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Abstract Given a finite simple graph G with n vertices, we can construct the Cay-
ley graph on the symmetric group Sn generated by the edges of G , interpreted as
transpositions. We show that, if G is complete multipartite, the eigenvalues of the
Laplacian of Cay(G ) have a simple expression in terms of the irreducible characters
of transpositions and of the Littlewood–Richardson coefficients. As a consequence,
we can prove that the Laplacians of G and of Cay(G ) have the same first nontriv-
ial eigenvalue. This is equivalent to saying that Aldous’s conjecture, asserting that
the random walk and the interchange process have the same spectral gap, holds for
complete multipartite graphs.

Keywords Cayley graphs · Laplacian · Symmetric group · Littlewood–Richardson
rule · Spectral gap · Interchange process

1 Introduction

Let G = (V (G ),E(G )) be a finite graph with V (G ) = {1,2, . . . , n}. G is always
assumed to be simple, i.e., without multiple edges and loops, and undirected. The
Laplacian of G is the n × n matrix �G := D − A, where A is the adjacency matrix
of G , and D = diag(d1, . . . , dn) with di denoting the degree of the vertex i. Since
�G is symmetric and positive semidefinite, its eigenvalues are real and nonnegative
and can be ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. There is an extensive literature dealing
with bounds on the distribution of the eigenvalues and consequences of these bounds.
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We refer the reader to [2, 4, 9] for a general introduction to the subject. If (and only
if) G is connected, the second eigenvalue λ2 is positive and is of particular impor-
tance for several applications. The Laplacian �G can be viewed as the generator1

of a continuous-time random walk on V , whose invariant measure is the uniform
measure u on V . In this respect, λ2 is the inverse of the “relaxation time” of the ran-
dom walk, a quantity related to the speed of convergence to the invariant measure in
L2(V ,u) sense. λ2 is also called the spectral gap of �G .

There is a natural way to associate a Cayley graph to G . Any edge e = {i, j} in
E(G ) (and, more generally, any pair {i, j} of elements of V (G )) can be identified
with a transposition (ij) of the symmetric group Sn. Consider then the Cayley graph
with vertex set equal to Sn and edges given by (π,πe), where π is a permutation of
Sn and e ∈ E(G ). We let, for simplicity,

Cay(G ) := Cay
(
Sn,E(G )

)
.

The Laplacian of Cay(G ) is again the generator of a continuous-time Markov chain
called the interchange process on V . It can be described as follows: each site of V is
occupied by a particle of a different color, and for each edge {i, j} ∈ E(G ), at rate 1,
the particles at vertices i and j are exchanged.

It is easy to show (it follows from (3.14) and (3.15), but there are simpler and
more direct proofs) that the spectrum of �G is a subset of the spectrum of �Cay(G ).
By consequence,

λ2(�G ) ≥ λ2(�Cay(G )).

Being an n!×n! matrix, in general the Laplacian of Cay(G ) has many more eigenval-
ues than the Laplacian of G . Nevertheless, a neat conjecture due to David Aldous [1]
states, equivalently:

Aldous’s conjecture (v.1) If G is a finite connected simple graph, then

λ2(�G ) = λ2(�Cay(G )).

Aldous’s conjecture (v.2) If G is a finite connected simple graph, then the random
walk and the interchange process on G have the same spectral gap.

Version 1 also appears in [8], under the extra assumption of G being bipartite.
Aldous’s conjecture comes in a third flavor, which originates from the analysis of the
representations of the symmetric group.2 From this point of view the Laplacian �G

corresponds to the n-dimensional defining representation of Sn, whose irreducible
components are the trivial representation and the representation associated with the
partition (n − 1,1). On the other hand, the Laplacian of the Cayley graph Cay(G ) is
associated to the right regular representation, which contains all irreducible represen-
tations. Let α = (α1, . . . , αr) be a partition of n and denote with Tα the irreducible

1Or minus the generator, depending on the preferred sign convention.
2This will be explained in greater detail in Sects. 2 and 3.
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representation of Sn which corresponds to the partition α. Let also λmax(α) be the
maximum eigenvalue of the matrix

∑

e={i,j}∈E(G )

Tα(e).

The trivial representation, which corresponds to the trivial partition α = (n), is thus
contained with multiplicity one in both the defining and right regular representations,
and clearly λmax((n)) = |E(G )|. This accounts for the fact that the first eigenvalue of
both �G and �Cay(G ) is null. By consequence, one finds (see Sect. 3) that Aldous’s
conjecture can be restated as follows:

Aldous’s conjecture (v.3) If G is a finite connected simple graph, then

λmax(α) ≤ λmax
(
(n − 1,1)

)

for each nontrivial partition α of n, i.e., for each partition α �= (n).

Aldous’s conjecture has been proven for star-graphs in [7] and for complete graphs
in [6]. A major progress was made in [10] (similar results were reobtained in [13]),
where a rather general technique was developed, which can be used to prove the
conjecture for trees (with weighted edges) and a few other cases. Without entering
into the details, we mention that this technique is useful for classes of graphs whose
spectral gap “tends to decrease” when a new site, and relative edges, are added to
a preexisting graph. This is indeed the case of trees, since it is not too difficult to
prove that adding a leaf with its relative edge cannot increase the spectral gap. Using
this approach, Aldous’s conjecture has been recently proven [14, 16] for hypercubes
asymptotically, i.e., in the limit as the side length of the cube tends to infinity.

The main result of the present paper is the proof of Aldous’s conjecture for com-
plete multipartite graphs (Theorem 3.1). These are graphs such that it is possible to
write the vertex set of G as a disjoint union

V (G ) = {1, . . . , n} = N1 ∪ · · · ∪ Np

in such a way that {i, j} is an edge if and only if i and j belong to distinct Nk’s. The
approach we follow, similar in spirit to [6], is group theoretical.

The plan of the paper is as follows. After recalling a few standard facts on the
representation theory of the symmetric group in Sect. 2, we discuss the relationship
between the Laplacian of Cayley graphs and the irreducible representations of Sn in
Sect. 3. In Sect. 4 the proof of our main result is outlined in the case of bipartite
graphs. Most of the relevant ideas are discussed in this section. Section 5 contains a
detailed proof of the general multipartite case. One of the key technical ingredients is
the identification of the Littlewood–Richardson tableau with minimal content, among
all tableaux which appear in the decomposition of a tensor product of representations
of Sn (Lemma 5.11). This aspect is discussed in Sect. 6.

After this paper was completed, a beautiful proof of Aldous’s conjecture has been
found by Caputo, Liggett, and Richthammer [3], which holds for arbitrary graphs (in-
cluding weighted graphs). Their approach is based on a subtle mapping, reminiscent
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of the star-triangle transformation used in electric networks, which allows a recursive
proof.

2 The irreducible representations of Sn

We recall here a few well-known facts from the representation theory of the symmet-
ric group. The main purpose is to establish our notation. Standard references for this
section are, for instance, [5] for general representation theory and [12, 15] for the
symmetric group.

Given a positive integer n, a composition (resp. a weak composition) of n is
a sequence α = (α1, α2, α3, . . .) of positive (resp. nonnegative) integers such that∑∞

i=1 αi = n. Since there is only a finite number of nonzero terms, one can either
consider the whole infinite sequence or just the finite sequence obtained by dropping
all trailing zeros which appear after the last nonzero element. We define the length of
α as the position of the last nonzero element in α, so if the length of α is r , we write

α = (α1, . . . , αr) = (α1, . . . , αr ,0,0,0, . . .).

We also let |α| := ∑
i αi , while, for an arbitrary set S, |S| stands, as usual, for the

cardinality of S. A partition of n is a nonincreasing composition of n. We write

α |=n if α is a composition of n, α
w|=n if α is a weak composition on n, and α �n if

α is a partition of n.
We introduce a componentwise partial order in the set of all finite sequences of

integers: we write α ≤ β if αi ≤ βi for each i. If α,β are partitions (compositions,
weak compositions), we can define the component-by-component sum α + β which
is still a partition (composition, weak composition). If α ≤ β , the difference β − α is
a weak composition of |β| − |α|.

The Young diagram of a partition α of n is a graphical representation of α as a
collection of n boxes arranged in left-justified rows, with the ith row containing αi

boxes. For instance,

(6,4,1) = .

We do not distinguish between a partition and its associated Young diagram. If the
integer k appears m times in the partition α, we may simply write km, so, for instance,

(5,5,4,2,2,2,1,1) = (
52,4,23,12).

