 = u shows that v − 1 = u − 2 and v + 1 = u

appear between ik and il in î.
(2). It suffices to check the case when j = sk · i ∈ W2(H

c
n), where sk is admissible

with respect to i. If {k, k + 1} ∩ {r1, . . . , r p−3
2 −u

, q, t p−3
2 −u

, . . . , t1, t0} = ∅, then ĵ =
sk · î and hence ĵ ∼ î. Otherwise we see that ĵ = î. �

Suppose 1 ≤ u ≤ p−3
2 and (c, λ/μ) ∈ P S u(m) for some m ∈ Z+. Observe that

there exists at most one box with content u in (c, λ/μ). Let us denote by P S ∗
u(m) ⊆

P S u(m) the subset consisting of placed skew shifted Young diagrams which contain
a unique box of content u. Suppose (c, λ/μ) ∈ P S ∗

u(m) and let A(c,λ/μ) be the unique
box of content u. Add p − 2u− 1 boxes to the right of A(c,λ/μ) in the row containing
A(c,λ/μ) to obtain a skew shifted Young diagram denoted by λ/μ. A standard tableau
of shape λ/μ is said to be p-standard if it satisfies that if there exists a box below
A(c,λ/μ) then it is labeled by a number greater than the one in the last box in the row
containing A(c,λ/μ). For n ∈ Z+, set

�2(n) =
{
((c, λ/μ),S) |(c, λ/μ) ∈ P S ∗

u(n − p + 2u + 1), S is a p-standard

tableau of shape λ/μ,1 ≤ u ≤ p − 3

2

}
.

Suppose i ∈ W2(H
c
n) and set u = ui . By Lemma 5.9, there exists a unique se-

quence of integers r0 < r1 < . . . < rp−3
2 −u

< q < tp−3
2 −u

< . . . < t1 < t0 such that

iq = p−1
2 , irj = itj = u + j for 0 ≤ j ≤ p−3

2 . Since the vector î in (5.4) is split-
table, by Lemma 5.10(2) we apply the map G in (5.2) to î to get a placed skew
shifted Young diagram (c, λ/μ) and a standard tableau T of shape λ/μ whose boxes
are labeled by {1, . . . , n} \ {r1, . . . , r p−3

2 −u
, . . . , t1, t0}. By Lemma 5.10(1), we have

(c, λ/μ) ∈ P S ∗
u(n − p + 2u + 1). Label the boxes in λ/μ on the right of A(c,λ/μ)

by r1, . . . , r p−3
2 −u

, q, t p−3
2 −u

, . . . , t1, t0 consecutively and denote the resulting tableau

by S. Observe that A(c,λ/μ) is labeled by r0 and hence the row containing A(c,λ/μ) in
S is increasing. If there exists a box denoted by B below A(c,λ/μ), then B has content
u − 1. Suppose B is labeled by e, then ie = u − 1 and e > r0. Hence e > t0 since
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ik �= u − 1 for r0 ≤ k ≤ t0. Therefore S is p-standard. Set G2(i) := ((c, λ/μ),S).
Hence we obtain a map

G2 : W2(H
c
n) −→ �2(n). (5.5)

If G2(i) = ((c, λ/μ),S), we say G2(i) affords the placed skew shifted Young diagram
(c, λ/μ).

Example 5.11 Suppose p = 7 and n = 7. Note that the vector i = (1,2,0,3,2,1,0)

belongs to W2(H
c
7) with ui = 2 and î = (1,2,0,1,0). By Example 5.4, we see that

the map G2 sends i to the pair ((c, λ/μ),S) with

(c, λ/μ) = , λ/μ = , S = .

On the other hand, suppose (c, λ/μ) ∈ P S ∗
u(n−p + 2u+ 1) for 1 ≤ u ≤ p−3

2 and
S is p-standard tableau of shape λ/μ. Assume that the boxes on the right of A(c,λ/μ)

in S are labeled by r1, . . . , r p−3
2 −u

, q, t p−3
2 −u

, . . . , t1, t0. Define the contents of these

additional boxes by setting c(S(q)) = p−1
2 , c(S(t0)) = u and c(S(rj )) = u + j =

c(S(tj )) for 1 ≤ j ≤ p−3
2 − u. Set

F2((c, λ/μ),S) := (c(S(1)), . . . , c(S(n))). (5.6)

Lemma 5.12 The map F2 in (5.6) sends �2(n) to W2(H
c
n).

Proof Suppose ((c, λ/μ),S) ∈ �2(n) so that (c, λ/μ) ∈ P S ∗
u(n − p + 2u + 1) for

1 ≤ u ≤ p−3
2 . Assume that c(S(k)) = c(S(l)) = v for some 1 ≤ k < l ≤ n.

If 0 ≤ v ≤ u − 1, both boxes S(k) and S(l) belong to (c, λ/μ). Hence 1 ∈
{c(S(k+1)), . . . , c(S(l−1))} if v = 0, and {v−1, v+1} ⊆ {c(S(k+1)), . . . , c(S(l−
1))} if 1 ≤ v ≤ u − 1. Now v = u + m for some 0 ≤ m ≤ p−3

2 − u. Sup-
pose the box A(c,λ/μ) is labeled by r0 and the boxes on its right in S are la-
beled by r1, . . . , r p−3

2 −u
, q, t p−3

2 −u
, . . . , t1, t0. By the definition of F2, the boxes

S(k) and S(l) coincide with S(rm) and S(tm), respectively. Therefore (c(S(k +
1)), . . . , c(S(l − 1))) contains the subsequence (v + 1, . . . ,

p−3
2 ,

p−1
2 ,

p−3
2 , . . . ,

v + 1), and F2((c, λ/μ),S) ∈ W2(H
c
n). �

Proposition 5.13 The map G2 : W2(H
c
n) → �2(n) is a bijection with inverse F2.

