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Abstract We prove two recent conjectures of Liu and Wang by establishing the
strong q-log-convexity of the Narayana polynomials, and showing that the Narayana
transformation preserves log-convexity. We begin with a formula of Brändén express-
ing the q-Narayana numbers as a specialization of Schur functions and, by deriving
several symmetric function identities, we obtain the necessary Schur-positivity re-
sults. In addition, we prove the strong q-log-concavity of the q-Narayana numbers.
The q-log-concavity of the q-Narayana numbers Nq(n, k) for fixed k is a special
case of a conjecture of McNamara and Sagan on the infinite q-log-concavity of the
Gaussian coefficients.

Keywords q-Log-concavity · q-Log-convexity · q-Narayana number · Narayana
polynomial · Lattice permutation · Schur positivity · Littlewood–Richardson rule

1 Introduction

The main objective of this paper is to prove two recent conjectures of Liu and
Wang [19] on the q-log-convexity of the Narayana polynomials by using Schur pos-
itivity derived from the Littlewood–Richardson rule. Moreover, we prove that the
Narayana polynomials are strongly q-log-convex. We also study the q-log-concavity
of the q-Narayana numbers, and show that for fixed n or k the q-Narayana num-
bers Nq(n, k) are strongly q-log-concave. It should be noticed that McNamara and
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Sagan [22] have proposed a conjecture on the infinite q-log-concavity of the Gaussian
coefficients for fixed k. It turns out that the q-log-concavity of the q-Narayana num-
bers is equivalent to the 2-fold q-log-concavity of the Gaussian coefficients.

Unimodal and log-concave sequences and polynomials often arise in combina-
torics, algebra and geometry; see, for example, Brenti [4, 5], Stanley [29], and Stem-
bridge [32]. A sequence (an)n≥0 of real numbers is said to be unimodal if there exists
an integer m ≥ 0 such that

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ am+2 ≥ · · · .

It is said to be log-concave if

a2
m ≥ am+1am−1, m ≥ 1,

and is said to be log-convex if

am+1am−1 ≥ a2
m, m ≥ 1.

For polynomials, Stanley introduced the notion of q-log-concavity, which has been
studied, for example, by Butler [6], Krattenthaler [16], Leroux [20], and Sagan [26].
A sequence of polynomials (fn(q))n≥0 over the field of real numbers is called q-log-
concave if the difference

fm(q)2 − fm+1(q)fm−1(q)

as a polynomial in q has all nonnegative coefficients for any m ≥ 1. Furthermore,
Sagan [27] introduced the notion of strong q-log-concavity. We say that a sequence
of polynomials (fn(q))n≥0 is strongly q-log-concave if

fm(q)fn(q) − fm+1(q)fn−1(q)

as a polynomial in q has all nonnegative coefficients for any m ≥ n ≥ 1.
Based on q-log-concavity, it is natural to define q-log-convexity. A polynomial

sequence (fn(q))n≥0 is said to be q-log-convex if the difference

fm+1(q)fm−1(q) − fm(q)2

as a polynomial in q has all nonnegative coefficients for any m ≥ 1. The notion of
strong q-log-convexity is a natural counterpart of that of strong q-log-concavity. A se-
quence of polynomials (fn(q))n≥0 is called strongly q-log-convex if

fm+1(q)fn−1(q) − fm(q)fn(q)

as a polynomial in q has all nonnegative coefficients for any m ≥ n ≥ 1.
As noticed by Sagan [27], strong q-log-concavity is not equivalent to q-log-

concavity, although it is the case for a sequence of positive numbers. Analogously,
strong q-log-convexity is not equivalent to q-log-convexity. For example, the se-
quence

2q + q2 + 3q3, q + 2q2 + 2q3, q + 2q2 + 2q3, 2q + q2 + 3q3
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is q-log-convex, but not strongly q-log-convex.
Liu and Wang [19] have shown that some well-known polynomials such as the Bell

polynomials and the Eulerian polynomials are q-log-convex. They also proposed two
conjectures on the q-log-convexity of the Narayana polynomials. To describe their
conjectures, we begin with the classical Catalan numbers, as given by

Cn = 1

n + 1

(
2n

n

)
,

which count the number of Dyck paths from (0,0) to (2n,0) with up steps (1,1) and
down steps (1,−1) but never going below the x-axis; see, Stanley [30]. It is known
that the Catalan numbers Cn form a log-convex sequence. Recall that a peak of a
Dyck path is defined as a point where an up step is immediately followed by a down
step. In this combinatorial setting, the Narayana number

N(n, k) = 1

n

(
n

k

)(
n

k − 1

)
, n ≥ 1 (1.1)

equals the number of Dyck paths of length 2n with exactly k peaks. For many
other statistics that satisfy the Narayana distribution, see [3, 10, 33, 34]. By setting
N(0,0) = 1, the Narayana polynomials are given by

Nn(q) =
n∑

k=0

N(n, k)qk.

Using the Schur–Szegö composition map, Kostov, Martínez-Finkelshtein and
Shapiro [15] presented a new interpretation of Narayana polynomials. The first few
Narayana polynomials are listed below:

N1(q) = q,

N2(q) = q + q2,

N3(q) = q + 3q2 + q3,

N4(q) = q + 6q2 + 6q3 + q4,

N5(q) = q + 10q2 + 20q3 + 10q4 + q5,

N6(q) = q + 15q2 + 50q3 + 50q4 + 15q5 + q6.

Liu and Wang [19] have shown that, for a given positive number q , the log-
convexity of the sequence (Nn(q))n≥0 can be proved by using a criterion [19, Theo-
rem 3.10] along with the following recurrence relation [19, (5.1)]

(n + 1)Nn(q) = (2n − 1)(1 + q)Nn−1(q) − (n − 2)(1 − q)2Nn−2(q).

The first conjecture of Liu and Wang is as follows.

Conjecture 1.1 The Narayana polynomials Nn(q) form a q-log-convex sequence.
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We shall prove this conjecture by establishing the Schur positivity of certain sums
of symmetric functions. Our proof heavily relies on the Littlewood–Richardson rule
for the product of Schur functions of certain shapes with only two columns. A formula
of Brändén [3] enables us to represent the Narayana polynomials in terms of Schur
functions.

The second conjecture of Liu and Wang [19] is concerned with the Narayana trans-
formation on sequences of positive real numbers. The Davenport–Pólya theorem [9]
states that if (an)n≥0 and (bn)n≥0 are log-convex then their binomial convolution

cn =
n∑

k=0

(
n

k

)
akbn−k, n ≥ 0

is also log-convex. It is known that the binomial convolution also preserves log-
concavity [36]. Nevertheless, there exist log-convexity preserving transformations
that do not preserve log-concavity, such as the componentwise sum [19]. There are
also log-concavity preserving transformations that do not preserve log-convexity,
such as the ordinary convolution [36].

Given an array of combinatorial numbers (t (n, k))0≤k≤n such as the binomial co-
efficients, one can define a linear operator which transforms a sequence (an)n≥0 into
another sequence (bn)n≥0 given by

bn =
n∑

k=0

t (n, k)ak, n ≥ 0.

Liu and Wang [19] have shown that log-convexity is preserved by linear transforma-
tions associated with the binomial coefficients, the Stirling numbers of the first kind,
and the Stirling numbers of the second kind. The following conjecture is proposed by
Liu and Wang [19].

Conjecture 1.2 The Narayana transformation bn = ∑n
k=0 N(n, k)ak preserves log-

convexity.

We shall give a proof of this conjecture based on the monotonicity of certain quar-
tic polynomials and the q-log-convexity of the Narayana polynomials.

In addition, we shall prove the strong q-log-concavity of the q-Narayana numbers.
The q-Narayana numbers, as a natural q-analogue of the Narayana numbers N(n, k),
arise in the study of q-Catalan numbers [12]. The q-Narayana number Nq(n, k) is
given by

Nq(n, k) = 1

[n]
[
n

k

][
n

k − 1

]
qk2−k,

where we have adopted the common notation

[k] := (
1 − qk

)
/(1 − q), [k]! = [1][2] · · · [k],

[
n

j

]
:= [n]!

[j ]![n − j ]!
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for the q-analogues of the integer k, the q-factorial, and the q-binomial coefficient,
respectively.

Recall that the q-Narayana number Nq(n, k) is a natural refinement of the q-
Catalan number cn(q) = 1

[n+1]
[ 2n

n

]
as defined in [12]. Brändén [3] studied several

Narayana statistics and bi-statistics on Dyck paths, and noticed that the q-Narayana
number Nq(n, k) has a Schur function expression by a specialization of the variables.
The following relation plays a key role in establishing the connection between q-log-
convexity and Schur positivity.

Theorem 1.3 [3, Theorem 6 ] For all n, k ∈ N, we have

Nq(n, k) = s(2k−1)

(
q, q2, . . . , qn−1). (1.2)

It is known that the q-analogues of many classical combinatorial numbers are
strongly q-log-concave. Bulter [6] and Krattenthaler [16] have proved the q-log-
concavity of the q-binomial coefficients. Leroux [20] and Sagan [26] have proved
the q-log-concavity of the q-Stirling numbers of the first kind and the second kind.
It is also known that the Narayana numbers N(n, k) are log-concave for fixed n or k.
By establishing some symmetric function identities, it will be shown that Nq(n, k)

are strongly q-log-concave for fixed n or fixed k.
This paper is organized as follows. In Sect. 2, we give an overview of relevant

background on symmetric functions. In Sect. 3, we prove the strong q-log-convexity
of Narayana polynomials by using Schur positivity. In Sect. 4, we show that the
Narayana transformation preserves log-convexity. In Sect. 5, we prove the strong
q-log-concavity of the q-Narayana numbers. In the last section, we give several iden-
tities involving Schur functions indexed by two-column shapes, and prove the Schur
positivity results required in the proofs in Sect. 3.