Given a Young diagram α, the conjugate (or transpose) diagram is the diagram, de-
noted with α′, obtained from α by “exchanging rows and columns,” for example,

α = α′ = .
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The elements of α′ are given by

α′
s := ∣∣{j : αj ≥ s}∣∣. (2.1)

Let Irr(Sn) be the set of all equivalence classes of irreducible representations3 of Sn.
There is a one-to-one correspondence between Irr(Sn) and the set of all partitions
of n. We denote with [α] the class of irreducible representations of Sn corresponding
to the partition α, and with fα the dimension or degree of the representation. For sim-
plicity, we write [α1, . . . , αr ] instead of [(α1, . . . , αr)]. It is sometimes notationally
convenient to refer to a specific choice of a representative in the class [α]. We denote
this choice with Tα . Hence Tα is a group homomorphism

Tα : Sn 
→ GL(fα,C) α � n.

Since every representation of a finite group is equivalent to a unitary representation,
we can assume (if useful) that Tα(π) is a unitary matrix for each π ∈ Sn. Every
representation Y of Sn can be written, modulo equivalence, as a direct sum of the Tα ,

Y ∼=
⊕

α �n

cαTα.

A fundamental quantity associated to a representation Y of a finite group G is the
character of Y, which we denote by χY, and is defined as

χY : G 
→ C

: g → tr Y(g).

Two representations are equivalent if and only if they have the same characters, so,
going back to G = Sn, we can choose an arbitrary representative Tα in the class [α]
and define χα := χTα

. The set {χα : α �n} is the set of irreducible characters of Sn.
If H is a subgroup of G, we denote with Y

⏐	G

H
the restriction of the representation

Y to H . Even if Y is an irreducible representation of G, the restriction Y
⏐	G

H
is in

general a reducible representation of H . By consequence, there exists a collection of
nonnegative integers (cT ) such that

Y
⏐	G

H
=

⊕

T∈Irr(H)

cT T.

When G = Sn and H is a Young subgroup S(j,k) (see Sect. 5), the coefficients cT are
called the Littlewood–Richardson coefficients.4

3In this paper, by “representation” we mean a finite-dimensional representation over the field of complex
numbers.
4The Littlewood–Richardson coefficients are often equivalently (thanks to Frobenius reciprocity) defined
in terms of an induced representation.
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3 Eigenvalues of Cayley graphs and representations of Sn

We illustrate how, when studying the eigenvalues of the Laplacian of Cayley graphs,
one is (almost forcibly) led to consider the irreducible representations of the symmet-
ric group. In this way we can show that version 3 of Aldous’s conjecture is equivalent
to versions 1 and 2. The material of this section is more or less standard and overlaps
with Sect. 4 of [6].

Given a finite set S = {s1, . . . , sn}, we denote with CS the n-dimensional vec-
tor space which consists of all formal complex linear combinations of the symbols
{s1}, . . . , {sn}, and with CS the vector space of all functions f : S 
→ C. CS is natu-
rally isomorphic to CS under the correspondence

f ←→
n∑

i=1

f (i){si}. (3.1)

Any left action (g, s) → gs of a finite group G on S defines a representation Y of G

on CS given by

Y(g)

(
n∑

i=1

ai{si}
)

:=
n∑

i=1

ai{gsi} g ∈ G. (3.2)

One can, equivalently, interpret Y as a representation on C
S , in which case we have5

[
Y(g)f

]
(s) := f

(
g−1s

)
g ∈ G, f ∈ C

S. (3.3)

CG is the (complex) group algebra of G. Any representation Y of G extends to a
representation of CG by letting

Y
(∑

g∈G

agg

)
:=

∑

g∈G

agY(g) ag ∈ C.

Let then G be a finite graph with V (G ) = {1, . . . , n}. The defining representation of
Sn, which we denote by D, acts on CV = C{1, . . . , n} as

D(π)

(
n∑

i=1

ai{i}
)

=
n∑

i=1

ai{π(i)} π ∈ Sn.

The matrix elements of D(π) in this basis are given by

[
D(π)

]
ij

=
{

1 if j = π−1(i),

0 otherwise.

5With a slight abuse of notation we use the same symbol Y since the two representations are equivalent
under (3.1).
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The action of D on the space C
V is [D(π)f ](i) = f (π−1(i)), i.e., D(π)f = f ◦π−1.

If π is a transposition, π = (kl), we have

[
D
(
(kl)

)
f
]
(i) :=

⎧
⎪⎨

⎪⎩

f (k) if i = l,

f (l) if i = k,

f (i) if i �= k, l.

Hence, under the identification of edges with transpositions of Sn

E(G ) � e = {i, j} −→ (ij) ∈ {π ∈ Sn : π is a transposition}, (3.4)

we can write

(�G f )(i) =
∑

j :(ij)∈E(G )

[
f (i) − f (j)

]

=
∑

j :e=(ij)∈E(G )

[
f (i) − D(e)f (i)

] =
∑

e∈E(G )

[
f (i) − D(e)f (i)

]
, (3.5)

where, in the last term, we have included the null contribution of those edges with
both endpoints different from i. The reason is that we can now rewrite (3.5) in oper-
ator form. If denote with In the identity operator acting on an n-dimensional vector
space, we have

�G = |E(G )|In −
∑

e∈E(G )

D(e) = ∣
∣E(G )

∣
∣In − D

( ∑

e∈E(G )

e

)
, (3.6)

where, in view of correspondence (3.4),
∑

e∈E(G ) e can be considered an element of
the group algebra CSn, and, in the last equality, we have used the linear extension of
D to a representation of CSn. Given a finite graph G , we define

W(G ) :=
∑

e∈E(G )

e ∈ CSn (3.7)

and rewrite (3.6) as

�G = ∣∣E(G )
∣∣In − D

[
W(G )

]
. (3.8)

A relationship for the corresponding eigenvalues trivially follows:

λi(�G ) = ∣∣E(G )
∣∣− λn−i

(
D
[
W(G )

])
i = 1, . . . , n. (3.9)

We remark that, in the more general case of a weighted graph with edge weights
(we)e∈E(G ), identities (3.8) and (3.9) remain valid as long as one uses the “correct
definition” of W(G ) as W(G ) := ∑

e∈E(G ) wee.
We can associate to the graph G the Cayley graph Cay(Sn,E(G )) with vertex

set Sn, where n is the cardinality of V (G ), and edge set given by
{
(π,πe) : π ∈ Sn, e = (ij) ∈ E(G )

}
.
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Since each transposition coincides with its inverse, this Cayley graph is undirected.
We let, for simplicity, Cay(G ) := Cay(Sn,E(G )). If we denote with R the right reg-
ular representation of Sn which acts on Sn and on C

Sn respectively as6

R(π)π ′ = π ′π−1 π,π ′ ∈ Sn,
[
R(π)f

]
(π ′) = f (π ′π) f : Sn 
→ C,

we can proceed as in (3.5) and obtain

(�Cay(G )f )(π) =
∑

e∈E(G )

[
f (π) − f (πe)

] =
∑

e∈E(G )

[
f (π) − R(e)f (π)

]
. (3.10)

Identities (3.8) and (3.9) become, for the Cayley graph,

�Cay(G ) = ∣∣E(G )
∣∣In! − R

[
W(G )

]
(3.11)

λi(�Cay(G )) = ∣∣E(G )
∣∣− λn!−i

(
R
[
W(G )

])
i = 1, . . . , n!. (3.12)

The right regular representation R is equivalent to the left regular representation (un-
der the change of basis π → π−1) and can be written as a direct sum of all irreducible
representations, each appearing with a multiplicity equal to its dimension,

[R] =
⊕

α �n

fα[α].