Proof It is clear that F2 ◦ G2(i) = i for i ∈ W2(H
c
n). Conversely, suppose (c, λ/μ) ∈

P S ∗
u(n − p + 2u + 1) and S is a p-standard tableau of shape λ/μ for some 1 ≤ u ≤

p−3
2 . Set i = F2((c, λ/μ),S) ∈ W2(H

c
n). Denote by T the standard tableau of shape

λ/μ obtained by removing the p − 2u − 1 boxes on the right of A(c,λ/μ) from S.
Suppose the boxes of T are labeled by l1 < l2 < · · · < ln−p+2u+1. By the definition
of F2 we have

î = (c(T (l1)), . . . , c(T (ln−p+2u+1))) = F ((c, λ/μ),T ).
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Therefore G (̂i) = G ◦ F ((c, λ/μ),T ) = ((c, λ/μ),T ) by Proposition 5.5. Note that
G2(i) is obtained by adding p−2u−1 boxes labeled by {1, . . .}\ {l1, . . . , ln−p+2u+1}
to the right of A(c,λ/μ) in T . Since T is obtained by removing the p−2u−1 boxes on
the right of A(c,λ/μ) from S, G2(i) = ((c, λ/μ),S) and hence G2 ◦ F2((c, λ/μ),S) =
((c, λ/μ),S). �

Lemma 5.14 i ∼ j ∈ W2(H
c
n) if and only if G2(i) and G2(j) afford the same placed

skew shifted Young diagram in P S ∗
u(n − p + 2u + 1) for some 1 ≤ u ≤ p−3

2 .

Proof By Lemma 5.10, if i ∼ j , then î ∼ ĵ . By Lemma 5.6, G (̂i) and G (̂j ) afford
the same skew shifted Young diagram. Hence G2(i) and G2(j) afford the same placed

skew shifted Young diagram (c, λ/μ) ∈ P S ∗
u(n−p+2u+1) for some 1 ≤ u ≤ p−3

2 .
Conversely, suppose G2(i) and G2(j) afford the same placed skew shifted Young

diagram (c, λ/μ) ∈ P S ∗
u(n − p + 2u + 1) for some 1 ≤ u ≤ p−3

2 . Suppose there are
m boxes below A(c,λ/μ) in (c, λ/μ). By Lemma 5.9, we see that

i ∼ (i′, u,u + 1, · · · ,
p − 3

2
,
p − 1

2
,
p − 3

2
, · · · , u + 1, u,u − 1, · · · , u − m),

(5.7)

j ∼ (j ′, u,u + 1, · · · ,
p − 3

2
,
p − 1

2
,
p − 3

2
, · · · , u + 1, u,u − 1, · · · , u − m).

(5.8)

for some i′, j ′ ∈ ∇(n − p + 2u − m). This together with Lemma 5.10 shows that

î ∼ (i′, u,u − 1, · · · , u − m)

ĵ ∼ (j ′, u,u − 1, · · · , u − m).

Observe that G (̂i) and G (̂j ) afford the placed skew shifted Young diagram (c, λ/μ).
Therefore G(i′) and G(j ′) afford the same placed skew shifted Young diagram and
hence i′ ∼ j ′ by Lemma 5.6. This together with (5.7) and (5.8) shows that i ∼ j . �

Suppose (c, λ/μ) ∈ P S p−1
2

(n) ∪ (∪1≤u≤ p−3
2

P S ∗
u(n − p + 2u + 1)). By Proposi-

tion 5.8 and Proposition 5.13, there exists i ∈ Wk(H
c
n) such that Gk(i) affords (c, λ/μ)

for k = 1,2. Let

Dp(c,λ/μ) := Di. (5.9)

Note that if there exists j ∈ W ′(Hc
n) satisfying that Gk(j) also affords (c, λ/μ) for

k = 1,2, then i ∼ j by Proposition 5.8 and Lemma 5.14 and hence the Hc
n-module

Dp(c,λ/μ) is unique (up to isomorphism) by Theorem 4.5(2).
For (c, λ/μ) ∈ P S p−1

2
(n) ∪ (∪1≤u≤ p−3

2
P S ∗

u(n − p + 2u + 1)), denote by

γ0(c, λ/μ) the number of boxes with content zero in (c, λ/μ). If (c, λ/μ) ∈
P S p−1

2
(n), set f λ/μ to be the number of standard tableaux of shape λ/μ. If
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(c, λ/μ) ∈ ∪1≤u≤ p−3
2

P S ∗
u(n − p + 2u + 1), let f

λ/μ
p be the number of p-standard

tableaux of shape λ/μ.
The following is a Young diagrammatic reformulation of Theorem 4.5 for p ≥ 3.

Theorem 5.15 Suppose (c, λ/μ) ∈ P S p−1
2

(n) ∪ (∪1≤u≤ p−3
2

P S ∗
u(n − p + 2u + 1))

and write γ0 = γ0(c, λ/μ). Then,
(1) Dp(c,λ/μ) is type M if γ0 is even and is type Q if γ0 is odd. More-

over if (c, λ/μ) ∈ P S p−1
2

(n), then dimDp(c,λ/μ) = 2n−� γ0
2 �f λ/μ; if (c, λ/μ) ∈

(∪1≤u≤ p−3
2

P S ∗
u(n − p + 2u + 1)), then dimDp(c,λ/μ) = 2n−� γ0

2 �f λ/μ
p .

(2) The Hc
n-modules Dp(c,λ/μ) for (c, λ/μ) ∈ P S p−1

2
(n) ∪ (∪1≤u≤ p−3

2
P S ∗

u(n −
p + 2u+ 1)) form a set of pairwise non-isomorphic irreducible completely splittable
Hc

n-modules in RepI Hc
n.

Proof (1) By Proposition 5.8 and Proposition 5.13, the number of 1 ≤ k ≤ n with
ik = 0 equals to γ0. Hence by Lemma 2.4 and Theorem 4.5, Dp(c,λ/μ) is type M if
γ0 is even and is type Q if γ0 is odd.