2 Background on symmetric functions

In this section, we give an overview of relevant background on symmetric functions
and present several recurrence formulas for computing the principal specializations
of Schur functions indexed by two-column shapes. These formulas are useful in the
proofs of the main theorems. To be more specific, the hook-content formula plays
an important role in reducing the log-convexity preserving property of the Narayana
transformation to the monotonicity of certain polynomials, and the recurrence formu-
las enable us to reduce the q-log-convexity of the Narayana polynomials to the Schur
positivity of certain sums of symmetric functions.

Throughout this paper, we will adopt the notation and terminology on partitions
and symmetric functions in Stanley [30]. Given a nonnegative integer n, a partition λ

of n is a weakly decreasing nonnegative integer sequence (λ1, λ2, . . . , λk) ∈ N
k such

that
∑k

i=1 λi = n. The number of nonzero components λi is called the length of λ,
denoted �(λ). We also denote the partition λ by (. . . ,2m2,1m1) if i appears mi times
in λ. For example, λ = (4,2,2,1,1,1) can be written as (41,22,13), where we omit
imi if mi = 0.
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Fig. 1 The Young diagram of
(5,4,2)/(2,1)

Fig. 2 A semistandard Young
tableau

3 4

2 2 3

1 1 2

Let Par(n) denote the set of partitions of n. The Young diagram of λ is an array of
squares in the plane justified from the top left corner with �(λ) rows and λi squares
in row i. By transposing the diagram of λ, we get the conjugate partition of λ, de-
noted λ′. A square labeled by (i, j) in the diagram of λ is meant to be the square in
row i from the top and column j from the left. The hook length of (i, j), denoted
h(i, j), is given by λi +λ′

j − i − j + 1. The content of (i, j), denoted c(i, j), is given
by j − i. Given two partitions λ and μ, we say that λ contains μ, denoted μ ⊆ λ,
if λi ≥ μi holds for each i. When μ ⊆ λ, we can define a skew partition λ/μ as the
diagram obtained from the diagram of λ by removing the squares at the top left cor-
ner corresponding to the diagram of μ. Figure 1 illustrates the diagram of the skew
partition (5,4,2)/(2,1).

A semistandard Young tableau of shape λ/μ is an array T = (Tij ) of positive
integers of shape λ/μ that is weakly increasing in every row and strictly increasing
down every column. The type of T is defined as the composition α = (α1, α2, . . .),
where αi is the number of i’s in T . For example, the semistandard Young tableaux in
Fig. 2 is of shape (5,4,2)/(2,1) and type (2,3,2,1,0,0, . . .). Let x denote the set of
variables {x1, x2, . . .}. If T has type α, then we write

xT = x
α1
1 x

α2
2 · · · .

The skew Schur function sλ/μ(x) of shape λ/μ is defined as the generating function

sλ/μ(x) =
∑
T

xT ,

summed over all semistandard Young tableaux T of shape λ/μ filled with positive
integers. When μ is the empty partition ∅, we call sλ(x) the Schur function of shape λ.
In particular, we set s∅(x) = 1. It is well known that the Schur functions sλ form a
basis of the ring of symmetric functions.

Let y = {y1, y2, . . .} be another set of variables, and let sλ/μ(x, y) denote the Schur
function in x ∪ y. The following basic property will be used later:

sλ/μ(x, y) =
∑
ν

sλ/ν(x)sν/μ(y), (2.1)

where the sum ranges over all partitions ν satisfying μ ⊆ ν ⊆ λ; see [21, 30].
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For a symmetric function f (x), its principle specialization psn(f ) and specializa-
tion ps1

n(f ) of order n are defined by

psn(f ) = f
(
1, q, . . . , qn−1),

ps1
n(f ) = psn(f )|q=1 = f

(
1n

)
.

For notational convenience, we often omit the variable set x and simply write sλ for
the Schur function sλ(x) if no confusion arises. The following formula (2.2) due to
Stanley [28] is called the hook-content formula.

Lemma 2.1 [30, Theorem 7.21.2, Corollary 7.21.4] For any partition λ and n ≥ 1,
we have

psn(sλ) = q
∑

k≥1(k−1)λk
∏

(i,j)∈λ

[n + c(i, j)]
[h(i, j)] (2.2)

and

ps1
n(sλ) =

∏
(i,j)∈λ

n + c(i, j)

h(i, j)
.

On the other hand, in view of (2.1), we deduce the following formulas for the
principle specializations of the Schur functions sλ indexed by two-column shapes.

Lemma 2.2 Let k be a positive integer and n > 1. For any a < 0 or b < 0, set
s(2a,1b) = 0 by convention. Then we have

psn(s(2k)) = psn−1(s(2k)) + qn−1psn−1(s(2k−1,1)) + q2(n−1)psn−1(s(2k−1)) (2.3)

and

psn(s(2k,1)) = psn−1(s(2k,1)) + qn−1psn−1(s(2k) + s(2k−1,12))

+ q2(n−1)psn−1(s(2k−1,1)). (2.4)

Furthermore,

ps1
n(s(2k)) = ps1

n−1(s(2k) + s(2k−1,1) + s(2k−1)), (2.5)

ps1
n(s(2k,1)) = ps1

n−1(s(2k,1) + s(2k) + s(2k−1,12) + s(2k−1,1)). (2.6)

Lemma 2.3 For any m ≥ n ≥ 1 and k ≥ 0, we have

ps1
m(s(2k)) =

∑
0≤a≤b≤m−n

ps1
n(s(2k−b,1b−a))ps1

m−n(s(2a,1b−a)).

The Littlewood–Richardson rule in terms of lattice permutations enables us to
expand a product of Schur functions in terms of Schur functions. Recall that a lattice
permutation of length n is a sequence w1w2 · · ·wn such that for any i and j , in the
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∗ ∗ ∗ ∗ 1 1 1 1 1∗ ∗ 1 1 2∗ 2 2
2 3 3
3

∗ ∗ ∗ ∗ 1 1 1 1 1∗ ∗ 1 2 2∗ 2 2
1 3 3
3

∗ ∗ ∗ ∗ 1 1 1 1 1∗ ∗ 1 2 2∗ 1 2
2 3 3
3

Fig. 3 Skew Littlewood–Richardson tableaux

subsequence w1w2 · · ·wj , the number of i’s is greater than or equal to the number
of i + 1’s. Let T be a semistandard Young tableau. The reverse reading word T rev is
a sequence of entries of T obtained by first reading each row from right to left and
then concatenating the rows from top to bottom. If the reverse reading word T rev is
a lattice permutation, we call T a Littlewood–Richardson tableau. Given two Schur
functions sμ and sν , the Littlewood–Richardson coefficients cλ

μν can be defined by
the relation

sμsν =
∑
λ

cλ
μνsλ, (2.7)

and can be determined using the following result, known as the Littlewood–
Richardson rule.

Theorem 2.4 [30, Theorem A1.3.3] The Littlewood–Richardson coefficient cλ
μν is

equal to the number of Littlewood–Richardson tableaux of shape λ/μ and type ν.

Let λ = (9,5,3,3,1), μ = (4,2,1), ν = (7,4,3). By using the Maple package for
symmetric functions [35], we find that cλ

μν = 3. Indeed, there are three Littlewood–
Richardson tableaux of shape λ/μ and type ν as shown in Fig. 3.

When taking ν = (n) or ν = (1n) in (2.7), the Littlewood–Richardson rule has
a simpler description, known as Pieri’s rule. We need the notion of horizontal and
vertical strips. A skew partition λ/μ is called a horizontal (or vertical) strip of size n

if there are n squares in total with no two squares lying in the same column (resp. in
the same row).

Theorem 2.5 [30, Theorem 7.15.7, Corollary 7.15.9] We have

sμs(n) =
∑
λ

sλ
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summed over all partitions λ such that λ/μ is a horizontal strip of size n, and

sμs(1n) =
∑
λ

sλ

summed over all partitions λ such that λ/μ is a vertical strip of size n.

3 q-Log-convexity

The main objective of this section is to show that the Narayana polynomials form
a strongly q-log-convex sequence. This is a stronger version of the above Conjec-
ture 1.1 of Liu and Wang.

We first consider certain products of Schur functions. Given a, b,m ∈ N and 0 ≤
i ≤ m, let

D1(m, i, a, b) = s(2i−b,1b−a)s(2m−i−1),

D2(m, i, a, b) = s(2i−b−1,1b+2−a)s(2m−i−1),

D3(m, i, a, b) = s(2i−b−1,1b+1−a)s(2m−i−1,1)

and let

D(m, i, a, b) = D1(m, i, a, b) + D2(m, i, a, b) − D3(m, i, a, b),

where s(2k,1l ) = 0 for k < 0 or l < 0. It is easily checked that D(m,m,a, b) = 0. For
k = 1,2,3, it is also clear that

Dk(m, i, a, b) = Dk(m − 1, i − 1, a − 1, b − 1),

and hence

D(m, i, a, b) = D(m − 1, i − 1, a − 1, b − 1).

Given a symmetric function f , recall that f is called Schur positive (or Schur
negative) if the coefficients aλ in the expansion f = ∑

λ aλsλ of f in terms of Schur
functions are all nonnegative (resp., nonpositive). The following Schur positivity re-
sult can be employed to derive the q-log-convexity of the Narayana polynomials.

Theorem 3.1 For any b ≥ a ≥ 0 and m ≥ 0, the symmetric function
∑m

i=0 D(m, i,

a, b) is Schur positive.

The proof of Theorem 3.1 will be postponed to Sect. 6. It plays a key role in the
proof of the first main result of this paper.

Theorem 3.2 The Narayana polynomials Nn(q) form a strongly q-log-convex se-
quence.
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Proof By the definition of strong q-log-convexity, we need to prove that for any
m ≥ n ≥ 1, the difference Nm+1(q)Nn−1(q)−Nm(q)Nn(q) as a polynomial in q has
all coefficients nonnegative.