By consequence, the spectrum of R[W(G )] can be written as7

spec R
[
W(G )

] =
⋃

α �n

spec Tα
[
W(G )

]
. (3.13)

The (trivial) one-dimensional identity representation T(n) = I1, corresponding to the
partition (n), appears in this decomposition exactly once, and we have T(n)[W(G )] =
|E(G )| · I1; thus its unique eigenvalue is equal to |E(G )|, which accounts for the fact
that λ1

(
�Cay(G )

) = 0. If G is connected, the set E(G ), considered as a set of transpo-
sitions, generates Sn, and hence Cay(G ) is also connected, and λ1 is the unique null
eigenvalue of �Cay(G ). In any case, letting

λmax
[
α,W(G )

] := max spec Tα
[
W(G )

] = λfα

(
Tα

[
W(G )

])
,

we have, for what concerns the second eigenvalue of the Cayley graph,

λ2
(
�Cay(G )

) = ∣
∣E(G )

∣
∣− max

α �n,α �=(n)
λmax

[
α,W(G )

]
. (3.14)

6The right regular representation is a left action, like every representation.
7To get the correct multiplicities of the eigenvalues, one must include the coefficients fα and interpret the
union over α as a disjoint union of multisets.
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On the other hand, the defining representation can be decomposed as [D] = [n] ⊕
[n − 1,1], which implies

λ2(�G ) = ∣∣E(G )
∣∣− λmax

[
(n − 1,1),W(G )

]
. (3.15)

The main result of paper is the following:

Theorem 3.1 If G is a complete multipartite graph with n vertices, we have

λmax
[
α,W(G )

] ≤ λmax
[
(n − 1,1),W(G )

]
(3.16)

for all irreducible representations [α] of Sn with [α] �= [n].
From (3.14), (3.15), and Theorem 3.1 it follows that:

Corollary 3.2 If G is a complete multipartite graph, then Aldous’s conjecture holds,
that is,

λ2(�Cay(G )) = λ2(�G ).

4 Outline of the proof in the bipartite case

We briefly sketch in this section the proof of Theorem 3.1 in the bipartite case, which
requires less notation than the more general multipartite case but illustrates most of
the relevant ideas. The general case can be treated by relatively standard induction.
All missing details will be found in later sections.

We start with a well-known fact [6] about the complete graph Kn. Given an irre-
ducible representation [α] of Sn, corresponding to the partition α = (α1, . . . , αr), we
consider the normalized character on the sum of all transpositions

qα := n(n − 1)

2fα

χα(e) α �n,

where e is an arbitrary transposition of Sn. In the case of transpositions, Frobenius
formulas for the irreducible characters take the simple form [11]

qα = 1

2

∞∑

i=1

αi

[
αi − (2i − 1)

] = 1

2

r∑

i=1

αi

[
αi − (2i − 1)

]
, (4.1)

where r is the length of α. We use expression (4.1) as a definition of qα when α is,
more generally, a weak composition of n, even though, when α is not a partition,
the quantity qα has no significance associated to an irreducible representation of Sn.
A simple application of the Schur’s lemma yields the following result (see [6, Lem-
ma 5] for a more general statement where arbitrary conjugacy classes are considered).

Proposition 4.1 If Tα is an irreducible representation of Sn corresponding to the
partition α �n, then

Tα
[
W(Kn)

] = qαIfα .
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Table 1 Eigenvalues of
T(4,2,1)[W(K4,3)] α = (4,2,1) λ = qα − qβ − qγ

β γ λ β γ λ

(4) (2,1) −3 (3,1) (3) −2

(3,1) (2,1) 1 (3,1) (13) 4

(2,2) (3) 0 (2,2) (2,1) 3

(2,1,1) (3) 2 (2,1,1) (2,1) 5

Let then n = j + k with j, k two positive integers and consider the complete bi-
partite graph Kj,k with vertex set {1, . . . , n} and edges {i, i′} with i ≤ j and i′ > j .
Since the complement of Kj,k is given by

Kj,k = Kj ∪ Kk,

using Proposition 4.1, one can prove (see Proposition 5.3) that the eigenvalues of
Tα[W(Kj,k)] have the form

qα − qβ − qγ , (4.2)

where β is a partition of j , and γ is a partition of k, subject to the condition that
the Littlewood–Richardson coefficient cα

β,γ is positive. The reason for this is that the
irreducible representation [α] of Sn is no longer irreducible when restricted to the
Young subgroup S(j,k)

∼= Sj × Sk , but it is a direct sum of irreducible components

[α]⏐	Sn

S(j,k)
=

⊕

β � j,γ �k

cα
β,γ [β] ⊗ [γ ]. (4.3)

If one is interested in keeping track of multiplicities, each pair (β, γ ) appearing
in (4.3) contributes with a multiplicity equal to cα

β,γ fβfγ . For example, using the
Littlewood–Richardson rule (see Sect. 6), we find the decomposition

[4,2,1]⏐	S7
S(4,3)

= [4] ⊗ [2,1] ⊕ [3,1] ⊗ [3] ⊕ 2 [3,1] ⊗ [2,1] ⊕ [3,1] ⊗ [
13]

⊕ [
22]⊗ [3] ⊕ [

22]⊗ [2,1] ⊕ [
2,12]⊗ [3] ⊕ [

2,12]⊗ [2,1].

This, in turn, determines that the eigenvalues of T(4,2,1)[W(K4,3)] are those given in
Table 1. Thus λmax((4,2,1),W [K4,3]) = 5.

We say that the pair (β, γ ) is α-admissible if cα
β,γ > 0, and we define

Bα
j,k := max

α-admissible (β,γ )
qα − qβ − qγ ,

so that

λmax
[
α,W(Kj,k)

] = Bα
j,k.

In general, given α �n and β � j , there are several different γ �k such that (β, γ )

is α-admissible. One of the central points of the proof is the identification of the
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particular γ̂ = γ̂ (α,β) which corresponds to a minimum value of qγ , given α and β ,
so that

Bα
j,k = max

β � j,β≤α
qα − qβ − qγ̂ (α,β). (4.4)

What we find, in particular, is that (Lemma 5.11)

γ̂ (α,β) = srt(α − β),

where srt is the operator that sorts a sequence in nondecreasing order in such a way
that the resulting sequence is a partition. So, for instance, if α = (7,6,2,1) and
β = (5,2,2), we have

α − β = (2,4,0,1), γ̂ = srt(α − β) = (4,2,1).

At this point one could reasonably hope in some monotonicity property of the Bα
j,k

with respect to α. There is a partial order “�” in the set of all partitions of n, called
dominance (see Sect. 5), which plays a crucial role in the representation theory of the
symmetric group. It would be nice to prove something like

α � α′ =⇒ λmax
[
α,W(Kj,k)

] ≤ λmax
[
α′,W(Kj,k)

]
. (4.5)

Since any nontrivial partition α of n is dominated by the partition (n−1,1), property
(4.5), if true, would imply Theorem 3.1 for G = Kj,k . Implication (4.5) is unfortu-
nately false.8 Nevertheless, our actual strategy is a slight detour from this monotonic-
ity idea. We consider a modified version of the quantities (4.4),

B
α

j,k := max
β � j,β≤α

qα − qβ − qα−β. (4.6)

Then we realize (Proposition 5.10) that qα−β ≤ qsrt(α−β), and thus, by consequence,
Bα

j,k ≤ B
α

j,k . Using (4.1), one finds (Proposition 5.8) a very simple expression for the
quantity qα − qβ − qα−β , namely

qα − qβ − qα−β = β · (α − β) =
∞∑

i=1

βi(αi − βi).

At this point one gets a lucky break. In fact:

(a) The monotonicity property (4.5) holds for the quantities B
α

j,k (Proposition 5.9).

(b) If α = (n − 1,1), we find that9 B
(n−1,1)

j,k = B
(n−1,1)
j,k (Proposition 5.5).

Combining these facts, we obtain, for any α �n with α �= (n),

Bα
j,k ≤ B

α

j,k ≤ B
(n−1,1)

j,k = B
(n−1,1)
j,k ,

and Theorem 3.1 is proven.

8A simple counterexample is given by K3,1. One easily finds that λmax[(2,1,1),W(K3,1)] = 1 and
λmax[(2,2),W(K3,1)] = 0.
9Unless j = k = 1, but this case is trivial.
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5 Proof of Theorem 3.1

A complete multipartite graph with n vertices is identified, up to a graph isomor-
phism, by a partition of n, so, if σ = (σ1, . . . , σp) � n with p ≥ 2, we denote the
associated complete multipartite graph with Kσ = Kσ1,...,σp . The set {1, . . . , n} can
be written as a disjoint union

{1, . . . , n} = Nσ
1 ∪ · · · ∪ Nσ

p

of subsets Nσ
k of cardinality σk given by

Nσ
k := {σ1 + · · · + σk−1 + 1, . . . , σ1 + · · · + σk}. (5.1)

Let Sσ
k be the subgroup of Sn which consists of the permutations π such that π(i) = i

for each i ∈ {1, . . . , n}\Nσ
k . The Young subgroup Sσ is defined as

Sσ = S(σ1,...,σp) := Sσ
1 × · · · × Sσ

p .

