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Abstract In this paper we define a minimal generating system for the free twisted Lie
algebra. This gives a correct formulation and a proof to an old statement of Barratt.
To this aim we use properties of the Lyndon words and of the Klyachko idempotent
which generalize to twisted Hopf algebras some similar results well known in the
classical case.
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1 Introduction

We can date the birth of twisted algebraic structures from the article of Barratt [2],
where he proposed a new way for tackling the study of James–Hopf and Hilton–
Hopf invariants. Many years later general combinatorial foundations of twisted alge-
braic structures were developed: elementary, combinatorial definitions by Stover [12]
copied from the classical (nontwisted) ones; abstract, categorical definitions with the
species of structures [6, 10]. Let us also mention an operadic approach [3, 7, 8].

The results presented hereafter were announced in [1].
At the end of [2], Barratt gives a description of the linear basis of the free twisted

Lie algebra, but without proof. Briefly, he asserts that the free twisted Lie algebra on
a set of variables X is generated as a twisted module by the Lyndon words (in the
classical meaning) and the brackets [. . . [x, x] . . . , x], x ∈ X.

This set is minimal, but it is not generating. To get a feeling of what happens,
we consider the following analogy. Like free twisted Lie algebras, free graded Lie
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algebras satisfy [x, x] �= 0 for elements x of odd degree (one can make the analogy
more precise, but it is too much effort for a mere motivating example). Now look
at the following graded Lie algebra: consider the graded set X = {x1, x2}, where
the subscript represents the degree, and L(X) the free graded rational Lie algebra
generated by X. We quickly check that L(X) admits the following basis in low di-
mensions:

(1) In word length 1: x1, x2;
(2) In length 2: [x1, x1], [x1, x2];
(3) In length 3: [[x1, x1], x1], [[x1, x2], x2];
(4) In length 4: [[[x1, x1], x2], x2], [[x1, x2], [x1, x2]].
The element which corresponds to item (4) in the twisted case was not detected by
Barratt. So we may suspect it ought to be.

We already guess how to improve Barratt’s intuition. To get a generating system,
we have to consider the brackets [. . . [u,u] . . . , u] not only for u ∈ X but also for ele-
ments u obtained from Lyndon words: [[x1, x2], [x1, x2]] = 2[x1, x2]2, where [x1, x2]
is obtained from the Lyndon word x1x2.

Our proof follows the classical one: the Lyndon words give an independent set,
and the Klyachko idempotent proves that this set is generating. We study the Kly-
achko idempotent in the Hopf algebra environment: then the proofs work abstractly
on morphisms and limit the complications involved by the action of the permutation
group on words.

The paper is organized as follows.
We recall some definitions about twisted algebraic structures very briefly in

Sect. 2. We also set up notation once for all.
Section 3 gives a short account on various notions of free twisted associative and

Lie algebras. Some light is brought to associative and Lie polynomials in the twisted
case.

In Sect. 4, we discuss Lyndon words and prove the minimality of our Hall basis.
Section 5 proves the properties of the Klyachko idempotent for Hopf algebras.
In Sect. 6, we prove that our basis is generating.

2 Twisted algebras

We briefly review some twisted algebraic structures we shall use in the following
sections. A complete exposition was given by Stover [12]. We follow his presentation:
it is very explicit on elements and so immediately manageable when we construct
Hall basis.

First, we fix some notation for the permutation group.

2.1 Permutation groups

Let us denote by Sn the group of all bijections of n objects; in the following,
it is understood (if the converse is not specified) that these objects are the set
of integers {1, . . . , n}; we also explicitly denote a permutation σ by its image



J Algebr Comb (2010) 32: 267–286 269

(σ (1), . . . σ (n)). We compose permutations as usual for maps by acting on the left
σ ◦ τ(i) = σ(τ(i)).

Given a decomposition (all integers in the following are nonnegative) (p1,p2) of
n = p1 + p2 (by abuse we shall say a decomposition n = p1 + p2), we define the
inclusion Sp1 × Sp2 ⊂ Sn as reflecting the inclusion given on objects by the map
preserving order from left to right:

{1, . . . , p1}
∐

{1, . . . , p2} ⊂ {1, . . . , n},
i �→ i on the first factor,

i �→ p1 + i on the second factor.

(As above and by abuse, for
∐

order matters.) One immediately extends this to the
case n = p1 +· · ·+pk , k ≥ 2, to define Sp1 ×· · ·×Spk

⊂ Sn. If Φi are permutations
in Si , we denote then by (Φ1, . . . ,Φk) the image in Sn of (Φ1 × · · · × Φk) ∈ Sp1 ×
· · · × Spk

.
We now define permutations acting on blocks. Let n = p1 + · · · + pk be some

decomposition and σ ∈ Sk . We define the permutation of Sn acting on the k-blocks
p1, . . . , pk by the following composition:

Cp
σ−1(1)

,...,p
σ−1(k)

(σ ) : {1, . . . , n} → {1, . . . , p1}
∐

· · ·
∐

{1, . . . , pk}
→ {1, . . . , pσ−1(1)}

∐
· · ·

∐
{1, . . . , pσ−1(k)} → {1, . . . , n},

where the first and last arrows preserve the order from left to right, and the second
one preserves the elements (i.e., if σ(j) = i, at the lth spot of the ith block of the
image, you find the element that was at the lth spot of the j th block in the preim-
age).

We also recall the following:

Proposition 2.1.1

(1) For all σ, τ ∈ Sk , we have

Cp
(σ◦τ )−1(1)

,...,p
(σ◦τ )−1(k)

(σ ◦ τ) = Cp
(σ◦τ )−1(1)

,...,p
(σ◦τ )−1(k)

(σ ) ◦ Cp
τ−1(1)

,...,p
τ−1(k)

(τ ).