First, we consider the case of n = 1. Using (1.1), it is routine to check that for
2 ≤ k ≤ m + 1,

N(m + 1, k)

N(m,k − 1)
= m(m + 1)

k(k − 1)
≥ 1.

Thus, for any m ≥ 1, the difference

Nm+1(q)N0(q) − Nm(q)N1(q) = q +
m+1∑
k=2

(
N(m + 1, k) − N(m,k − 1)

)
qk

as a polynomial in q has all nonnegative coefficients.
Now it remains to consider the case n ≥ 2. Evidently, for 1 ≤ k ≤ n,

N(n, k) = Nq(n, k)|q=1 = s(2k−1)

(
1n−1) = ps1

n−1(s(2k−1)).

On the other hand, for k > n, we have N(n, k) = 0 = ps1
n−1(s(2k−1)).

For any m ≥ n ≥ 2 and r ≥ 0, the coefficient of qr in Nm+1(q)Nn−1(q) equals

C1 =
r−1∑
k=1

ps1
m(s(2k−1))ps1

n−2(s(2r−k−1)) =
r−2∑
k=0

ps1
m(s(2k))ps1

n−2(s(2r−2−k)),

and the coefficient of qr in Nm(q)Nn(q) equals

C2 =
r−1∑
k=1

ps1
m−1(s(2k−1))ps1

n−1(s(2r−k−1)) =
r−2∑
k=0

ps1
m−1(s(2k))ps1

n−1(s(2r−2−k)).

From Lemma 2.2 and Lemma 2.3, it follows that

ps1
m(s(2k)) =

∑
0≤a≤b≤m−n+2

ps1
n−2(s(2k−b,1b−a))ps1

m−n+2(s(2a,1b−a)),

ps1
m−1(s(2k)) =

∑
0≤a≤b≤m−n+1

ps1
n−2(s(2k−b,1b−a))ps1

m−n+1(s(2a,1b−a)),

ps1
n−1(s(2r−2−k)) = ps1

n−2(s(2r−2−k) + s(2r−3−k,1) + s(2r−3−k)),

where for k = r − 2 we set s(2r−3−k,1) = 0 and s(2r−3−k) = 0. Consequently,

C1 − C2 =
r−2∑
k=0

∑
0≤a≤b≤m−n+2

ps1
m−n+2(s(2a,1b−a))ps1

n−2(s(2k−b,1b−a)s(2r−2−k))

−
r−2∑
k=0

∑
0≤a≤b≤m−n+1

ps1
m−n+1(s(2a,1b−a))ps1

n−2(s(2k−b,1b−a)s(2r−2−k))
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−
r−2∑
k=0

∑
0≤a≤b≤m−n+1

ps1
m−n+1(s(2a,1b−a))ps1

n−2(s(2k−b,1b−a)s(2r−3−k,1))

−
r−2∑
k=0

∑
0≤a≤b≤m−n+1

ps1
m−n+1(s(2a,1b−a))ps1

n−2(s(2k−b,1b−a)s(2r−3−k)).

For notational convenience, let d = m − n + 1. By (2.1), it is easily verified that

ps1
d+1(s(2a,1b−a)) = ps1

d(s(2a,1b−a)) + ps1
d(s(2a,1b−a−1))

+ ps1
d(s(2a−1,1b−a)) + ps1

d(s(2a−1,1b−a+1)).

Thus, the double summation

r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d+1(s(2a,1b−a))s(2k−b,1b−a)s(2r−2−k)

can be divided into four sums

A1 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−2−k),

A2 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a,1b−a−1))s(2k−b,1b−a)s(2r−2−k),

A3 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a−1,1b−a))s(2k−b,1b−a)s(2r−2−k),

A4 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−2−k).

Let

B1 =
r−2∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−2−k),

B2 =
r−2∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−3−k,1),

B3 =
r−2∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−3−k).
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The equality A1 = B1 holds since

A1 = B1 +
r−2∑
k=0

∑
0≤a≤d+1

ps1
d(s(2a,1d+1−a))s(2k−d−1,1d+1−a)s(2r−2−k),

but ps1
d(s(2a,1d+1−a)) = 0. We also have A3 = B3 since

A3 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a−1,1b−a))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=0

∑
1≤a≤b≤d+1

ps1
d(s(2a−1,1b−a))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b−1,1b−a)s(2r−2−k)

=
r−2∑
k=1

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b−1,1b−a)s(2r−2−k)

=
r−3∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−3−k),

which can be rewritten in the form of B3.
Moreover, we have

A2 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a,1b−a−1))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=0

∑
0≤a<b≤d+1

ps1
d(s(2a,1b−a−1))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b−1,1b+1−a)s(2r−2−k)

=
r−2∑
k=0

∑
0≤a<b≤d

ps1
d(s(2a,1b−a))s(2k−b−1,1b+1−a)s(2r−2−k)

+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a−1,1)s(2r−2−k)

=
r−2∑
k=1

∑
0≤a<b≤d

ps1
d(s(2a,1b−a))s(2k−b−1,1b+1−a)s(2r−2−k)
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+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a−1,1)s(2r−2−k)

=
r−2∑
k=1

∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))s(2k−b−2,1b+2−a)s(2r−2−k)

+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a−1,1)s(2r−2−k)

=
r−3∑
k=0

∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))s(2k−b−1,1b+2−a)s(2r−3−k)

+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a−1,1)s(2r−2−k)

and

A4 =
r−2∑
k=0

∑
0≤a≤b≤d+1

ps1
d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=0

∑
1≤a≤b≤d

ps1
d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=1

∑
1≤a≤b≤d

ps1
d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−2−k)

=
r−2∑
k=1

∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))s(2k−b−1,1b−a)s(2r−2−k)

=
r−3∑
k=0

∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))s(2k−b,1b−a)s(2r−3−k).

On the other hand, we have

B2 =
r−2∑
k=0

∑
0≤a≤b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−3−k,1)

=
r−2∑
k=0

∑
0≤a<b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−3−k,1)

+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a)s(2r−3−k,1)
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=
r−2∑
k=0

∑
0≤a<b≤d

ps1
d(s(2a,1b−a))s(2k−b,1b−a)s(2r−3−k,1)

+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a−1,1)s(2r−2−k)

=
r−3∑
k=0

∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))s(2k−b−1,1b+1−a)s(2r−3−k,1)

+
r−2∑
k=0

∑
0≤a≤d

ps1
d(s(2a))s(2k−a−1,1)s(2r−2−k).

Therefore,

C1 − C2 = ps1
n−2

(
(A1 + A2 + A3 + A4) − (B1 + B2 + B3)

)
= ps1

n−2(A2 + A4 − B2)

= ps1
n−2

( ∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))

r−2∑
k=0

D(r − 2, k, a, b)

)
.

From Theorem 3.1, we deduce that

∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))

r−2∑
k=0

D(r − 2, k, a, b)

is Schur positive, hence C1 − C2 is nonnegative, as desired. �

As a corollary, we are led to an affirmative answer to Conjecture 1.1.

Corollary 3.3 The Narayana polynomials Nn(q) form a q-log-convex sequence.

We remark that Butler and Flanigan [7] defined a different q-analogue of log-
convexity. In their definition, a sequence of polynomials (fk(q))k≥0 is called q-log-
convex if

fm−1(q)fn+1(q) − qn−m+1fm(q)fn(q)

has nonnegative coefficients for n ≥ m ≥ 1. They have shown that the q-Catalan
numbers of Carlitz and Riordan [8] form a q-log-convex sequence. However, the
Narayana polynomial sequence (Nn(q))n≥0 is not q-log-convex in the sense of Butler
and Flanigan.
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4 The Narayana transformation

In this section, we give a proof of the conjecture of Liu and Wang on the log-convexity
preserving property of the Narayana transformation. We first give two lemmas.

For any n ≥ 1 and 0 ≤ r ≤ 2n, we define the following polynomials in x:

f1(x) = (n + 1)(n − r + x)(n − r + x + 1)2(n − r + x + 2),

f2(x) = (n + 1)(n − x)(n − x + 1)2(n − x + 2),

f3(x) = (n − 1)(n − x + 1)(n − x + 2)(n − r + x + 1)(n − r + x + 2).

Let

f (x) = f1(x) + f2(x) − 2f3(x).

Lemma 4.1 For fixed integers n ≥ 1 and 0 ≤ r ≤ 2n, the polynomial f (x) is
monotonically decreasing in x on the interval (−∞, r

2 ].

Proof To prove the monotonicity of f (x), we take the derivative f ′(x) of f (x) with
respect to x,

f ′(x) = 2(2x − r)g(x),

where

g(x) = 4x2 − 4rx + 16n − 3r + 2r2 − 13nr − 8n2r + 2nr2 + 22n2 + 8n3.

In order to show that f (x) is decreasing on (−∞, r
2 ], it suffices to show that g(x) > 0

for x ≤ r
2 . Since g(x) is a quadratic polynomial with a positive leading coefficient, it

suffices to verify that its discriminant, which equals

16
(−r2 − 16n + 3r + 13nr + 8n2r − 2nr2 − 22n2 − 8n3),

is negative. To this end, we consider the polynomial

g1(y) = −y2 − 16n + 3y + 13ny + 8n2y − 2ny2 − 22n2 − 8n3

in y, and shall show that it is increasing on the interval (−∞,2n]. Note that the
derivative of g1(y) with respect to y equals

g′
1(y) = −2y + 3 + 13n + 8n2 − 4ny = (4n + 2)(2n − y) + 9n + 3.

Therefore, g′
1(y) > 0 for y ∈ (−∞,2n] and g1(y) is increasing on (−∞,2n]. Con-

sequently, for any 0 ≤ r ≤ 2n and n ≥ 1, we have

g1(r) ≤ g1(2n) = −10n < 0.

