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Abstract We prove a q-analogue of the Carter–Payne theorem in the case where the
differences between the parts of the partitions are sufficiently large. We identify a
layer of the Jantzen filtration which contains the image of these Carter–Payne homo-
morphisms and we show how these homomorphisms compose.
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1 Introduction

The Iwahori–Hecke algebras of the symmetric groups are interesting algebras with
a rich combinatorial representation theory. These algebras arise naturally in the rep-
resentation theory of the general linear groups and they are important because they
simultaneously extend and generalize the representation theory of the symmetric and
general linear groups.

The representation theory of the Hecke algebra Hn closely parallels that of the
symmetric groups. For each partition λ of n there is a Specht module Sλ. In the semi-
simple case the Specht modules give a complete set of pairwise non-isomorphic irre-
ducible Hn-modules. When Hn is not semisimple it is an important problem to de-
termine the structure of the Specht modules. The purpose of this paper is to construct
explicit non-trivial homomorphisms between Specht modules in the non-semisimple
case. Using this construction, we are then able to connect the image of the homomor-
phism and the Jantzen filtration of the corresponding Specht module.
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The most striking result about homomorphisms between Specht modules of the
symmetric groups is the Carter–Payne Theorem [3], which was proved by building
on the famous paper of Carter and Lusztig [2]. A second proof of the Carter–Payne
Theorem has recently been given by Fayers and Martin [9].

In this paper we are concerned with the Carter–Payne homomorphisms of the
Iwahori–Hecke algebra of the symmetric group. To state our main results, let F be a
field of characteristic p ≥ 0 and fix a non-zero element ζ ∈ F . Let e > 1 be minimal
such that 1+ ζ + · · · + ζ e−1 = 0; set e = 0 if no such integer exists. Let Hn be the
Hecke algebra of the symmetric group Sn, over F , with parameter ζ , as defined in
Sect. 2.1. Recall that when ζ = 1 then e = p and the Hecke algebra is canonically
isomorphic to the symmetric group algebra FSn.

If p > 0 and k > 0 then define �p(k) to be the smallest positive integer such that
p�p(k) > k. Now suppose that γ > 0 and λ and μ are partitions of n such that

μi =

⎧
⎪⎨

⎪⎩

λi + γ, i = a,

λi − γ, i = z,

λi, otherwise,

for some positive integers a < z. Let h= λa − λz + z− a + γ . Then λ and μ form
an (e,p)-Carter–Payne pair, with parameters (a, z, γ ), if e > 1 and either

(a) p = 0, γ < e and h≡ 0 (mod e), or,
(b) p > 0 and h≡ 0 (mod ep�p(γ ∗)), where γ ∗ = � γ

e
�.

The Carter–Payne Theorem for an Iwahori–Hecke algebra of the symmetric group
is the following result.

Theorem 1.1 (Carter and Payne [3] and Dixon [5]) Suppose that F is a field of
characteristic p ≥ 0 and that λ and μ form an (e,p)-Carter–Payne pair. Then
HomHn(S

λ, Sμ) �= 0.

For the symmetric groups (that is, when q = 1) this theorem is a classical re-
sult of Carter and Payne [3]. The full q-analogue of this result for the Iwahori–
Hecke algebra Hn was recently established in the unpublished thesis of Dixon [5].
Dixon’s proof follows the original arguments of Carter and Lusztig [2] and Carter
and Payne [3]. He works with the quantum hyperalgebra U of the general linear
group and his argument generalizes the proof of Carter and Payne for the classical
case.

The Carter–Payne homomorphisms are very useful and important maps. Unfor-
tunately little is known about them in general except that they exist. In this paper
we concentrate on separated Carter–Payne pairs, where an (e,p)-Carter–Payne pair
(λ,μ) with parameters (a, z, γ ) is separated if λr − λr+1 ≥ γ for a < r ≤ z. We
begin by giving two new and very explicit descriptions of Carter–Payne homomor-
phisms θλμ :Sλ→Sμ when λ and μ form a separated Carter–Payne pair. We then use
the new descriptions to prove the following two results, which were known previously
only for the symmetric group algebra when γ = 1 [8].
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Theorem 1.2 Suppose that λ, μ and σ are partitions of n such that λ and σ form a
separated (e,p)-Carter–Payne pair with parameters (a, y, γ ) and that σ and μ form
a separated (e,p)-Carter–Payne pair with parameters (y, z, γ ), where a < y < z

and γ > 0. Then λ and μ form a separated (e,p)-Carter–Payne pair with parameters
(a, z, γ ) and θλσ θσμ = θλμ.

To state our next result let Sμ = J 0(Sμ)⊇ J 1(Sμ)⊇ J 2(Sμ)⊇ · · · be the Jantzen
filtration of Sμ (see Sect. 2.6), and for 0 �= h ∈ Z define

val e,p(h)=
{

pvalp(h), if e | h,

0, otherwise,

where valp is the usual p-adic valuation map (and we set val0(h)= 0 when p = 0).
Our second main result is the following.

Theorem 1.3 Suppose that p ≥ 0 and that λ and μ form a separated (e,p)-Carter–
Payne pair with parameters (a, z, γ ). Then

Im θλμ ⊆ J δ
(
Sμ

)
,

where δ = vale,p(λa − λz + z− a + γ )− val e,p(γ ).

The key observation in our construction of the Carter–Payne homomorphisms,
which is due to Ellers and Murray [7], is that the Specht modules Sλ and Sμ both
appear as subquotients in the restriction of a Specht module Sν of Hn+γ . Starting
from this observation we are able to show that the Carter–Payne homomorphism
θλμ :Sλ→Sμ is induced by an Hn-module endomorphism of Sν which is given by
right multiplication by a polynomial in the Jucys–Murphy elements Ln+1, . . . ,Ln+γ

of Hn+γ . Using this description of the Carter–Payne maps we are able to prove the
two theorems above. Furthermore, in the proofs of Theorem 2.7 and Theorem 2.8, we
describe these maps as explicit linear combinations of semistandard homomorphisms.
Thus we give a new proof of Theorem 1.1, when λ and μ are a separated pair, which
takes place entirely within the Hecke algebra. In Example 2.17, we briefly discuss
the problems that arise when λ and μ are not separated.

We now describe the contents of this paper in more detail. Section 2 sets up the
basic notation and machinery that is used throughout the paper. In Theorem 2.7 and
Theorem 2.8 we show that if (λ,μ) is a separated (e,p)-Carter–Payne pair then the
corresponding Carter–Payne homomorphism is given by right multiplication by a
polynomial in the Jucys–Murphy elements of Hn+γ . We prove these results by writ-
ing the Carter–Payne homomorphism θλμ as an explicit linear combination of semi-
standard homomorphisms. These results are proved modulo a result which describes
how the Jucys–Murphy elements act on the Specht modules (Proposition 2.5) and a
technical result which allows us to divide our maps by certain polynomial coefficients
when p > 0 (Lemma 3.23). Using these results we prove our two main theorems
about composing Carter–Payne homomorphisms and the connection between these
maps and the Jantzen filtration. Section 3 is the computational heart of the paper
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which proves the detailed technical results which describe the action of the Jucys–
Murphy elements on the Specht modules which are need to prove our main theorems.
The results in this section are likely to be of independent interest.

