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Abstract We study cluster algebras with principal coefficient systems that are asso-
ciated to unpunctured surfaces. We give a direct formula for the Laurent polynomial
expansion of cluster variables in these cluster algebras in terms of perfect matchings
of a certain graph GT,γ that is constructed from the surface by recursive glueing of
elementary pieces that we call tiles. We also give a second formula for these Laurent
polynomial expansions in terms of subgraphs of the graph GT,γ .

Keywords Cluster algebra · Triangulated surface · Principal coefficients ·
F-polynomial · Snake graph

1 Introduction

Cluster algebras, introduced in [17], are commutative algebras equipped with a dis-
tinguished set of generators, the cluster variables. The cluster variables are grouped
into sets of constant cardinality n, the clusters, and the integer n is called the rank of
the cluster algebra. Starting with an initial cluster x = {x1, . . . , xn} (together with a
skew symmetrizable integer n × n matrix B = (bij ) and a coefficient vector y = (yi)
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whose entries are elements of a torsion-free abelian group P), the set of cluster vari-
ables is obtained by repeated application of so-called mutations. Note that this set
may be infinite.

It follows from the construction that every cluster variable is a rational function
in the initial cluster variables x1, x2, . . . , xn. In [17], it is shown that every cluster
variable u is actually a Laurent polynomial in the xi , that is, u can be written as a
reduced fraction

u = f (x1, x2, . . . , xn)
∏n

i=1 x
di

i

, (1)

where f ∈ ZP[x1, x2, . . . , xn] and di ≥ 0. The right-hand side of (1) is called the
cluster expansion of u in x.

The cluster algebra is determined by the initial matrix B and the choice of the coef-
ficient system. A canonical choice of coefficients is the principal coefficient system,
introduced in [18], which means that the coefficient group P is the free abelian group
on n generators y1, y2, . . . , yn, and the initial coefficient vector y = {y1, y2, . . . , yn}
consists of these n generators. In [18], the authors show that knowing the expansion
formulas in the case where the cluster algebra has principal coefficients allows one to
compute the expansion formulas for arbitrary coefficient systems.

Inspired by the work of Fock and Goncharov [13–15] and Gekhtman, Shapiro, and
Vainshtein [22, 23] which discovered cluster structures in the context of Teichmüller
theory, Fomin, Shapiro, and Thurston [16, 20] initiated a systematic study of the clus-
ter algebras arising from triangulations of a surface with boundary and marked points.
In this approach, cluster variables in the cluster algebra correspond to arcs in the sur-
face, and clusters correspond to triangulations. In [32], building on earlier results in
[31, 33], this model was used to give a direct expansion formula for cluster variables
in cluster algebras associated to unpunctured surfaces, with arbitrary coefficients, in
terms of certain paths on the triangulation.

Our first main result in this paper is a new parameterization of this formula in terms
of perfect matchings of a certain weighted graph that is constructed from the surface
by recursive glueing of elementary pieces that we call tiles. To be more precise, let
xγ be a cluster variable corresponding to an arc γ in the unpunctured surface, and let
d be the number of crossings between γ and the triangulation T of the surface. Then
γ runs through d + 1 triangles of T and each pair of consecutive triangles forms a
quadrilateral which we call a tile. So we obtain d tiles, each of which is a weighted
graph, whose weights are given by the cluster variables xτ associated to the arcs τ of
the triangulation T .

We obtain a weighted graph GT,γ by glueing the d tiles in a specific way and
then deleting the diagonal in each tile. To any perfect matching P of this graph we
associate its weight w(P ) which is the product of the weights of its edges, hence a
product of cluster variables. We prove the following cluster expansion formula:

Theorem 3.1

xγ =
∑

P

w(P )y(P )

xi1xi2 . . . xid

,
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where the sum is over all perfect matchings P of GT,γ , w(P ) is the weight of P , and
y(P ) is a monomial in y.

We also give a formula for the coefficients y(P ) in terms of perfect matchings
as follows. The F -polynomial Fγ , introduced in [18], is obtained from the Laurent
polynomial xγ (with principal coefficients) by substituting 1 for each of the cluster
variables x1, x2, . . . , xn. By [32, Theorem 6.2, Corollary 6.4], the F -polynomial has
constant term 1 and a unique term of maximal degree that is divisible by all the
other occurring monomials. The two corresponding matchings are the unique two
matchings that have all their edges on the boundary of the graph GT,γ . With respect
to the construction of Sect. 3.2, P− is the matching of GT,γ using the western edge of
tile S̃1. Now, for an arbitrary perfect matching P , the coefficient y(P ) is determined
by the set of edges of the symmetric difference P− � P = (P− ∪ P) \ (P− ∩ P) as
follows.

Theorem 5.1 The set P− � P is the set of boundary edges of a (possibly discon-
nected) subgraph GP of GT,γ which is a union of tiles GP = ⋃

j∈J Sj . Moreover,

y(P ) =
∏

j∈J

yij .

Note that y(P−) = 1. As an immediate corollary, we see that the corresponding
g-vector, introduced in [18], is

gγ = deg

(
w(P−)

xi1 · · ·xid

)

.

Our third main result is yet another description of the formula of Theorem 3.1 in
terms of the graph GT,γ only, see Theorem 6.1.

Theorem 3.1 has interesting intersections with work of other people. In [10], the
authors obtained a formula for the denominators of the cluster expansion in types A,
D, and E, see also [4]. In [5–7], an expansion formula was given in the case where
the cluster algebra is acyclic and the cluster lies in an acyclic seed. Palu generalized
this formula to arbitrary clusters in an acyclic cluster algebra [28]. These formulas
use the cluster category introduced in [3], and in [9] for type A, and do not give
information about the coefficients.

Recently, Fu and Keller generalized this formula further to cluster algebras with
principal coefficients that admit a categorification by a 2-Calabi–Yau category [21],
and, combining results of [1] and [2, 24], such a categorification exists in the case of
cluster algebras associated to unpunctured surfaces.

In [8, 26, 34, 35], cluster expansions for cluster algebras of rank 2 are given; in [11,
19, 30], the case A is considered. In Sect. 4 of [30], Propp describes two constructions
of snake graphs, the latter of which are unweighted analogues for the case A of the
graphs GT,γ that we present in this paper. Propp assigns a snake graph to each arc
in the triangulation of an n-gon and shows that the numbers of matchings in these
graphs satisfy the Conway–Coxeter frieze pattern induced by the Ptolemy relations
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on the n-gon. In [25], a cluster expansion for cluster algebras of classical type is given
for clusters that lie in a bipartite seed.