In other words, a permutation π belongs to Sσ if and only if

i ∈ Nσ
k =⇒ π(i) ∈ Nσ

k . (5.2)

The subgroup Sσ is naturally isomorphic to the (exterior) Cartesian product Sσ1×· · · × Sσp .
We observe that the complement of Kσ is a disjoint union of complete graphs

Kσ = Kσ1 ∪ · · · ∪ Kσp,

and hence

W [Kσ ] = W [Kn] − W

[
p⋃

k=1

Kσk

]

,

and thanks to Proposition 4.1, we get, for any irreducible representation [α] of Sn,
the identity10

Tα
[
W(Kσ )

] = qαIfα − Tα

[

W

(
p⋃

k=1

Kσk

)]

. (5.3)

The quantity W(
⋃p

k=1 Kσk
) belongs to the group algebra of the Young subgroup Sσ .

The irreducible representation [α] of Sn is no longer irreducible when restricted to
Sσ . The irreducible representations of Sσ

∼= Sσ1 × · · · × Sσp are in fact the (outer)
tensor products of the irreducible representations of each Sσi

Irr(Sσ ) = {[
β1]⊗ · · · ⊗ [

βp
] : βi �σi for each i = 1, . . . , p

}
.

10Even though α and σ are both partitions of n, they play a very different role. [α] is an equivalence class
of irreducible representations of Sn, while σ determines the structure of the graph Kσ .
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The obvious step at this point is to take advantage of the decomposition

[α]⏐	Sn

Sσ
=

⊕

β1 �σ1,...,β
p �σp

cα
β1,...,βp

[
β1]⊗ · · · ⊗ [

βp
]

(5.4)

into a sum of irreducible representations of Sσ . Identities (5.3) and (5.4) and the fact
that W(

⋃p

k=1 Kσk
) ∈ CSσ , imply that the eigenvalues of Tα[W(G )] are of the form

qα − λ, where λ is an eigenvalue of

p⊗

k=1

Tβk

[

W

(
p⋃

k=1

Kσk

)]

, (5.5)

and where (β1, . . . , βp) is a collection of partitions βk �σk such that the (multi)
Littlewood–Richardson coefficient cα

β1,...,βp is positive. We give a name to these col-

lections of βk .

Definition 5.1 Given the partitions α � n and σ = (σ1, . . . , σp) � n, we say that the
p-tuple (β1, . . . , βp) of partitions is (α,σ )-admissible if

(i) each βi is a partition of σi ,
(ii) cα

β1,...,βp > 0.

We denote with Adm(α,σ ) the set of all (α,σ )-admissible p-tuples of partitions.

The spectrum of the matrix in (5.5) can be expressed in a simple form thanks to
the fact that

⋃p

i=1 Kσi
is a disjoint union.

Proposition 5.2 Let H be a finite graph which is the (disjoint) union of subgraphs
H1, . . . ,Hp , and let σi be the number of vertices of Hi . For each i = 1, . . . , p, let
Yi be a representation of Sσi

, and let Y be the representation of Sσ given by

Y :=
p⊗

i=1

Yi .

Then

spec Y
[
W(H )

] = {
λ1 + · · · + λp : λi ∈ spec Yi

[
W(Hi )

]}
. (5.6)

Proof We have

W(H ) =
∑

e∈E(H )

e =
p∑

i=1

∑

e∈E(Hi )

e =
p∑

i=1

W(Hi )

=
p∑

i=1

1Sσ1
· . . . · 1Sσi−1

· W(Hi ) · 1Sσi+1
· . . . · 1Sσp

,



168 J Algebr Comb (2010) 32: 155–185

where 1G stands for the unit element of the group G and of the group algebra CG. If
di is the dimension of the representation Yi (which will not be confused, hopefully,
with the degree of the vertex i), by the definition of Y we obtain

Y
[
W(H )

] =
p∑

i=1

Id1 ⊗ · · · ⊗ Idi−1 ⊗ Yi
[
W(Hi )

] ⊗ Idi+1 ⊗ · · · ⊗ Idp . (5.7)

Equality (5.6) now follows from a (presumably) standard argument: since e is a trans-
position, e−1 = e. We can assume that representations Yi are unitary, which implies
that Yi (e) is a Hermitian matrix, and thus Yi[W(Hi )] is also Hermitian.11 For each
i = 1, . . . , p, let (u

(i)
j )

di

j=1 be a basis of C
di consisting of eigenvectors of Yi[W(Hi )].

The set of all vectors of the form

u
(1)
j1

⊗ · · · ⊗ u
(p)
jp

(5.8)

is a basis of C

∏
i di which consists of eigenvectors of Y[W(H )]. Hence the eigenval-

ues of Y[W(H )] are given (5.6). �

Thanks to identities (5.3) and (5.4) and to Proposition 5.2 and Proposition 4.1
applied to each Kσi

, we have obtained the following fairly explicit representation for
the eigenvalues of Tα[W(Kσ )].

Theorem 5.3 Let Kσ be the complete multipartite graph associated with the parti-
tion σ = (σ1, . . . , σp) of n, and let Tα be one of the (equivalent) irreducible repre-
sentations of Sn corresponding to α = (α1, . . . , αr)�n. Then

spec Tα
[
W(Kσ )

] =
{

qα −
p∑

i=1

qβi : (βi)
p

i=1 is (α,σ )-admissible

}

. (5.9)

We now define, for arbitrary weak compositions β1, . . . , βp , the quantities

bα
β1,...,βp := qα −

p∑

i=1

qβi , (5.10)

Bα
σ := max

(β1,...,βp)∈Adm(α,σ )
bα
β1,...,βp . (5.11)

It follows from Theorem 5.3 that

λmax
[
α,W(Kσ )

] = Bα
σ . (5.12)

In order to prove Theorem 3.1 we must show that

α �= (n) =⇒ Bα
σ ≤ B(n−1,1)

σ . (5.13)

11Using the Jordan canonical form, one can prove the same result in the general “non-Hermitian” case.
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Our plan at this point is the following: we are going to replace the class Adm with a
different class Adm∗ such that

(a) the corresponding maximum

B
α

σ := max
(β1,...,βp)∈Adm∗(α,σ )

bα
β1,...,βp (5.14)

is easier to evaluate, and, by consequence, we will be able to show that
(b) B

α

σ has a useful monotonicity property with respect to the dominance partial
order of partitions. A consequence of this monotonicity is that implication (5.13)
holds for the quantities B ,

(c) there is a simple and useful relationship between the “true” quantities Bα
σ and

their “fake” relatives B
α

σ , namely: Bα
σ ≤ B

α

σ and Bα
σ = B

α

σ if α = (n − 1,1).

From (b) and (c) it follows that (5.13) holds, and hence Theorem 3.1 is proven.
We start then to describe this alternate class Adm∗.

Definition 5.4 Given two partitions α,σ of n, with σ of length p, we denote with
Adm∗(α,σ ) the set of all p-tuples of weak compositions (γ 1, . . . , γ p) such that

(i) γ i is a weak composition of σi ,
(ii) γ 1 + · · · + γ p = α.

Proposition 5.5 Let α �n, σ = (σ1, . . . , σp)�n.

(1) For each (βi)
p

i=1 ∈ Adm(α,σ ), there exists (γ i)
p

i=1 ∈ Adm∗(α,σ ) such that

qγ 1 + · · · + qγ p ≤ qβ1 + · · · + qβp . (5.15)

By consequence, we have Bα
σ ≤ B

α

σ .
(2) If α = (n − 1,1) and σ �= (1,1, . . . ,1), then Bα

σ = B
α

σ .

Proof of (1) The crucial point is the following result that we prove at the end of this
section.

Proposition 5.6 Let n = j + k with j, k positive integers, and let α �n, β � j , β ′ � k

be such that the Littlewood–Richardson coefficient cα
β,β ′ is positive. Then β ≤ α and

qβ ′ ≥ qα−β. (5.16)

Given Proposition 5.6, we can prove part (1) of Proposition 5.5 by induction on
p ≥ 2. If p = 2, let σ = (j, k) with j + k = n, let (β,β ′) ∈ Adm(α,σ ), and define

(γ, γ ′) := (β,α − β).

The pair (γ, γ ′) clearly belongs to Adm∗(α, (j, k)), and hence (5.15) holds thanks to
(5.16).
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The general case p ≥ 2 can be proven by induction on p. Assume then that Propo-
sition 5.5 holds for p − 1 and let σ = (σ1, . . . , σp)�n. Define the partitions

ζ = (ζ1, ζ2) := (σ1 + · · · + σp−1, σp) � n,

σ ′ := (σ1, . . . , σp−1)� ζ1.