(2) For all σ ∈ Sk , Φ1 ∈ Sp1, . . . ,Φk ∈ Spk
, we have

Cp
σ−1(1)

,...,p
σ−1(k)

(σ )◦(Φ1×···×Φk)=(Φ
σ−1(1)

×···×Φ
σ−1(k)

) ◦ Cp
σ−1(1)

,...,p
σ−1(k)

(σ ).

2.2 Twisted modules and tensor products

Let R be a ring. A graded R-module X is a collection (Xn)n∈N of R-modules Xn

indexed by the nonnegative integers.
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Twisted modules A twisted module M is a graded module together with a right
Sn-action (a right R(Sn)-module structure on Xn for each n). Morphisms of graded
R-modules and of twisted modules are defined as one can imagine; we shall only
consider morphisms of degree 0. A twisted module M is connected if M0 = 0. R is
canonically given a structure of twisted module.

Twisted tensor product The twisted tensor product of k twisted modules M1, . . . ,Mk

is defined by its nth term

(M1 ⊗· · ·⊗Mk)n =
∑

p1+···+pk=n

pi≥0

(
(M1)p1 ⊗R · · ·⊗R (Mk)pk

)⊗R(Sp1×···×Spk
) R(Sn).

2.3 Twisted algebras and coalgebras

With the definitions given above, we can formally define twisted algebras and twisted
coalgebras by the same diagrams we do for the classical cases.

Like the classical case again we define the tensor twisted algebra A ⊗ B of two
twisted algebras A and B , the product of which is the composition

A ⊗ B ⊗ A ⊗ B
A ⊗ T ⊗ B� A ⊗ A ⊗ B ⊗ B

μA ⊗ μB� A ⊗ B,

which we can explicit on elements

(
(a1 ⊗ b1) ◦ σ1

)(
(a2 ⊗ b2) ◦ σ2

) = (a1a2) ⊗ (b1b2) ◦ Cp1,p2,q1,q2(T ) ◦ (σ1 × σ2).

We have denoted by T the swap A ⊗ B → B ⊗ A and by σ the permutation
(1,3,2,4).

2.4 Twisted bialgebras, Hopf algebras

We refer to [12] for the definitions of twisted algebras, coalgebras, and bialgebras.
Formally they reproduce the definition diagrams of the classical case.

Definition 2.4.1 A twisted bialgebra is a twisted module A, which is both a twisted
algebra with product μ : A ⊗ A → A and unit ε : R → A and coalgebra with coprod-
uct Δ : A → A ⊗ A and counit η : A → R, such that both μ and η are morphisms of
twisted coalgebras or, equivalently, both Δ and ε are morphisms of twisted algebras;
here A ⊗ A is given the structure of twisted coalgebra (resp. algebra) induced by A

and depicted in the preceding subsection.

Let us just emphasize the existence of the antipode in the axioms of Hopf algebras.
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Definition 2.4.2 A twisted Hopf algebra is a twisted bialgebra A together with a
morphism of twisted modules S : A → A such that the following diagram commutes:

A
Δ� A ⊗ A

S ⊗ A� A ⊗ A

R

η

�

A ⊗ A

Δ

� A ⊗ S� A ⊗ A
μ � A

μ

�

ε

�

where η : A → R (resp. ε : R → A) is the counit (resp. unit) of the coalgebra (resp.
algebra) A.

Convolution At this point, it seems judicious to introduce an operation we shall use
very often in the next sections.

Proposition 2.4.3 Let C be a twisted coalgebra, and A be a twisted algebra. The set
of morphisms of twisted modules HomR(S)(C,A) is an associative monoid with the
following product, called the convolution and denoted by �:

f � g : C Δ� C ⊗ C
f ⊗ g� A ⊗ A

μ � A

Now, by definition the antipode is the inverse of the identity under the convolution
product; it is thus unique. Like in the classical case, there is a canonical way to define
an antipode on a twisted connected bialgebra and thus to give it the structure of a
twisted Hopf algebra.

Before continuing our description of twisted algebraic structures, let us recall the
notion of pseudo-coproduct in cocommutative twisted bialgebras. We shall need it
for the Klyachko idempotent (Sect. 5) and we already referred to it for the Dynkin
idempotent in [1].

Let A be a cocommutative bialgebra. We use the notation of Sect. 2 and denote
by π , Δ, η, and ε respectively its product, coproduct, unit, and counit. Let ν = η ◦ ε.
Formally, the same definition as in [9] works.

Definition 2.4.4 An endomorphism f of A (here and in the sequel, endomor-
phism means F(S)-module endomorphism, and we denote the corresponding set,
F-module, by End(A)) admits F ∈ End(A ⊗ A) as a pseudocoproduct if F ◦ Δ =
Δ ◦ f . If f admits the pseudocoproduct f ⊗ ν + ν ⊗ f , we say that f is pseudo-
primitive.
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2.5 Lie algebras

Definition 2.5.1 A twisted Lie algebra L is a twisted module together with a mor-
phism of twisted modules β : L ⊗ L → L, called the bracket, which satisfies the
traditional anticommutativity and Jacobi identities:

β + β ◦ T = 0 in HomR(S)(L ⊗ L,L),

β ◦ (β ⊗ L) + β ◦ (β ⊗ L) ◦ (2,3,1)# + β ◦ (β ⊗ L) ◦ (2,3,1)2
#

= 0 HomR(S)(L ⊗ L ⊗ L,L)

where (2,3,1)# acts on L ⊗ L ⊗ L by x ⊗ y ⊗ z �→ y ⊗ z ⊗ x.

Let us be redundant and transcribe this definition on elements. As usual, we write
the bracket β = [ , ], and the identities are written with explicit elements ui ∈ Lpi

for
i = 1,2,3:

[u1, u2] = [u2, u1] ◦ Cp2,p1

(
(2,1)

)
,

[[u1, u2], u3
] + [[u2, u3], u1

]
Cp2,p3,p1

(
(2,3,1)

) + [[u3, u1], u2
]

Cp3,p1,p2

(
(3,1,2)

)

= 0.