Set |Pi | to be the number of elements contained in Pi . If (c, λ/μ) ∈ P S p−1
2

(n),

then by Proposition 5.8 there exists a one-to-one correspondence between the set of
weights in W(Hc

n) equivalent to i and the set of standard tableaux of shape λ/μ. This
implies |Pi | = f λ/μ by Lemma 4.1. If (c, λ/μ) ∈ P S ∗

u(n − p + 2u + 1) for some

1 ≤ u ≤ p−3
2 . By Lemma 5.14, there exists a one-to-one correspondence between the

set of weights in W(Hc
n) equivalent to i and the set of splittable standard tableaux of

shape λ/μ. This implies |Pi | = f
λ/μ
p by Lemma 4.1. Now the Proposition follows

from Lemma 2.4 and Theorem 4.5.
(2) It follows from Proposition 5.8, Proposition 5.13, Lemma 5.14 and Theo-

rem 4.5(3). �

Remark 5.16 Note that for fixed p ≥ 3, P S p−1
2

(n) �= ∅ if and only if n ≤ (p+1)(p+3)
8 .

Moreover if n >
(p+1)(p+3)

8 , then P S ∗
u(n − p + 2u + 1) = ∅ for 1 ≤ u ≤ p−3

2 .
Hence there is no irreducible completely splittable supermodule in RepI Hc

n if n >
(p+1)(p+3)

8 for fixed p ≥ 3.

6 Completely splittable representations of finite Hecke-Clifford algebras

Denote by Cn the subalgebra of Hc
n generated by c1, . . . , cn, which is known as the

Clifford algebra. The finite Hecke-Clifford algebra Yn = Cn � FSn is isomorphic to
the subalgebra of Hc

n generated by c1, . . . , cn, s1, . . . , sn−1. The Jucys-Murphy ele-
ments Lk(1 ≤ k ≤ n) in Yn are defined as

Lk =
∑

1≤j<k

(1 + cj ck)(jk), (6.1)

where (jk) is the transposition exchanging j and k and keeping all others fixed.



J Algebr Comb (2010) 32: 15–58 47

Definition 6.1 A Yn-module is called completely splittable if the Jucys-Murphy ele-
ments Lk(1 ≤ k ≤ n) act semisimply.

It is well known that there exists a surjective homomorphism

� : Hc
n → Yn

ck �→ ck, sl �→ sl, xk �→ Lk, (1 ≤ k ≤ n,1 ≤ l ≤ n − 1)

whose kernel coincides with the ideal of Hc
n generated by x1. Hence the category of

finite dimensional Yn-modules can be identified as the category of finite dimensional
Hc

n-modules which are annihilated by x1. By [1, Lemma 4.4] (cf. [8, Lemma 15.1.2]),
a Hc

n-module M belongs to the category RepIH
c
n if all of eigenvalues of xj on M

are of the form q(i) for some 1 ≤ j ≤ n. Hence the category of finite dimensional
completely splittable Yn-module can be identified with the subcategory of RepIH

c
n

consisting of completely splittable Hc
n-modules on which x1 = 0. By (3.1), we can

decompose any finite dimensional Yn-module M as

M = ⊕i∈InMi,

where Mi = {z ∈ M | (L2
k − q(ik))

Nz = 0, for N 
 0,1 ≤ k ≤ n}. If Mi �= 0, then i

is called a weight of M .

Definition 6.2 Define W(Yn) to be the set of weights i = (i1, . . . , in) ∈ W(Hc
n) sat-

isfying the following additional conditions:

i1 = 0, {ik − 1, ik + 1} ∩ {i1, . . . , ik−1} �= ∅ for 2 ≤ k ≤ n. (6.2)

Proposition 6.3 W(Yn) is the set of weights occurring in irreducible completely
splittable Yn-modules.

Proof Suppose i occurs in some irreducible completely splittable representation M

of Yn, then i1 = 0 since L1 = 0 on M . For 2 ≤ k ≤ n, if ik = 0, then by Lemma 3.13
we have 1 ∈ {i1, . . . , ik−1} and hence {ik − 1, ik + 1} ∩ {i1, . . . , ik−1} �= ∅. Now as-
sume ik ≥ 1 and suppose {ik − 1, ik + 1} ∩ {i1, . . . , ik−1} = ∅. Then sl is admissi-
ble with respect to sl+1 · · · sk−1 · i for 1 ≤ l ≤ k − 1 and hence Ms1···sk−1·i �= 0. Set
j = s1 · · · sk−1 · i. Note j1 = ik �= 0 and this contradicts the fact that L1 = 0 on M .

Conversely, let i ∈ W(Yn). Recall Pi and Di from (4.1) and (4.8), respectively. It
can be easily checked that τ · i ∈ W(Yn) for each τ ∈ Pi and hence x1 = 0 on Di . This
implies that Di can be factored through the surjective map � and hence it gives an
irreducible completely splittable Yn-module. The Proposition follows from the fact
that i is a weight of Di . �

Denote by ∇◦(n) the subset of ∇(n) consisting of i satisfying (6.2).

Lemma 6.4 The restriction G◦ of the map G in (5.2) induces a bijection between
∇◦(n) and the set of pairs (λ,T ) of strict partitions λ and standard tableaux T of
shape λ.
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Proof Let us proceed by induction on n. Clearly the statement holds for n = 1. Let
i ∈ ∇◦(n). Then i′ := (i1, . . . , in−1) ∈ ∇◦(n − 1) and by induction we have G(i′) =
(̃λ, S) for some shifted Young diagram λ̃ with n − 1 boxes and a standard tableau S

of shape λ̃. Note that G(i) is obtained by adding a box labeled by n to the diagonal
of content in in S. Since {in − 1, in + 1} ∩ {i1, . . . , in−1} �= ∅, the resulting diagram
is still a shifted Young diagram. �

Note that if p = 0, then W(Yn) coincides with ∇◦(n). Hence by Theorem 5.7 we
have the following which recovers Nazarov’s result in [13].