Notational index

≺j Bumping preorder
≺w

k,r Weak bumping preorder
� The dominance order
[k]q Gaussian integer
[[λ]] Diagram of the partition λ

βλμ θλμ = 1/βλμLλμ

ci νi − i

ct(k) Content of k in t

η+ 1γ A composition of n+ γ

ϕS A homomorphism, ϕS :Mλ→ Sμ

H Z
n Generic Iwahori–Hecke algebra

Hn Hecke algebra specialized at ζ

H�λ A two-sided ideal of Hn

Hom Homomorphisms
HomHn Semistandard homomorphisms
ν A partition of n+ γ

λ,μ,η Partitions contained in ν

θλμ A Carter–Payne homomorphism
J i(Sμ) A layer of the Jantzen filtration of Sμ

Lk,L
′
k Jucys–Murphy elements

Lλμ

∏z−1
i=1

∏γ

j=1(Ln+j − [ci])
mst Murphy basis of Hn

mt Basis element of Sλ

mT
∑

λ(t)=T mt

Mλ A right Hn-module
O F [q](q)

RStd(λ) Set of λ-tableaux of type (1n)

σ k σ1 + · · · + σk

s, t, . . . Tableaux of type (1n)

S,T, . . . Tableaux of arbitrary type
Sλ The Specht module
SX

R #{(r, c) | S(r, c)= x, r ∈R,x ∈X}
Sn The symmetric group on n letters
Sλ The Young subgroup of Sn

Std(λ) Set of standard λ-tableaux
Stdη(ν) A subset of Std(ν)

μ(t) Element of T0(λ,μ) made from t

tλ The initial λ-tableau
tνη An almost initial tableau
Ti A generator of Hn
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Ti,j

∏j−1
l=i Tl

Ti,j\k
∏k−2

l=i Tl ·∏j−1
l=k Tl

Tw A basis element of Hn for w ∈Sn

T (λ,μ) λ-tableaux of type μ

T0(λ,μ) Semistandard λ-tableaux of type μ

T ν
0 (μ,η) A subset of T ν

0 (ν, η+ 1γ )

Z Z[q, q−1], q an indeterminate

2 Carter–Payne homomorphisms and Jucys–Murphy elements

In this section we define the Hecke algebra and the Specht modules and reduce the
proofs of our main results to some technical statements which are proved in Sect. 3.

2.1 The Hecke algebra

For each integer n > 0 let Sn be the symmetric group of degree n. The symmet-
ric group Sn is generated by the simple transpositions s1, s2, . . . , sn−1, where si =
(i, i + 1) for 1 ≤ i < n. If w ∈ Sn then si1 · · · sik is a reduced expression for w

if w = si1 · · · sik and k is minimal with this property. In this case, the length of w

is �(w)= k.
Suppose that q is an indeterminate over Z and let Z = Z[q, q−1] be the ring of

Laurent polynomials in q . The generic Iwahori–Hecke algebra of Sn is the unital
associative Z -algebra H Z

n with generators T1, . . . , Tn−1 which are subject to the re-
lations

(Ti − q)(Ti + 1)= 0, TjTj+1Tj = Tj+1TjTj+1 and TiTj = TjTi,

where 1≤ i < n, 1≤ j < n− 1 and |i − j | ≥ 2. The Hecke algebra H Z
n is free as an

Z -module with basis {Tw |w ∈Sn}, where Tw = Ti1 · · ·Tik and si1 · · · sik is a reduced
expression for w; see, for example, [12, Chap. 1].

Now suppose that R is an arbitrary ring and that qR is an invertible element of R.
Define HR

n (qR)=H Z
n ⊗Z R, where we consider R as a Z -algebra by letting q act

as multiplication by qR . We say that HR
n (qR) is obtained from H Z

n by specialization
at q = qR . By the remarks above, HR

n (qR) is a unital associative R-algebra which is
free as an R-module with basis {Tw ⊗ 1 |w ∈Sn}. Typically, we abuse notation and
write Tw instead of Tw ⊗ 1, for w ∈Sn.

In this paper we are most interested in the algebra Hn =HF
n (ζ ), where F is a

field of characteristic p ≥ 0 and 0 �= ζ ∈ F . Define

e=min{f ≥ 2 | 1+ ζ + · · · + ζ f−1 = 0},

and set e= 0 if 1+ ζ + · · · + ζ f−1 �= 0 for all f ≥ 2. Then Hn is (split) semisimple
if and only if e > n or e = 0; see, for example, [12, Corollary 3.24]. Henceforth, we
assume that 2≤ e ≤ n. In particular, Hn is not semisimple.
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2.2 Tableaux combinatorics

A composition of n is a sequence λ = (λ1, λ2, . . .) of non-negative integers which
sum to n and λ is a partition if λ1 ≥ λ2 ≥ · · ·. The diagram of a partition λ is the
set [[λ]] = {(r, c) | 1≤ c ≤ λr, for r ≥ 1}. A λ-tableau is a map S : [[λ]]→N such that
S(r, c)≤ S(r, c′), whenever c ≤ c′. In the literature such tableaux are often said to be
row standard, however, we do not make this distinction because all of our tableaux
will be row standard. We identify a λ-tableau with a labeling of the diagram of λ

by N. This allows us to talk about the rows and columns of S. A λ-tableau S is:

(a) Semistandard if the entries in S are strictly increasing down columns.
(b) Standard if S : [[λ]]→{1,2, . . . , n} is a bijection and the entries in S are strictly

increasing down columns.

We orient our diagrams and tableaux according to the ‘English convention’ with the
row indices increasing from top to bottom and the column indices increasing form
left to right. A λ-tableau has type μ= (μ1,μ2, . . .) if it has μi entries equal to i, for
i ≥ 1. If S is a λ-tableau let Shape(S)= λ and if k ≥ 0 let S↓k be the subtableau of S
containing the numbers 1,2, . . . , k.

The following notation will help us keep track of certain entries in our tableaux.

Notation Let S be a λ-tableau and suppose that X and R are sets of positive integers.
Let

SX
R = #

{
(r, c) ∈ [[λ]] | S(r, c)= x for some r ∈R and x ∈X

}
.

That is, SX
R is the sum of the number of entries in row r of S which are equal to x, for

some r ∈ R and some x ∈ X. We further abbreviate this notation by setting S≤x
>r =

S[1,x]
(r,∞), Sx

r = S{x}{r} and so on.

Let T (λ,μ) be the set of λ-tableau of type μ and T0(λ,μ) the set of semistan-
dard λ-tableaux of type μ. Let Std(λ) = T0(λ, (1n)) be the set of standard tableaux
and RStd(λ) = T (λ, (1n)) the set of tableaux of type (1n). The initial λ-tableau is
the standard λ-tableau tλ obtained by entering the numbers 1,2, . . . , n in increasing
order, from left to right, and from top to bottom, along the rows of [[λ]].

If s is a tableau and s(r, c) = k then define rows(k) = r . For any subset I ⊆
{1,2, . . . , n}, the entries in I are in row order in s if rows(i) ≤ rows(j) whenever
i < j ∈ I . For example, tλ is the unique λ-tableau which has 1,2, . . . , n in row order.

There is an action of Sn on RStd(λ), from the right, given by defining sw to be the
λ-tableau obtained from s by acting on the entries of s by w and then reordering the
entries in each row, for s ∈ RStd(λ) and w ∈Sn. If s ∈ RStd(λ) define d(s) to be the
unique element of Sn of minimal length such that s= tλd(s); such an element exists,
for example, by [12, Proposition 3.3]. The permutation d(s) is the unique element of
Sn such that s = tλd(s) and (i)d(s) < (j)d(s) whenever i < j lie in the same row
of s. Let Sλ

∼=Sλ1 ×Sλ2 × · · · be the Young subgroup of Sn associated to λ. That
is, Sλ is the row stabilizer of tλ.



J Algebr Comb (2010) 32: 417–457 423

2.3 Specht modules

In this subsection we recall the construction of Murphy’s cellular basis for Hn and
his definition of the (dual) Specht modules. Note that in this paper all Hn-modules
will be right Hn-modules.

For each pair of tableaux s, t ∈ Std(λ), for λ a partition of n, let mst =
Td(s)−1mλTd(t), where

mλ =
∑

w∈Sλ

Tw.

Murphy showed that {mst | s, t ∈ Std(λ), with λ a partition of n} is a basis of Hn

[12, 13]. The basis {mst} is a cellular basis of Hn with respect to the dominance
ordering �, where if λ and μ are partitions then μ � λ if

j∑

i=1

μi ≥
j∑

i=1

λi,

for all j ≥ 1. Write μ � λ if μ � λ and μ �= λ. Let H�λ be the subspace of Hn with
basis {mst | s, t ∈ Std(μ) for some μ � λ}. Then H�λ is a 2-sided ideal of Hn.