Since Sσ is a subgroup of Sζ , we have

[α]⏐	Sn

Sσ
= ([α]⏐	Sn

Sζ

)⏐	Sζ

Sσ
.

Thus, from the decompositions

[α]⏐	Sn

Sζ
=

∑

(δ,δ′)∈Adm(α,ζ )

cα
δ,δ′ [δ] ⊗ [δ′],

[δ]⏐	Sζ1
Sσ ′ =

∑

(β1,...,βp−1)∈Adm(δ,σ ′)
cδ
β1,...,βp−1

[
β1]⊗ · · · ⊗ [

βp−1]

we find

cα
β1,...,βp =

∑

δ � ζ1

cα
δ,βpcδ

β1,...,βp−1 . (5.17)

If (β1, . . . , βp) ∈ Adm(α,σ ), the quantity in (5.17) is positive; thus there exists δ � ζ1

such that both coefficients in the RHS of (5.17) are positive. Pick one such δ. Since
cδ
β1,...,βp−1 > 0, we have, by induction, that there exist (γ 1, . . . , γ p−1) ∈ Adm∗(δ, σ ′)

such that

qγ 1 + · · · + qγ p−1 ≤ qβ1 + · · · + qβp−1 . (5.18)

Moreover, cα
δ,βp > 0, and thus, by Proposition 5.6 we have

qβp ≥ qα−δ. (5.19)

Let γ p := α − δ. From (5.18), (5.19), and the fact that (γ 1, . . . , γ p−1) ∈ Adm∗(δ, σ ′)
one can easily conclude that (γ 1, . . . , γ p) ∈ Adm∗(α,σ ) and that inequality (5.15)
holds.

Proof of part (2) of Proposition 5.5 We now show that inequality Bα
σ ≤ B

α

σ is actually
an equality when α = (n − 1,1) and σ �= (1,1, . . . ,1).

A simple application of the Littlewood–Richardson rule yields the decomposition

[n − 1,1]⏐	Sn

Sσ
= (p − 1)[σ1] ⊗ · · · ⊗ [σp]

⊕
⊕

i=1,...,p :
σi≥2

[σ1] ⊗ · · · ⊗ [σi−1] ⊗ [σi − 1,1] ⊗ [σi+1] ⊗ · · · ⊗ [σp].

(5.20)
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Notice that [m − 1,1] has degree m − 1, while [σi] is the trivial one-dimensional
representation, thus the dimension count is correct in (5.20). From (5.20) we can read
the list of all (α,σ )-admissible collections

Adm(α,σ ) := {Ψ0} ∪ {Ψi : 1 ≤ i ≤ p, σi ≥ 2},
where

Ψ0 := (
(σ1), . . . (σp)

)
, (5.21)

Ψi := (
(σ1), . . . , (σi−1), (σi − 1,1), (σi+1), . . . , (σp)

)
. (5.22)

On the other hand, it follows from the definition of Adm∗(α,σ ) that

Adm∗(α,σ ) := {Ψi : 1 ≤ i ≤ p}. (5.23)

If all the σi ’s are greater than 1, then Adm∗(α,σ ) is a subset of Adm(α,σ ), and
thus the conclusion is trivial. If some of the σi ’s are equal to 1, then in principle we
have to worry about the corresponding Ψi , which belong to Adm∗(α,σ ) but not to
Adm(α,σ ). But one can easily compute

bα
Ψ0

= q(n−1,1) −
p∑

j=1

qσj
= ∣∣E(G )

∣∣− ∣∣V (G )
∣∣,

bα
Ψi

= q(n−1,1) − q(σi−1,1) −
p∑

j=1,j �=i

qσj
= ∣∣E(G )

∣∣− ∣∣V (G )
∣∣+ σi.

Hence, since, by hypothesis, σ1 = maxi σi > 1, we have

B(n−1,1)
σ = B

(n−1,1)

σ = ∣∣E(G )
∣∣− ∣∣V (G )

∣∣+ σ1. �

Remark 5.7 Observe that condition σ �= (1,1, . . . ,1) is necessary. In fact, if σ :=
(1,1 . . . ,1), we obtain

B(n−1,1)
σ = bα

Ψ0
= ∣∣E(G )

∣∣− ∣∣V (G )
∣∣ <

∣∣E(G )
∣∣− ∣∣V (G )

∣∣+ 1 = B
α

σ .

Thanks to condition γ 1 + · · ·+ γ p = α in the definition of Adm∗(α,σ ), the quan-
tity bα

γ 1,...,γ p has a simple expression.

Proposition 5.8 If (γ 1, . . . , γ p) ∈ Adm∗(α,σ ), we have

bα
γ 1,...,γ p =

p∑

i,j=1
i<j

γ i · γ j ,

where γ i · γ j denotes the canonical inner product γ i · γ j := ∑∞
k=1 γ i

k γ
j
k .
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Proof The proof is a straightforward computation. Using (4.1) and the fact that γ 1 +
· · · + γ p = α, we find

qα −
p∑

i=1

qγ i = 1

2

∞∑

k=1

[

α2
k − αk(2k − 1) −

p∑

i=1

[(
γ i
k

)2 − γ i
k (2k − 1)

]
]

= 1

2

∞∑

k=1

[(
p∑

i=1

γ i
k

)2

−
p∑

i=1

(
γ i
k

)2

]

=
p∑

i,j=1
i<j

γ i · γ j .

�

In Sect. 2 we have defined a “componentwise” partial order α ≤ β in the set of
all finite sequences of integers. We introduce now a weaker partial order �, which,
following [12], we call dominance order.12 If α,β are weak compositions, we say
that β dominates α, and we write α � β if

r∑

i=1

(βi − αi) ≥ 0 ∀r = 1,2, . . . . (5.24)

If α and β are weak compositions of the same integer n, β dominates α iff (either
α = β or) the Young diagram of β can be obtained from the Young diagram of α by
moving a certain number of boxes from a lower row to a higher row. For instance,

α = � = β.

We write α ∼ β if there exist two integers j < k such that

αi = βi for all i �= j, k and βj − αj = αk − βk = 1, (5.25)

i.e., if β is obtained from α by removing one box from the right end of one of its rows
and by placing it at the end of a higher row. Then it is obvious that if α � β , there
exists a finite sequence of “interpolating” weak compositions

γ1 = α � γ2 � · · · � γs = β (5.26)

such that γi ∼ γi+1. Less obviously, if α and β are both partitions of n, then the inter-
polating sequence (γi) can be chosen in such a way that each γi is also a partition of
n (see [12, Theorem 1.4.10], where a slightly different notion of ∼ is used; his result
implies our statement). The dominance order plays a crucial role in the representation
theory of Sn and, more generally, in combinatorics. We refer the reader to Sect. 1.4
of [12], where several coimplications of the statement “α � β” are discussed.

We are now ready for part (5) of our “plan” outlined above.

12One can introduce a third (total) order, namely the lexicographic order, but we do not need it in this
paper.
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Proposition 5.9 Let α,β be two partitions of n with α � β .

(1) qα ≤ qβ .

(2) B
α

σ ≤ B
β

σ for any σ �n.

End of proof of Theorem 3.1 Before proving Proposition 5.9 we complete the proof
of Theorem 3.1. We start with the simple observation that

If α is a nontrivial partition of n,

i.e., α �= (n), then α � (n − 1,1). (5.27)

If σ = (1,1, . . . ,1), G is the complete graph Kn. This case is well known [6].
Anyway, the proof goes as follows: Proposition 4.1 says that Tα[W(Kn)] has a
unique eigenvalue qα of multiplicity equal to the dimension of the representa-
tion α; in particular, λmax[α,W(Kn)] = qα . Statement (1) of Proposition 5.9 yields
λmax[α,W(Kn)] ≤ λmax[(n − 1,1),W(Kn)].

Case σ �= (1,1, . . . ,1). Thanks to (5.12), (5.27), Proposition 5.5, and Proposi-
tion 5.9, we have

λmax
[
α,W(Kσ )

] = Bα
σ ≤ B

α

σ ≤ B
(n−1,1)

σ

= B(n−1,1)
σ = λmax

[
(n − 1,1),W(Kσ )

]
. �

Proof of Proposition 5.9 Thanks to the existence of the interpolating sequence (5.26),
we can assume that α ∼ β . Thus there exist two integers j < k such that

αi = βi for all i �= j, k and βj − αj = αk − βk = 1. (5.28)

Statement (1) was proven in [6, Lemma 10], and it is a simple computation. In fact,
from (4.1), (5.28), and the fact that α is a partition it follows that

qβ − qα = (αj − αk) + (k − j + 1) ≥ k − j + 1 ≥ 2.