Corollary 6.5 Suppose that p = 0 and that λ is a strict partition of n. Then,
(1) There exists an irreducible Yn-module D(λ) satisfying that dimD(λ) =

2n−� l(λ)
2 �f λ, where f λ is the number of standard λ-tableaux. Moreover, D(λ) is type

M if l(λ) is even and is type Q if l(λ) is odd.
(2) The set of shifted Young diagrams with n boxes parameterizes the irreducible

completely splittable Yn-modules.

Proof Suppose λ is a strict partition of n. Recall the content function cλ from Re-
mark 5.2. Note that (cλ, λ) ∈ P S(n). Recall the Hc

n-module D(cλ,λ) from (5.3) and
let

D(λ) = D(cλ,λ).

Now the Proposition follows from Theorem 5.7. �

In the remaining part of this section, let us assume that p ≥ 3. Set Wk(Yn) :=
W(Yn) ∩ Wk(H

c
n) for k = 1,2.

Lemma 6.6 The restriction G◦
1 of G1 to W1(Yn) gives a bijection from W1(Yn) to

the set of pairs (λ,T ) of strict partitions λ of n boxes whose first part is less than or
equal to p+1

2 and standard tableaux T of shape λ.

Proof Observe that W1(Yn) ⊆ ∇◦(n). By Lemma 6.4 and Proposition 5.8, there
exists a one-to-one correspondence between W(Yn) ∩ W1(H

c
n) and the set consist-

ing of pairs of shifted Young diagrams λ = (λ1, . . . , λn) ∈ P S p−1
2

(n) and standard

tableaux of shape λ with c(T (k)) = ik for each 1 ≤ k ≤ n. Suppose the last box in
the first row of T is labeled by l, then c(T (l)) = λ1 − 1 and hence λ1 ≤ p+1

2 since

c(T (l)) = il ≤ p−1
2 . �

Lemma 6.7 The restriction G◦
2 of the map G2 to W2(Yn) gives a bijection from

W2(H
c
n) to the set consisting of pairs (λ,T ), where λ is a strict partition whose first

part is equal to p−u and second part is less than or equal to u for some 1 ≤ u ≤ p−3
2 ,

and T is a standard tableau of shape λ satisfying that if λ2 = u then the number in
last box of the second row is greater than the number in the last box of the first row
in T .
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Proof Suppose i ∈ W2(Yn). It is clear that î ∈ ∇◦(n − p + 2u + 1) for some 1 ≤
u ≤ p−3

2 . By Lemma 6.4, we have G◦(̂i) = (μ,S) for some shifted Young diagram
μ ∈ P S ∗

u(n − p + 2u + 1) and splittable standard tableau S of shape μ. Suppose
μ = (μ1, . . . ,μm) and set λ = (λ1, . . . , λm) := μ. Observe that the last box in the
first row of μ has content u. This implies μ1 − 1 = u and hence μ1 = u + 1,μ2 ≤ u.
Therefore λ1 = μ1 + p − 2u − 1 = p − u and λ2 = μ2 ≤ u. Note that if λ2 < u, then
the set of splittable standard tableaux of shape λ coincides with the set of standard
λ-tableaux; otherwise the set of splittable standard tableaux of shape λ coincides with
the set of standard λ-tableaux in which the number in last box in the second row is
greater than the number in the last box in the first row. �

If λ = (λ1, . . . , λl) is strict partition of n satisfying λ1 ≤ p−3
2 , then (cλ, λ) ∈

P S p−1
2

(n), where cλ is the unique content function on λ by Remark 5.2. Recall the

Hc
n-module Dp(cλ,λ) from (5.9) and let

Dp(λ) = Dp(cλ,λ).

Let f λ be the number of standard tableaux of shape λ. Recall f λ/∅ and γ0(cλ, λ)

from Theorem 5.15. Clearly f λ = f λ/∅ and moreover γ0(cλ, λ) = l(λ).
If λ = (λ1, . . . , λl) is a strict partition of n satisfying λ1 = p − u and λ2 ≤ u

for some 1 ≤ u ≤ p−3
2 . Denote by λ̂ the strict partition obtained by removing the

last p − 2u − 1 boxes in the first row of λ. Recall ĉλ from Remark 5.2. Note that
(ĉλ, λ̂) ∈ ∪1≤u≤ p−3

2
P S ∗

u(n−p+2u+1). Recall the Hc
n-module Dp(ĉλ, λ̂) from (5.9)

and let

Dp(λ) = Dp(ĉλ, λ̂).

Let f λ
p be the number of standard λ-tableau T if λ1 = p−u,λ2 < u for some 1 ≤ u ≤

p−3
2 ; if λ1 = p − u,λ2 = u for some 1 ≤ u ≤ p−3

2 let f λ
p be the number of standard

λ-tableau T in which the number in last box of the second row is greater than the
number in the last box of the first row. Recall f λ̂/∅ and γ0(ĉλ, λ̂) from Theorem 5.15.

One can easily check that f λ
p = f

λ̂/∅
p and moreover γ0(ĉλ, λ̂) = l(λ).

Combining the above observations and Lemma 6.6, Lemma 6.7 and Theorem 5.15,
we have the following.

Theorem 6.8 Let p ≥ 3. Suppose that λ = (λ1, . . . , λm) is strict partition with n

boxes satisfying either (λ1 = p−u and λ2 ≤ u for some 1 ≤ u ≤ p−3
2 ) or (λ1 ≤ p+1

2 ).

(1) Dp(λ) is type M if l(λ) is even and is type Q if l(λ) is odd. If λ1 ≤ p+1
2 , then

dimDp(λ) = 2n−� l(λ)
2 �f λ; if λ1 = p − u and λ2 ≤ u, then dimDp(λ) = 2n−� l(λ)

2 �f λ
p .