Fix a partition λ of n. The Specht module Sλ
F is the Hn-submodule of Hn/H

�λ

generated by mλ + H�λ. For every tableau s ∈ RStd(λ) define ms = mλTd(s) +
H�λ. Then ms ∈ Sλ and {mt | t ∈ Std(λ)} is a basis of Sλ

F by, for example, [12,
Proposition 3.22]. This construction of the Specht module works over an arbitrary
ring. In particular, we have a Specht module Sλ

Z for the generic Hecke algebra H Z
n

and Sλ
F
∼= Sλ

Z ⊗Z F as Hn-modules. Usually, we write Sλ = Sλ
F unless we want to

highlight the base ring.
We emphasize, for the readers convenience, that throughout this paper we fol-

low [12] and work with the Specht modules that arise as the cell modules for the
Murphy basis [14]. These modules are dual to the classically defined Specht modules
considered in [4, 10]. Our results can be translated into the corresponding results for
the classical Specht modules by conjugating the partitions involved and taking duals;
see, for example, [11, Lemma 3.4].

Define the Jucys–Murphy elements L1, . . . ,Ln of Hn by setting L1 = 0 and
Lk+1 = q−1Tk(1+ LkTk) for 1 ≤ k < n. Then L1, . . . ,Ln generate a commutative
subalgebra of Hn; see, for example, [12, Proposition 3.26]. The Jucys–Murphy ele-
ments Lk are important for us because they act on the Specht modules via triangular
matrices.

If R is any ring, a ∈R and k ∈ Z then the Gaussian integer [k]a is defined to be

[k]a =
{

ak−1
a−1 , if a �= 1,

k, if a = 1.

Let [0]!a = 1 and for k ≥ 1, let [k]!a = [k− 1]!a[k]a . We are most interested in these
scalars when R = Z and a = q , so for k ∈ Z we set [k] = [k]q and for k ≥ 0 we set
[k]! = [k]!q .
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2.4 Constructing Carter–Payne homomorphisms

Suppose that λ is a partition of n and let Mλ =mλHn be the corresponding permu-
tation module—this module is isomorphic to the induced trivial representation of the
parabolic subalgebra corresponding to λ. Then Mλ has basis {mλTd(t) | t ∈ RStd(λ)}
and there is a surjective homomorphism πλ :Mλ→Sλ given by πλ(mλTd(t)) = mt,
for t ∈ RStd(λ).

Now if μ is a partition of n and t ∈ Std(μ), define λ(t) to be the μ-tableau obtained
by replacing each entry in t by its row index in tλ. If T is a μ-tableau of type λ define

mT =
∑

t∈RStd(μ)

λ(t)=T

mt.

By definition mT ∈ Sμ.
If T ∈ T0(μ,λ) let ϕT ∈ HomHn(M

λ,Sμ) be the homomorphism determined by
ϕT(mλ) = mT. Then the maps {ϕT | T ∈ T0(μ,λ)} are linearly independent [4]. Let
HomHn(M

λ,Sμ) be the subspace of HomHn(M
λ,Sμ) spanned by {ϕT | T ∈ T0(μ,λ)}.

Let HomHn(S
λ, Sμ) be the space of homomorphisms ϕ ∈ HomHn(S

λ, Sμ) such that
πλϕ ∈ HomHn(M

λ,Sμ). If ϕ ∈ HomHn(S
λ, Sμ) we say that ϕ can be written as a sum

of semistandard homomorphisms.
To prove Theorem 1.1 for the separated (e,p)-Carter–Payne pair (λ,μ) we use the

following result. This is purely a matter of notational convenience as the proof that we
give can be made to work without making use of this proposition. See Remark 2.12
for more details.

Proposition 2.1 Suppose that λ and μ are partitions of m such that λi = μi , when-
ever 1 ≤ i < a or i > z, for some integers a < z. Define λ̂= (λa, λa+1, . . . , λz) and
μ̂= (μa,μa+1, . . . ,μz) and let n= λ̂a + · · · + λ̂z = μ̂a + · · · + μ̂z. Then

HomHm

(
Sλ,Sμ

)∼=F HomHn

(
Sλ̂,Sμ̂

)
.

Proof This follows from (the proof of) [11, Theorem 3.2 and Lemma 3.4]; cf.
[6, Proposition 10.4]. �

Therefore, when constructing Carter–Payne homomorphisms it is enough to show
that HomHn(S

λ,Sμ) �= 0 for partitions λ and μ of n which form a separated (e,p)-
Carter–Payne pair with parameters a = 1, z=max{i > 0 | λi �= 0} and γ > 0. For the
rest of Sect. 2.4 we fix such a pair. We define ν to be the partition of n+ γ given by

νi =
{

λi + γ, if i = 1,

λi, otherwise.

There is a natural embedding Hn ↪→Hn+γ . Thus we can consider any Hn+γ -
module as an Hn-module by restriction. We need the following well-known result—it
is an easy corollary of [12, Proposition 6.1].
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Lemma 2.2 As an Hn-module the Specht module Sν has a filtration

Sν =M0 ⊃M1 ⊃ · · · ⊃Mk ⊃ 0,

such that Mi/Mi+1 ∼= Sτi , for some partition τi of n, for 0 ≤ i ≤ k. Moreover Sλ ∼=
M0/M1, Sμ ∼=Mk , M1 has basis {mt | t ∈ Std(ν) and Shape(t↓n) �= λ}, and Mk has
basis {mt | t ∈ Std(ν) and t↓n ∈ Std(μ)}.

Fix a Specht filtration of Sν

Sν =M0 ⊃M1 ⊃ · · · ⊃Mk ⊃ 0,

with the properties described in Lemma 2.2. Then, following Ellers and Murray
[7, § 3], we have the following elementary but very useful observation.

Corollary 2.3 Let ν be the partition of n + γ defined above and suppose that
there exists a non-zero homomorphism θ ∈ EndHn(S

ν) such that M1 ⊆ ker(θ) and
Im(θ)⊆Mk . Then HomHn(S

λ, Sμ) �= 0.

Set ci = νi − i, for 1 ≤ i ≤ z. (Thus, ci is the content of the ith removable node
of ν.) Now define

Lλμ =
z−1∏

i=1

γ∏

j=1

(
Ln+j − [ci]

)
.

Lemma 2.4 Suppose that 1≤ k < n+ γ and k �= n. Then TkLλμ = LλμTk .

Proof By Lemma 3.3, below, if k �= n then Tk commutes with (Ln+1 − c) · · ·
(Ln+γ − c), for any c ∈ F . �

Hence, right multiplication by Lλμ induces an Hn-endomorphism of Sν . The fol-
lowing definitions allow us to describe this map and (if necessary) to modify it so as
to produce an endomorphism θλμ which satisfies the conditions of Corollary 2.3.

Let η be a partition of n. Write η⊆ ν if [[η]] ⊆ [[ν]]; equivalently, ηi ≤ νi , for i ≥ 1.
If η⊆ ν, define η+ 1γ = (η1, . . . , ηk,0z−k,1γ ), where k =max{i | ηi > 0}. (In fact,
k = z unless η= μ and νz = γ .) Define tνη to be the standard ν-tableau which agrees
with tη where [[η]] and [[ν]] coincide, with the numbers n+ 1, . . . , n+ γ entered in
row order in the remaining nodes of [[ν]]. A ν-tableau t is almost initial if t= tνη , for
some partition η of n.

Now suppose that η is a partition of n such that η⊆ ν. Define

T ν
0 (μ,η)= {

S ∈ T0
(
ν, η+ 1γ

) | Shape(S↓z)= μ
}
.

That is, T ν
0 (μ,η) is the set of semistandard ν-tableaux of type η + 1γ obtained by

adding nodes labeled z+1, . . . , z+γ to row z of a semistandard μ-tableaux of type η.
Similarly, if η⊆ ν let Stdη(ν)= {t ∈ Std(ν) | Shape(t↓n)= η}.

The following elegant result will allow us to construct Carter–Payne homomor-
phisms. It will be proved with less elegance in the following sections. The integer
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S(r,z]
r , which is the number of entries in row r of S contained in (r, z], is defined in

Sect. 2.2.

Proposition 2.5 Suppose that η ⊂ ν is a partition of n. Then there exists an integer
C such that in Sν

Z

mtν
η
Lλμ = qC

∑

S∈T ν
0 (μ,η)

z−1∏

r=1

(
[
S(r,z]

r

]!
γ−S(r,z]

r −1∏

j=0

[cz − cr − j ]
)

mS.