The formula for y(P ) given in Theorem 5.1 also can be formulated in terms of
height functions, as found in literature such as [12] or [29]. We discuss this connection
in Remark 5.3 of Sect. 5.

The paper is organized as follows. In Sect. 2, we recall the construction of cluster
algebras from surfaces of [20]. Section 3 contains the construction of the graph GT,γ

and the statement of the cluster expansion formula. Section 4 is devoted to the proof
of the expansion formula. The formula for y(P ) and the formula for the g-vectors is
given in Sect. 5. In Sect. 6, we present the expansion formula in terms of subgraphs
and deduce a formula for the F -polynomials. We give an example in Sect. 7.

2 Cluster algebras from surfaces

In this section, we recall the construction of [20] in the case of surfaces without
punctures.

Let S be a connected oriented two-dimensional Riemann surface with boundary
and M a nonempty finite set of marked points in the closure of S with at least one
marked point on each boundary component. The pair (S,M) is called bordered sur-
face with marked points. Marked points in the interior of S are called punctures.

In this paper, we will only consider surfaces (S,M) such that all marked points lie
on the boundary of S, and we will refer to (S,M) simply as an unpunctured surface.

We say that two curves in S do not cross if they do not intersect each other except
that endpoints may coincide.

Definition 1 An arc γ in (S,M) is a curve in S such that

(a) the endpoints are in M ,
(b) γ does not cross itself,
(c) the relative interior of γ is disjoint from the boundary of S,
(d) γ does not cut out a monogon or a digon.

Curves that connect two marked points and lie entirely on the boundary of S with-
out passing through a third marked point are called boundary arcs. Hence an arc is
a curve between two marked points, which does not intersect itself nor the boundary
except possibly at its endpoints and which is not homotopic to a point or a boundary
arc.

Each arc is considered up to isotopy inside the class of such curves. Moreover,
each arc is considered up to orientation, so if an arc has endpoints a, b ∈ M , then it
can be represented by a curve that runs from a to b, as well as by a curve that runs
from b to a.

For any two arcs γ, γ ′ in S, let e(γ, γ ′) be the minimal number of crossings of
γ and γ ′, that is, e(γ, γ ′) is the minimum of the numbers of crossings of arcs α

and α′, where α is isotopic to γ , and α′ is isotopic to γ ′. Two arcs γ, γ ′ are called
compatible if e(γ, γ ′) = 0. A triangulation of S is a maximal collection of compatible
arcs together with all boundary arcs. The arcs of a triangulation cut the surface into
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Table 1 Examples of
unpunctured surfaces b g m surface

1 0 n + 3 polygon

1 1 n − 3 torus with disk removed

1 2 n − 9 genus 2 surface with disk removed

2 0 n annulus

2 1 n − 6 torus with 2 disks removed

2 2 n − 12 genus 2 surface with 2 disks removed

3 0 n − 3 pair of pants

triangles. Since (S,M) is an unpunctured surface, the three sides of each triangle
are distinct (in contrast to the case of surfaces with punctures). Any triangulation
has n + m elements, n of which are arcs in S, and the remaining m elements are
boundary arcs. Note that the number of boundary arcs is equal to the number of
marked points. Each arc will correspond to a cluster variable, whereas each boundary
arc will correspond to the multiplicative identity 1 in the cluster algebra.

Proposition 2.1 The number n of arcs in any triangulation is given by the formula
n = 6g + 3b +m− 6, where g is the genus of S, b is the number of boundary compo-
nents, and m = |M| is the number of marked points. The number n is called the rank
of (S,M).

Proof [20, 2.10]. �

Note that b > 0 since the set M is not empty. Table 1 gives some examples of
unpunctured surfaces.

Following [20], we associate a cluster algebra to the unpunctured surface (S,M)

as follows. Choose any triangulation T , let τ1, τ2, . . . , τn be the n interior arcs of T ,
and denote the m boundary arcs of the surface by τn+1, τn+2, . . . , τn+m. For any
triangle Δ in T , define the matrix BΔ = (bΔ

ij )1≤i≤n,1≤j≤n by

bΔ
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if τi and τj are sides of Δ with τj following τi in the
counter-clockwise order;

−1 if τi and τj are sides of Δ with τj following τi in the
clockwise order;

0 otherwise.

Note that this matrix is the transpose of the matrix defined in [20]. Then define the
matrix BT = (bij )1≤i≤n,1≤j≤n by bij = ∑

Δ bΔ
ij , where the sum is taken over all trian-

gles in T . Note that the boundary arcs of the triangulation are ignored in the definition
of BT . Let B̃T = (bij )1≤i≤2n,1≤j≤n be the 2n×n matrix whose upper n×n part is BT

and whose lower n×n part is the identity matrix. The matrix BT is skew-symmetric,
and each of its entries bij is either 0,1,−1,2, or −2, since every arc τ can be in at
most two triangles. An example where bij = 2 is given in Fig. 1.
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Fig. 1 A triangulation with
b23 = 2

Let A(xT ,yT ,BT ) be the cluster algebra with principal coefficients for the tri-
angulation T , that is, A(xT ,yT ,BT ) is given by the seed (xT ,yT ,BT ) where
xT = {xτ1, xτ2, . . . , xτn} is the cluster associated to the triangulation T , and the
initial coefficient vector yT = (y1, y2, . . . , yn) is the vector of generators of P =
Trop(y1, y2, . . . , yn). We refer to [18, Definition 2.2] for the definition of tropical
semifield.

For the boundary arcs, we define xτk
= 1, k = n + 1, n + 2, . . . , n + m.

For each k = 1,2, . . . , n, there is a unique quadrilateral in T \ {τk} in which τk is
one of the diagonals. Let τ ′

k denote the other diagonal in that quadrilateral. Define the
flip μkT to be the triangulation (T \ {τk}) ∪ {τ ′

k}. The mutation μk of the seed ΣT in
the cluster algebra A corresponds to the flip μk of the triangulation T in the following
sense: The matrix μk(BT ) is the matrix corresponding to the triangulation μkT , the
cluster μk(xT ) is (xT \ {xτk

}) ∪ {xτ ′
k
}, and the corresponding exchange relation is

given by

xτk
xτ ′

k
= xρ1xρ2y

+ + xσ1xσ2y
−,

where y+, y− ∈ P are some coefficients, and ρ1, σ1, ρ2, σ2 are the sides of the quadri-
lateral in which τk and τ ′

k are the diagonals, with ρ1 opposite to ρ2, and σ1 opposite
to σ2, see [20].