This implies that g(x) > 0 and f ′(x) = 2(2x − r)g(x) < 0 for x ∈ (−∞, r
2 ). There-

fore, f (x) is monotonically decreasing on (−∞, r
2 ]. �
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Lemma 4.2 For any n ≥ 1, 0 ≤ r ≤ 2n and 0 ≤ k ≤ � r
2�, let

α(n, r, k) = N(n + 1, k)N(n − 1, r − k) + N(n + 1, r − k)N(n − 1, k)

− 2N(n, r − k)N(n, k).

Then, for given n and r , there always exists an integer k′ = k′(n, r) such that
α(n, r, k) ≥ 0 for k ≤ k′ and α(n, r, k) ≤ 0 for k > k′.

Proof By (1.1), it is straightforward to verify that

α(1,0,0) = 0, α(1,1,0) = 1, α(1,2,0) = 1, α(1,2,1) = −2.

Hence the lemma holds for n = 1.
We may now assume that n ≥ 2. In this case, it is clear that the lemma holds

for r = 0. So we may further assume that r ≥ 1. Obviously, for given n and r ,
if k ≤ r − n − 2, then n ≤ (r − k) − 2 and α(n, r, k) = 0. Since for n ≥ 2 and
k = 0 we always have α(n, r, k) = 0, it remains to determine the sign of α(n, r, k)

for max(0, r − n − 2) < k ≤ � r
2�. Let

C = (n − 2)!(n − 1)!
k!(k − 1)!(n − k + 1)!(n − k + 2)! ,

C′ = (n!)2

(r − k)!(r − k − 1)!(n − r + k + 1)!(n − r + k + 2)! .

By (1.1), we have

α(n, r, k) = C · C′ · f (k).

By Lemma 4.1, we deduce that

f (1) ≥ f (2) ≥ · · · ≥ f

(⌊
r

2

⌋)
.

Because α(n, r,0) = 0 for n ≥ 2, and C, C′ are two nonnegative numbers, this com-
pletes the proof. �

Theorem 4.3 If the sequence (ak)k≥0 of positive real numbers is log-convex, then the
sequence

bn =
n∑

k=0

N(n, k)ak, n ≥ 0

is log-convex.

In general, the Narayana transformation does not preserve log-convexity, and the
condition that (ak)k≥0 is a positive sequence is necessary for the above theorem. For
example, if we take ak = (−1)k for k ≥ 0, then it is easy to see that (ak)k≥0 is log-
convex, but (bn)n≥0 is not log-convex.
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Proof of Theorem 4.3 For any n, r, k ≥ 0, let

α′(n, r, k) =
{
α(n, r, k)/2, if r is even and k = r/2,

α(n, r, k), otherwise.

For n ≥ 1

bn−1bn+1 − b2
n =

2n∑
r=0

(� r
2 �∑

k=0

α′(n, r, k)akar−k

)

and

Nn−1(q)Nn+1(q) − Nn(q)2 =
2n∑

r=0

(� r
2 �∑

k=0

α′(n, r, k)

)
qr .

By Corollary 3.3, we see that, for any r ≥ 0,

� r
2 �∑

k=0

α′(n, r, k) ≥ 0.

Since the sequence (ak)k≥0 is a log-convex sequence of positive real numbers, we
obtain that

a0ar ≥ a1ar−1 ≥ a2ar−2 ≥ · · · .

From Lemma 4.2, it follows that there exists an integer k′ = k′(n, r) such that

� r
2 �∑

k=0

α′(n, r, k)akar−k ≥
� r

2 �∑
k=0

α′(n, r, k)ak′ar−k′ ≥ 0.

Thus (bn)n≥0 is log-convex. This completes the proof. �

5 q-Log-concavity

This section is concerned with the q-log-concavity of the q-Narayana numbers
Nq(n, k) for fixed n or k. First we apply Brändén’s formula (1.2) to express the
q-Narayana numbers in terms of specializations of Schur functions. This formula-
tion allows us to reduce the q-log-concavity of the q-Narayana numbers to the Schur
positivity of some differences of products of Schur functions indexed by two-column
shapes. Notice that much work has been done on the Schur positivity of differences
of products of Schur functions; see, for example, Bergeron, Biagioli and Rosas [2],
Fomin, Fulton, Li and Poon [11] and Okounkov [23].

To prove the q-log-concavity of q-Narayana numbers Nq(n, k) for fixed n, we will
use the following result of Bergeron and McNamara [1].

Theorem 5.1 [1, Remark 7.2] For k ≥ 1 and a ≥ b, the symmetric function
s(ka)s(kb) − s(ka+1)s(kb−1) is Schur positive.



320 J Algebr Comb (2010) 32: 303–338

For a = b, the above result was proved earlier by Kirillov [13], and a different
proof was given by Kleber [14].

Theorem 5.2 Given an integer n, the sequence (Nq(n, k))k≥1 of polynomials in q is
strongly q-log-concave.

Proof Using (1.2), for any k ≥ l ≥ 2, we get

Nq(n, k)Nq(n, l) − Nq(n, k + 1)Nq(n, l − 1) = s(2k−1)s(2l−1) − s(2k)s(2l−2),

where the Schur functions are evaluated at the variable set {q, q2, . . . , qn−1}. By
Theorem 5.1, the difference s(2k−1)s(2l−1) − s(2k)s(2l−2) is Schur positive for k ≥ l.
In view of the variable set for symmetric functions, we see that the difference
Nq(n, k)Nq(n, l) − Nq(n, k + 1)Nq(n, l − 1) as a polynomial in q has nonnegative
coefficients. This completes the proof. �

We now turn to the q-log-concavity of the q-Narayana numbers Nq(n, k) for
fixed k. To this end, we recall a result due to Lam, Postnikov and Pylyavaskyy
[18], which was conjectured by Lam and Pylyavaskyy [17]. Given two partitions
λ = (λ1, λ2, . . .) and μ = (μ1,μ2, . . .), let

λ ∨ μ = (
max(λ1,μ1),max(λ2,μ2), . . .

)
,

λ ∧ μ = (
min(λ1,μ1),min(λ2,μ2), . . .

)
.

For two skew partitions λ/μ and ν/ρ, we define

(λ/μ) ∨ (ν/ρ) = (λ ∨ ν)/(μ ∨ ρ),

(λ/μ) ∧ (ν/ρ) = (λ ∧ ν)/(μ ∧ ρ).

Theorem 5.3 [18, Theorem 5] For any two skew partitions λ/μ and ν/ρ, the differ-
ence

s(λ/μ)∨(ν/ρ)s(λ/μ)∧(ν/ρ) − sλ/μsν/ρ

is Schur positive.

In particular, we will need the following special cases.

Corollary 5.4 Let k be an integer greater than 1. If I, J are partitions with I ⊆
(2k−2) and J ⊆ (2k−2,1), then both

s(2k−2)s(2k−1)/I − s(2k−2)/I s(2k−1) (5.1)

and

s(2k−2,1)s(2k−1)/J − s(2k−2,1)/J s(2k−1) (5.2)

are Schur positive.
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Proof For (5.1), take λ = (2k−2),μ = I, ν = (2k−1) and ρ = ∅ in Theorem 5.3.
For (5.2), take λ = (2k−2,1),μ = J, ν = (2k−1) and ρ = ∅. �

For any r ≥ 1, let

Xr = {
q, q2, . . . , qr−1}, X−1

r = {
q−1, q−2, . . . , q−(r−1)

}
.

The following relations will be used in the proof of the q-log-concavity of the q-
Narayana numbers Nq(n, k) for given k.

Lemma 5.5 For any m ≥ n ≥ 1 and k ≥ 1, we have

qn−1s(2k−1,1)(Xn−1)s(2k)(Xm) − qms(2k−1,1)(Xm)s(2k)(Xn−1)

= qk−1(s(2k−1,1)(Xn−1)s(2k)(Xm) − s(2k−1,1)(Xm)s(2k)(Xn−1)
)

(5.3)

and

q2(n−1)s(2k−1)(Xn−1)s(2k)(Xm) − q2ms(2k−1)(Xm)s(2k)(Xn−1)

= q2k(m+n−1)
(
s(2k−1)

(
X−1

n−1

)
s(2k)

(
X−1

m

) − s(2k−1)

(
X−1

m

)
s(2k)

(
X−1

n−1

))
. (5.4)

Proof We shall adopt the following common notation. For indeterminates a, a1, . . . ,

as and an integer r ≥ 0, let

(a;q)r = (1 − a)(1 − aq) · · · (1 − aqr−1),
(a1, a2, . . . , as;q)r = (a1;q)r(a2;q)r · · · (as;q)r .

By Lemma 2.1, we have

s(2k−1,1)(Xn−1) = s(2k−1,1)

(
q, q2, . . . , qn−2)

= qk2
(qn−k−1;q)k(q

n−k+1;q)k−1

(1 − q)(q;q)k−1(q3;q)k−1

and

s(2k)(Xn) = s(2k)

(
q, q2, . . . , qn−1)

= qk(k+1)(qn−k;q)k(q
n−k+1;q)k

(q;q)k(q2;q)k
.

Therefore, the left hand side of (5.3) equals

q2k2+k+n−1(qn−k+1;q)k−1(q
n−k−1, qm−k, qm−k+1;q)k

(1 − q)(q, q3;q)k−1(q, q2;q)k

− q2k2+k+m(qm−k+2;q)k−1(q
m−k, qn−k−1, qn−k;q)k

(1 − q)(q, q3;q)k−1(q, q2;q)k
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= q2k2+k+n−1(1 − qm−n+1)(qm−k+2, qn−k+1;q)k−1(q
m−k, qn−k−1;q)k

(1 − q)(q, q3;q)k−1(q, q2;q)k

and the difference s(2k−1,1)(Xn−1)s(2k)(Xm) − s(2k−1,1)(Xm)s(2k)(Xn−1) equals

q2k2+k(qn−k+1;q)k−1(q
n−k−1, qm−k, qm−k+1;q)k

(1 − q)(q, q3;q)k−1(q, q2;q)k

− q2k2+k(qm−k+2;q)k−1(q
m−k, qn−k−1, qn−k;q)k

(1 − q)(q, q3;q)k−1(q, q2;q)k

= q2k2+n(1 − qm−n+1)(qm−k+2, qn−k+1;q)k−1(q
m−k, qn−k−1;q)k

(1 − q)(q, q3;q)k−1(q, q2;q)k
.