As in the classical case, we can define a Lie bracket on each twisted algebra A by
β = μ − μ ◦ T or on elements [x, y] = xy − yxCq,p((2,1)) for elements x and y of
A of respective degrees p and q .

We conclude here the reminder on generalities about twisted algebraic structures.
It gives a convenient framework to understand the notation of the coming sections.
The paper of Stover [12] continues with enveloping algebras and the Milnor–Moore
theorem.

Actually the theorem of Milnor–Moore also holds in the twisted context. Even
if we shall need only part of the well-known results, let us recall some facts about
primitive elements.

2.6 Primitives in a twisted Hopf algebra

If A is a twisted bialgebra, an element a ∈ A is primitive if Δ(a) = a ⊗ 1 + 1 ⊗ a.
The set of primitives of A is a twisted submodule of A, denoted by PA.

Let us mention two results about PA (cf. [12], Propositions 7.8 and 8.10).

Proposition 2.6.1 Consider A as the twisted Lie algebra with bracket canonically
induced by the (associative) product of A. Then PA is a twisted Lie subalgebra
of A.

Proposition 2.6.2 If the Hopf algebra A is cocommutative, then the inclusion PA ⊂
A induces an isomorphism of twisted Hopf algebras UPA ∼= A.
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In the next section we wish to spread some light on various notions of free twisted
objects. The most general one is defined by the usual process of adjunction (cf. [12]).
Barratt [2], much more restrictive, defines an explicit basis in degree 1. Finally we
shall extend the definition of [2] to generators of any degree: for that, we introduce
the notion of twisted polynomials.

Let us now proceed and fix some ideas about free twisted objects.

3 Free twisted objects and twisted Lie polynomials

In this section we again follow Stover [12] and adapt the first chapter of Reutenauer’s
book [11] to the case of twisted structures.

First let us recall some basic definitions and properties of free monoids. Here no
twisting occurs, and we shall be brief.

3.1 Words and free monoids

Let X be a set, finite or infinite, and denote its elements by x or xi for i on some
indexing set. A juxtaposition (or concatenation) of a finite number of ordered letters,
e.g., x1x2 . . . xn, is called a word. The collection of all words generated by X, de-
noted by W(X), comes with an obvious embedding of sets ı : X → W(X). Moreover
W(X) admits a product, called the concatenation product, defined as in the following
example: (x1 . . . xn)(x

′
1 . . . x′

n′) = x1 . . . xnx
′
1 . . . x′

n′ . W(X) with this product is a free
monoid. This definition is justified by the following:

Proposition 3.1.1 For any monoid M and any map of sets f : X → M , there is
a unique map of monoids f : W(X) → M such that the following diagram in the
category of sets commutes:

X
f � M

W(X)

f

�

ı

�

3.2 Definitions of free twisted objects and polynomials

Let X be a graded set (each x ∈ X is equipped with a positive integer |x| called the
degree), and R be a ring. The twisted free module over R generated by X is any
twisted module isomorphic to

⊕
x∈X xR(S|x|) and is denoted by R(S)(X). Again

there is an obvious embedding of sets ı : X → R(S)(X).

Proposition 3.2.1 For any twisted module M and any map of graded sets f : X →
M , there is a unique map of twisted module f : R(S)(X) → M such that the follow-



274 J Algebr Comb (2010) 32: 267–286

ing diagram in the category of graded sets commutes:

X
f � M

R(S)(X)

f

�

ı

�

Proof Given any element x1r1 + · · · + xnrn, xi ∈ X,ri ∈ R(S), the commutation
of the diagram implies that f (xi) = f (xi) and by linearity f (x1r1 + · · · + xnrn) =
f (x1)r1 + · · · + f (xn)rn. Thus f , if existing, is unique. Moreover the preceding
formula is precisely a definition of f once f is given. �

Now let M be a twisted module over R. Let us denote by M⊗n the twisted module
given by the tensor product of n copies of M and by T (M) the direct sum

⊕
n>1 M⊗n

(see Sect. 2.2 for the definition of the twisted tensor product). The associativity for-
mula of Sect. 2.2 defines a (product) map M⊗n ⊗ M⊗m → M⊗(n+m), which by lin-
earity extends to T (M) and endows it with a structure of an associative twisted al-
gebra. This is called the free twisted (associative) algebra generated by the twisted
module M . There is an obvious embedding of twisted modules ı : M → T (M). This
terminology is justified by the following:

Proposition 3.2.2 For any twisted (associative) algebra A and any map of twisted
modules f : M → A, there is a unique map of twisted algebras f : T (M) → A such
that the following diagram in the category of twisted modules commutes:

M
f � A

T (M)

f

�

ı

�

Proof Given an element m1 ⊗ · · · ⊗ mi ⊗ σ , define f (m1 ⊗ · · · ⊗ mi ⊗ σ) =
f (m1) ⊗ · · · ⊗ f (mi) ⊗ σ . A straightforward inspection shows that f (m1σ1 ⊗ · · · ⊗
miσi ⊗ σ) = f (m1)σ1 ⊗ · · · ⊗ f (mi)σi ⊗ σ = f (m1) ⊗ · · · ⊗ f (mi)(σi × σ1 ×
· · · × σi)σ . This proves, first, that f is well defined on T (M) as a twisted module
map and, secondly, that f is multiplicative. Moreover, by definition, f = f on the
twisted module M . This completes the proof. �

We briefly pause here to emphasize an important point we shall only use in the next
subsection. Consider the map of twisted modules Δ : M → T (M) ⊗ T (M) given
by Δ(m) = m ⊗ 1 + 1 ⊗ m and extend it to obtain a map of twisted algebras Δ :
T (M) → T (M) ⊗ T (M). This process endows T (M) with a structure of twisted
bialgebra. Actually this bialgebra is connected; indeed it is easy to check that the anti-
automorphism S : T (M) → T (M) defined by S(m) = −m (just apply the universal
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property of Proposition 3.2.2 to the algebra opposite to T (M)) satisfies the axioms of
an antipode for T (M). In other words we just defined the structure of twisted Hopf
algebra for T (M).