For convenience, we recall the definition of mutation in the cluster algebra. We
use the notation [i]+ = max(i,0), [1, n] = {1, . . . , n}, and

sgn (i) =

⎧
⎪⎨

⎪⎩

−1 if i < 0;

0 if i = 0;

1 if i > 0.

Let ⊕ denote the addition in P.

Definition 2 (Seed mutations) Let (x,y,B) be a seed, and let k ∈ [1, n]. The seed
mutation μk in direction k transforms (x,y,B) into the seed μk(x,y,B) = (x′,y′,B ′)
defined as follows:

• The entries of B ′ = (b′
ij ) are given by

b′
ij =

{−bij if i = k or j = k;

bij + sgn (bik) [bikbkj ]+ otherwise.
(2)
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• The coefficient tuple y′ = (y′
1, . . . , y

′
n) is given by

y′
j =

⎧
⎨

⎩

y−1
k if j = k;

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 
= k.

(3)

• The cluster x′ = (x′
1, . . . , x

′
n) is given by x′

j = xj for j 
= k, whereas x′
k is deter-

mined by the exchange relation

x′
k = yk

∏
x

[bik]+
i + ∏

x
[−bik]+
i

(yk ⊕ 1)xk

. (4)

3 Expansion formula

In this section, we will present an expansion formula for the cluster variables in terms
of perfect matchings of a graph that is constructed recursively using so-called tiles.

3.1 Tiles

For the purpose of this paper, a tile Sk is a planar four-vertex graph with five weighted
edges having the shape of two equilateral triangles that share one edge, see Fig. 2.
The weight on each edge of the tile Sk is a cluster variable. The unique interior edge
is called diagonal, and the four exterior edges are called sides of Sk . We shall use Sk

to denote the graph obtained from Sk by removing the diagonal.
Now let T be a triangulation of the unpunctured surface (S,M). If τk ∈ T is an

interior arc, then τk lies in precisely two triangles in T , hence τk is the diagonal of a
unique quadrilateral Qτk

in T . We associate to this quadrilateral a tile Sk by assigning
the weight xk to the diagonal and the weights xa, xb, xc, xd to the sides of Sk in such a
way that there is a surjective map φk : Qτk

→ Sk which restricts to a homeomorphism
between the respective interiors and which sends the arc labeled τi , i = a, b, c, d, k

to the edge with weight xi , see Fig. 2. If k = 1, we require that φ1 is such that its
restriction to the interior is an orientation-preserving homeomorphism, but for k > 1,
we allow the restriction of φk to be any homeomorphism.

3.2 The graph GT,γ

Let T be a triangulation of an unpunctured surface (S,M), and let γ be an arc in
(S,M) which is not in T . If necessary, replace γ with an isotopic arc so that γ

intersects transversally each of the arcs in T and minimizes the number of crossings

Fig. 2 The tile Sk
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Fig. 3 Glueing tiles Sk and
Sk+1 along the edge weighted
x[γk ]

with each of these arcs. An example is given in Fig. 9. Choose an orientation on γ

and let s ∈ M be its starting point, and let t ∈ M be its endpoint. We denote by

p0 = s,p1,p2, . . . , pd+1 = t

the points of intersection of γ and T in order along γ under the orientation chosen
above. Let i1, i2, . . . , id be such that pk lies on the arc τik ∈ T . Note that ik may be
equal to ij even if k 
= j . In the example in Sect. 7, this sequence is i1, i2, i3, i4, i1, i2.
Let S̃1, S̃2, . . . , S̃d be a sequence of tiles so that S̃k is isomorphic to the tile Sik for
k = 1,2, . . . , d . In the example in Sect. 7, this sequence is S1, S2, S3, S4, S1, S2.

For k from 0 to d , let γk denote the segment of the path γ from the point pk to the
point pk+1. Each γk lies in exactly one triangle Δk in T , and if 1 ≤ k ≤ d − 1, then
Δk is formed by the arcs τik , τik+1 , and a third arc that we denote by τ[γk]. Note that
the arc τ[γk] may be a boundary arc. In the example in Sect. 7, the triangle Δ0 has
sides τ5, γ1, and τ4; the triangle Δ1 has sides γ2, γ1, and τ6.

We will define a graph GT,γ by recursive glueing of tiles. Start with GT,γ,1 ∼= S̃1,
where, if necessary, we rotate the tile S̃1 so that the diagonal goes from northwest
to southeast, and the starting point p0 of γ is in the southwest corner of S̃1. For all
k = 1,2, . . . , d − 1, let GT,γ,k+1 be the graph obtained by adjoining the tile S̃k+1 to
the tile S̃k of the graph GT,γ,k along the edge weighted x[γk], see Fig. 3. We always
orient the tiles so that the diagonals go from northwest to southeast. This implies that
the tiles in odd positions have the orientation induced from the surface and the tiles
in even positions have the opposite orientation. Note that the edge weighted x[γk] is
either the northern or the eastern edge of the tile S̃k .

Finally, we define GT,γ to be GT,γ,d .
Let GT,γ be the graph obtained from GT,γ by removing the diagonal in each tile,

that is, GT,γ is constructed in the same way as GT,γ but using the graphs Sik instead
of Sik . For an example see, Fig. 10.

A perfect matching of a graph is a subset of the edges so that each vertex is covered
exactly once by an edge in the perfect matching. We define the weight w(P ) of a
perfect matching P of GT,γ to be the product of the weights of all edges in P .

3.3 Cluster expansion formula

Let (S,M) be an unpunctured surface with triangulation T , and let A = A(xT ,yT ,B)

be the cluster algebra with principal coefficients in the initial seed (xT ,yT ,B) defined
in Sect. 2. Take an arbitrary cluster variable in A that is not in the initial cluster x.
Since each cluster variable in A corresponds to an arc in (S,M), we can denote our
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cluster variable by xγ where γ is an arc not in T . Choose an orientation of γ , and
let τi1 , τi2, . . . , τid be the arcs of the triangulation that are crossed by γ in this order,
with multiplicities possible. Let GT,γ be the graph constructed in Sect. 3.2.

Theorem 3.1 With the above notation,

xγ =
∑

P

w(P )y(P )

xi1xi2 . . . xid

,

where the sum is over all perfect matchings P of GT,γ , w(P ) is the weight of P , and
y(P ) is a monomial in yT .