For the proof of (2), let σ = (σ1, . . . , σp)�n. We now show that for each (γ i)
p

i=1 ∈
Adm∗(α,σ ), there exists (δi)

p

i=1 ∈ Adm∗(β,σ ) such that

bα
γ 1,...,γ p ≤ b

β

δ1,...,δp . (5.29)

Let then (γ 1, . . . , γ p) ∈ Adm∗(α,σ ) and, for a positive integer , which will be de-
termined at the end, define the p-tuple (δi)

p

i=1 as follows:

(a) if i �= , we simply let δi = γ i , while
(b) δ is obtained from γ  by moving one box from row k to row j , i.e.,

δ
i = γ 

i for all i �= j, k, δ
j = γ 

j + 1, δ
k = γ 

k − 1. (5.30)
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It is clear that (δi)
p

i=1 ∈ Adm∗(β,σ ) unless γ 
k = 0, but we will worry about this later.

Using Proposition 5.8, we obtain

�b := b
β

δ1,...,δp − bα
γ 1,...,γ p =

p∑

i,m=1,i<m

[
δi · δm − γ i · γ m

]

= (
δ − γ 

) ·
p∑

i=1,i �=

γ i =
p∑

i=1,i �=

(
γ i
j − γ i

k

)

= (αj − αk) − (
γ 
j − γ 

k

)
. (5.31)

From (5.28) it follows that αk ≥ 1, so the set of “legal” values of , that is, those such
that γ 

k > 0, is nonempty. Summing over all these values of  and keeping in mind
that αj ≥ αk , we have

∑

:γ 
k >0

�b = ∣∣{ : γ 
k > 0

}∣∣(αj − αk) −
∑

:γ 
k >0

γ 
j + αk

≥ αj −
∑

:γ 
k >0

γ 
j =

∑

:γ 
k =0

γ 
j ≥ 0.

Hence there exists at least one value of  such that γ 
k > 0 and �b ≥ 0. If we then

define (δi)
p

i=1 using this value of , we get (5.29). �

Proof of Proposition 5.6 Let n = j + k, α �n, β � j , γ � k, and assume that the
Littlewood–Richardson coefficient cα

β,γ is positive. The fact that β ≤ α, i.e., that
βi ≤ αi for each i, trivially follows from the Littlewood–Richardson rule, which we
discuss in Sect. 6. We must prove that qγ ≥ qα−β . The difference α − β is a weak
composition of k but not necessarily a partition. We can nevertheless obtain a parti-
tion by sorting the entries of α − β in nonincreasing order (and dropping the trailing
zeros). We denote this partition with srt(α − β). So, if

α − β = δ = (δ1, . . . , δr ),

we have

srt(δ) = (δπ(1), . . . , δπ(r)) with δπ(1) ≥ · · · ≥ δπ(r), (5.32)

where π is a suitable permutation in Sr . We start by observing that this sorting pro-
cedure does not decrease the quantity q .

Proposition 5.10 Let α,β be two weak compositions of n. Assume that β is obtained
from α by switching two elements αj ,αk with j < k, i.e.,

β = (α1, . . . , αj−1, αk,αj+1, . . . , αk−1, αj ,αk+1, . . .).
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Then13 αj < αk if and only if qα < qβ . By consequence, qsrt(α) ≥ qα for any weak
composition α.

Proof From (4.1) we get

qβ − qα = 1

2

[
αk(αk − 2j + 1) − αj (αj − 2j + 1)

+ αj (αj − 2k + 1) − αk(αk − 2k + 1)
]

= (αj − αk)(j − k).

The proposition follows, since j < k. �

The central ingredient of the proof of Proposition 5.6 is the following property of
the Richardson–Littlewood coefficients, which we prove in Sect. 6 and which identi-
fies the partition γ with “minimal content.”

Lemma 5.11 Let α �n and β � j with j < n and β ≤ α. Let γ̂ := srt(α −β), so that
γ̂ is a partition of k = n − j .

(1) The Littlewood–Richardson coefficient cα
β,γ̂ is positive.

(2) If γ is a partition of k such that cα
β,γ > 0, then γ � γ̂ .

Given Lemma 5.11, the proof of Proposition 5.6 readily follows. In fact, from
γ � γ̂ , statement (1) of Proposition 5.9, and Proposition 5.10 we obtain

qγ ≥ qγ̂ = qsrt(α−β) ≥ qα−β. �

Remark 5.12 Theorem 3.1 states that, if G is complete multipartite, then

α � (n − 1,1) =⇒ λmax
[
α,W(G )

] ≤ λmax
[
(n − 1,1),W(G )

]
.

One may wonder whether the following “strict version” of this implication holds:

α � (n − 1,1) =⇒ λmax
[
α,W(G )

]
< λmax

[
(n − 1,1),W(G )

]
. (5.33)

This would imply that the first nontrivial eigenvalues of �G and �Cay(G ) are not only
equal but also have the same multiplicity. But (5.33) is false. Take, in fact, K2,2. It is
easy to verify that

λmax
(
(2,2),W [K2,2]

) = λmax
(
(3,1),W [K2,2]

) = 2.

�

13Recall that we have defined qα for weak compositions by formula (4.1).
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6 Littlewood–Richardson tableaux with minimal content

6.1 The Littlewood–Richardson rule

Since we are going to deal with the mechanisms of the Littlewood–Richardson rule,
it might be a good idea to briefly describe how it works. We need to define skew
tableaux, semistandard tableaux, lattice permutations and content of a tableau. Im-
patient readers who are not acquainted with this rule and who prefer worked examples
to abstract definitions might try staring at Table 2 for a couple of minutes.14

Let as usual j, k be two positive integers with n = j + k. Given α �n and β � j

with β ≤ α, the skew diagram of shape α/β is the set of boxes obtained by erasing
in the Young diagram α all boxes which also appear in β . Let, for example, α =
(7,6,3,1) and β = (5,2,1). Let us draw α and cross all boxes which belong to β .
The skew diagram of shape α/β is the set of all uncrossed boxes

α/β = .

A skew tableau is a skew diagram with a positive integer placed in each box. A skew
tableau is called semistandard if each row is nondecreasing and each column is
strictly increasing. A lattice permutation is a finite sequence of positive integers
ω = (ω1,ω2, . . . ,ωs) such that for each k = 1, . . . , s, the number of times that any
given integer i appears in the initial subsequence (ω1, . . . ,ωk) cannot exceed the
number of times that i − 1 appears in the same subsequence. In other words,

∣∣{j ≤ k : ωj = a}∣∣ ≥ ∣∣{j ≤ k : ωj = b}∣∣ ∀k = 1, . . . , s ∀a < b.

For instance, if we let

ω := (1,1,2,1,3,2,2,3,1,1,2), ω′ := (1,1,2,1,3,2,3,3,1,1,2),

then ω is a lattice permutation, but ω′ is not, since, when we arrive at the underlined
digit 3, we realize that we have encountered along the way more 3’s than 2’s.

The content of a finite sequence of positive integers ω = (ω1, . . . ,ωs) is the se-
quence γ = (γ1, γ2, . . .), where γi is the number of times the integer i appears
in ω. The content of a (skew) Young tableau t is the content of the sequence of
all the integers which appear in t , listed in any (obviously arbitrary) order. So, for
instance,

has content (4,2,2,0,1,1).

14It did not work for the author though!
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Table 2 LR tableaux of shape
α/β and content γ α = (6,5,3,1) β = (5,2,1)

LR tableau γ LR tableau γ

(6,1) (5,2)

(5,2) (5,2)

(5,1,1) (5,1,1)

(4,3) (4,3)

(4,3) (4,2,1)

(4,2,1) (4,2,1)

(4,2,1) (4,1,1,1)

(3,3,1) (3,3,1)

(3,2,2) (3,2,1,1)

We are finally able to state the Littlewood–Richardson rule. For a proof, see, for
instance, [12] or [15].

Littlewood–Richardson rule The coefficient cα
β,γ which appears in (4.3) is equal to

the number of semistandard skew tableaux of shape α/β and content γ , which yield
lattice permutations when we read their entries from right to left and downward. We
will call these tableaux LR tableaux.