Now let us specialize to the free twisted module generated by a graded set X.
Let us denote by F (X) the free twisted associative algebra T (R(S)(X)). Combining
Propositions 3.2.1 and 3.2.2, we readily obtain the following:

Proposition 3.2.3 For any twisted associative algebra A and any map of graded sets
f : X → A, there is a unique map of twisted algebras f : F (X) → A such that the
following diagram in the category of graded sets commutes:

X
f � A

F (X)

f

�

ı

�

We end this subsection by introducing polynomials in the twisted case. A typical
element of R(S)(X)) may be written as

∑
i∈I xi ◦ σi , for a finite indexing set I .

Thus F (X) is linearly generated (i.e., as an R(S)-module) by elements of the type⊗
j∈J xj , where J browses all finite tuples of elements of X. Such an element is also

written x1 . . . xj for a j -uple (x1, . . . , xj ) and is called a monomial of F (X). The
collection of monomials is a linear basis for F (X). In the algebra F (X), the product
of polynomials follows the rules of the product in a free twisted algebra edicted in
Sect. 2.2:

(
(x1,1σ1,1 ⊗ · · · ⊗ x1,kσ1,k)τ1 × (x2,1σ2,1 ⊗ · · · ⊗ x2,l)σ2,l

)
τ2

= (
(x1,1σ1,1 ⊗ · · · ⊗ x1,kσ1,k) ⊗ (x2,1σ2,1 ⊗ · · · ⊗ x2,lσ2,l)

)
τ1 × τ2

= (x1,1 ⊗ · · · ⊗ x1,k ⊗ x2,1 ⊗ · · · ⊗ x2,l)(σ1,1 × · · · × σ1,k × σ2,1 × · · · × σ2,l)

× (τ1 × τ2).

3.3 Free twisted Lie algebras and Lie polynomials

We refer here to Stover [12], especially for the proofs.
Consider a nonassociative abstract operation on symbols and write it as a bracket-

ing. Starting with a unique symbol, say x, the bracketing operation gives rise to an in-
finite set N (x), the free nonassociative monoid generated by x. Given a twisted mod-
ule M and an element b of N (x), we define M⊗b as the twisted module M⊗#b , where
#b denotes the number of occurrences of x in b, and the twisted structure is similar to
the twisted structure of the ordinary tensor product. The bracketing operation in the
monoid N (x) induces an obvious bracketing operation M⊗b ⊗ M⊗c → M⊗(bc). Let
us define the twisted module T (M) = ⊕

b∈N (x) M
⊗b. The bracketing operation just

defined extends to T (M) by linearity. Call it β .
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Define I(M) as the two-sided twisted ideal of T (M) generated by the images of

β + β ◦ (2,1) : T (M) × T (M) → T (M),

β ◦ (
β × I(M)

) + β ◦ (
β × I(M)

)
(2,3,1) + β ◦ (

β × I(M)
)
(2,3,1)2 :

T (M) × T (M) × T (M) → T (M).

The quotient L(M) = T (M)/I(M) is equipped with the map induced by β (de-
noted as usual by [,]) and is called the free twisted Lie algebra generated by M ,
denomination justified by the following proposition proved by Stover [12]. There is
an obvious embedding of twisted modules ı : M → L(M).

Proposition 3.3.1 For any twisted Lie algebra L and any map of twisted modules
f : M → L, there is a unique map of twisted Lie algebras f : L(M) → L such that
the following diagram in the category of twisted modules commutes:

M
f � L

L(M)

f

�

ı

�

Let us end this subsection with some lines about twisted universal enveloping
algebras.

If L is a twisted Lie algebra, consider the free (associative) twisted algebra T (L)

generated by the twisted module L with the linear embedding ı : L → T (L). Now let
IL be the two-sided twisted Lie ideal generated in T (L) by the elements of the form
[ı(x), ı(y)] − ı[x, y].

The enveloping algebra of L is the quotient (associative) algebra T (L)/I (L) and
is denoted by UL. It satisfies the following:

Proposition 3.3.2 For any Lie algebra L and any map of Lie algebras f : L → A,
there is a unique map of algebras f : UL → A such that the following diagram in
the category of sets commutes:

L
f � A

UL

f

�

ı

�

Now we can phrase the twisted version of the Milnor–Moore theorem for free
algebras given in [12], Proposition 7.4.
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Theorem 3.3.3 Let M be a twisted module. The twisted algebra map

T (M) → U L(M)

induced by the composition of maps of twisted modules

M → L(M) → U L(M)

is an isomorphism.

As in the preceding subsection, we can introduce Lie polynomials. Recall that a
typical element of R(S)(X) may be written as

∑
i∈I xi ◦ σi for an indexing set I and

that a (noncommutative) polynomial in F (X) is a linear combination of elements
such as x1σ1 ⊗ · · · ⊗ xjσj . By Sect. 2.4 and Proposition 3.3.1 we define an embed-
ding of twisted Lie algebras, L(X) ⊂ F (X). A polynomial in F (X) is called a Lie
polynomial if it is in the image of L(X) by this embedding.

Remark If we suppose that all elements of X are of degree 1, we recover Barratt’s
definition of a free twisted (associative) algebra and Lie algebra.