The proof of Theorem 3.1 will be given in Sect. 4.

4 Proof of Theorem 3.1

We will use results of [32] to prove the theorem. Throughout this section, T is
a triangulation of an unpunctured surface (S,M), γ is an arc in S with a fixed
orientation, and s ∈ M is its starting point and t ∈ M is its endpoint. Moreover,
p0 = s,p1,p2, . . . , pd+1 = t are the points of intersection of γ and T in order along
γ under the orientation chosen above, and i1, i2, . . . , id are such that pk lies on the
arc τik ∈ T . Let γk denote the segment of γ between the points pk,pk+1.

4.1 Complete (T , γ )-paths

Following [33], we will consider paths α in S that are concatenations of arcs and
boundary arcs in the triangulation T , more precisely, α = (α1, α2, . . . , α
(α)) with
αi ∈ T for i = 1,2, . . . , 
(α), and the starting point of αi is the endpoint of αi−1.
Such a path is called a T -path.

We call a T -path α = (α1, α2, . . . , α
(α)) a complete (T , γ )-path if the following
axioms hold:

(T1) The even arcs are precisely the arcs crossed by γ in order, that is, α2k = τik .
(T2) For all k = 0,1,2, . . . , d , the segment γk is homotopic to the segment of the

path α that starts at the point pk , then goes along α2k to the starting point of
α2k+1, then along α2k+1 to the starting point of α2k+2, and then along α2k+2
until the point pk+1.

We define the Laurent monomial x(α) of the complete (T , γ )-path α by

x(α) =
∏

i odd

xαi

∏

i even

x−1
αi

.

Remark 4.1

• Every complete (T , γ )-path starts and ends at the same points as γ , because of
(T2).
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• Every complete (T , γ )-path has length 2d + 1.
• For all arcs τ in the triangulation T , the number of times that τ occurs as α2k is

exactly the number of crossings between γ and τ .
• In contrast to the ordinary (T , γ )-paths defined in [33], complete (T , γ )-paths al-

low backtracking.
• The denominator of the Laurent monomial x(α) is equal to xi1xi2 · · ·xid .

Example 4.2 The following are two examples of complete (T , γ )-paths, in the situa-
tion in Fig. 9.

(τ5, τ1, τ2, τ2, τ2, τ3, τ7, τ4, τ5, τ1, τ2, τ2, τ8),

(τ4, τ1, τ1, τ2, τ3, τ3, τ4, τ4, τ5, τ1, τ2, τ2, τ8).

4.2 Universal cover

Let π : S̃ → S be a universal cover of the surface S, and let M̃ = π−1(M) and T̃ =
π−1(T ).

Choose s̃ ∈ π−1(s). There exists a unique lift γ̃ of γ starting at s̃. Then γ̃ is the
concatenation of subpaths γ̃0, γ̃1, . . . , γ̃d+1 where γ̃k is a path from a point p̃k to a
point p̃k+1 such that γ̃k is a lift of γk and p̃k ∈ π−1(pk) for k = 0,1, . . . , d + 1. Let
t̃ = p̃d+1 ∈ π−1(t).

For k from 1 to d , let τ̃ik be the unique lift of τik running through p̃k , and let
τ̃[γk] be the unique lift of τ[γk] that is bounding a triangle in S̃ with τ̃ik and τ̃ik+1 .
Each γ̃k lies in exactly one triangle Δ̃k in T̃ . Let S̃(γ ) ⊂ S̃ be the union of the tri-
angles Δ̃0, Δ̃1, . . . , Δ̃d+1, and let M̃(γ ) = M̃ ∩ S̃(γ ) and T̃ (γ ) = T̃ ∩ S̃(γ ). Then
(S̃(γ ), M̃(γ )) is a simply connected unpunctured surface of which T̃ (γ ) is a triangu-
lation. This triangulation T̃ (γ ) consists of arcs, respectively boundary arcs, τ̃ik , τ̃[γk]
with k = 1,2, . . . , d, and two boundary arcs incident to s̃ and two boundary arcs
incident to t̃ . The simple connectedness of S̃(γ ) follows from the simple connected-
ness of the universal cover and the fact that the vertices of each triangle lie on the
boundary of the universal cover. The fact that T̃ (γ ) is a triangulation follows from
the homotopy lifting property of S̃. Moreover, this triangulation does not contain any
internal triangles, since each τ̃[γk] is a boundary arc.

The underlying graph of T̃ (γ ) is the graph with vertex set M̃(γ ) and whose set of
edges consists of the (unoriented) arcs in T̃ (γ ).

By [32, Sect. 5.5], we can compute the Laurent expansion of xγ using complete
(T̃ (γ ), γ̃ )-paths in (S̃(γ ), M̃(γ )).

4.3 Folding

The graph GT,γ was constructed by glueing tiles S̃k+1 to tiles S̃k along edges with
weight x[γk], see Fig. 3. Now we will fold the graph along the edges weighted x[γk],
thereby identifying the two triangles incident to x[γk], k = 1,2, . . . , d − 1.

To be more precise, the edge with weight x[γk], that lies in the two tiles S̃k+1 and
S̃k , is contained in precisely two triangles Δk and Δ′

k in GT,γ : Δk lying inside the
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tile S̃k and Δ′
k lying inside the tile S̃k+1. Both Δk and Δ′

k have weights x[γk], xk ,
xk+1, but opposite orientations. Cutting GT,γ along the edge with weight x[γk], one
obtains two connected components. Let Rk be the component that contains the tile
S̃k and Rk+1 the component that contains S̃k+1.

The folding of the graph GT,γ along x[γk] is the graph obtained by flipping Rk+1
and then glueing it to Rk by identifying the two triangles Δk and Δ′

k . In this new
graph, we can now fold along any of the edges x[γ
] with k 
= 
, by cutting along
x[γ
], defining subgraphs Rk,
 and Rk,
+1 in a similar way, and then flipping Rk,
+1
and glueing it to Rk,
 by identifying the two triangles Δ
 and Δ
′ .

The graph obtained by consecutive folding of GT,γ along all edges with weight
x[γk] for k = 1,2, . . . , d −1, is isomorphic to the underlying graph of the triangulation
T̃ (γ ) of the unpunctured surface (S̃(γ ), M̃(γ )). Indeed, there clearly is a bijection
between the triangles in both graphs, and, in both graphs, the way the triangles are
glued together is uniquely determined by γ .