Proof This is the special case of Proposition 3.18 below, obtained by setting k = γ

and y = 1. �

Example 2.6 Suppose that λ= (4,4,2) and μ= (6,4). Then λ and μ form a (6,0)-
Carter–Payne pair with parameters (a, z, γ )= (1,3,2). Applying the definitions,

Lλμ =
(
L12 − [5]

)(
L12 − [2]

)(
L11 − [5]

)(
L11 − [2]

)
.

Identifying the tableau S with mS, direct computation (or Proposition 2.5) shows that

Lλμ = Lλμ = q2[2][2] − q−1[2][3]

+ q−5[2][3][4] ,

Lλμ = Lλμ =−q−2[2][6] + q−5[3][6] ,

Lλμ = Lλμ = q−2[3][6]

− q−6[3][4][6] ,

Lλμ = Lλμ = q−5[2][6][7] ,

Lλμ = Lλμ =−q−6[3][6][7] ,

Lλμ = Lλμ = q−6[3][4][6][7] .

Using these calculations we invite the reader to check that right multiplication by
Lλμ induces an HC

10-module homomorphism Sλ→ Sμ when ζ = exp(2πi/6) ∈ C

(so that e= 6).

Using Proposition 2.5, we can now give a second proof of Theorem 1.1 from
the introduction for our pair (λ,μ). We treat the cases p = 0 and p > 0 separately
because the proof when p > 0 contains an additional subtlety.
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Theorem 2.7 Suppose that p = 0 and that λ and μ form a separated (e,0)-Carter–
Payne pair with parameters (a, z, γ ). Then

HomHn

(
Sλ,Sμ

) �= 0.

Proof By Proposition 2.1 it is enough to consider the case when a = 1 and λr = 0
when r > z. Since λ and μ form a Carter–Payne pair we have, by assumption, that
γ < e and

λ1 − λz + z− 1+ γ = c1 − cz ≡ 0 (mod e).

In particular, [cz − c1]ζ = 0 in F .
Suppose that t ∈ Std(ν) and let η= Shape(t↓n). Then in Sν we have mt =mtν

η
Tw ,

for some w ∈Sn×Sγ . Therefore, by specializing q = ζ in Proposition 2.5 and using
Lemma 2.4, we have

mtLλμ = ζC
∑

S∈T ν
0 (μ,η)

z−1∏

r=1

(
[
S(r,z]

r

]!
ζ

γ−S(r,z]
r −1∏

j=0

[cz − cr − j ]ζ
)

mSTw,

for some C ∈ Z. Recall that as an Hn-module Sν has a Specht filtration Sν =M0 ⊃
M1 ⊃ · · · ⊃ Mk ⊃ 0 with Sλ ∼= M0/M1 and Sμ ∼= Mk by Lemma 2.2. Moreover,
Mk is spanned by the ms, for s ∈ Std(ν) with Shape(s↓n) = μ. Therefore, the last
displayed equation shows that mtLλμ ∈Mk for t ∈ Std(ν).

Next suppose that t ∈ Stdη(ν) and mt ∈M1. Then η �= λ by Lemma 2.2. Conse-

quently, if S ∈ T ν
0 (μ,η) then S(1,z]

1 < γ and [cz − c1]ζ divides the coefficient of mS

in mtLλμ. That is, mtLλμ = 0 since [cz − c1]ζ = 0 in F .
By the last two paragraphs, and Corollary 2.3, right multiplication by Lλμ induces

an Hn-module homomorphism from Sλ to Sμ. Suppose that t = tνλ. Then there ex-

ists a semistandard tableau S ∈ T ν
0 (μ,λ) with S(r,z]

r = γ , for 1 ≤ r < z. This is the
unique semistandard tableau S ∈ T ν

0 (μ,λ) such that row r contains γ entries equal
to r + 1, for 1≤ r < z. The coefficient of mS in mtν

λ
Lλμ is ζC([γ ]ζ )z−1 �= 0, so that

mtν
λ
Lλμ �= 0 as required.

We have now shown that right multiplication on Sν by Lλμ induces a non-zero
map θλμ :Sλ→Sμ. It remains to show that θλμ ∈ HomHn(S

λ, Sμ). However, from
what we have proved it follows that

πλθλμ = ζC
∑

S∈T0(μ,λ)

z−1∏

r=1

(
[
S(r,z]

r

]!
ζ

γ−S(r,z]
r −1∏

j=0

[cz − cr − j ]ζ
)

ϕS.

Therefore, θλμ ∈ HomHn(S
λ, Sμ) as claimed. �

We now consider the case when p > 0. The argument is essentially the same as in
the case when p = 0. There is an additional technical difficulty, however, because in
general multiplication by Lλμ induces the zero homomorphism from Sλ to Sμ.
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Theorem 2.8 Suppose that p > 0 and that λ and μ form a separated (e,p)-Carter–
Payne pair with parameters (a, z, γ ). Then

HomHn

(
Sλ,Sμ

) �= 0.

Proof As in Theorem 2.7, we may assume that a = 1 and λr = 0 for r > z. We first
consider the Specht module Sν

Z for the generic Hecke algebra H Z
n+γ defined over

Z = Z[q, q−1]. Suppose that t ∈ Std(ν) and set η = Shape(t↓n) so that mt =mtν
η
Tw

for some w ∈Sn ×Sγ . By Lemma 2.4 and Proposition 2.5 in Sν
Z we have

mtLλμ =
∑

S∈T ν
0 (μ,η)

qC

z−1∏

r=1

(
[
S(r,z]

r

]!
q

γ−S(r,z]
r −1∏

j=0

[cz − cr − j ]q
)

mSTw.

If γ < e then, as in the proof of Theorem 2.7, there exists a tableau S with coefficient
ζC[γ ]z−1

ζ �= 0 when we specialize at q = ζ . Therefore, in this case we set q = ζ

and argue exactly as in the proof of Theorem 2.7 to show that multiplication by Lλμ

induces a non-zero homomorphism in HomHn(Sλ,Sμ) �= 0. If γ ≥ e then we have to
work harder because the coefficients on the right hand side are almost always zero
when we specialize to Hn+γ .

Suppose 1 ≤ r < z. By Lemma 3.23 below, there exists an integer βr with 0 ≤
βr ≤ γ such that for all integers δ with 0≤ δ ≤ γ there exist polynomials fr,δ(q) and
gr,δ(q) in Z , which depend only on cz − cr , such that gr,δ(ζ ) �= 0 and

[δ]!∏γ−δ−1
j=0 [cz − cr − j ]q

[βr ]!∏γ−βr−1
j=0 [cz − cr − j ]q

= fr,δ(q)

gr,δ(q)
.

Hence, there is a well-defined H Z
n -module homomorphism θ Z

λμ ∈ EndHn(S
ν

Z ) given

by θ Z
λμ(h)= 1

βλμ
hLλμ, for all h ∈ Sν

Z , where

βλμ = βλμ(q)=
z−1∏

r=1

(

[βr ]!q
γ−βr−1∏

j=0

[cz − cr − j ]q
)

·
γ∏

δ=0

z−1∏

r=1

1

gr,δ(q)
.

Since λ and μ form an (e,p)-Carter–Payne pair, we have cz−c1 ≡ 0 (mod ep�p(γ ∗)),
where γ ∗ = � γ

e
�. Consequently, by Lemma 3.23, β1 = γ and f1,δ(ζ ) �= 0 if and only

if δ = β1. Therefore, arguing as in the proof of Theorem 2.7, we see that specializing
at q = ζ gives a Hn-module homomorphism θλμ :Sλ→Sμ such that

πλθλμ =
∑

S∈T ν
0 (μ,λ)

(

ζC
z−1∏

r=1

f
r,S(r,z]

r
(ζ )

γ∏

δ=0

gr,δ(ζ )

)

ϕS.

Finally, to show that θλμ is non-zero we show that there exists a tableau S ∈
T ν

0 (μ,λ) such that S(r,z]
r = βr , for 1 ≤ r < z. This is enough because for such a
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tableau S the paragraphs above show that mS appears in θλμ(mtν
λ
) with coefficient

∏z−1
r=1

∏γ

δ=0 gr,δ(ζ ), and this is non-zero by construction.