(2) The Yn-modules Dp(λ) for strict partitions λ = (λ1, . . . , λm) with n boxes

satisfying either (λ1 = p − u,λ2 ≤ u for some 1 ≤ u ≤ p−3
2 ) or (λ1 ≤ p+1

2 ) form a
complete set of non-isomorphic irreducible completely splittable Yn-modules.

Remark 6.9 (1) A partition λ = (λ1, λ2, . . .) is called p-restricted p-strict if p divides
λr whenever λr = λr+1 for r ≥ 1 and in addition λr − λr+1 < p if p | λr and λr −
λr+1 ≤ p if p � λr (cf. [1, §9-a]). It is known from [1, §9-b] that there exists an
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irreducible Yn-module M(λ) associated to each p-restricted p-strict partition λ of
n and moreover {M(λ) | λ is a p-restricted p-strict partition of n} forms a complete
set of pairwise non-isomorphic irreducible Yn-modules. If λ is a strict partition with
either λ1 = p − u and λ2 ≤ u for some 1 ≤ u ≤ p−3

2 or λ1 ≤ p+1
2 , then λ is p-

restricted p-strict and moreover D(λ) ∼= M(λ) by claiming that they have the same
set of weights.

(2) It is well known that the representation theory of the spin symmetric group al-
gebra FS−

n is essentially equivalent to that of Yn due to the isomorphism Cn ⊗FS−
n

∼=
Yn. Applying the representation theory of Yn established so far, we can obtain a fam-
ily of irreducible representations of the spin symmetric group algebra FS−

n for which
dimensions and characters can be explicitly described. Over the complex field C,
these modules were originally constructed by Nazarov in [13].

7 A larger category

Recall that Cn is the Clifford algebra generated by c1, . . . , cn subject to the rela-
tion (2.4) and Yn = Cn � FSn. The basic spin Yn-module I (n) (cf. [1, (9.11)]) is
defined by

I (n) := indYn

FSn
1, (7.1)

where 1 is the trivial 1-dimensional FSn-module. Note that {cα1
1 · · · cαn

n | (α1, . . . ,

αn) ∈ Z
n
2} forms a basis of I (n). It can be easily checked that each element c

α1
1 · · · cαn

n

is a simultaneous eigenvector for L2
1, . . . ,L

2
n. Hence all L2

k,1 ≤ k ≤ n, act semisim-
ply on I (n). Define the p-restricted p-strict partition ωn by

ωn =
{

(pa, b), if b �= 0
(pa−1,p − 1,1), otherwise,

where n = ap+b with 0 ≤ b < p. By [1, Lemma 9.7], we have I (n) ∼= M(ωn) if p � n

and if p | n then I (n) is an indecomposable module with two composition factors
both isomorphic to M(ωn). By Remark 6.9, the Jucys-Murphy elements Lk do not
act semisimply on M(ωn). Hence L2

k,1 ≤ k ≤ n, act semisimply on M(ωn) which
is not completely splittable. On the other hand, Wang [18] introduced the degenerate
spin affine Hecke-Clifford algebra H−, which is the superalgebra with odd generators
bi(1 ≤ i ≤ n) and ti (1 ≤ i ≤ n − 1) subject to the relations

t2
i = 1, ti ti+1ti = ti+1ti ti+1, ti ti = −ti ti , |i − j | > 1,

bibj = −bjbi, i �= j,

tibi = −bi+1ti + 1, tibj = −bj ti , j �= i, i + 1.

Moreover, an algebra isomorphism between Hc
n and Cn ⊗ H− which maps xk to√−2ckbk is established. Since b1, . . . , bn are anti-commutative, it is reasonable to

study H−-modules on which the commuting operators b2
1, . . . , b

2
n act semisimply. As

x2
k is sent to 2b2

k , it is reduced to study the Hc
n-modules on which x2

k act semisimply.
Motivated by the above observations, in this section we shall study the category

of Hc
n-modules on which all x2

k ,1 ≤ k ≤ n, act semisimply.
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7.1 The case for n = 2,3

Recall the irreducible Hc
2-module V (i, j) for i, j ∈ I from Proposition 3.9.

Lemma 7.1 Let i, j ∈ I. Then x2
1 , x2

2 act semisimply on the Hc
2-module V (i, j) if and

only if i �= j or i = j = 0.

Proof By Proposition 3.9, if i �= j then V (i, j) is completely splittable and hence
x2

1 , x2
2 act semisimply. It suffices to prove that if i = j , then x2

1 , x2
2 act semisimply on

V (i, j) if and only if i = j = 0. Now assume i = j . By Proposition 3.9, V (i, j) =
ind

Hc
2

P c
2
L(i)�L(j). Suppose x2

1 , x2
2 act semisimply on V (i, j) and let 0 �= z ∈ V (i, j).

Then x2
1z = q(i)z = x2

2z. This together with (3.2) shows that(
x1(1 − c1c2) + (1 − c1c2)x2

)
z = 0.

This implies

4q(i)z = 2(x2
1 + x2

2)z = (
x1(1 − c1c2) + (1 − c1c2)x2

)2
z = 0.

This means q(i) = 0 and hence i = 0 since p �= 2.
Conversely if i = j = 0, then x1 = 0 = x2 on L(i) � L(j) and hence x2

1 = 0 =
x2

2 on V (i, j) by the fact that V (0,0) has two composition factors isomorphic to
L(0) � L(0) as P c

2 -modules. �

Observe that the subalgebra generated by xk, xk+1, ck, ck+1, sk is isomorphic to
Hc

2 for each fixed 1 ≤ k ≤ n − 1. By Lemma 7.1, we have the following.

Corollary 7.2 Suppose that M ∈ RepI Hc
n and x2

k ,1 ≤ k ≤ n act semisimply. Let
i ∈ I

n be a weight of M . If ik = ik+1 for some 1 ≤ k ≤ n − 1, then ik = ik+1 = 0.