We obtain a map that we call the folding map

φ :
{

perfect matchings
in GT,γ

}
→

{
complete (T̃ (γ ), γ̃ )-paths

in (S̃(γ ), M̃(γ ))

}

P �→ α̃P

as follows. First, we associate a path αP in GT,γ to the matching P as follows. Let
αP be the path starting at s going along the unique edge of P that is incident to s,
then going along the diagonal of the first tile S̃1, then along the unique edge of P that
is incident to the endpoint of that diagonal, and so forth. The fact that P is a perfect
matching guarantees that each endpoint of a diagonal is incident to a unique edge
in P , and from the construction of GT,γ it follows that each edge in P connects two
endpoints of two distinct diagonals. It is clear from the construction of GT,γ that one
can never come back to the same vertex, and therefore the path must reach t .

Since P has cardinality d + 1, the path αP consists of 2d + 1 edges, thus α =
(α1, α2, . . . , α2d+1). Now we define α̃P = (α̃1, α̃2, . . . , α̃2d+1) by folding the path
αP . Thus, if P = {β1, β3, . . . , β2d−1, β2d+1}, where the edges are ordered according
to γ , then φ(P ) = (α̃1, α̃2, . . . , α̃2d+1), where α̃2k+1 is the image of β2k+1 under the
folding, and α̃2k = τ̃ik is the arc crossing γ̃ at p̃k . Then φ(P ) satisfies the axiom
(T1) by construction. Moreover, φ(P ) satisfies the axiom (T2), because, for each
k = 0,1, . . . , d , the segment of the path φ(P ), which starts at the point p̃k , then goes
along α̃2k to the starting point of α̃2k+1, then along α̃2k+1 to the starting point of
α̃2k+2, and then along α̃2k+2 until the point p̃k+1, is homotopic to the segment γ̃k ,
since both segments lie in the simply connected triangle Δ̃k formed by τ̃ik , τ̃ik+1 , and
τ̃[γk]. Therefore, the folding map φ is well defined.

Note that it is possible that α̃k, α̃k+1 is backtracking, that is, α̃k and α̃k+1 run along
the same arc τ̃ ∈ T̃ (γ ).

Example 4.3 Figure 4 displays an example of a perfect matching P , whose edges
are the solid bold lines, of the graph GT,γ of Fig. 10. The matching contains edges
labeled x5, x2, x8, x4, x4, x1, x3. The figure also shows the corresponding (not yet
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Fig. 4 Example of complete
(T , γ ) path associated to a
matching

folded) complete (T , γ )-path obtained by inserting the diagonals τ1, τ2, τ3, τ4, τ1, τ2,
given as dashed bold lines. In the surface in Fig. 9, the corresponding complete
(T , γ )-path

αP = (τ5, τ1, τ2, τ2, τ8, τ3, τ4, τ4, τ4, τ1, τ1, τ2, τ3)

is obtained by folding the path in Fig. 4.

4.4 Unfolding the surface

Let α be a boundary arc in (S̃(γ ), M̃(γ )) that is not adjacent to s̃ and not adjacent
to t̃ . Then there is a unique triangle Δ in T̃ (γ ) in which α is a side. The other two
sides of Δ are two consecutive arcs, which we denote by τ̃j and τ̃j+1, see Fig. 5.

By cutting the underlying graph of T̃ (γ ) along τ̃j , we obtain two pieces. Let Rj+1

denote the piece that contains α, τ̃j+1 and t . Similarly, cutting (S̃(γ ), M̃(γ )) along
τ̃j+1, we obtain two pieces, and we denote by Rj the piece that contains s, τ̃j , and α.

The graph obtained by unfolding along α is the graph obtained by flipping Rj and
then glueing it to Rj+1 along α. In this new graph, we label the edge of Rj that had
the label τ̃j+1 by τ̃ b

j+1 and the edge of Rj+1 that had the label τ̃j by τ̃ b
j , indicating

that these edges are on the boundary of the new graph, see Fig. 5. Now, in the graph
obtained from unfolding along α, we can continue unfolding along (the image of)
a different boundary arc α′ in (S̃(γ ), M̃(γ )) that is not adjacent to s̃ and not adjacent
to t̃ , again using the unique triangle Δ′ in T̃ (γ ) in which α′ is a side, cutting the
graph obtained from unfolding along α along τ̃j ′ to obtain Rj ′+1 and cutting the
graph obtained from unfolding along α along τ̃j ′+1 to obtain Rj ′ , then flipping and
glueing in a similar way will give a new graph obtained from T̃ (γ ) by consecutive
unfolding along α and α′.

Lemma 4.4 The graph obtained by repeated unfolding of the underlying graph of
T̃ (γ ) along all boundary edges not adjacent to s or t is isomorphic to the graph
GT,γ . Moreover, for each unfolding along an edge α, the edges labeled τ̃ b

j , τ̃ b
j+1

are on the boundary of GT,γ and carry the weights xj , xj+1, respectively, the edges
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Fig. 5 Completion of paths

labeled τ̃j , τ̃j+1 are diagonals in GT,γ and carry the weights xj , xj+1, respectively,
and α is an interior edge of Gγ that is not a diagonal and carries the weight x[γj ].

Proof This follows from the construction. �

4.5 Unfolding map

We define the map

{complete (T̃ (γ ), γ̃ ) − paths} → {perfect matchings of GT,γ }
α̃ = (α̃1, α̃2, . . . , α̃2d+1) �→ Pα̃ = {β1, β3, β5, . . . , β2d+1}

where β1 = α̃1, β2d+1 = α̃2d+1, and

β2k+1 =
{

α̃2k+1 if α̃2k+1 is a boundary arc in T̃ (γ ),

τ̃ b
j if α̃2k+1 = τ̃j is an arc in T̃ (γ ).