4 Lyndon words

Preliminary remark One can ask—and we are grateful to the referee for his
question—why we are limited to Lie algebras over free twisted modules. The rea-
son rests on the next two sections. As the classical one (see [4]), our proof uses
Lyndon words. Let us have an idea of the problem. Suppose that M is defined on the
rationals by two generators x and y of degree 2 and a relation x(1 + ε) = y(1 − ε),
where ε = (2,1) ∈ Q(S2) (notice that 1 − ε and 1 + ε are zero divisors in Q(S2)

and the set of generators {x, y} is minimal). Of course this relation induces further
relations between all monomials in x and y, and the fundamental Theorem 4.2.2 is
no more valid.

This section (and Sect. 5) follows the presentation of [4] in outline. We have now
to handle carefully the twisted structures. We have precisely in mind that for an el-
ement u in a twisted Lie algebra, the bracket [. . . [u,u], . . . , u]] is not necessarily 0.
So, when building a basis, we have to modify the classical definitions and to check
properties again. Let us proceed for Lyndon words.

4.1 Free twisted associative algebra context

First we fix a basis field F of characteristic 0. Let also X be a graded set; we denote
its elements by xi . Let us denote by W(X) the set of words in X; the length of a word
is the number of elements of X necessary to write it down by concatenation; conven-
tionally 1 is the word of length 0. Write F (X) for the free associative twisted algebra
generated by X (cf. Sect. 3); as an F(S)-module, F (X) admits W(X) for basis. As
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usual, the product in F (X) is denoted by the simple juxtaposition fg, and so the
canonical Lie algebra structure on F (X) is given by [f,g] = fg − gf C|g|,|f |((2,1)).

Finally let us write L(X) for the free twisted Lie algebra generated by X, which we
consider as a Lie twisted subalgebra of F (X) with its canonical Lie algebra structure.

We now define Lyndon words of F (X) in various equivalent ways and examine
how using them to obtain generators of L(X).

Let u,v,w be words (elements of W(X)) of strictly positive length such that w =
uv. We say that u is a head of w and that v is a tail of w. We order words of W(X)

by lexicographic order and denote the order relation by ≥. In particular, if w ≥ uv,
either the order is decided in u and w ≥ u, or only in v, and then u is a head of w.

Definition 4.1.1 A Lyndon word is a word that is strictly smaller than all its cyclic
rearrangements or a power not less than 2 of a Lyndon word.

Remark The preceding definition makes sense because it is recursive. Clearly all
elements of X are Lyndon words (these are all Lyndon words of length 1—like in the
nontwisted case), and if w = up, p ≥ 2, the length of u is strictly smaller that the
length of w.

We fix now some notation. Let L (resp. Ln) denote all Lyndon words of F (X)

(resp. of length n).
We say that a word w = x1x2 . . . xk is not prime if there is some nontrivial circular

permutation σ ∈ Sk such that w = xσ(1)xσ(2) . . . xσ(k). In the opposite case we say
that w is prime.

Proposition 4.1.2 w is a Lyndon word if and only if

(1) If w is prime, then w is strictly smaller than all its tails, or
(2) If w is not prime, then there exists a Lyndon word u such that w = up , p > 1.

Proof (⇐) Suppose that w is smaller than all its tails. Write w = uv with u and v of
strictly positive length. Then w < v, which implies w < vu. As v is a tail of w, this
means that w is strictly smaller than all its cyclic rearrangements.

(⇒) Let w = αv, with α and v of strictly positive length. Then w < vα.

(a) Either this inequality is decided in v, and we are done,
(b) or v is a head of w, and w = vβ; then by hypothesis

(1) w = αv < βv, and thus α < β ,
(2) and vice-versa: w = vβ < vα, and thus β < α,

which shows that (b) cannot happen. �

Proposition 4.1.3 w is a Lyndon word if and only if it has a factorization:

If w is prime, w = w1w2 with w1,w2 ∈ L and w1 < w2,

or

If w is not prime,w = up, p > 1, u a prime Lyndon word.
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Moreover if w is prime and w2 is the longest possible Lyndon word, w1 and w2 are
prime.

Proof ⇒
Let w = w1w2 with w2 the longest Lyndon tail of w. We shall first show that w1

is strictly smaller than w2 and secondly that w1 ∈ L, which means that the decompo-
sition matches the request.

By Proposition 4.1.2, w = w1w2 < w2. Suppose w1 ≥ w2; then w1u ≥ w2 for
every word u, in particular u = w2, which contradicts our hypothesis; so w1 < w2.
Our first assertion holds.

Let us prove now that w1 is a Lyndon word.
First examine the two possible cases.
(A) w1 is a prime word.
We use Proposition 4.1.2 again and show that w1 is strictly smaller than all its

tails. Decompose w1 = uv with u and v of strictly positive length.
w = uvw2, and our choice of w2 implies that vw2 cannot be a Lyndon word. So,

by Proposition 4.1.2, there exists a decomposition vw2 = st with t < vw2.
(a) Either this inequality is decided in v : v > t . Going back to w, we get w = ust

and t > w = w1w2 > w1, and we deduce that v > t > w1, as desired.
(b) Or v is a head of t , and we can write t = vs′; then vw2 = st = svs′. In other

words, s′ is a tail of w2. Since w2 is a Lyndon word:
(i) Either w2 < s′, and we derive

vw2 > t = vs′ > vw2,

which is a contradiction.
(ii) Or w2 = u′p, p > 1, with u′ a prime Lyndon word (equivalently, p maximal).

If s′ = s′′u′k with s′′ of length strictly positive but smaller than the length of u′. Then
s′′ is a tail of u′. As u′ is a prime Lyndon word, u′ < s′′.

Besides,

vu′p = vw2 > t = vs′′u′k.