Lemma 7.3 For any z ∈ V (0,0), we have(
(1 + c1c2)x1 + (1 − c1c2)x2

)
z = 0, x1x2z = 0.

Proof Let z ∈ V (0,0). By Lemma 7.1, x2
1 = 0 = x2

2 on V (0,0). This together
with (3.2) shows that (

(1 + c1c2)x1 + (1 − c1c2)x2
)
z = 0. (7.2)

Multiplying both sides of (7.2) by x1(1 + c1c2), we obtain that

(2x1c1c2x1 + 2x1x2)z = 0.

This implies that x1x2z = 0 since x2
1z = 0. �

Recall that Hc
2,1 is the subalgebra of Hc

3 generated by P c
3 and S2.
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Lemma 7.4 The irreducible Hc
2,1-module V (0,0,1) := V (0,0) � L(1) affords an

irreducible Hc
3-module via s2 = 
2.

Proof Since L(1) is of type M, by Lemma 2.1 V (0,0,1) = V (0,0) � L(1). It is
routine to check that s2

2 = 1, s2x1 = x1s2, s2x2 = x3s2 − (1 + c2c3) and s2c1 =
c1s2, s2c2 = c3s2 on V (0,0,1). It remains to prove s1s2s1 = s2s1s2. Let 0 �= z ∈
V (0,0,1). Note that

x2
2z = 0, x2

3z = 2z

and hence

s2z = 1

2

(
(x2 + x3) + c2c3(x2 − x3)

)
z = 1

2

(
(1 + c2c3)x2 + (1 − c2c3)x3

)
z. (7.3)

Using (7.3) with z replaced by s1z and (2.5), we show by a straightforward calculation
that

s2s1z = 1

2
s1

(
(1 + c1c3)x1 + (1 − c1c3)x3

)
z + 1

2
(1 + c1c2 + c2c3 − c1c3)z. (7.4)

This implies that

s1s2s1z = 1

2

(
(1 + c1c3)x1 + (1 − c1c3)x3

)
z + 1

2
s1(1 + c1c2 + c2c3 − c1c3)z.

(7.5)

On the other hand, it follows from (7.3) with z replaced by s2z and (7.4) that

s2s1s2z = 1

4
s1

(
(1 + c1c3)x1 + (1 − c1c3)x3

)(
(1 + c2c3)x2 + (1 − c2c3)x3

)
z

+ 1

4
(1 + c1c2 + c2c3 − c1c3)

(
(1 + c2c3)x2 + (1 − c2c3)x3

)
z

= 1

4
s1

(
(1 + c1c3)x1 + (1 − c1c3)x3

)(
(1 + c2c3)x2 + (1 − c2c3)x3

)
z

+ 1

2
(c1c2 + c2c3)x2z + 1

2
(1 − c1c3)x3z. (7.6)

The first term on the right hand side of (7.6) can be simplified as follows

1

4
s1

(
(1 + c1c3)x1 + (1 − c1c3)x3

)(
(1 + c2c3)x2 + (1 − c2c3)x3

)
z

= 1

4
s1

(
(1 + c1c3)(1 + c2c3)x1x2z

+ (1 − c2c3)x3
(
(1 + c1c2)x1 + (1 − c1c2)x2

)
z
)

+ 1

4
s1(1 + c1c2 + c2c3 − c1c3)x

2
3z

= 1

2
s1(1 + c1c2 + c2c3 − c1c3)z by Lemma 7.3.
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This together with (7.5) and (7.6) shows that

(s1s2s1 − s2s1s2)z = 1

2
((x1 + x3) + c1c3(x1 − x3))z

− 1

2
(c1c2 + c2c3)x2z − 1

2
(1 − c1c3)x3z

= 1

2
(1 + c1c3)x1z − 1

2
(c1c2 + c2c3)x2z

= 1

4
(1 − c1c2 − c2c3 + c1c3)

(
(1 + c1c2)x1 + (1 − c1c2)x2

)
z

which is zero by Lemma 7.3. �

An identical argument used for proving Lemma 7.4 shows that Hc
2,1-module

V (1,0,0) := L(1) � V (0,0) affords an irreducible Hc
3-module via s1 = 
1.

Proposition 7.5 Each irreducible Hc
3-module in RepI Hc

3 on which x2
1 , x2

2 , x2
3 act

semisimply is isomorphic to one of the following.

(1) A completely splittable Hc
3-module Di for i ∈ W ′(Hc

3) (see Theorem 4.5).
(2) V (0,0,1).
(3) V (1,0,0).

(4) ind
Hc

3
Hc

2,1
V (0,0) � L(j) with j �= 0,1.

Proof We first show that listed pairwise non-isomorphic modules are irreducible and
all x2

k act semisimply. The case (1), (2) and (3) are taken care of by Theorem 4.5 and

Lemma 7.4. Using [1, Theorem 5.18], we have ind
Hc

3
Hc

2,1
V (0,0) � L(j) is irreducible

if j �= 0,1. It is known that as vector spaces

ind
Hc

3
Hc

2,1
V (0,0) � L(j)

= V (0,0) � L(j) ⊕ s2 ⊗ (V (0,0) � L(j)) ⊕ s1s2 ⊗ (V (0,0) � L(j)).

It is clear that for z ∈ V (0,0) � L(j),

x2
1z = 0 = x2

2z, x2
3z = q(j)z. (7.7)

This together with (2.6) implies x2
1 = 0 on s2 ⊗ (V (0,0) � L(j)). Using (3.2)

and (3.3), we obtain that

(x2
2 − q(j))

(
s2 ⊗ (V (0,0) � L(j))

) ⊆ V (0,0) � L(j)

x2
3

(
s2 ⊗ (V (0,0) � L(j))

) ⊆ V (0,0) � L(j).