We will show that this map is well defined. Suppose β2k+1 and β2
+1 have a com-
mon endpoint x. Then α̃2k+1 and α̃2
+1 have a common endpoint y in (S̃(γ ), M̃(γ )),
and the two edges are not separated in the unfolding described in Lemma 4.4. Conse-
quently, there is no triangle in T̃ (γ ) that is contained in the subpolygon spanned by
α̃2k+1 and α̃2
+1, and hence α̃2k+1 is equal to α̃2l+1. This implies that every arc in the
subpath (α̃2k+1, α̃2k+2, . . . , α̃2
+1) is equal to the same arc τ̃j , and the only way this
can happen is when 
 = k + 1 and (α̃2k+1, α̃2k+2, . . . , α̃2
+1) = (τ̃j , τ̃j , τ̃j ) and both
endpoints of τ̃j are incident to an interior arc other than τ̃j . In this case, τ̃j bounds
the two triangles τ̃j−1, τ̃j , τ̃[γj−1] and τ̃j , τ̃j+1, τ̃[γj ] in T̃ (γ ). Unfolding along τ̃[γj−1]
and τ̃[γj ] will produce edges β2k+1 and β2
+1 that are not adjacent, see Fig. 6.

This shows that no vertex of GT,γ is covered twice in Pα̃ .
To show that every vertex of GT,γ is covered in Pα̃ , we use a counting argument.

Indeed, the number of vertices of GT,γ is 2(d + 1), and, on the other hand, 2d + 1 is
the length of α̃, since α̃ is complete, and thus Pα̃ has d + 1 edges. The statement fol-
lows since every βj ∈ Pα̃ has two distinct endpoints. This shows that Pα̃ is a perfect
matching and our map is well defined.

Lemma 4.5 The unfolding map α̃ �→ Pα̃ is the inverse of the folding map P �→ α̃P .
In particular, both maps are bijections.

Proof Let α̃ = (α̃1, α̃2, . . . , α̃2d+1) be a complete (T̃ (γ ), γ̃ )-path. Then α̃Pα̃
= (α1,

α2, . . . , α2d+1) where α2k+1 is the image under folding of the arc τ̃ b
j if α̃2k+1 = τ̃j
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Fig. 6 Unfolding along τ̃[γj−1] and τ̃[γj ]

is an arc in T̃ (γ ) or, otherwise, the image under the folding of the arc α̃2k+1. Thus
α2k+1 = α̃2k+1. Moreover, α2k = τik = α̃2k , and thus α̃Pα̃

= α̃.
Conversely, let P = {β1, β3, . . . , β2d−1, β2d+1} be a perfect matching of GT,γ .

Then Pα̃P
= {β̃1, β̃3, . . . , β̃2d−1, β̃2d+1} where

β̃2k+1 =
{

α̃2k+1 if α̃2k+1 is a boundary arc,

τ̃ b
j if α̃2k+1 = τ̃j is an arc

=
{

τ̃[γj ] if β2k+1 = τ̃[γj ],
τ̃ b
j if β2k+1 = τ̃ b

j .

Hence Pα̃P
= P . �

Combining Lemma 4.5 with the results of [32], we obtain the following theorem.

Theorem 4.6 There is a bijection between the set of perfect matchings of the graph
GT,γ and the set of complete (T , γ )-paths in (S,M) given by P �→ π(α̃P ), where α̃P

is the image of P under the folding map, and π is induced by the universal cover π :
S̃ → S. Moreover, the numerator of the Laurent monomial x(π(α̃P )) of the complete
(T , γ )-path π(α̃P ) is equal to the weight w(P ) of the matching P .

Proof The map in the theorem is a bijection, because it is the composition of the
folding map, which is a bijection, by Lemma 4.5, and the map π , which is a bijection,
by [32, Lemma 5.8]. The last statement of the theorem follows from the construction
of the graph GT,γ . �

Example 4.7 The unfolding of the path

α̃ = (τ5, τ1, τ2, τ2, τ8, τ3, τ4, τ4, τ4, τ1, τ1, τ2, τ3)

in the surface of Fig. 9 is the perfect matching Pα̃ = P of Example 4.3.



J Algebr Comb (2010) 32: 187–209 201

4.6 Proof of Theorem 3.1

It has been shown in [32, Theorem 3.2] that

xγ =
∑

α

x(α)y(α), (5)

where the sum is over all complete (T , γ )-paths α in (S,M), y(α) is a monomial
in yT , and

x(α) =
∏

k odd

xαk

∏

k even

x−1
αk

. (6)

Applying Theorem 4.6 to (5) yields

xγ =
∑

P

w(P )y(P )(xi1xi2 · · ·xid )
−1, (7)

where the sum is over all perfect matchings P of GT,γ , w(P ) is the weight of the
matching and y(P ) = y(π(α̃P )), by definition. This completes the proof of Theo-
rem 3.1.

5 A formula for y(P )

In this section, we give a description of the coefficients y(P ) in terms of the match-
ing P . First, we need to recall some results from [32].

Recall that T is a triangulation of the unpunctured surface (S,M) and that γ is an
arc in (S,M) that crosses T exactly d times. We also have fixed an orientation for
γ and denote by s = p0,p1, . . . , pd,pd+1 = t the intersection points of γ and T in
order of occurrence on γ . Let i1, i2, . . . , id be such that pk lies on the arc τik ∈ T for
k = 1,2, . . . , d . For k = 0,1, . . . , d , let γk denote the segment of the path γ from the
point pk to the point pk+1. Each γk lies in exactly one triangle Δk in T . If 1 ≤ k ≤
d − 1, the triangle Δk is formed by the arcs τik , τik+1 and a third arc that we denote
by τ[γk].

The orientation of the surface S induces an orientation on each of these triangles
in such a way that, whenever two triangles Δ,Δ′ share an edge τ , then the orienta-
tion of τ in Δ is opposite to the orientation of τ in Δ′, There are precisely two such
orientations. We assume without loss of generality that S has the “clockwise orien-
tation,” that is, in each triangle Δ, going around the boundary of Δ according to the
orientation of S, is clockwise when looking at it from outside the surface.

Let α be a complete (T , γ )-path. Then α2k = τik is a common arc of the two
triangles Δk−1 and Δk . We say that α2k is γ -oriented if the orientation of α2k in the
path α is the same as the orientation of τik in the triangle Δk , see Fig. 7.

It is shown in [32, Theorem 3.2] that

y(α) =
∏

k:α2k is γ -oriented

yik . (8)
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Fig. 7 Two examples of the (T , γ )-path segment (α2k−1, α2k,α2k+1). On the left, α2k is not γ -oriented,
and on the right, α2k is γ -oriented

Each perfect matching P of GT,γ induces a path αP in GT,γ as in the construction
of the folding map in Sect. 4.3. The even arcs of αP are the diagonals of the graph
GT,γ . We say that an even arc of αP has upward orientation if αP is directed from
southeast to northwest on that even arc, otherwise we say that the arc has downward
orientation. Since going upward on the first even arc of αP is γ -oriented, we have
that the (2k)th arc of π(α̃P ) is γ -oriented if and only if the (2k)th arc of αP is upward
if k is odd and downward if k is even.