Since the length of s′′ is strictly smaller than the length of u′, this forces

u′ > s′′

in contradiction with the above assertion.
So the case w2 = u′p cannot occur.
(B) w1 is not prime, say w1 = (uv)p, p > 1.
Then w = (uv)pw2. As w is a Lyndon word, our choice for w2 implies that vw2

is not a Lyndon word. Thus there exists a decomposition vw2 = st , with t < vw2.
(a) Either this inequality is decided in v and v > t . Then

w = (uv)p−1uvw2 = (uv)p−1ust,

and, as w is a Lyndon word with tail t ,

t > (uv)p−1ust > uv.
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Thus,

v > t > uv,

which proves that uv is a Lyndon word.
Now

uv < (uv)p < w2

by the first part of the proof. Thus uvw2 is a product of two Lyndon words uv and
w2 with uv < w2. If we suppose recursively that the theorem holds in length smaller
than the length of |w|, we conclude that uvw2 is a Lyndon word, a contradiction with
our hypothesis on w2.

(b) Or the inequality is not decided in v, and v is a head of t . Then we can repro-
duce the argument in (A), case (b), because in this part of the proof we do not use
that w is a Lyndon word, only the fact that w2 is one.

So the study of case (B) proves that this case is, in fact, impossible: w1 is neces-
sarily a prime word.

⇐
We use Proposition 4.1.2 once more and give ourselves a decomposition w = uv.

We begin with the case where v = w2 (and so u = w1). By hypothesis, w1 < w2. If
this inequality is decided before the end of w1, then w1β < w2 for every word β . If
not, this means that w1 is a head of w2, and then we can write w2 = w1α. Now w2 is
a Lyndon word and w2 < α, which implies w = w1w2 < w1α = w2.

If v is shorter than w2, then v is a tail w2, and (always Proposition 4.1.2) v >

w2 > w.
If v is longer than w2, w2 is a tail v: v = sw2 for some word s. Then s is a tail

of w1. Now w1 is also a Lyndon word; thus w1 < s, which implies w = w1w2 <

sw2 = v. This was to be proved. �

Definition 4.1.4 A standard factorization of a Lyndon word w is a factorization of
one of the two types:

(i) w = w1w2, where w1 and w2 are Lyndon words, w1 < w2 with w2 the longest
word possible, or

(ii) w = up , u a Lyndon word, and p > 1 with the greatest p possible.

4.2 Free twisted Lie algebra context

In this section we explain how to use the Lyndon words to construct a basis of the
free twisted Lie algebra.

Let us define a map b : L → L(X). We start with x ∈ X: b(x) = x ∈ L(X). Then
the definition is recursive: if w = w1w2 (factorization (i) of Definition 4.1.4) we
set b(w) = [b(w1), b(w2)]; if w = up (factorization (ii) of Definition 4.1.4), we set
b(w) = [[b(u), b(u)], . . . , b(u)].

We are now ready to show how Lyndon words generate an independent set
in L(X).
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Proposition 4.2.1 If w is a prime Lyndon word, then:

b(w) = w +
∑

v>w

vav with av ∈ R(S).

If w = up , then:

b(w) = (
b(u)

)p
(1 − γ2) . . . (1 − γp),

where γi is the permutation of C(i−1)|u|,|u|((2,1)) of Si|u|.

Proof We begin with the case w = up . By recursion it is enough to prove that b(w) =
b(up−1)b(u)(1−γp). Now b(up) = [b(up−1), b(u)] by the definition of b; then apply
the definition of the twisted Lie bracket in F (X).

Let us now examine the prime case. Again we proceed recursively. So we have the
standard factorization w = w1w2, and by the hypothesis of recursion we can write
when w1 and w2 are prime:

b(w) = w1w2 − w2w1 C|w1|,|w2|
(
(2,1)

) +
∑(

v1v2 − v2v1 C|v1|,|v2|
(
(2,1)

))
,

where the sum is over all pairs (v1, v2) where vi appears in the decomposition of wi

excepting the pair (w1,w2). So v1v2 > w1w2 because either v1 > w1 or if v1 = w1,
then v2 > w2. Similarly, v2v1 > w2w1, and w2w1 > w1w2 because w1w2 = w is a
Lyndon word.

If w1 = up or w2 = vq , then the same argument holds. �

The last discussion leads immediately to the fundamental result:

Theorem 4.2.2 The polynomials {b(w)}w∈L are independent in F (X).

We want now to prove that these polynomials are generating. As in the classical
case, the major tool is the Klyachko idempotent.

5 The Klyachko idempotent

We follow here the presentation of [9] and work in a bialgebra. We shall specialize to
the Lie algebra in the next section.

Let A be a twisted bialgebra, and F be a field of characteristic 0, which contains a
primitive nth root of the unity ωn for any n ≥ 1. Let pn : A → An ↪→ A be the pro-
jection of A onto its component of degree n (viewed as a morphism of EndF(S)(A))
and define pC = pi1 � · · ·�pil , where C denotes the l-uple of strictly positive integers
(i1, . . . , il); we shall also say that C is a composition of (i1 + · · · + il). By definition
C is finer than C′, and we write C′ ≤ C if C′ is obtained from C by substituting to
a subset of consecutive entries of C (say ik, ik+1, . . . , ik+l , 1 ≤ k ≤ k + l ≤ j ) their
sum (ik + · · ·+ ik+l); notice that this substitution does not change the total sum of all
entries of C, which we call the weight; see below.
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By inclusion–exclusion we define the elements rC of EndF(S)(A) by the formula

pC =
∑

C′≤C

rC′ .

More precisely, let l(C) be the length—the number of entries—of C. Then (by Moe-
bius inversion)

rC =
∑

C′≤C

(−1)l(C
′)−l(C)pC′ . (1)

For any l-uple C = (i1, . . . , ij ), define its weight by |C| = i1 + · · · + il and its major
index by maj(C) = (l − 1)i1 + (l − 2)i2 + · · · + il−1. With this notation let us define:

Definition 5.0.3 The Klyachko idempotent—this denomination will be justified
below—of order n is the morphism κn ∈ EndF(S)(A) given by the formula

κn = 1

n

∑

|C|=n

ω
maj(C)
n rC.

Theorem 5.0.4 If A is a cocommutative, connected bialgebra, then κn maps A into
the primitives of the bialgebra A.