This together with (7.7) shows that for any v ∈ s2 ⊗ (V (0,0) � L(j)),

x2
1v = 0, x2

2(x2
2 − q(j))v = 0, x2

3(x2
3 − q(j))v = 0. (7.8)
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Similarly using (3.2), (3.3) and (7.7) we see that

(x2
1 − q(j))s1s2 ⊗ (V (0,0) � L(j)) ⊆ V (0,0) � L(j) ⊕ s2 ⊗ (V (0,0) � L(j))

(x2
3)s1s2 ⊗ (V (0,0) � L(j)) ⊆ V (0,0) � L(j).

Therefore it follows from (7.7) and (7.8) that for any w ∈ s1s2 ⊗ (V (0,0) � L(j))

x2
1(x2

1 − q(j))w = 0, x2
3(x2

3 − q(j))w = 0. (7.9)

By (3.2) and (7.7), we obtain that for any z ∈ V (0,0) � L(j),

x2
2s1s2 ⊗ z = s1s2 ⊗ x2

1z + (
(1 + c1c2)x1 + x2(1 + c1c2)

)
s2 ⊗ z

= (
(1 + c1c2)x1 + x2(1 + c1c2)

)
s2 ⊗ z. (7.10)

This together with (3.2) and x2
3 = q(j) on V (0,0) � L(j) shows that for z ∈

V (0,0) � L(j)

(x2
2 − q(j))x2

2(s1s2 ⊗ z)

= (x2
2 − q(j))

(
(1 + c1c2)x1 + x2(1 + c1c2)

)
s2 ⊗ z

= (
(1 + c1c2)x1 + x2(1 + c1c2)

)
(x2

2 − q(j))s2 ⊗ z

= ((1 + c1c2)x1 + x2(1 + c1c2))(−x2(1 − c2c3) − (1 − c2c3)x3)z

= 0 by Lemma 7.3.

Therefore for any w ∈ s1s2 ⊗ (V (0,0) � L(j)),

(x2
2 − q(j))x2

2w = 0. (7.11)

Combining (7.7), (7.8), (7.9) and (7.11), we see that the actions of x1, x2, x3 on the

Hc
3-module ind

Hc
3

Hc
2,1

V (0,0) � L(j) satisfy

x2
1(x2

1 − q(j)) = 0, x2
2(x2

2 − q(j)) = 0, x2
3(x2

3 − q(j)) = 0.

It follows that x2
1 , x2

2 , x2
3 act semisimply on ind

Hc
3

Hc
2,1

L(02) � L(j).

Now assume M ∈ RepI Hc
3 is irreducible, on which all x2

k ,1 ≤ k ≤ n act semisim-
ply. Let us assume M is not completely splittable, then by Proposition 3.6 M has a
weight of the form (i, i, j) or (j, i, i) for some i, j ∈ I. By Corollary 7.2 we obtain

that i = 0. Hence by Frobenius reciprocity M is a quotient of ind
Hc

3
P c

3
L(0) � L(0) �

L(j) or ind
Hc

3
P c

3
L(j) � L(0) � L(0).

If j = 0, then M is isomorphic to the Kato module ind
Hc

3
P c

3
L(0) � L(0) ⊗ L(0).

By [1, Lemma 4.15], all Jordan blocks of x1 on M are of size 3. This means x4
1 = 0

on M but not x2
1 . Hence x2

1 does not act semisimply on M .
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If j = 1, then the weights of M belong to S3 · (0,0,1). By [1, §5-d], there are
at most three non-isomorphic irreducible Hc

3-modules whose weights belong to the
set S3 · (0,0,1) = {(0,0,1), (0,1,0), (1,0,0)}. By Theorem 4.5, the P c

3 -module
V (0,1,0) = L(0) � L(1) � L(0) affords an irreducible completely splittable Hc

3-
module via s1 = 
1, s2 = 
2. Observe that the modules V (0,0,1),V (1,0,0) and
V (0,1,0) are non-isomorphic and have weights belonging to S3 · (0,0,1). Since M

is not completely splittable, M ∼= V (0,0,1) or M ∼= V (1,0,0).
If j �= 0,1, by [1, Theorem 5.18] we have that

ind
Hc

3
P c

3
L(0) � L(0) ⊗ L(j) ∼= ind

Hc
3

Hc
2,1

V (0,0) � L(j)

∼= ind
Hc

3
Hc

2,1
L(j) � V (0,0)

∼= ind
Hc

3
P c

3
L(j) � L(0) ⊗ L(0)

is irreducible. Hence M ∼= ind
Hc

3
Hc

2,1
V (0,0) � L(j). �

Observe that the subalgebra generated by xk, xk+1, xk+2, ck, ck+1, ck+2, sk, sk+1 is
isomorphic to Hc

3 for fixed 1 ≤ k ≤ n− 2. By Proposition 7.5, we have the following.

Corollary 7.6 Suppose that M ∈ RepI Hc
n, on which all x2

k ,1 ≤ k ≤ n act semisimply.
Let i ∈ I

n be a weight of M . Then there does not exist 1 ≤ k ≤ n − 2 such that
ik = ik+1 = ik+2.

7.2 Conjecture for general n

Proposition 7.7 Suppose that M ∈ RepI Hc
n is irreducible and Mi �= 0 for some

i ∈ I
n. If x2

k ,1 ≤ k ≤ n, act semisimply on M , then i satisfies the following.

(1) If ik �= ik+1 ± 1, then sk · i is a weight of M .
(2) If ik = ik+1 for some 1 ≤ k ≤ n − 1, then ik = ik+1 = 0.
(3) There does not exist 1 ≤ k ≤ n − 2 such that ik = ik+1 = ik+2.
(4) If ik = ik+2 for some 1 ≤ k ≤ n − 2, then

(a) If p = 0, then ik = ik+2 = 0.
(b) If p ≥ 3, then either (ik = ik+2 = p−3

2 and ik+1 = p−1
2 ) or (ik = ik+2 = 0).