There are precisely two perfect matchings P+ and P− of GT,γ that contain only
boundary edges of GT,γ . The orientations of the even arcs in both of the induced
(T , γ )-paths α̃P+ and α̃P− are alternatingly upward and downward, thus for one of
the two paths, say P+, each even arc of π(α̃P+) is γ -oriented, whereas for P−, none of
the even arcs of π(α̃P−) is γ -oriented. That is, y(P−) = 1 and y(P+) = yi1yi2 · · ·yid .
Note that, since the tile S̃1 has the same orientation as the surface, the matching P−
contains the western edge of S̃1, while P+ contains the southern edge of S̃1.

For an arbitrary perfect matching P , the coefficient y(P ) is determined by the set
of edges of the symmetric difference P− � P = (P− ∪ P) \ (P− ∩ P) as follows.

Theorem 5.1 The set P− � P is the set of boundary edges of a (possibly discon-
nected) subgraph GP of GT,γ which is a union of tiles

GP =
⋃

j∈J

Sj .

Moreover,

y(P ) =
∏

j∈J

yij .

Proof Choose any edge e1 and either endpoint in P− \ (P− ∩ P), and walk along
that edge until its other endpoint. Since P is a perfect matching, this endpoint is
incident to an edge e2 in P , which is different from e1 and, hence, not in P−. Thus
e2 ∈ P \ (P− ∩ P). Now walk along e2 until its other endpoint. This endpoint is
incident to an edge e3 in P− which is different from e2 and, hence, not in P . Thus
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e3 ∈ P−\(P−∩P). Continuing this way, we construct a sequence of edges in P−�P .
Since GT,γ has only finitely many edges, this sequence must become periodic after a
certain number of steps; thus there exist p,N such that ek = ek+p for all k ≥ N .

We will show that one can take N = 1. Suppose to the contrary that N ≥ 2
is the smallest integer such that ek = ek+p for all k ≥ N . Then eN−1, eN and
eN+p−1 share a common endpoint. But eN−1, eN and eN+p−1 are elements of the
union of two perfect matchings, hence eN−1 = eN+p−1, contradicting the minimality
of N .

Therefore the sequence e1, e2, . . . , ep in P � P− is the set of boundary edges of a
connected subgraph of GT,γ which is a union of tiles.

The graph GP is the union of these connected subgraphs and, hence, is a union of
tiles. Let H be a connected component of GP . There are precisely two perfect match-
ings P−(H) and P+(H) of H that consist only of boundary edges of H . Clearly, these
two matchings are P− ∩ E(H) and P ∩ E(H), where E(H) is the set of edges of the
graph H . Therefore, in each tile of H , the orientations of the diagonal in αP− and αP

are opposite. The restrictions of P− and P to E(GT,γ ) \ E(GP ) are identical, hence
in each tile of GT,γ \ GP , the orientations of the diagonal in αP− and αP are equal.
It follows from (8) that y(P ) = ∏

j∈J yij . �

It has been shown in [18] that, for any cluster variable xγ in A, its Laurent expan-
sion in the initial seed (xT ,yT ,BT ) is homogeneous with respect to the grading given
by deg(xi) = ei and deg(yi) = BT ei , where ei = (0, . . . ,0,1,0, . . . ,0)T ∈ Z

n with 1
at position i. By definition, the g-vector gγ of a cluster variable xγ is the degree of
its Laurent expansion with respect to this grading.

Corollary 5.2 The g-vector gγ of xγ is given by

gγ = deg
w(P−)

xi1xi2 · · ·xid

.

Proof This follows from the fact that y(P−) = 1. �

Remark 5.3 The formula for y(P ) can also be phrased in terms of height functions.
As described in Sect. 3 of [29], one way to define the height function on the faces
of a bipartite planar graph G, covered by a perfect matching P , is to superimpose
each matching with the fixed matching P0̂ (the unique matching of minimal height).
In the case where G is a snake graph, we take P0̂ to be P−, the matching of G only

involving edges on the boundary and including the western edge of tile S̃1. Color the
vertices of G black and white so that no two adjacent vertices have the same color.
In this superposition, we orient edges of P from black to white, and edges of P−
from white to black. We thereby obtain a spanning set of cycles, and removing the
cycles of length two exactly corresponds to taking the symmetric difference P � P−.
We can read the resulting graph as a relief-map, in which the altitude changes by
+1 or −1 as one crosses over a contour line, according to whether the counter-line
is directed clockwise or counter-clockwise. By this procedure, we obtain a height
function hP : F(G) → Z which assigns integers to the faces of graph G. When G is
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Fig. 8 Perfect matching P and associated graph GP

a snake graph, the set of faces F(G) is simply the set of tiles {Sj } of G. Comparing
with the definition of y(P ) in Theorem 5.1, we see that

y(P ) =
∏

Sj ∈F(G)

y
hP (j)
j .

An alternative definition of height functions comes from [12] by translating the
matching problem into a domino tiling problem on a region colored as a checker-
board. We imagine an ant starting at an arbitrary vertex at height 0, walking along
the boundary of each domino, and changing its height by +1 or −1 as it traverses the
boundary of a black or white square, respectively. The values of the height function
under these two formulations agree up to scaling by four.

Example 5.4 We illustrate the construction of the graph GP in Fig. 8. The perfect
matching of GT,γ is the set of bold face edges on the left side of the figure, and the
graph GP is given on the right. Note that the matching P− in this example consists
of the two edges labeled x2, x5 in the first tile and the boundary edges of the graph
GP that are not in GP .

6 Cluster expansion without matchings

In this section, we give a formula for the cluster expansion of xγ in terms of the graph
GT,γ only.

For any subgraph H of GT,γ , let c(H) be the number of connected components
of H . Let E(H) be the set of edges of H , and denote by ∂H the set of boundary
edges of H . Define Hk to be the set of all subgraphs H of GT,γ such that H is a
union of k tiles H = Sj1 ∪ · · · ∪Sjk

and the number of edges of P− that are contained
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in H is equal to k + c(H). For H ∈ Hk , let

y(H) =
∏

Sij
tile in H

yij .

Theorem 6.1 The cluster expansion of the cluster variable xγ is given by

xγ =
d∑

k=0

∑

H∈Hk

w(∂H � P−)y(H)

xi1xi2 . . . xid

.