Proof We reproduce the proof of [9] and use the shortcut presented in [5]. A priori
we have to pay attention to the action of S, in particular when dealing with tensor
products.

Actually the general presentations by morphisms [9] veils the effective action of
S: the abstract formulas for structure maps of the twisted bialgebra A do not involve
permutations explicitly; they only appear when we want to make them explicit on
elements of A.

We define Endgr(A) = ⊕
n>0 EndF(Sn)(An). Let q be a variable; then

Endgr(A)[[q]] makes sense. As the morphisms of EndF(S)(A) are of degree 0, there
is a bijection between End(A) and Endgr(A) compatible with the action of F(Sn); so
we can transfer the convolution product to Endgr(A). Define P(q) = ∑

n≥0 pnq
n ∈

Endgr(A). The infinite product

κ(q) = · · · � P
(
qn

)
� · · · � P (q) � P (1)

is well defined in Endgr(A)[[q]], because A is connected.
Observe that each element of Endgr(A)[[q]] has a unique expression as a sum∑
n fn, with fn ∈ End(An[[q]]). Like in [9] (after [5]), these elements can be easily

deduced from the formula

κ(q) =
∑

n≥0

Kn(q)

(q)n

with (q)n = (1 − q) . . . (1 − qn) and Kn(q) = ∑
|C|=n qmaj(C)rC . Notice that in the

above formula n actually is the degree involved in Endgr(A).
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We extend the definition of pseudo-coproduct recalled in Sect. 2 and say that f ∈
Endgr(A)[[q]] admits the pseudo-coproduct F ∈ Endgr(A) ⊗ Endgr(A)[[q]] if F ◦
δ = δ ◦ f , where δ extends naturally to A[[q]]. Moreover, there is a natural bijection
(compatible with the action of the Sn) between Endgr(A)[[q]] and S-morphisms
A → A[[q]] (similarly between Endgr(A) ⊗F Endgr(A)[[q]] and morphisms A ⊗F

A → A ⊗F A[[q]]. We systematically identify Endgr(A) ⊗F[[q]] Endgr(A)[[q]] with
(Endgr(A) ⊗F Endgr(A))[[q]]. Granting this, for f,g ∈ Endgr(A)[[q]], we consider
f ⊗ g as an element of (Endgr(A) ⊗F Endgr(A))[[q]]. With all these conventions,
Theorem 5.0.8 of [1] applies, since we assumed A to be cocommutative.

We check that
∑

i+j=n pi ⊗ pj ◦ δ = δ ◦ pn, i.e.,
∑

i+j=n pi ⊗ pj is a pseudo-
coproduct for pn (this is general; if f = ∑

fn, f ⊗ f is a pseudo-coproduct for f if
and only if

∑
i+j=n fi ⊗ fj is a pseudo-coproduct for fn). This is equivalent to say

that P(q)⊗P(q) is a pseudo-coproduct for P(q) (the same is true for P(qn) for any
n > 0). Then, applying Theorem 5.0.8 of [1], we deduce that κ(q)⊗κ(q) is a pseudo-

coproduct for κ(q). By the above result, this means that
∑

i+j=n
Ki(q)
(q)i

⊗ Kj (q)

(q)j
is

a pseudo-coproduct for Kn(q)
(q)n

, or equivalently
∑

i+j=n
(q)n

(q)i (q)j
Ki(q) ⊗ Kj(q) is a

pseudo-coproduct for Kn(q). The polynomials (q)n
(q)i (q)j

vanish for q = ωn, except
the cases where i = 0 or j = 0 (in both cases they are equal to 1). This means that
Kn(ωn) = nκn is pseudo-primitive and proves the theorem. �

Corollary 5.0.5 If A is a cocommutative, connected bialgebra, then κn is an idem-
potent.

Proof For sake of completeness, we reproduce the proof of [4]. Here there are no
changes introduced by the action of S.

First notice that the coproduct δ of the bialgebra A preserves the degree; therefore
pC is 0 on all elements of A of degree not equal to the length of C (just consider
the coassociativity of the coproduct, which implies the associativity of the convo-
lution). So, by the previous theorem and since A—a cocommutative and connected
bialgebra—is generated by its primitive elements (Proposition 2.6.2), it is enough
to prove that κn(a) = a for any primitive element a ∈ A; by the preceding remark
there is no restriction to suppose that |a| = n. As a is primitive, pi � pj (a) = 0, and
pC(a) �= 0 only if C is of length 1. Equation (1) implies that rC(a) = (−1)l(C)−1a

for each C of weight n. Thus,

nκn(a) =
∑

|C|=n

ω
maj(C)
n (−1)l(C)−1a.

Now there is classical bijection between compositions of n and subsets of {1, . . . ,

n − 1}, sending S = (i1, . . . , il) onto S = {i1, i1 + i2, . . . , i1 + · · · + il−1}. The cardi-
nality of S is l(C)−1, and we define maj(S) = ∑

i∈S i = maj(C). With this notation,

nκn(a) =
∑

S⊂{1,...,n−1}
ω

maj(S)
n (−1)card(S)a

=
∑

1≤i1<···<ir≤n−1

ωi1+···+ir
n (−1)ra
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=
∏

1≤i≤n−1}

(
1 − ωi

n

)
a

= (1 + 1 + · · · + 1)a = na

since ωn is a primitive n-root of the unity. �

6 The Lyndon-Hall basis

This section tells how to use the Klyachko idempotent for proving that the Lyndon
words are generating.

We proved in Corollary 5.0.5 that κn is the identity on primitives of the bialge-
bra F (X). Moreover, κn maps F (X) into its primitive elements, and thus, by the
Theorem 3.3.3 of Milnor–Moore , we conclude that κn(F (X)) = L(X).