Proof (1) If ik �= ik+1 ± 1, by Lemma 4.2 	̂k is a well-defined bijection from Mi

to Msk ·i . Hence Msk ·i �= 0.

(2) It follows from Corollary 7.2.
(3) It follows from Corollary 7.6.
(4) Suppose ik = ik+2 = u and ik+1 = v for some 1 ≤ k ≤ n − 2. Observe that for

each fixed 1 ≤ k ≤ n − 2, x2
k , x2

k+1, x
2
k+2 act semisimply on the restriction of M to

the subalgebra generated by xk, xk+1, xk+2, ck, ck+1, ck+2, sk, sk+1 which is isomor-
phic to Hc

3. This implies that (u, v,u) appears as a weight of a Hc
3-module on which
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x2
1 , x2

2 , x2
3 act semisimply. By Proposition 7.5, if p = 0, then u = 0; if p ≥ 3, then

either u = 0, v is arbitrary or u = p−3
2 , v = p−1

2 . �

Corollary 7.8 Suppose that M ∈ RepI Hc
n is irreducible and Mi �= 0 for some i ∈ I

n.
If all x2

k ,1 ≤ k ≤ n act semisimply on M , then i satisfies the following.

(1) If p = 0 and u = ik = il ≥ 1 for some 1 ≤ k < l ≤ n, then

{u − 1, u + 1} ⊆ {ik+1, . . . , il−1},
or

(u,u − 1, . . . ,1,0,0,1, . . . , u − 1, u) is a subsequence of (ik+1, . . . , il−1).

(2) If p ≥ 3 and u = ik = il ≥ 1 for some 1 ≤ k < l ≤ n, then

{u − 1, u + 1} ⊆ {ik+1, . . . , il−1},
or

(u,u − 1, . . . ,1,0,0,1, . . . , u − 1, u)

is a subsequence of (ik+1, . . . , il−1),

or

(u,u + 1, . . . ,
p−3

2 ,
p−1

2 ,
p−3

2 , . . . , u + 1, u)

is a subsequence of (ik+1, . . . , il−1).

Proof (1) Without loss of generality, we can assume u �∈ {ik+1, . . . , il−1}. By the
technique used in the proof of Proposition 3.14, one can show that u − 1 ∈
{ik+1, . . . , il−1}. Now assume u + 1 /∈ {ik+1, . . . , il−1}. Then u − 1 appears at least
twice between ik+1 and il−1 in i; otherwise we can apply admissible transpositions
to i to obtain a weight of M of the form (· · · , u,u − 1, u, · · · ) which contradicts
Proposition 7.7(4). Hence there exist k < k1 < l1 < l such that

ik1 = u − 1 = il1 , {u,u − 1} ∩ {ik1+1, . . . , il1−1} = ∅.

An identical argument shows that there exist k1 < k2 < l2 < l1 such that

ik2 = u − 2 = il2 , {u,u − 1, u − 2} ∩ {ik2+1, . . . , il2−1} = ∅.

Continuing in this way, we achieve the claim.
(2) By the technique used in (1), one can easily show that if u+1 /∈ {ik+1, . . . , il−1}

then (ik+1, . . . , il−1) contains (u,u−1, . . . ,1,0,0,1, . . . , u−1, u) as a subsequence.
If u − 1 /∈ {ik+1, . . . , il−1}, an identical argument used in the proof of Proposi-
tion 3.14(5) shows that (ik+1, . . . , il−1) contains (u,u + 1, . . . ,

p−3
2 ,

p−1
2 ,

p−3
2 , . . . ,

u + 1, u) as a subsequence. �

Conjecture 7.9 Suppose that M ∈ RepI Hc
n is irreducible. Then x2

k ,1 ≤ k ≤ n, act
semisimply on M if and only if each weight of M satisfies the list of properties stated
in Proposition 7.7.
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Theorem 7.10 The above conjecture holds for n = 2,3.

Proof Clearly the above conjecture holds for n = 2 by Lemma 7.1. Suppose M is an
irreducible Hc

3-module whose weights satisfy the list of properties stated in Proposi-
tion 7.7. Let (i1, i2, i3) ∈ I

3 be a weight of M . Then by Frobenius reciprocity, M is

isomorphic to a quotient of ind
Hc

3
P c

3
L(i1) � L(i2) � L(i3). Hence the weights of M are

of the form σ · (i1, i2, i3) for σ ∈ S3·. If i1, i2, i3 are distinct, then all weights j of
M satisfy jk �= jk+1 for k = 1,2. By Proposition 3.6, M is completely splittable and
hence all x2

1 , x2
2 , x2

3 act semisimply on it.
Now assume i1, i2, i3 are not distinct. If p = 0, by the properties in Proposi-

tion 7.7 we have that (i1, i2, i3) is of the form (0,0, j), (0, j,0) or (j,0,0) for some
j ≥ 1. By Proposition 7.5, all x2

k ,1 ≤ k ≤ 3 act semisimply on M . If p ≥ 3, by

the properties in Proposition 7.7 we see that either (i1, i2, i3) = (
p−3

2 ,
p−1

2 ,
p−3

2 )

or (i1, i2, i3) has the form (0,0, j), (0, j,0) or (j,0,0) for some j ≥ 1. In the
latter case, by Proposition 7.5, all x2

k ,1 ≤ k ≤ 3 act semisimply on M . Assume

(i1, i2, i3) = (
p−3

2 ,
p−1

2 ,
p−3

2 ). Since M satisfies the properties in Proposition 7.7,

(
p−3

2 ,
p−3

2 ,
p−1

2 ) and (
p−3

2 ,
p−3

2 ,
p−1

2 ) are not the weights of M . Hence M has only

one weight, that is, (
p−3

2 ,
p−1

2 ,
p−3

2 ). By Proposition 3.6, M is completely splittable
and hence all x2

1 , x2
2 , x2

3 act semisimply on it. �
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