Combining the above two relations, we arrive at (5.3).
We now proceed to prove (5.4). The left hand side can be written as

q2(n+k2−1)(qn−k, qn−k+1;q)k−1(q
m−k, qm−k+1;q)k

(q, q2;q)k−1(q, q2;q)k

− q2(m+k2)(qm−k+1, qm−k+2;q)k−1(q
n−k−1, qn−k;q)k

(q, q2;q)k−1(q, q2;q)k

= f (q)(qn−k, qn−k+1, qm−k+1, qm−k+2;q)k−1

(q, q2;q)k−1(q, q2;q)k
,

where

f (q) = q2k2−k−2(qm+1 − qn
)(

qm+n+1 + qm+n − qm+k+1 − qn+k
)
.

The difference s(2k−1)(Xn−1)s(2k)(Xm) − s(2k−1)(Xm)s(2k)(Xn−1) equals

q2k2
(qn−k, qn−k+1;q)k−1(q

m−k, qm−k+1;q)k

(q, q2;q)k−1(q, q2;q)k

− q2k2
(qm−k+1, qm−k+2;q)k−1(q

n−k−1, qn−k;q)k

(q, q2;q)k−1(q, q2;q)k

= g(q)(qn−k, qn−k+1, qm−k+1, qm−k+2;q)k−1

(q, q2;q)k−1(q, q2;q)k
,

where

g(q) = q2k2−2k−1(qm+1 − qn
)(

qm+1 + qn − qk+1 − qk
)
.

It is easily checked that g(q−1) = q2k+1−4k2−2m−2nf (q). Since (1 − q−r ) =
−q−r (1 − qr) for any r , we arrive at (5.4). �

Now we are ready to prove the q-log-concavity of the q-Narayana numbers
(Nq(n, k))n≥k for given k.
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Theorem 5.6 Given an integer k, the sequence (Nq(n, k))n≥k is strongly q-log-
concave.

Proof Clearly, the theorem is valid for k = 1. So we may assume that k ≥ 2. For any
m ≥ n ≥ k, let

Am,n(q) = Nq(m,k)Nq(n, k) − Nq(m + 1, k)Nq(n − 1, k).

By (1.2), we have

Am,n(q) = s(2k−1)(Xm)s(2k−1)(Xn) − s(2k−1)(Xm+1)s(2k−1)(Xn−1).

Applying (2.3) to s(2k−1)(Xn) and s(2k−1)(Xm+1), Am,n(q) equals

s(2k−1)(Xm)
(
s(2k−1)(Xn−1) + qn−1s(2k−2,1)(Xn−1) + q2(n−1)s(2k−2)(Xn−1)

)
− (

s(2k−1)(Xm) + qms(2k−2,1)(Xm) + q2ms(2k−2)(Xm)
)
s(2k−1)(Xn−1)

= (
qn−1s(2k−2,1)(Xn−1)s(2k−1)(Xm) − qms(2k−2,1)(Xm)s(2k−1)(Xn−1)

)
+ (

q2(n−1)s(2k−2)(Xn−1)s(2k−1)(Xm) − q2ms(2k−2)(Xm)s(2k−1)(Xn−1)
)
.

By Lemma 5.5 and (2.1), we find that Am,n(q) equals

qk−2(s(2k−2,1)(Xn−1)s(2k−1)(Xm) − s(2k−2,1)(Xm)s(2k−1)(Xn−1)
)

+ q2(k−1)(m+n−1)
(
s(2k−2)

(
X−1

n−1

)
s(2k−1)

(
X−1

m

) − s(2k−2)

(
X−1

m

)
s(2k−1)

(
X−1

n−1

))
= qk−2s(2k−2,1)(Xn−1)s(2k−1)(Z)

+ qk−2
∑

J⊆(2k−2,1)

sJ (Z)(s(2k−2,1)s(2k−1)/J − s(2k−2,1)/J s(2k−1))(Xn−1)

+ q2(k−1)(m+n−1)s(2k−2)

(
X−1

n−1

)
s(2k−1)

(
Z−1)

+ q2(k−1)(m+n−1)s(2k−2)

(
X−1

n−1

)
s(2k−2,1)

(
Z−1)s(1)

(
X−1

n−1

)
+ q2(k−1)(m+n−1)

∑
I⊆(2k−2)

sI
(
Z−1)(s(2k−2)s(2k−1)/I − s(2k−2)/I s(2k−1))

(
X−1

n−1

)
,

where Z = {qn−1, . . . , qm−1} and Z−1 = {q1−n, . . . , q1−m}. Applying Corollary 5.4,
the proof is complete. �

6 Schur positivity

The main goal of this section is to give a proof of Theorem 3.1. We shall establish
several symmetric function identities which will be proved by induction based on the
Littlewood–Richardson rule. These identities involve products of Schur functions in-
dexed by partitions with only two-columns. Such Schur functions are of particular
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interest for their own sake; see, for example, Rosas [25], and Remmel and White-
head [24].

We should note that the Littlewood–Richardson coefficients in the context of this
section are either one or two. It is also worth mentioning that the Schur expansion
of the product of two Schur functions indexed by partitions with only two-columns
turns out to be multiplicity-free if one is indexed by a rectangular shape; see Stem-
bridge [31].

Let us first introduce certain classes of products of Schur functions that are the
ingredients to establish the desired Schur positivity. Given m ∈ N and 0 ≤ i ≤ m, let

D
(1)
m,i = s(2i )s(2m−i−1),

D
(2)
m,i = s(2i−1,12)s(2m−i−1),

D
(3)
m,i = s(2i−1,1)s(2m−i−1,1),

and let

Dm,i = D
(1)
m,i + D

(2)
m,i − D

(3)
m,i , (6.1)

where s(2i ) = s(2i ,1) = s(2i ,12) = 0 for i < 0 by convention. It is clear that Dm,m ≡ 0.
For two partitions λ and μ, let λ ∪ μ be the partition obtained by taking the union

of all parts of λ and μ and then rearranging them in the weakly decreasing order. For
k ∈ N, we use λk to represent the union of k λ’s, and in particular put λk = ∅ if k = 0.
In this notation, we define an operator Δμ on the ring of symmetric functions defined
by a partition μ. For a symmetric function f , if it has the expansion

f =
∑
λ

aλsλ,

then the action of Δμ on f is given by

Δμ(f ) =
∑
λ

aλsλ∪μ.

For example, if

f = s(4,3,2) + 3s(2,2,1) + 2s(5),

then

Δ(3,1)f = s(4,3,3,2,1) + 3s(3,2,2,1,1) + 2s(5,3,1).

Lemma 6.1 For n ≥ k ≥ 1, we have

s(2k)s(2n+1) = Δ(2)(s(2k)s(2n)), (6.2)

s(2k−1,12)s(2n+1) = Δ(2)(s(2k−1,12)s(2n)), (6.3)

s(2k)s(2n+1,12) = Δ(2)(s(2k)s(2n,12)), (6.4)

s(2k−1,1)s(2n+1,1) = Δ(2)(s(2k−1,1)s(2n,1)). (6.5)
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Fig. 4 The bijection between
Littlewood–Richardson tableaux ∗ ∗ 1 1∗ ∗ 2∗ ∗ 3

∗ ∗
∗ ∗
2
3

⇐⇒

∗ ∗ 1 1∗ ∗ 2∗ ∗ 3
∗ ∗
∗ ∗
2
3

T T ′

Fig. 5 Construct T̃ from T ∗ ∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗ 4∗ 3 5
∗ 4
5 6
7

=⇒

∗ ∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗ 4′
∗ 3 5′
∗ 4
5 6′
7′

T T̃

Proof Let

s(2k)s(2n) =
∑
λ

aλsλ.

By Theorem 2.4, the coefficient aλ is equal to the number of Littlewood–Richardson
tableaux of shape λ/(2n) and type (2k). We claim that aλ = 0 if the diagram of λ

contains the square (n + 1,3); Otherwise, we get a contradiction to the assumption
n ≥ k since the column strictness of Young tableaux requires that there should be at
least n + 1 distinct numbers in the tableau. Therefore, for a Littlewood–Richardson
tableau T of shape λ/(2n) and type (2k), we can construct a Littlewood–Richardson
tableau T ′ of shape λ ∪ (2)/(2n+1) and of the same type by moving all rows of T

to the next row except for the first n rows and inserting two empty squares in the
(n+1)th row. Clearly, the above procedure to construct T ′ is reversible, as illustrated
in Fig. 4. Thus we have verified (6.2). By similar reasoning, the three remaining
identities can be justified. This completes the proof. �

Sometimes it is convenient to regard a tableau T of type (2k,1l) as a semistandard
tableau T̃ filled with distinct numbers in the ordered set

{1 < 1′ < 2 < 2′ < · · · < n < n′ < · · · }.
In this context, let T̃ be the tableau obtained from T by changing the first occurrence
of i in the reverse reading word of T to i′. An example is given in Fig. 5. Given a
partition μ, let

Qμ(n) = {
λ ∈ Par(n) : λ = μ ∪ (4)a ∪ (3,1)b ∪ (2,2)c for a, b, c ∈ N

}
.
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Lemma 6.2 Let m = 2k + 1. The following statements hold.

(i)

D
(1)
m,k = D

(1)
2k+1,k = s(2k)s(2k) =

∑
λ∈Q∅(4k)

sλ.

(ii)

D
(1)
m,k+1 = D

(1)
2k+1,k+1 = s(2k+1)s(2k−1) =

∑
λ∈Q(2,2)(4k)

sλ.