Table 2 shows all LR tableaux of shape α/β with content γ for α = (6,5,3,1) and
β = (5,2,1). Notice that the minimal γ is the last entry of the table, γ = (3,2,1,1) =
srt(α − β), in accord with Lemma 5.11.
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6.2 Proof of Lemma 5.11

Let t be an LR tableau of shape α/β , and let δ = α − β . Since β ≤ α, in general, δ is
a weak composition of k := |α| − |β|, so it can have (nontrailing) zeros. In the next
remark we get rid of these zeros, reducing to the case δ |= k. This is really irrelevant,
as we will see, but it simplifies some statements. For this purpose, we introduce the
notation

β � α
def⇐⇒ βi < αi for all i such that αi > 0,

so that β � α implies that α − β is a composition.

Remark 6.1 (Reduction to the case β � α) Assume that the Young diagrams of α

and β have some corresponding rows of equal length αi = βi . Let α and β be the
Young diagrams obtained by eliminating in α and β all corresponding rows of equal
length. Then it is obvious that the number of LR tableaux of shape α/β and content
γ is not affected by the simultaneous replacements of α with α and β with β . Since,
on the other hand, srt(α − β) = srt(α − β), it follows that if Lemma 5.11 holds when
β � α, it also holds for β ≤ α.

It is our intention to concatenate the rows of an LR tableau t into a single sequence
of positive integers, of length |δ|, that we denote by ϑ(t). Rather than keep struggling
with our primordial instinct to read (and think) from left to right,15 we first flip each
row of t and then concatenate the rows from top to bottom. So, for instance, if

α = (7,6,4,3), β = (4,2,1,1), γ = (6,3,2,1), δ = (3,4,3,2),

(6.1)
an example of an LR tableaux t of shape α/β , content γ , and relative sequence ϑ(t)

is

t = (6.2)

ϑ(t) = (1,1,1︸ ︷︷ ︸
Nδ

1

,2,2,1,1︸ ︷︷ ︸
Nδ

2

,3,2,1︸ ︷︷ ︸
Nδ

3

, 4,3︸︷︷︸
Nδ

4

). (6.3)

We observe that ϑ(t) is nonincreasing in each subinterval corresponding a row of t .

Definition 6.2 Given δ = (δ1, . . . , δr ) |=n, we say that a sequence of n positive in-
tegers is δ-nonincreasing if it is nonincreasing in each subinterval Nδ

i (recall defi-
nition (5.1)). For future purposes, it is convenient to stretch a little bit (in an obvi-
ous way) this definition, in order to accommodate also sequences shorter than |δ|.
If m < n = |δ|, a sequence of m positive integers is called δ-nonincreasing if the
sequence of length n obtained by adding n − m 1’s at the end is δ-nonincreasing.

15We apologize to native right-to-left thinkers.
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We denote with Ωδ the set of all sequences ω = (ω1, . . . ,ω|δ|) of positive integers
such that

(i) ω is a lattice permutation,
(ii) ω is δ-nonincreasing.

We have then:

Proposition 6.3 Given α �n and β � j with β � α, the mapping t 
→ ϑ(t) is an
injection from the set of all LR tableaux of shape α/β into Ωα−β .

Proof It is obvious from the construction of ϑ(t) and from the definition of LR
tableau. �

Remark 6.4 Notice that in general, given α and β , and letting δ := α−β , the mapping

ϑ : {LR tableaux of shape α/β} 
→ Ωδ

is not surjective. There will be in fact elements ω ∈ Ωδ that, when “disassembled
back and flipped” in order to restore a tableau, are going to produce a tableau t

which fails to satisfy the requirement of having increasing columns. In particular,
ω = (1,1, . . . ,1) is always an element of Ωδ , but it is not in the image of ϑ unless
βi ≥ αi+1 for all i, which means that the rows of skew tableaux of shape α/β are
shifted in such a way that they do not “overlap,” like, for instance,

So, given α and β , the set Ωδ contains “good” sequences as well as “extraneous”
sequences which do not correspond to any LR tableau of shape α/β . On the other
hand, the advantage of dealing with Ωδ is that this set depends on the pair (α,β)

only through their difference α −β . In the end, this works because, quite remarkably,
the solution to the problem of finding the minimal γ such that cα

β,γ > 0 does indeed
depend only on α − β!

We now describe a simple algorithm for constructing, for a given δ |= k, a particu-
lar sequence ω̂ ∈ Ωδ which has the property of having minimal content with respect to
all other ω ∈ Ωδ . Then we show that the content of ω̂ is srt(δ). Finally, we prove that
ω̂ is a good sequence, meaning that there exists an LR tableau t such that ω̂ = ϑ(t),
completing in this way the proof of Lemma 5.11.

Let then δ be a composition of k. The sequence ω̂ in Ωδ is defined recursively as
follows:

(a) start with ω̂1 = 1 (mandatory),
(b) given (ω̂1, . . . , ω̂i−1), choose ω̂i as the largest integer such that the sequence

(ω̂1, . . . , ω̂i) satisfies (i) and (ii) in the definition of Ωδ .
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We call ω̂ the minimal sequence in Ωδ .16 We observe that this algorithm can never
get stuck. Let, in fact, Xi be the set of possible choices for ω̂i , i.e., the set of integers
s such that (ω̂1, . . . , ω̂i−1, s) satisfies (i) and (ii) in the definition of Ωδ . Then Xi is
nonempty (1 is always a possible choice) and bounded (a trivial bound for being a
lattice permutation is s = ω̂i ≤ i), thus the maximum of Xi exists.

For example, if δ = (3,4,2,4), the minimal sequence is given by

ω̂ = (1,1,1︸ ︷︷ ︸
Nδ

1

,2,2,2,1︸ ︷︷ ︸
Nδ

2

, 3,3︸︷︷︸
Nδ

3

,4,4,3,2︸ ︷︷ ︸
Nδ

4

). (6.4)

Notice that, at least in this case, the content of ω̂ is (4,4,3,2) = srt(δ).

Proposition 6.5 Let ω̂ be the minimal sequence in Ωδ .

(1) If z is the first integer of the subinterval Nδ
 , we have ω̂z

= .
(2) max{ω̂i : i ∈ Nδ

 } = .
(3) If p := ω̂i > ω̂i+1 =: m, then |{j ≤ i : ω̂j = m}| = |{j ≤ i : ω̂j = p}|.

Proof Let z = δ1 +· · ·+δ−1 +1 be the first integer in Nδ
 . For  = 1, we have z = 1

and, necessarily, ω̂1 = 1. Assume then that ω̂zj
= j for j = 1, . . . ,  − 1. Since ω̂ is

δ-nonincreasing, we have

max
{
ω̂i : i ∈ Nδ

1 ∪ · · · ∪ Nδ
−1

} = ω̂z−1 =  − 1. (6.5)

Imagine to have constructed (ω̂1, . . . , ω̂z−1). Since z is at the beginning of Nδ
 , for

picking ω̂z
, we do not worry about δ-nonincreasing. On the other hand, from (6.5) it

follows that each integer from 1 to −1 has already appeared in ω̂ at least once, while
no integer greater than or equal to  has yet appeared. By consequence, ω̂z

= . This
proves part (1) by induction. Statement (2) follows from (1) and from the fact that ω̂

is δ-nonincreasing.
Assume p = ω̂i > ω̂i+1 = m. This means, by the definition of ω̂, that none of the

integers from m + 1 to p can be picked as ω̂i+1, since that would violate the lattice
permutation property. Hence we must have

∣∣{j ≤ i : ω̂j = m − 1}∣∣ >
∣∣{j ≤ i : ω̂j = m}∣∣

= ∣∣{j ≤ i : ω̂j = m + 1}∣∣ = · · · = ∣∣{j ≤ i : ω̂j = p}∣∣. �

Proposition 6.6 Let ω ∈ Ωδ for some δ |=n, and let γ be the content of ω. Let also
γ̂ be the content of the minimal sequence ω̂. Then

γ � γ̂ = srt(δ).