In general, there are many tableaux S ∈ T ν
0 (μ,λ) with S(r,z]

r = βr , for 1≤ r < z.
To construct a family of tableaux with this property set βz = γ . For 1 ≤ r ≤ z we
construct a partition ν(r) and a semistandard ν(r)-tableaux S(r) of type (λ1, . . . , λr )

with the properties that (S(r))kk = νk − βk , for 1≤ k ≤ r , and

ν
(r)
1 + · · · + ν(r)

r = ν1 + · · · + νr − γ. (†)

To start, let S(1) be the unique semistandard (λ1)-tableau of type (λ1). By induction
we may assume that we have constructed a semistandard ν(r)-tableau S(r) as above.
Now define S(r+1) to be any ν(r+1)-tableau of type (λ1, . . . , λr+1) which is obtained
by adding λr+1 entries labeled r+1 to S(r) in such a way that ν(r+1) ⊂ ν and ν

(r+1)
r+1 =

νr+1 − βr+1. Such tableaux exist because of (†) since βr+1 ≤ γ ≤ νr+1. The tableau
S(r+1) is semistandard because λi − λi+1 ≥ γ , for 1 ≤ i ≤ r . It is easy to check
that S(r+1) satisfies all of the properties that we assumed of S(r), so proceeding in
this way we can construct a semistandard ν(z)-tableaux of type λ= (λ1, . . . , λz). In
fact, ν(z) = μ by (†) because, by construction, (S(z))zz = νz − βz = μz since βz = γ .
Therefore, if we define S= S(z+1) to be the tableau obtained by adding entries labeled
z+ 1, . . . , z+ γ in row order to row z of S(z) then S ∈ T ν

0 (μ,λ) and S(r,z]
r = βr , for

1 ≤ r < z. Consequently, the coefficient of mS in θλμ(mtν
λ
) is non-zero, so θλμ �= 0

as claimed. �

If p > 0 let βλμ(q) ∈ Z[q] be the polynomial defined during the proof of The-
orem 2.7 and if p = 0 set βλμ(q) = 1. In the proofs of Theorems 2.7 and 2.8, we
constructed Carter–Payne homomorphisms θλμ :Sλ→Sμ. Then βλμ(ζ ) �= 0 and both
these homomorphisms are of the form

θλμ(mt)= 1

βλμ(ζ )
mtLλμ, for t ∈ Stdλ(ν). (2.1)

Example 2.9 As in Example 2.6, suppose that λ = (4,4,2) and μ = (6,4). Then λ

and μ form an (e,p)-Carter–Payne pair with e = 2 and p = 3. Dividing all of the
equations in Example 2.6 by [2] = 1+ q we obtain a map θλμ :S(4,4,2)→S(6,4). In
fact, the calculations in Example 2.6 show that πλθλμ = ϕS where

S= .

However, applying Lemmas 5 and 7 from [9, §2] it is possible to show that if e =
p = 2 then

dim HomH10

(
S(4,4,2), S(6,4)

)= 1.

The partitions λ and μ do not form a (2,2)-Carter–Payne pair, so the existence of
such a map is not predicted by the Carter–Payne theorem. Moreover, the calculations
in Example 2.6 show that this map is not induced by right multiplication by any mul-
tiple of Lλμ because in order to make this map non-zero we need to divide by [2]ζ ,
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however,

1

[2]ζ Lλμ = �= 0,

when we set ζ =−1. Consequently, right multiplication by Lλμ/[2]ζ does not induce
a homomorphism from Sλ to Sμ when e = p = 2 because, using the notation of
Lemma 2.2, the submodule M1 of Sν is not killed by Lλμ.

2.5 Composing homomorphisms

This section shows that we can compose certain Carter–Payne homomorphisms. This
gives a positive answer to a question asked of us by Henning Andersen.

Recall that Theorems 2.7 and 2.8 construct a non-zero homomorphism θλσ :
Sλ→Sσ whenever λ and σ form a separated Carter–Payne pair with parameters
(a, y, γ ). Let μ be another partition of n and suppose that a < y < z. Then it is easy
to see that λ and μ form a separated Carter–Payne pair with parameters (a, z, γ ) if
and only if σ and μ form a separated Carter–Payne pair with parameters (y, z, γ ).
Thus we have two homomorphisms θλμ and θλσ θσμ, which may be the zero map,
from Sλ to Sμ.

Theorem 2.10 Suppose that λ, μ and σ are partitions of n such that λ and σ form a
separated (e,p)-Carter–Payne pair with parameters (a, y, γ ) and that σ and μ form
a separated (e,p)-Carter–Payne pair with parameters (y, z, γ ), where a < y < z

and γ > 0. Then θλμ = θλσ θσμ.

Proof Using Proposition 2.1, we may assume that a = 1 and z=max{i > 0 | λi �= 0}.
Let ν be the partition of n+ γ given by

νi =
{

λi + γ, if i = 1,

λi, otherwise.

Then λ,μ,σ ⊂ ν.
To prove the Theorem we consider the Specht module Sν

Z for the generic Iwahori–
Hecke algebra H Z

n+γ . As in Lemma 2.2, we fix a Specht filtration

Sν
Z =M0 ⊃M1 ⊃ · · · ⊃Ml ⊃ . . .⊃Mk ⊃ 0

of Sν
Z such that, as H Z

n -modules, Sλ
Z
∼=M0/M1, S

μ

Z
∼=Mk and Sσ

Z
∼=Ml/Ml+1 for

some 1≤ l < k. We may assume that {mt | σ �� Shape(t↓n)} is a basis of Ml+1. For
1 ≤ i ≤ z, set ci = νi − i. Mirroring the definition of Lλμ (see before Lemma 2.4),
set

Lλσ =
y−1∏

i=1

γ∏

j=1

(
Ln+j − [ci]q

)
and Lσμ =

z−1∏

i=y

γ∏

j=1

(
Ln+j − [ci]q

)
.
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Then Lλμ = Lλσ Lσμ. By (2.1) there exist polynomials βλμ(q),βσμ(q) ∈ Z[q] such
that

θλμ(mt)= 1

βλμ(ζ )
mtLλμ,

for t ∈ Stdλ(ν). Via Proposition 2.1, we have analogous descriptions of the maps θλσ

and θσμ, however, we do not (yet) have a description of these maps as Hn-module
endomorphisms of Sν . The next three claims allow us to describe these maps as
endomorphisms of Sν and to connect them with θλμ.

Claim 1 Suppose that η is a partition of n such that η⊂ ν and η � σ . Then, in Sν
Z ,

mtν
η
Lσμ = qC1

∑

S∈T ν
0 (μ,η)

z−1∏

r=y

(
[
S(r,z]

r

]!
q

γ−S(r,z]
r −1∏

j=0

[cz − cr − j ]q
)

mS,

for some C1 ∈ Z. Moreover, if S ∈ T ν
0 (μ,η) then Sr

r = μr , for 1≤ r ≤ y.

Proof of Claim 1 When y = 1 this is precisely Proposition 2.5. We are assuming,
however, that y > 1. In this case, the formula for mtν

η
Lλσ follows by setting k = γ in

Proposition 3.18 below (which includes Proposition 2.5 as a special case). Secondly,
observe that rowtν

η
(n+ j) ≥ y, for 1 ≤ j ≤ γ , because η � σ . Consequently, if S ∈

T ν
0 (μ,η) then ηr = Sr

r = μr , for 1≤ r ≤ y. �

Claim 2 Suppose that η is a partition of n such that η⊂ ν. Then, in Sν
Z /Ml+1,

mtν
η
Lλσ ≡ qC2

∑

S∈T ν
0 (σ,η)

y−1∏

r=1

(
[
S

(r,y]
r

]!
q

γ−S
(r,y]
r −1∏

j=0

[cy − cr − j ]q
)

mS (mod Ml+1),

for some C2 ∈ Z. Moreover, if S ∈ T ν
0 (σ, η) then Sr

r = σr , for y ≤ r ≤ z.