(iii) Let Q1(n) = Q(3,1)(n) ∪ Q(2,1,1)(n) ∪ Q(3,3,2)(n). Then

D
(2)
m,k = D

(2)
2k+1,k = s(2k−1,12)s(2k) =

∑
λ∈Q1(4k)

sλ.

(iv) Let Q2(n) = Q(2,1,1)(n) ∪ Q(3,2,2,1)(n) ∪ Q(3,3,2,2,2)(n). Then

D
(2)
m,k+1 = D

(2)
2k+1,k+1 = s(2k,12)s(2k−1) =

∑
λ∈Q2(4k)

sλ.

(v) Let Q3(n) = Q(3,1)(n) ∪ Q(2,2)(n) ∪ Q(2,1,1)(n) ∪ Q(3,3,2)(n). Then

D
(3)
m,k = D

(3)
2k+1,k = s(2k−1,1)s(2k,1) =

∑
λ∈Q3(4k)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,2,1)(4k), otherwise aλ = 1.
(vi) We have

D
(3)
m,k+1 = D

(3)
2k+1,k+1 = s(2k,1)s(2k−1,1) =

∑
λ∈Q3(4k)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,2,1)(4k), otherwise aλ = 1.

Proof We use induction on k to prove (i). Clearly, the assertion holds for k = 0 since
s∅ = 1, and it also holds for k = 1 because of Pieri’s rule; see Theorem 2.5. Using
the Littlewood–Richardson rule, we see that if sλ appears in the Schur expansion of
s(2k)s(2k), then λ does not contain any part greater than 4. We claim that for each
Littlewood–Richardson tableau T of shape μ/(2k) and type (2k), subject to the con-
ditions on the shapes and types, there are three Littlewood–Richardson tableaux of
type (2k+1), which are T1 of shape μ∪ (4)/(2k+1), T2 of shape μ∪ (3,1)/(2k+1) and
T3 of shape μ ∪ (2,2)/(2k+1).

Let T1 be the tableau obtained from T by increasing all numbers by 1 and then
inserting a four-square row on top of T such that the rightmost two squares are filled
with 1’s and the leftmost two squares are empty.

Next, suppose that T has r rows of length greater than 2, and that the largest
number in the first r rows is j , where we set j = 0 if r = 0. Consider the relabeled
tableau T̃ corresponding to T . Let T ∗ be the tableau obtained from T̃ by increasing
all numbers below the r-th row by 1 (i.e., changing i to i′ and i′ to i + 1), inserting
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a three-square row in the (r + 1)th row such that the rightmost square is filled with
(j + 1)′, and appending a single square row at the bottom filled with k + 1. Let T2 be
the tableau obtained from T ∗ by replacing each i′ with i.

We continue to construct a tableau T3. Note that the tableau T does not contain
the square (k + 1,3). Consider the numbers in the first k rows. Let j1 and j2 be the
smallest and the largest numbers which appear only once in the first k rows of T .
Starting with the tableau T̃ , let T ∗ be the tableau obtained from T̃ by increasing all
numbers below the kth row by 2 (i.e., changing i to i + 1 and i′ to (i + 1)′), inserting
a row of two empty squares below the kth row, and then inserting a two-square row
filled with (j1, (j2 + 1)′) immediately below the row that has been inserted. If no
number appears only once in the first k rows, then we consider the largest number j

which appears twice in these rows (taking j = 0 if no such number exists). Let T ∗
be the tableau obtained from T̃ by increasing all numbers below the kth row by 2,
inserting a row of two empty squares below the kth row, and then inserting a two-
square row filled with (j +1, (j +1)′) immediately below the row just inserted. Now
we obtain the tableau T3 by replacing each i′ with i in T ∗.

Note that if T is a Littlewood–Richardson tableau of shape μ/(2k) and type (2k),
then there exist some nonnegative integers r, s, t such that the reverse reading word
T̃ rev is of the form (wa,wb,wc,wd), where

wa = 1′,1, . . . , r ′, r,

wb = (r + 1)′, . . . , (r + s)′,

wc = (r + s + 1)′, (r + 1), . . . , (r + s + t)′, (r + s),

wd = (r + s + 1), . . . , (r + s + t),

and r + s + t = k. It is easily seen that T1
rev, T2

rev, T3
rev can be recovered from T̃ rev.

It is also easy to verify that they are lattice permutations. Figure 6 is an illustration of
the constructions of T1, T2, T3.

On the other hand, it is necessary to show that for each Littlewood–Richardson
tableau T ′ of shape λ/(2k+1) and type (2k+1), we can find a Littlewood–Richardson
tableau T of shape μ/(2k) and of type 2k such that λ = μ ∪ (4), λ = μ ∪ (3,1) or
λ = μ ∪ (2,2). Evidently, if λ contains at least one row of length 4, then T can be
obtained from T ′ by reversing the construction of T1. If T ′ has a two-square row fully
filled with numbers and all rows of T ′ contain at most three squares, then T ′ has a
two-square row with no numbers since it is a Littlewood–Richardson tableau of type
(2k+1), and hence T can be obtained by reversing the construction of T3. Otherwise,
T ′ contains at least one row of length 1 and at least one row of length 3 because
of the type of T ′. In this case, we can reverse the construction of T2 to recover T .
However, we should note that T is not uniquely determined by T ′. By Stembridge’s
characterization of multiplicity-free products of Schur functions [31, Theorem 3.1],
there exists a unique Littlewood–Richardson tableau of shape λ/(2k) and type (2k) if
sλ appears in the expansion of s(2k)s(2k). This completes the proof of (i).

We now give a sketch of the proof of (ii) which is similar to that of (i). Clearly,
the assertion holds for k = 0,1, and D1

3,2 = s(2,2). For k ≥ 2, we may consider the

Littlewood–Richardson tableau of shape λ/(2k+1) and type (2k−1) if sλ appears in
s(2k+1)s(2k−1).
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∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗
3 4
4

=⇒
1 1∗ ∗ 2 2∗ ∗ 3 3

∗ ∗ 4∗ ∗
4 5
5

T T1

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗
3 4
4

=⇒ ∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗
3 4′
4

=⇒

∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′

4′
∗ ∗
3′ 5
4′
5

=⇒

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
4∗ ∗

3 5
4
5

T T̃ T ∗ T2

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗
3 4
4

=⇒ ∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗
3 4′
4

=⇒

∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗
3 4′
4 5′
5

=⇒

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗
3 4
4 5
5

T T̃ T ∗ T3

Fig. 6 Construction of T1, T2, T3

To prove (iii), notice that D
(2)
2k+1,k = 0 for k = 0, and D

(2)
2k+1,k = s(3,1) + s(2,1,1) for

k = 1. For k = 2, we have

D
(2)
2k+1,k = s(4,3,1) + s(4,2,12) + s(32,2) + s(32,12)

+ s(3,22,1) + s(3,2,13) + s(23,12).

Again, we use induction on k. If sλ appears in the expansion of D
(2)
2k+1,k , then λ does

not contain the square (k + 1,3), because there exists no Littlewood–Richardson
tableau of shape λ/(2k) and type (2k−1,1,1), or equivalently, there is no filling of
the (k + 1)th row satisfying the lattice permutation condition. Thus we can proceed
as in the proof of (i).

In the same manner we can prove (iv). For k = 0, it is clear that D
(2)
2k+1,k+1 = 0.

For k = 1, we have D
(2)
2k+1,k+1 = s2,1,1. For k = 2, we find

D
(2)
2k+1,k+1 = s(4,2,12) + s(3,22,1) + s(3,2,13) + s(23,12).
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Fig. 7 The Littlewood–
Richardson tableaux ∗ ∗ 1 1∗ ∗ 2∗ ∗ 3

∗ ∗ 4∗ ∗
∗ 2
3
4
5

∗ ∗ 1 1∗ ∗ 2∗ ∗ 3
∗ ∗ 4∗ ∗
∗ 5
2
3
4

For k = 3, we have

D
(2)
2k+1,k+1 = s(42,2,12) + s(4,3,22,1) + s(4,3,2,13) + s(4,23,12) + s(32,23)

+ s(32,22,12) + s(3,24,1) + s(32,2,14) + s(3,23,13) + s(25,12).

Now we can use induction on k and consider Littlewood–Richardson tableaux of
shape λ/(2k,12) and type (2k−1).

Finally, we come to (v) and (vi) which are concerned with the Schur positivity of
the same product s(2k−1,1)s(2k,1). For k = 0, D

(3)
2k+1,k = 0. For k = 1, we get

D
(3)
2k+1,k = s(3,1) + s(22) + s(2,12).

For k = 2, we have

D
(3)
2k+1,k = s(4,3,1) + s(4,22) + s(4,2,12) + s(32,2)

+ 2s(3,22,1) + s(32,12) + s(3,2,13) + s(24) + s(23,12).

To use induction on k, we consider Littlewood–Richardson tableaux of shape
λ/(2k,1) and type (2k−1,1). If λ ∈ Q(3,2,2,1)(4k), there are exactly two such
Littlewood–Richardson tableaux, see Fig. 7 for the case of λ = (4,33,22,13). The
rest of the proof is similar to that of (i). Thus the proof of the lemma is complete. �

Theorem 6.3 Let m = 2k + 1. We have

Dm,k = s(3k)s(1k), (6.6)

Dm,k+1 = s(4k) − s(3k)s(1k) − Δ(2)(s(3k)s1(k−2) ); (6.7)

and for 0 ≤ i ≤ k − 1, we have

Dm,i = Δ(2)(Dm−1,i ), (6.8)

Dm,m−i = Δ(2)(Dm−1,m−1−i ). (6.9)

Proof To prove (6.6), we need (i), (iii) and (v) of Lemma 6.2. If λ ∈ Q(3,2,2,1)(4k),

then sλ appears in the expansion of both D
(1)
m,k and D

(2)
m,k , and hence it vanishes in
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Dm,k . If λ ∈ Q(3,3,2)(4k)∪Q(2,1,1)(4k), then sλ appears in both D
(2)
m,k and D

(3)
m,k , so it

vanishes in Dm,k . If λ ∈ Q(2,2)(4k) but λ �∈ Q(3,1)(4k), then sλ appears in both D
(1)
m,k

and D
(3)
m,k . So we deduce that sλ vanishes in Dm,k . Therefore, for a term sλ which

does not vanish in Dm,k , the index partition λ belongs to the set Q∅(4k) and 2 does
not appear as a part. By virtue of Pieri’s rule, the Schur functions not vanishing in
Dm,k coincide with the terms in the Schur expansion of s(3k)s(1k).