16The reader may rightfully feel that we are testing his patience, by calling minimal a sequence where
we pick at each step the largest possible value. But, again, ω̂ has minimal content. In case someone were
wondering, ω̂ is not maximal in Ωδ , in general, with respect to the componentwise partial order.
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Proof We first observe that, given two arbitrary finite sequences ω,ω of positive
integers with respective contents β and β , we have

ω ≤ ω ⇐⇒ β � β. (6.6)

This simply follows from the definition (5.24) of dominance and from the identity∑s
i=1 βi = |{j : ωj ≤ s}|.
It is well known [12, 1.4.11] that the dominance order is reversed on conjugate

partitions (2.1), that is,

α � β ⇐⇒ α′ � β ′, (6.7)

and thus we are going to prove that γ ′ � γ̂ ′. Given ω = (ω1, . . . ,ωn) ∈ Ωδ , we define
the running multiplicity of ω as the sequence ν = (ν1, . . . , νn), where

νi := ∣
∣{j ≤ i : ωj = ωi}

∣
∣.

In other words, νi is the number of times that ωi has appeared in the sequence “up to
that point.” Proposition 6.6 is a consequence of the following lemma.

Lemma 6.7

(A) The content of ν is γ ′, that is, γ ′
i = |{j : νj = i}|. In other words, the content of

the running multiplicity of ω is the dual of the content of ω.
(B) The sequence ν is strictly increasing on each subinterval of {1, . . . , n} on which

ω is nonincreasing. In particular, since ω is δ-nonincreasing, ν is strictly in-
creasing on each subinterval Nδ

i .
(C) If ν̂ is the running multiplicity of ω̂, we have, denoting the length of δ with r ,

ν̂ = (1,2,3, . . . , δ1︸ ︷︷ ︸
Nδ

1

,1,2,3, . . . , δ2︸ ︷︷ ︸
Nδ

2

, . . . ,1,2,3, . . . , δr︸ ︷︷ ︸
Nδ

r

). (6.8)

(D) γ̂ = srt(δ).

From (A), (B), (C), and (D) Proposition 6.6 follows. In fact,

(B) + (C) =⇒ ν̂ ≤ ν

=⇒ γ̂ ′ � γ ′ [thanks to (A) and (6.6)]

=⇒ γ � γ̂ = srt(δ) [thanks to (6.7) and (D)].

We are then left with the proof Lemma 6.7.

Proof of (A) γi ≥ m means that i appears at least m times in ω. Hence there exists a
positive integer ki ≤ n which marks the mth appearance of i in ω. Clearly νki

= m.
Vice-versa, if νk = m, the integer ωk appears m times in {ω1, . . . ,ωk}, thus we have
γωk

≥ m. We have then, for fixed ω and m, a bijection

{i : γi ≥ m} � i ←→ ki ∈ {k : νk = m},
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which implies

γ ′
m = ∣∣{i : γi ≥ m}∣∣ = ∣∣{k : νk = m}∣∣,

i.e., that γ ′ is the content of ν. �

Proof of (B) If ωi+1 ≤ ωi , since ω is a lattice permutation, we have

νi+1 = ∣∣{j ≤ i + 1 : ωj = ωi+1}
∣∣ = ∣∣{j ≤ i : ωj = ωi+1}

∣∣+ 1

≥ ∣∣{j ≤ i : ωj = ωi}
∣∣+ 1 = νi + 1. �

Proof of (C) Let z be the first integer in Nδ
 . Proposition 6.5 implies that the integer

 appears for the first time in ω̂ at position z, and hence ν̂z
= 1.

In order to prove (6.8) we show that, within each subinterval Nδ
 , we have ν̂i+1 =

ν̂i + 1. If ω̂i+1 = ω̂i , this is a trivial consequence of the definition of ν̂. On the other
hand, if p := ω̂i > ω̂i+1 =: m, thanks to Proposition 6.5, we have

ν̂i+1 = ∣
∣{j ≤ i + 1 : ωj = m}∣∣ = ∣

∣{j ≤ i : ωj = m}∣∣+ 1

= ∣∣{j ≤ i : ωj = p}∣∣+ 1 = ν̂i + 1. �

Proof of (D) Let ε := srt(δ), so that ε is a partition of |δ|. From statement (A) applied
to ν̂, from the explicit expression of ν̂ given by (6.8), and from the definition of
duality (2.1) it follows that the content of ν̂ is given by

γ̂ ′
i = ∣∣{j : ν̂j = i}∣∣ = ∣∣{j : δj ≥ i}∣∣ = ∣∣{j : εj ≥ i}∣∣ = ε′

i . �

But γ and ε are both partitions, so we can take the dual and get (D). Lemma 6.7
and Proposition 6.6 are thus proven. �

In order to complete the proof of Lemma 5.11, one last step is required, namely to
check that the minimal sequence ω̂ in Ωδ corresponds to an actual LR tableaux.

Proposition 6.8 Let δ be a composition of k, and let ω̂ be the minimal sequence in
Ωδ with content γ̂ = srt(δ). If α is a partition of n and β is a partition of n − k such
that α − β = δ, then there exists an LR tableau t of shape α/β and content γ̂ such
that ϑ(t) = ω̂.

Proof Let z be the first integer in the interval Nδ
 . Hence,

ω̂ = (ω̂z1 . . . , ω̂δ1︸ ︷︷ ︸
Nδ

1

, ω̂z2, . . . , ω̂z2+δ2−1︸ ︷︷ ︸
Nδ

2

, . . . , ω̂zr , . . . , ω̂zr+δr−1︸ ︷︷ ︸
Nδ

r

). (6.9)

In order to reconstruct a tableau t from ω̂, we proceed in three steps.

(s1) We arrange the restrictions of ω̂ to each subinterval Nδ
 as the rows of an (im-

proper) tableau with a left aligned border. We denote this tableau with t#.
(s2) For each  = 2, . . . , r , we shift the th row of t# by α1 −α positions to the right

and denote this tableau with t̃ .
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(s3) Finally, we flip t̃ horizontally and get the tableau t which is a skew tableau of
shape α/β .

Consider, for example, the sequence ω̂ in (6.4). If α = (8,7,5,4), transformations
(s1), (s2), and (s3) yield

(6.10)

We denote with t#
ij (with j = 1, . . . , δi ) the integer contained in the j th box of the

ith row of t# (as if t# were a matrix). Recall that all we have to check is that the
columns of t are strictly increasing, since the other properties of the LR tableaux
(nondecreasing rows and the lattice permutation property) are inherited from ω̂. We
are going to prove that:

Lemma 6.9

(A) The columns of t# are strictly increasing.17

(B) Steps (s2) and (obviously) (s3) described above preserve the property of having
strictly increasing columns.

Proof of (A) If q is a positive integer, let

h(q) := number of q’s appearing in the first  rows of t#.

We claim that

if q appears in the th row of t#, its first appearance

occurs at position h−1(q) + 1, thus q occupies

the positions: h−1(q) + 1, h−1(q) + 2, . . . , h(q). (6.11)

The second part of the statement trivially follows from the first part and from the fact
that h(q) − h−1(q) is the number of q’s in the th row. Let p1 > p2 > · · · > ps

be the distinct integers which appear in the th row of t#. Thanks to Proposition 6.5,
we already know that p1 =  and that h−1() = 0, and hence (6.11) holds for p1.
Assume now that (6.11) holds for pi . If we let j = h(pi), then j is the last position
where pi appears, so

ω̂z+j−1 = t#
,j = pi > pi+1 = t#

,j+1 = ω̂z+j .

Statement (3) of Proposition 6.5 implies that h(pi) = h−1(pi+1). By consequence,
pi+1 makes its first appearance in the th row of t# at position

j + 1 = h−1(pi+1) + 1,

17The columns of t# in general are not contiguous, as in (6.10), but it does not matter.
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i.e., (6.11) holds for pi+1. By iteration we have that (6.11) holds for all integers pm

which are present in the th row of t#.
We can prove now that the columns of t# are strictly increasing. More precisely,

we prove the implication

 < m and t#
,j ≥ t#

m,j ′ =⇒ j < j ′. (6.12)

Let, in fact, s ≤ s, and

t#
,j = s and t#

m,j ′ = s.

From (6.11) it follows that

j ≤ h(s) and j ′ ≥ hm−1(s) + 1.

Since ω̂ is a lattice permutations, we get h(s) ≤ h(s) ≤ hm−1(s), and (6.12) is
proven. �

Proof of (B) Using the definition t̃i,j := t#
i,j−α1+αi

and (6.12), we obtain that, for
 < m,

t̃,j ≥ t̃m,j ′ =⇒ j − α1 + α < j ′ − α1 + αm =⇒ j < j ′.

Thus implication (6.12) holds for t̃ . By consequence, the columns of t̃ (and obviously
those of t as well) are strictly increasing. This concludes the proof of Lemma 6.9 and
Proposition 6.8. Hence Lemma 5.11 is also proven. �
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