Proof of Claim 2 First observe that, by Lemma 3.11 below, mtν
η
Lλσ is a linear com-

bination of terms ms where s↓n � tη . If rows(n+ j) > y for some j with 1≤ j ≤ γ

then ms ∈Ml+1, so we may assume that rows(n + j) ≤ y for 1 ≤ j ≤ γ . Conse-
quently, if mS + Sl+1 appears with non-zero coefficient in mtν

η
Lλσ for some S ∈

T ν
0 (μ,η) then ηr = Sr

r = σr , for y ≤ r ≤ z. Therefore, we may replace σ with
(σ1, . . . , σy) and deduce the claim from Proposition 2.5. Note that if S ∈ T ν

0 (σ, η)

and 1≤ r < y then S
(r,y]
r = S(r,z)

r since Sa
a = σa when y ≤ a ≤ z. �

Claim 3 Suppose that η is a partition of n such that η⊂ ν. Then

mtν
η
Lλμ ≡ qC

∑

S∈T ν
0 (μ,σ,η)

z−1∏

r=1

(
[
S(r,z]

r

]!
q

γ−S(r,z]
r −1∏

j=0

[cz − cr − j ]q
)

mS

(mod [cy − cz]Sν
Z ),

where C ∈ Z and T ν
0 (μ,σ,η)= {S ∈ T ν

0 (μ,η) | S>y
r = 0 for 1≤ r < y}.
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Proof of Claim 3 Proposition 2.5 shows that mtν
η
Lλμ is a linear combination of

terms mS, for S ∈ T ν
0 (μ,η) and, moreover, if S ∈ T ν

0 (μ,σ,η) then the coefficient
of mS is exactly as above. On the other hand, if S ∈ T ν

0 (μ,η) \ T ν
0 (μ,σ,η) then

S
(y,z]
y < γ so, by Proposition 2.5 again, the coefficient of mS in mtν

η
Lλμ is divisible

by [cy − cz]. This proves the claim. �

Armed with these three claims we now return to the proof of Theorem 2.10. Com-
bining Claims 1–3 shows that if t ∈ Std(ν) then, modulo [cy − cz]Sν

Z , mtLλμ =
mtLλσ Lσμ is equal to a linear combination of terms mS where S ∈ T ν

0 (μ,σ,η)

where the coefficient of mS is equal to the product of the coefficients coming
from multiplication by Lλσ (Claim 2) and multiplication by Lσμ (Claim 1). (Fur-
thermore, C = C1 + C2.) The coefficients in Claim 1 determine the polynomi-
als βσμ(q), via Lemma 3.23. Similarly, the coefficients in Claim 2 determine the
polynomials βλσ (q) and those in Claim 3 determine βλμ(q). By Lemma 3.23 the
polynomial βλσ (q)βσμ(q) divides all of the coefficients of the terms appearing in
mtν

η
Lλμ according to Proposition 2.5. Therefore, in the proof of Theorem 2.8 we

can take βλμ(q) = βλσ (q)βσμ(q). Note that, as in the proof of Theorem 2.8, the
terms in [cy − cz]Sν

Z in Claim 3 do not contribute to the image of θλμ because
cz − cy ≡ 0 (mod ep�p(γ ∗)). Therefore, θλμ = θλσ θσμ as required. �

Remark 2.11 As shown in Lemma 3.23, the polynomials βλμ(q) ∈ F [q] are not
necessarily uniquely determined. The proof of Theorem 2.10 really shows that
we can choose these polynomials so that, under the assumptions of the theorem,
βλμ(q) = βλσ (q)βσμ(q). Without this choice of β-polynomials, all we can say is
that θλμ = uθλσ θσμ for some non-zero scalar u ∈ F .

Remark 2.12 The proofs of all of the main theorems so far all begin by using Propo-
sition 2.5 to reduce to the case where a = 1 and z=max{r > 0|λr �= 0} is the length
of λ. As we now explain, it is straightforward to prove these results without making
this reduction. To do this let λ and μ be an (e,p)-Carter–Payne pair with parameters
(a, z, γ ) and define ν to be the partition of n+ γ given by

νi =
{

λi + γ, if i = a,

λi, otherwise.

Then, as in Corollary 2.2, the Specht module Sν has a Specht filtration, as an Hn-
module,

Sν =M0 ⊃M1 ⊃ · · · ⊃Mk ⊃ 0,

such that Mi/Mi+1 ∼= Sτi for some partition τi of n, for 0 ≤ i ≤ k. Moreover, there
exist integers 0 ≤ l < m ≤ k such that Ml/Ml+1 ∼= Sλ and Mm/Mm+1 ∼= Sμ. With-
out loss of generality we can assume that Mm+1 is the submodule of Sν with basis
{mt | t ∈ Stdη(ν) where λ �� η} and similarly for Ml+1. As before, set ci = νi − i, for
a ≤ i ≤ z, and now define

Lλμ =
z−1∏

i=a

γ∏

j=1

(
Ln+j − [ci]

)
.



J Algebr Comb (2010) 32: 417–457 433

Suppose that η is a partition of n such that η⊂ ν and λ �� η. Then the argument used
to prove Claim 2 in the proof of Theorem 2.10 show that in Ml/Mm+1 we have

mtν
η
Lλσ ≡ qC

∑

S∈T ν
0 (σ,η)

z−1∏

r=a

(

[S(r,y]
r ]!q

γ−S
(r,y]
r −1∏

j=0

[cy − cr − j ]q
)

mS (mod Mm+1),

for some C ∈ Z. We can now repeat the arguments of Theorem 2.7 and Theorem 2.8
to show that right multiplication by Lλμ on Ml/Mm+1 induces a non-zero Hn-
module homomorphism from Sλ to Sμ. Moreover, because the coefficients in the
last displayed equation are exactly the same of those appearing in the proof of The-
orem 2.7, it is clear that this construction leads to the same Carter–Payne homomor-
phism as before.

2.6 Jantzen filtrations

In this section we connect the Jantzen filtrations and the Carter–Payne homomor-
phisms constructed in Sect. 2.4. If p = 0 our result says that the image is contained in
the radical of Sμ, which is automatically true, so this result is most interesting when
F is a field of positive characteristic. The key to the proof is the observation that if
q = ζ then we can write Lλμ in two different ways using the element L′λμ defined
below.

The Hecke algebra Hn is defined over the field F with parameter ζ . Let q be an
indeterminate over F and let O = F [q](q) be the localization of F [q] at the maximal
ideal generated by q . Then O is a discrete valuation ring with maximal ideal π = qO,
the polynomials in F [q] with zero constant term. For 0 �= f ∈O define valπ (f )= k

where k is maximal such that f ∈ πk . Let K = F(q) be the field of fractions of O.
We consider F as an O-module by letting q act on F as multiplication by ζ .

Let HO
n be the Hecke algebra of Sn over O with (invertible) parameter q + ζ .

Then Hn
∼=HO

n ⊗O F and HK
n =HO

n ⊗O K is (split) semisimple. Thus (K,O,F )

is a modular system, with parameter q + ζ , for the algebras (HK
n ,HO

n ,Hn).
The algebra HO

n is cellular with cell modules the Specht modules S
μ
O , for μ a

partition of n. We have that S
μ
K = S

μ
O ⊗O K is irreducible and Sμ = S

μ
F = S

μ
O ⊗O F

is the Hn-module defined in Sect. 2.1. As HO
n is cellular, the Specht module S

μ
O

comes equipped with a bilinear form 〈 , 〉O,μ = 〈 , 〉μ. For each positive integer i

define

J i
(
S

μ
O

)= {
x ∈ S

μ
O | 〈x, y〉μ ∈ πi for all y ∈ S

μ
O

}
.

Finally, define J i(Sμ)= (J i(S
μ
O)+ πJ i(S

μ
O))/πJ i(S

μ
O), for i ∈ Z. Then

Sμ = J 0(Sμ
)⊇ J 1(Sμ

)⊇ · · ·
is the Jantzen filtration of Sμ relative to the modular system (K,O,F ).