To prove (6.7), we shall use (ii), (iv) and (vi) of Lemma 6.2. If λ ∈ Q(3,2,2,1)(4k),

then sλ appears in the expansion of both D
(1)
m,k+1 and D

(2)
m,k+1, which implies that it

vanishes in Dm,k+1. If λ ∈ Q(3,3,2,2,2)(4k) ∪ Q(2,1,1)(4k), then sλ appears in both

D
(2)
m,k+1 and D

(3)
m,k+1. But since it disappears in D

(1)
m,k+1, it follows that sλ vanishes in

Dm,k+1. If λ ∈ Q(2,2)(4k) but λ �∈ Q(3,2,2,1)(4k), then sλ appears in both D
(1)
m,k+1 and

D
(3)
m,k+1, but disappears in D

(2)
m,k+1, and hence it vanishes in Dm,k+1. Therefore,

Dm,k+1 = −
∑

λ∈Q(3,3,2),
λ �∈Q(3,3,2,2,2)

sλ −
∑

λ∈Q(3,1),
λ �∈Q(3,2,2,1)

sλ.

So (6.7) can be verified by applying Pieri’s rule to s(3k)s(1k) and s(3k)s1(k−2) .
The remaining two identities (6.8) and (6.9) are direct consequences of Lemma 6.1.

This completes the proof of the theorem. �

When m is even, we can deduce the following expansion formulas. The proof is
similar to that of Lemma 6.2 and is omitted.

Lemma 6.4 Let m = 2k. The following statements hold.

(i)

D
(1)
m,k = D

(1)
2k,k = s(2k)s(2k−1) =

∑
λ∈Q(2)(4k−2)

sλ.

(ii)

D
(1)
m,k−1 = D

(1)
2k,k−1 = s(2k−1)s(2k) =

∑
λ∈Q(2)(4k−2)

sλ.

(iii) Let R1(n) = Q(1,1)(n) ∪ Q(3,3,2,2)(n) ∪ Q(3,2,1)(n). Then

D
(2)
m,k = D

(2)
2k,k = s(2k−1,12)s(2k−1) =

∑
λ∈R1(4k−2)

sλ.

(iv) Let R2(n) = Q(3,3)(n) ∪ Q(3,2,1)(n) ∪ Q(2,2,1,1)(n). Then

D
(2)
m,k−1 = D

(2)
2k,k−1 = s(2k−2,12)s(2k) =

∑
λ∈R2(4k−2)

sλ.
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(v) Let R3(n) = Q(3,3)(n) ∪ Q(2)(n) ∪ Q(1,1)(n). Then

D
(3)
m,k = D

(3)
2k,k = s(2k−1,1)s(2k−1,1) =

∑
λ∈R3(4k−2)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,1)(4k − 2), otherwise aλ = 1.
(vi) Let R4(n) = Q(3,3,2,2)(n) ∪ Q(3,2,1)(n) ∪ Q(2,2,2)(n) ∪ Q(2,2,1,1)(n). Then

D
(3)
m,k−1 = s(2k−2,1)s(2k,1) =

∑
λ∈R4(4k−2)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,2,2,1)(4k), otherwise aλ = 1.

With the aid of Lemmas 6.1 and 6.4, we obtain the following theorem for even m.
The proof is similar to that of Theorem 6.3 and is omitted.

Theorem 6.5 Let m = 2k. We have

Dm,k−1 = s(3k)s(1k−2) + Δ(2)(s(3k−1)s(1k−1)), (6.10)

Dm,k = −s(3k)s(1k−2), (6.11)

Dm,k+1 = Δ(2)(Dm−1,k), (6.12)

and for 0 ≤ i ≤ k − 2, we have

Dm,i = Δ(2)(Dm−1,i ), (6.13)

Dm,m−i = Δ(2)(Dm−1,m−1−i ). (6.14)

Theorems 6.3 and 6.5 lead to a construction for the underlying partitions corre-
sponding to the Schur expansion of Dm,i . Table 1 gives an illustration. The proof of
Schur positivity in Theorem 6.7 reflects the following observation.

Corollary 6.6 Assume that k ≥ 1.

(i) If m = 2k + 1, then Dm,i is Schur positive for 0 ≤ i ≤ k, and Dm,i is Schur
negative for k + 1 ≤ i ≤ m − 1.

(ii) If m = 2k, then Dm,i is Schur positive for 0 ≤ i ≤ k − 1, and Dm,i is Schur
negative for k ≤ i ≤ m − 1.

Proof We conduct induction on m. It is easy to check that the result holds for m = 2.
For m ≥ 3, assume that the corollary holds for m − 1. We aim to show that it holds
for m.

If m = 2k+1, then Dm,k is Schur positive and Dm,k+1 is Schur negative according
to (6.6) and (6.7) of Theorem 6.3. For 0 ≤ i ≤ k − 1, using (6.8) of Theorem 6.3 we
see that Dm,i = Δ(2)(D2k,i ) is Schur positive by the inductive hypothesis. Similarly,
for k + 2 ≤ i ≤ 2k, we find that Dm,i = Δ(2)(D2k,i−1) is Schur negative by (6.9) and
the inductive hypothesis.
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Table 1 Schur function
expansions of Dm,k for m = 8,9 m = 8

D8,0 s(27)

D8,1 s
(4,25)

+ s
(32,24)

+ s
(3,25,1)

D8,2 s
(32,23,12)

+ s
(4,32,22)

+ s
(42,23)

+ s
(33,22,1)

+ s
(4,3,23,1)

D8,3 s
(4,32,2,12)

+ s
(33,2,13)

+ s
(42,3,2,1)

+ s
(43,2)

+ s
(34,12)

+ s
(42,32)

+ s
(4,33,1)

D8,4 −s
(34,12)

− s
(42,32)

− s
(4,33,1)

D8,5 −s
(42,3,2,1)

− s
(33,22,1)

− s
(33,2,13)

− s
(4,32,2,12)

− s
(4,32,22)

D8,6 −s
(32,24)

− s
(32,23,12)

− s
(4,3,23,1)

D8,7 −s
(3,25,1)

D8,8 0

m = 9

D9,0 s
(28)

D9,1 s
(4,26)

+ s
(32,25)

+ s
(3,26,1)

D9,2 s
(32,24,12)

+ s
(4,32,23)

+ s
(42,24)

+ s
(33,23,1)

+ s
(4,3,24,1)

D9,3 s
(4,32,22,12)

+ s
(33,22,13)

+ s
(42,3,22,1)

+ s
(43,22)

+ s
(34,2,12)

+ s
(42,32,2)

+ s
(4,33,2,1)

D9,4 s
(4,33,13)

+ s
(42,32,12)

+ s
(44)

+ s
(43,3,1)

+ s
(34,14)

D9,5 −s
(4,33,13)

− s
(42,32,12)

− s
(43,3,1)

− s
(34,14)

− s
(34,2,12)

− s
(42,32,2)

− s
(4,33,2,1)

D9,6 −s
(42,3,22,1)

− s
(33,23,1)

− s
(33,22,13)

− s
(4,32,22,12)

− s
(4,32,23)

D9,7 −s
(32,25)

− s
(32,24,12)

− s
(4,3,24,1)

D9,8 −s
(3,26,1)

D9,9 0

If m = 2k, from (6.10) and (6.11) of Theorem 6.5 it follows that Dm,k−1 is Schur
positive and Dm,k is Schur negative. For 0 ≤ i ≤ k − 2, by (6.13) of Theorem 6.5,
together with the inductive hypothesis, we obtain that Dm,i = Δ(2)(D2k−1,i ) is Schur
positive. Similarly, for k + 1 ≤ i ≤ 2k − 1, by virtue of (6.12) and (6.14), together
with the inductive hypothesis, we find that Dm,i = Δ(2)(D2k−1,i−1) is Schur negative.
This completes the proof. �

Given a set S of positive integers, let ParS(n) denote the set of partitions of n

whose parts belong to S. We have the following Schur positivity result.
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Theorem 6.7 For any m ≥ 0, we have

m∑
i=0

Dm,i =
∑

λ∈Par{2,4}(2m−2)

sλ. (6.15)

Before proving the above theorem, let us give some examples. For 1 ≤ m ≤ 5,
using the Maple package ACE [35], we obtain

1∑
i=0

D1,i = s∅ = 1,

2∑
i=0

D2,i = s(2),

3∑
i=0

D3,i = s(4) + s(2,2),

4∑
i=0

D4,i = s(4,2) + s(2,2,2),

5∑
i=0

D5,i = s(4,4) + s(4,2,2) + s(2,2,2,2).

Proof of Theorem 6.7 We use induction on m. It is readily seen that the theorem holds
for m = 0,1. We assume that it is true for m − 1. For m ≥ 2, it suffices to show that

m∑
i=0

Dm,i =
{

Δ(2)(
∑m−1

i=0 Dm−1,i ), if m = 2k,
s(4k) + Δ(2)(

∑m−1
i=0 Dm−1,i ), if m = 2k + 1.