In Theorem 4.2.2 we proved that the set L of Lyndon words determines a minimal
set of independent elements in L(X). In this section we want to prove that this set is
generating (actually this is directly related to the fact that, by definition, L forms a
set of representatives of all circular rearrangements classes of words of W(X)). Let
us see that.

To this purpose, we shall use the Klyachko idempotent κn. The following theorem
tells us that κn does not discriminate between all circular rearrangements of a same
word. This property is given by the study of the kernel of the Klyachko invariant. For
this part, we work in the general context of a connected cocommutative bialgebra A.

Theorem 6.0.6 The kernel of κn restricted to An is spanned by the elements of the
form ab − ω|b|baC|b|,|a|((2,1)).

Proof We directly use the proofs of Theorem 16, Lemma 14, and Corollary 15 given
in [9]. The proof of Theorem 16 explicitly rests on the fact that primitive must be
generating in A; hence the hypothesis on A.

First recall the principle of the proof. We examine a word a1a2 . . . ap with to-
tal degree |a1| + |a2| + · · · + |ap| = n, its image κn(a1a2 . . . ap), and the circular
permutation apa1 . . . ap−1 and its image κn(apa1 . . . ap−1). Both images are linear
combinations of words obtained by permutations of a1a2 . . . ap . Then, we focus our
attention to such a word w. In the classical case one proves that the coefficient of
w in κn(apa1 . . . ap−1) is equal to the coefficient of the same w in κn(a1a2 . . . ap)

multiplied by ω
|ap |
n .

Now we want to extend this classical case (the basis ring is a field F of char-
acteristic 0, possibly extended by primitive roots of unity) to the twisted case: the
basis ring is the group ring F(S). The coefficient of the word w mentioned in the
preceding paragraph results from two distinct processes. First, a linear combination
in F of coefficients of the form ω

maj(C)
n which appear in the definition of κn; no-

tice that if, in the classical case, we calculate p|a1| � p|a2| � · · · � p|ap |(a1a2 . . . ap),
where the a1, a2, . . . , ap are primitive, we obtain a combination of words obtained by
some permutations of the word a1a2 . . . ap with all coefficients equal to 1. Secondly,
the action of the group of permutations; it is generated by a repeated application of
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the following formula: δ(a1a2) = a1a2 ⊗ 1 + a1 ⊗ a2 + a2 ⊗ a1 C|a2|,|a1|((2,1)) +
1 ⊗ a1a2. As a consequence, if in p|a1| � p|a2| � · · · � p|ap |(a1a2 . . . ap) there ap-
pears a word aσ(1)aσ(2) . . . aσ(p) for some permutation σ , its coefficient in F(S) is
C|aσ(1)|,|aσ(2)|,...,|aσ(p)|.

So if we determine the coefficient of w = aσ(1)aσ(2) . . . aσ (p) in κn(a1a2 . . . ap),
we obtain the coefficient given in [9] multiplied by C|aσ(1)|,|aσ(2)|,...,|aσ(p)|(σ ).

Similarly if we determine the coefficient of w = aσ(1)aσ(2) . . . aσ(p) in

κn(apa1 . . . ap−1)(−ω
|ap |
n )C(|ap |,|a1|+···+|ap−1|)((2,1)), we obtain the coefficient given

in [9] multiplied by C|aσ(1)|,|aσ(2)|,...,|aσ(p)|(σ ), the same permutation as above (indeed
a permutation is given by its image and in our case by the word w).

In conclusion, the proof of [9] still works in the twisted case. �

We now go back to the case of A = F (X).
First we remark that the free twisted bialgebra on X can be generated on F(S) by

the union of all {b(w)}w∈L and the nontrivial circular rearrangements of all w in L:

Lemma 6.0.7 Let 〈Ln〉 be the twisted module generated by Ln in F (X), Bn its image
by the linear extension of b : L → L(X) ⊂ F (X), and Kn the kernel of the Klyachko
idempotent κn : F (X)n → L(X)n ⊂ F (X)n. Then there is an isomorphism between
〈Ln〉 ⊕ Kn and Bn ⊕ Kn.

Proof Look at the decomposition given by Theorem 4.2.2. Consider the basis of Bn

consisting of all b(w), w ∈ Ln, and order it lexicographically. Similarly we consider
the basis of 〈Ln〉 consisting of all w, w ∈ Ln, again ordered lexicographically. Choose
some basis for Kn. Then Theorem 4.2.2 implies that the matrix giving the basis of
Bn ⊕ Kn in the basis of 〈Ln〉 ⊕ Kn is a triangular matrix with 1 at each spot of the
diagonal. This proves the lemma. �

Remark Recalling that the Lyndon words are the representatives of all circular re-
arrangement classes of W(X), we see that 〈Ln〉 ⊕ Kn = F (X).

We can now prove the following sequence of inclusions:

L(X)n ⊇ Bn = κn(Bn)

= κn(Bn ⊕ Kn) by definition of Kn

= κn

(〈Ln〉 ⊕ Kn

)
by Lemma 6.0.7

= κn

(
F (X)

)
by the above remark

= L(X)n by Milnor Moore, Theorem 3.3.3.

So we can state the following:

Theorem 6.0.8 As a twisted module, the free (twisted) Lie algebra is generated by
the Lie elements associated to all Lyndon words.

Combining this with Theorem 4.2.2 we obtain our main result:
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Theorem 6.0.9 The set of Lie elements associated to all Lyndon words is minimal
and generating for the free twisted Lie algebra.

To conclude with, we now return to [2] and specify:

(i) Each b(w), w a prime Lyndon word, generates submodule isomorphic to F(S|w|)
in L(X).

(ii) Each b(w), w = up , p > 1 and u a prime Lyndon word, generates submod-
ule isomorphic to F(S|w|)/Ip,|u| in L(X), where Ip,|u| is the annihilator of
(1 − γ2) . . . (1 − γp) (cf. Proposition 4.2.1).
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