Suppose that λ and μ form a separated (e,p)-Carter–Payne pair with parameters
(a, z, γ ). By Remark 2.12 we can assume that a = 1, z = max{i | λi �= 0} and we
define ν to be the partition of n+ γ obtained by adding γ nodes to the first row of λ.
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As a slight variation on the definition of Lλμ in Sect. 2.2 set

L′λμ =
z−1∏

i=1

γ−1∏

j=1

(
Ln+j − [ci]

) ·
z∏

i=2

(
Ln+γ − [ci]

)
.

In fact, L′λμ and Lλμ are almost the same since c1 ≡ cz (mod e) because (λ,μ) is a
Carter–Payne pair. In the proof of Theorem 1.3 one of the key observations is that we
can lift these two expressions for Lλμ to two closely related elements in HO

n .
The advantage of this second expression for the element Lλμ is that it contains the

factor
∏z

i=2(Ln+γ − [ci]). Using Lemma 3.11 below this implies the following fact,
which we leave as an exercise for the reader.

Lemma 2.13 Suppose that t ∈ Std(ν) and that rowt(n+ γ ) > 1. Then mtL
′
λμ = 0.

As a consequence, if M1 is the submodule of Sν which appears in the filtration of
Sν described in Lemma 2.2, then M1L

′
λμ = 0.

The Specht module Sν
O also carries an analogous inner product 〈 , 〉ν . The inner

products 〈 , 〉μ and 〈 , 〉ν are determined by the multiplication in Hn and Hn+γ ,
respectively; see, for example, [12, (2.8)]. These inner products are associative in the
sense that 〈xh,y〉ν = 〈x, yh∗〉, for all x, y,∈ Sν

O and h ∈HO
n+γ , where ∗ is the unique

anti-isomorphism of HO
n+γ such that T ∗w = Tw−1 for all w ∈Sn+γ . In particular, if

1 ≤ k ≤ n+ γ then 〈xLk, y〉ν = 〈x, yLk〉ν , so that 〈xLλμ, y〉ν = 〈x, yLλμ〉ν , for all
x, y,∈ Sν

O . Proofs of all of these facts can be found in [12, Chap. 2].
Since tνμ = tν we have the following.

Lemma 2.14 Consider S
μ
O as an Hn-submodule of Sν

O as in Lemma 2.2. Then

〈x, y〉ν = 〈x, y〉μ, for all x, y ∈ S
μ
O .

Recall that we defined the map vale,p just before the statement of Theorem 1.3
in the introduction and that (2.1) defines a polynomial βλμ(q) ∈ F [q] whenever λ

and μ form a Carter–Payne pair.
We can now prove Theorem 1.3 from the introduction.

Proof of Theorem 1.3 We have to show that the image of θλμ is contained in J δ(Sμ),
where δ = vale,p(λa − λz + z − a + γ )− vale,p(γ ). To do this we work in HO

n+γ .

Let LO
λμ and L′Oλμ be the elements of HO

n which are obtained from Lλμ and L′λμ,
respectively, by replacing q with q+ζ . Using the simple identity [c1]q+ζ = [cz]q+ζ +
qcz [c1 − cz]q+ζ , we see that

LO
λμ =

z−1∏

i=1

γ∏

j=1

(
Ln+j − [ci]q+ζ

)= L′Oλμ − qcz [c1 − cz]q+ζ L
′′O
λμ ,
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where L′′Oλμ =
∏z−1

i=2
∏γ

j=1(Ln+j − [ci]q+ζ ) · ∏γ−1
j=1 (Ln+j − [c1]q+ζ ). Therefore,

when we specialize at q = 0,

Lλμ = LO
λμ ⊗O 1= L′Oλμ ⊗O 1= L′λμ

in Hn since c1 ≡ cz (mod e). So multiplication by Lλμ and L′λμ induce the same

Hn-homomorphism Sλ→ Sμ, which may be zero, by the argument of Theorem 2.7.
In the proof of Theorem 2.8, the homomorphism θλμ was defined to be the

specialization of the map mt �→ 1
βλμ(q+ζ )

mtL
O
λμ at q = 0, for t ∈ Stdλ(ν). Set

h= λa−λz+z−a+γ = c1−cz, so that δ = vale,p(h). By assumption, if l = �p(γ ∗)
then h≡ 0 (mod epl). If we write h= h′epl , for some h′ ∈ Z, then

[c1 − cz]q+ζ =
[
h′epl

]

q+ζ
= [

epl
]

q+ζ

[
h′

]

(q+ζ )p
l = [e]pl [

h′
]

(q+ζ )p
l .

Hence, valπ ([h]q+ζ )≥ pl = val e,p(h)= δ.
Recall that LO

λμ = L′Oλμ + [c1 − cz]q+ζ L
′′O
λμ . Suppose that t ∈ Stdλ(ν). By

Lemma 2.14, if x belongs to S
μ
O then

〈
mtL

O
λμ, x

〉

μ
= 〈

mtL
O
λμ, x

〉

ν
= 〈

mtL
′O
λμ, x

〉

ν
− qcz [h]q+ζ

〈
mtL

′′O
λμ , x

〉

ν

= −qcz [h]q+ζ

〈
mtL

′′O
λμ , x

〉

ν
,

where the last equality follows because 〈mtL
′O
λμ, x〉ν = 〈mt, xL′Oλμ〉ν = 0 by Lem-

ma 2.13.
If γ < e then βλμ(q + ζ ) = 1 and the proof is complete. If γ ≥ e it remains to

account for dividing by βλμ(q + ζ ) in the definition of θλμ. Observe that if x ∈ S
μ
O

then x is a linear combination of terms ms with s ∈ Stdμ(ν). If s ∈ Stdμ(ν) then
rows(n+j)= z, for 1≤ j ≤ γ . Therefore, msLn+j = [cz−j+1]ms by Lemma 3.11
below, for example, so that

〈
mtL

′′O
λμ , x

〉

ν
= 〈

mt, xL′′Oλμ

〉

ν

=
z−1∏

i=2

γ−1∏

j=0

qci [cz − ci − j ]q+ζ ·
γ−2∏

j=0

qc1[cz − c1 − j ]q+ζ · 〈mt, x〉ν .

Let β ′λμ(q + ζ ) be the coefficient of 〈mt, x〉 in the last equation. Recall from the
proof of Theorem 2.8 that the polynomial βλμ(q + ζ ) is a product of z − 1 factors
corresponding to the row index i = 1,2, . . . , z−1 above. Noting that c1 ≡ cz (mod e),
we have that

valπ
([γ ]q+ζ β

′
λμ(q + ζ )

)≥ valπ
(
βλμ(q + ζ )

)

by taking X = 0 in Corollary 3.22. This completes the proof. �

It would be interesting to know how tight the bound obtained in Theorem 1.3
is. That is, to determine the maximal δ′ such that the image of θλμ is contained in
J δ′(Sμ).
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If γ < e then βλμ(q)= 1. Hence, as a special case of the Theorem we obtain the
following.

Corollary 2.15 Suppose that p ≥ 0, γ < e and that λ and μ form an (e,p)-Carter–
Payne pair with parameters (a, z, γ ) such that λr − λr+1 ≥ γ , whenever a ≤ r ≤ z.
Then Im θλμ ⊆ J δ(Sμ), where δ = val e,p(λa − λz + z− a + γ ).

When ζ = 1 and γ = 1 this result has already been proved by Ellers and Murray [8,
Theorem 7.1] without assuming that λr − λr+1 ≥ γ , for a ≤ r ≤ z. The proof of
Theorem 1.3 was inspired by the argument of Ellers and Murray.

We note that when ζ = 1 we can replace the modular system (K,O,F ) used above
with (Q(p),Z(p),Z/pZ) and the valuation map valπ with the usual p-adic valuation
map valp . With these choices, we obtain the ‘natural’ Jantzen filtration of Sμ and the
argument above shows that we can take δ = valp(c1 − cz + γ ).

2.7 The (e,p)-Carter–Payne theorem

The techniques used in this paper to prove Theorems 2.7 and 2.8 can be used to prove
the existence of homomorphisms between other pairs of Specht modules. As we now
sketch, it is likely that a complete proof of Theorem 1.1 could be given using these
ideas.