(6.16)

If m = 2k, we have

m∑
i=0

Dm,i =
2k∑
i=0

D2k,i

=
k−2∑
i=0

D2k,i + D2k,k−1 + D2k,k + D2k,k+1 +
k−2∑
i=0

D2k,2k−i

=
k−2∑
i=0

Δ(2)(D2k−1,i ) + (
s(3k)s(1k−2) + Δ(2)(s(3k−1)s(1k−1))

)

+ (−s(3k)s(1k−2)) + Δ(2)(D2k−1,k)

+
k−2∑
i=0

Δ(2)(D2k−1,2k−1−i ) (by Theorem 6.5)
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=
k−2∑
i=0

Δ(2)(D2k−1,i ) + Δ(2)(D2k−1,k−1) + Δ(2)(D2k−1,k)

+
k−2∑
i=0

Δ(2)(D2k−1,2k−1−i ) (by (6.6))

=
2k−1∑
i=0

Δ(2)(D2k−1,i )

= Δ(2)

(
m−1∑
i=0

Dm−1,i

)
.

If m = 2k + 1, we have

m∑
i=0

Dm,i =
2k+1∑
i=0

D2k+1,i

=
k−1∑
i=0

D2k+1,i + D2k+1,k + D2k+1,k+1 +
k−1∑
i=0

D2k+1,2k+1−i

=
k−1∑
i=0

Δ(2)(D2k,i ) + s(3k)s(1k)

+ (
s(4k) − s(3k)s(1k) − Δ(2)(s(3k)s1(k−2) )

)

+
k−1∑
i=0

Δ(2)(D2k,2k−i ) (by Theorem 6.3)

= s(4k) +
2k∑
i=0

Δ(2)(D2k,i ) (by (6.11))

= s(4k) + Δ(2)

(
m−1∑
i=0

Dm−1,i

)
.

Using (6.16), together with the inductive hypothesis, we complete the proof. �

We are now ready to prove Theorem 3.1, that is, the Schur positivity of∑m
i=0 D(m, i, a, b). Note that for a = b = 0, D(m, i, a, b) reduces to Dm,i . Some

values of D(m, i, a, b) are given in Table 2 for m = 10, a = 0, b = 2.
For the sake of presentation, we introduce the following notation. Given a pair

(λ,μ) of partitions and a pair (f1, f2) of symmetric functions, let

Δλ(f1) =
∑
ν

aνsν, Δμ(f2) =
∑
ν

bνsν.
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Table 2 Schur function expansion of D(10, i,0,2)

D(10,1,0,2) 0

D(10,2,0,2) s
(32,25)

+ s
(3,26,1)

+ s
(27,12)

D(10,3,0,2) s
(34,22)

+ s
(4,32,23)

+ s
(4,25,12)

+ s
(33,23,1)

+ s
(32,24,12)

+ s
(3,25,13)

+ s
(4,3,24,1)

D(10,4,0,2) s
(35,1)

+ s
(4,34)

+ s
(42,32,2)

+ s
(4,33,2,1)

+ s
(34,2,12)

+ s
(42,23,12)

+ s
(4,3,23,13)

+ s
(32,23,14)

+ s
(42,3,22,1)

+ s
(4,32,22,12)

+ s
(33,22,13)

D(10,5,0,2) −s
(35,1)

− s
(4,34)

+ s
(43,3,1)

+ s
(42,32,12)

+ s
(4,33,13)

+ s
(34,14)

+ s
(43,2,12)

+ s
(42,3,2,13)

+ s
(4,32,2,14)

+ s
(33,2,15)

D(10,6,0,2) −s
(42,32,12)

− s
(4,33,13)

− s
(34,14)

− s
(4,33,2,1)

− s
(34,2,12)

− s
(34,22)

D(10,7,0,2) −s
(4,32,22,12)

− s
(33,22,13)

− s
(33,23,1)

− s
(33,2,15)

− s
(4,32,2,14)

− s
(42,3,2,13)

D(10,8,0,2) −s
(4,3,23,13)

− s
(32,24,12)

− s
(32,23,14)

D(10,9,0,2) −s
(3,25,13)

Then we define

Δ̃λ,μ(f1, f2) =
∑
ν

max(aν, bν)sν.

The following lemma gives a recurrence relation for Dk(m, i, a, b).

Lemma 6.8 For m ≥ i ≥ b > a ≥ 0 and k = 1,2,3, we have

Dk(m, i, a, b) = Δ̃(1),(3)
(
Dk(m − 1, i − 1, a, b − 1),Dk(m − 2, i − 1, a, b − 1)

)
.

Proof We shall consider only the case k = 2, that is,

s(2i−b−1,1b+2−a)s(2m−i−1) = Δ̃(1),(3)(s(2i−b−1,1b+1−a)s(2m−i−1), s(2i−b−1,1b+1−a)s(2m−i−2)).

The cases k = 1 and k = 3 can be dealt with by the same argument.
First, we need to show that if sλ appears in the Schur expansion of

s(2i−b−1,1b+1−a)s(2m−i−1) with multiplicity n, then the multiplicity of sλ∪(1) in
s(2i−b−1,1b+2−a)s(2m−i−1) is at least n. To this end, we shall construct an injective
map ϕ from the set of Littlewood–Richardson tableaux T of shape λ/(2m−i−1) and
type (2i−b−1,1b+1−a) to the set of Littlewood–Richardson tableaux T ′ of shape
λ ∪ (1)/(2m−i−1) and type (2i−b−1,1b+2−a). For a given T , let T ′ be the tableau
obtained from T by appending one row consisting of a single square filled with
i + 1 − a. Clearly, T ′ is a Littlewood–Richardson tableau of λ ∪ (1)/(2m−i−1) and
type (2i−b−1,1b+2−a). See the first two tableaux in Fig. 8.

Moreover, we proceed to show that if sλ appears in the Schur expansion
of s(2i−b−1,1b+1−a)s(2m−i−2) with multiplicity n, then the multiplicity of sλ∪(3) in
s(2i−b−1,1b+2−a)s(2m−i−1) is at least n. To accomplish this task, we shall construct
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∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗ 4∗ ∗ 5
∗ ∗ 6
∗ ∗
3 7
4 8

=⇒

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗ 4∗ ∗ 5
∗ ∗ 6
∗ ∗
3 7
4 8
9

T T ′

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗ 4∗ ∗ 5
∗ ∗
3 6
4 7
8

=⇒

∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗ 4′
∗ ∗ 5′
∗ ∗
3 6′
4 7′
8′

=⇒

∗ ∗ 1 1′
∗ ∗ 2 2′

3′
∗ ∗ 4∗ ∗ 5
∗ ∗ 6
∗ ∗
3′ 7
4′ 8
9

=⇒

∗ ∗ 1 1∗ ∗ 2 2∗ ∗ 3
∗ ∗ 4∗ ∗ 5
∗ ∗ 6
∗ ∗
3 7
4 8
9

T T̃ T ∗ T ′

Fig. 8 Two ways to construct T ′

an injective map ψ from the set of Littlewood–Richardson tableaux T of shape
λ/(2m−i−2) and type (2i−b−1,1b+1−a) to the set of Littlewood–Richardson tableaux
T ′ of shape λ ∪ (3)/(2m−i−1) and type (2i−b−1,1b+2−a). For a given T , let us con-
sider the corresponding tableau T̃ , defined just before Lemma 6.2. Suppose that T

has n rows of length 4 (setting n = 0 if no such a row exists). Let T ∗ be the tableau
obtained from T̃ by inserting one row of three squares in the (n + 1)th row in which
the rightmost square is filled with (n + 1)′, and then increasing all numbers below
the (n + 1)th row by 1, namely, changing j to j ′ and j ′ to j + 1. Let T ′ be the
tableau obtained from T ∗ by replacing j ′ with j for each j . It is straightforward to
verify that T ′ is a Littlewood–Richardson tableau of shape λ ∪ (3)/(2m−i−1) and
type (2i−b−1,1b+2−a), as desired. Clearly, the map ψ is injective. See the last four
tableaux in Fig. 8.

Finally, it remains to show that if sλ appears in the Schur expansion of
s(2i−b−1,1b+2−a)s(2m−i−1) with multiplicity n, then one of the following two cases must
occur: (i) there exists a partition μ such that λ = μ ∪ (3) and the multiplicity of sμ in
s(2i−b−1,1b+1−a)s(2m−i−2) is at least n; (ii) there exists a partition ν such that λ = ν ∪ (1)

and the multiplicity of sν in s(2i−b−1,1b+1−a)s(2m−i−1) is at least n. We claim that if 3 is
a part of λ, then case (i) must occur. This is readily seen in view of the reverse map
of ψ , since for a given Littlewood–Richardson tableau T ′ of shape λ/(2m−i−1) and
type (2i−b−1,1b+2−a), we can uniquely determine a Littlewood–Richardson tableau
T of shape μ/(2m−i−2) and type (2i−b−1,1b+1−a). If 3 does not appear as a part of
λ, then we need to show that case (ii) must occur. This is true, because we can obtain
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a Littlewood–Richardson tableau T of shape ν/(2m−i−1) and type (2i−b−1,1b+1−a)

from T ′ by using the reverse map of ϕ. To be more specific, it is possible to apply the
reverse map of ϕ to T ′ since the lattice permutation property requires that λ should
contain a part of size 1 and the bottom square should be filled with i + 1 − a. This
completes the proof. �

Now we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1 We use induction on the difference b − a. For a = b,

m∑
i=0

D(m, i, a, b) =
m∑

i=a

D(m − a, i − a,0,0) =
m−a∑
i=0

Dm−a,i ,

which, according to Theorem 6.7, is Schur positive. Suppose b − a ≥ 1. By
Lemma 6.8, the negative terms of D(m, i, a, b) come from either Δ(1)(D(m − 1,
i − 1, a, b − 1)) or Δ(3)(D(m − 2, i − 1, a, b − 1)). They always vanish in∑m

i=0 D(m, i, a, b), since by induction both
∑m

i=0 D(m − 1, i − 1, a, b − 1) and∑m
i=0 D(m − 2, i − 1, a, b − 1) are Schur positive. This completes the proof. �
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