Proof It follows from Theorems 3.1 and 5.1 that

xγ =
d∑

k=1

∑

P :|y(P )|=k

w(P )y(GP )

xi1xi2 . . . xid

,

where |y(P )| is the number of tiles in GP . We will show that for all k, the map
P �→ GP is a bijection between the set of perfect matchings P of GT,γ such that
|y(P )| = k and the set Hk .

– The map is well-defined. Clearly, GP is the union of k tiles. Moreover, E(GP ) ∩
P− is a perfect matching of GP , since P− consists of every other boundary edge
of GT,γ . Thus the cardinality of (E(GP ) ∩ P−) is half the number of vertices of
GP , which is equal to 2k + 2c(GP ). Therefore, the cardinality of (E(GP ) ∩ P−)

is k + c(GP ), and GP ∈ Hk .
– The map is injective, since two graphs GP ,GP ′ are equal if and only if their bound-

aries are.
– The map is surjective. Let H = Sj1 ∪ · · · ∪ Sjk

be such that the cardinality of
E(H) ∩ P− equals k + c(H). The boundary of H consists of 2k + 2c(H) edges,
half of which lie in P−. As in the proof of Theorem 5.1, let P−(H) = E(H) ∩ P−
and P+(H) be the two perfect matchings of H that consist of boundary edges only.
Let P = P+(H) ∪ (P− \ P−(H)). Then P is a perfect matching of GT,γ such that
GP = H , and moreover, |y(P )| is equal to the number of tiles in H , which is k.
Thus the map is surjective.

Now the boundary edges of GP are precisely the elements of P � P−, which
implies that ∂(GP ) � P− = (P � P−) � P− = P � (P− � P−) = P . Therefore
w(P ) = w(∂(GP ) � P−), and this completes the proof. �

Corollary 6.2 The F -polynomial of γ is given by

Fγ =
d∑

k=0

∑

H∈Hk

y(H).
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Fig. 9 Triangulated surface with dotted arc γ

7 Example

We illustrate Theorem 3.1, Theorem 5.1, and Theorem 6.1 in an example. Let (S,M)

be the annulus with two marked points on each of the two boundary components, and
let T = {τ1, . . . , τ8} be the triangulation shown in Fig. 9. The corresponding cluster
algebra has the following principal exchange matrix:

⎡

⎢
⎢
⎣

0 1 0 −1
−1 0 −1 0
0 1 0 −1
1 0 1 0

⎤

⎥
⎥
⎦ ,

which can also be visualized by a quiver, simply by drawing bij arrows i → j for
each positive entry bij in the matrix:

1 2 3 4 .

Let γ be the dotted arc in Fig. 9. It has d = 6 crossings with the triangulation. The
sequence of crossed arcs τi1, . . . , τi6 is τ1, τ2, τ3, τ4, τ1, τ2, and the corresponding
segments γ0, . . . , γ6 of the arc γ are labeled in the figure. Moreover, τ[γ1] = τ6, τ[γ2] =
τ8, τ[γ3] = τ7, τ[γ4] = τ5, and τ[γ5] = τ6.
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Fig. 10 Construction of the graphs GT,γ and GT,γ

The graph GT,γ is obtained by glueing the corresponding six tiles S̃1, S̃2, S̃3, S̃4,
S̃1, and S̃2. The result is shown in Fig. 10.

Theorems 3.1 and 5.1 imply that xγ (xi1xi2 · · ·xid ) is equal to

x5x2x2x3x1x2x8 + x4x6x2x3x1x2x8 y1

+ x5x2x2x7x5x2x8 y4 + x4x6x2x7x5x2x8 y1y4

+ x5x2x8x4x5x2x8 y3y4 + x5x2x2x7x4x6x8 y4y1

+ x4x6x8x4x5x2x8 y1y3y4 + x4x6x2x7x4x6x8 y1y4y1

+ x5x2x8x4x4x6x8 y3y4y1 + x5x2x2x7x4x1x3 y4y1y2

+ x4x1x3x4x5x2x8 y1y2y3y4 + x4x6x8x4x4x6x8 y1y3y4y1

+ x4x6x2x7x4x1x3 y1y4y1y2 + x5x2x8x4x4x1x3 y3y4y1y2

+ x4x1x3x4x4x6x8 y1y2y3y4y1 + x4x6x8x4x4x1x3 y1y3y4y1y2

+ x4x1x3x4x4x1x3 y1y2y3y4y1y2,
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which is equal to

x1x
3
2x3 + x1x

2
2x3x4 y1

+ x3
2 y4 + x2

2x4 y1y4

+ x2
2x4 y3y4 + x2

2x4 y1y4

+ x2x
2
4 y1y3y4 + x2x

2
4 y2

1y4

+ x2x
2
4 y3y4y1 + x1x

2
2x3x4 y1y2y4

+ x1x2x3x
2
4 y1y2y3y4 + x3

4 y2
1y3y4

+ x1x2x3x
2
4 y2

1y2y4 + x1x2x3x
2
4 y3y4y1y2

+ x1x3x
3
4 y2

1y2y3y4 + x1x3x
3
4 y2

1y2y3y4

+ x2
1x2

3x2
4 y2

1y2
2y3y4.

The first term corresponds to the matching P− consisting of the boundary edges
weighted x5 and x2 in the first tile, x2 in the third tile, x1 and x3 in the forth, x2
in the fifth, and x8 in the sixth tile. For example, the twelfth term corresponds to the
matching P consisting of the horizontal edges of the first three tiles and the horizon-
tal edges of the last two tiles. Thus P− � P = (P− ∪ P) \ (P− ∩ P) is the union of
the first, third, forth, and fifth tiles, whence y(P ) = yi1yi3yi4yi5 = y1y3y4y1.

To illustrate Theorem 6.1, let k = 2. Then Hk consists of the subgraphs H of GT,γ

which are unions of two tiles and such that E(H) ∩ P− has three elements if H is
connected, respectively four elements if H has two connected components. Thus H2
has three elements

H2 = {Si3 ∪ Si4, Si4 ∪ Si5, Si1 ∪ Si4}
corresponding to the three terms

x2
2x4y3y4, x2

2x4y1y4 and x2
2x4y1y4.
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Note added in print In a sequel to the present paper [27], the authors give expansion formulas for the
cluster variables in cluster algebras from arbitrary surfaces (allowing punctures) and prove the positivity
conjecture for these cluster algebras.
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