Fix a pair of partitions λ and μ of n which form a Carter–Payne pair with parame-
ters (a, z, γ ). As in the last section we may assume that a = 1 and that z is the length
of λ. Let ν be the partition of n+ γ given by

νr =
{

λr + γ, r = 1,

λr , otherwise.

Write ν = (ν
b1
1 , ν

b2
2 , . . . , ν

bs
s ) where ν1 > ν2 > · · · > νs > 0, and set Bi =∑i

k=1 bk

for 1≤ i ≤ s. Then the nodes that can be removed from [[ν]] to leave the diagram of a
partition are at the ends of the rows B1,B2, . . . ,Bs . Set cr = νr − Br , for 1≤ r ≤ s,
so that cr is the content of the r th removable node of ν:

[[v]] = .

Now define

Lλμ =
s−1∏

r=1

γ∏

j=1

(
Ln+j − [cr ]

)
.

Arguing as in the proof of Theorem 2.7 or Theorem 2.8 it is possible to show that
right multiplication by Lλμ induces a Hn-homomorphism Sλ→ Sμ. However, it is
not clear that this homomorphism is non-zero.
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If λ and μ form an (e,p)-Carter–Payne pair with parameters (a, z, γ ) where γ = 1
then using Corollary 3.17 below, or by following Ellers and Murray [7], it is possible
to show that right multiplication by Lλμ induces a non-zero Hn-homomorphism from
Sλ to Sμ.

Conjecture 2.16 Suppose that γ < e. Then right multiplication by Lλμ induces a
non-zero Hn-homomorphism from Sλ to Sμ.

By the argument used to prove Theorem 1.3, if this conjecture is true then the
image of this homomorphism is contained in J δ(Sμ), where δ = val e,p(λa − λz +
z− a + γ ).

We end with two examples. The calculations in both of these examples use the
Garnir relations for the Murphy basis (see [12, Sect. 3.2]). This is the only place in
this paper where the Garnir relations play a role.

Example 2.17 Suppose that λ = (4,4,3,2), that μ = (6,4,3) and that e = 7. If we
take t = tνλ and Lλμ = (L15 − [5])(L15 − [2])L15(L14 − [5])(L14 − [2])L14 then
direct computation shows that

mtLλμ = q−5(q3 − q − 1
)[2][2][4] − q−5|[2][2][2][4]

− q−4[2][2][4] + q−6[2][2][4]

+ q−6[2][2][4] − q−9[2][2][3][4]

+ q−9[2][2][4][5] − q−11[2][2][4][5]

+ q−4[2][2][3][4][5] .

Further, if t= tνη for some ν �= η then mtLλμ has a factor of [7]. Thus if e = 7 (and
p is arbitrary) there exists a non-zero homomorphism θ : Sλ→ Sμ.

Note that the coefficient of the first tableau is not a product of Gaussian poly-
nomials multiplied by a power of q . This indicates that the polynomial coefficients
appearing in a general version of Proposition 2.5 may be difficult to describe.

Example 2.18 Finally let us consider the case that λ = (4,3,3) and μ = (7,3). If
we take t= tνλ, and Lλμ = (L10 − [6])(L9 − [6])(L8 − [6]) then direct computation
shows that

mtLλμ = −q6[2][3] + q5[2]

− q3[2] + [2][2] .
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If t= tνη for some η �= λ then mtLλμ has a factor of [6]. So if e = 2 and p = 3 then
(after dividing by [2]), there is a non-zero homomorphism between Sλ and Sμ, as
predicted by the Carter–Payne theorem. However, we have shown that if e= 3 and p

is arbitrary then there is a non-zero homomorphism. These maps are not Carter–Payne
homomorphisms except when p = 2, although they are described by Parker [15].

It is interesting to note that in [9] the authors show the existence of such a homo-
morphism in the case when e= p = 3; that is, when Hn = F3S10.

3 Jucys–Murphy elements acting on almost initial tableaux

In this section we complete the proof of our main results in Sects. 2.4–2.6 by proving
some very precise formulas which describe how the Jucys–Murphy elements act on
certain elements of the Specht modules. The results in this section are valid for an
arbitrary Hecke algebra Hn+γ =HF

n+γ defined over an ring F with invertible para-

meter q . Nonetheless, throughout we work with the generic Hecke algebra H Z
n+γ as

we prefer to think of [k] = [k]q as a polynomial in q . The results in this section are
independent of the results in Sects. 2.4–2.6.

Throughout this section we fix integers n,γ > 0 and an arbitrary partition ν

of n+ γ . (In this section the only result which requires the assumption that
νi − νi+1 ≥ γ , for 1≤ i < z, is Proposition 3.18.) Let z = max{r | νr > 0}. Recall
that {Tw |w ∈Sn+γ } is a basis of H Z

n+γ .

3.1 Semistandard basis elements

We now fix notation that will be used extensively for the rest of the paper. Suppose
that i and j are integers such that 1≤ i ≤ j ≤ n+ γ . Define

Ti,j =
j−1∏

l=i

Tl

and for i < k ≤ j define

Ti,j\k =
k−2∏

l=i

Tl ·
j−1∏

l=k

Tl.

Our convention will always be to read products from left to right, so that

Ti,j = TiTi+1 · · ·Tj−1 and Ti,j\k = TiTi+1 · · ·Tk−2Tk · · ·Tj−1.

In particular, Ti,i = 1, Ti = Ti,i+1, Ti+1,j = Ti,j\i+1 and Ti,j−1 = Ti,j\j . The empty
product will be taken to be the identity. Recall that for 1≤ k ≤ n+ γ we defined the
Jucys–Murphy element Lk . Similarly, we set L′1 = 1 and

L′k = q1−kTk−1 · · ·T1T1,k, for 2≤ k ≤ n.
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The reader can check that L′k = (q − 1)Lk + 1. Consequently, the elements Lk and
L′k are almost interchangeable.

Let Sν be the H Z
n+γ -module corresponding to the partition ν, so that Sν has basis

{mt | t ∈ Std(ν)}. If s ∈ RStd(ν) and 1≤ k ≤ n then the content of k in s is cs(k)=
c− r , if s(r, c)= k.

Lemma 3.1 Suppose that 1≤ i ≤ n+ γ − 1 and that s ∈ RStd(ν). Then

msTi =

⎧
⎪⎨

⎪⎩

ms(i,i+1), i lies above i + 1 in s,

qms, i and i + 1 lie in the same row of s,

qms(i,i+1) + (q − 1)ms, otherwise.

Note that if s is standard then the tableau s(i, i + 1) is also standard unless i and
i + 1 are in the same column.

Proof The result holds for the row-standard basis, {mνTd(s) | s ∈ RStd(ν)}, of the
permutation module Mν =mνH

Z
n+γ by [12, Corollary 3.4]. As ms is just the image

of mνTd(s) under the natural projection map Mν→ Sν the result follows. �

Lemma 3.2 Suppose that 1≤ k ≤ n. Then

mtν Lk =
[
ctν (k)

]
mtν and mtν L′k = qctν (k)mtν .

Proof The first identity follows from [12, Theorem 3.32]. The second identity follows
from the first using the fact that L′k = (q − 1)Lk + 1. �

Lemma 3.3 Suppose that 1≤ i ≤ i′ ≤ n+ γ − 1 and 1≤ j, j ′ ≤ n+ γ . Then

(a) LjLj ′ = Lj ′Lj

(b) TiLj = LjTi if i �= j, j − 1
(c) TiLi = Li+1Ti −L′i+1
(d) TiLi+1 = L′i+1 +LiTi

(e) Ti(Li +Li+1)= (Li +Li+1)Ti

(f) TiLiLi+1 = LiLi+1Ti

(g) Ti,i′Li′ = LiTi,i′ +∑i′
x=i+1 L′xTi,i′\x .

Proof All but the last identity are given in [12, Proposition 3.26 and Exercise 3.6].
Part (g) is readily proved by induction on i′ − i. �

Suppose that α is a partition and that β is a composition of an integer m and let S
be an α-tableau of type β . Recall from Sect. 2.4 that

mS =
∑

s∈RStd(α)

β(s)=S

ms.

By definition mS ∈ Sα . We need a different description of mS.
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Define Ṡ to be the unique row-standard tableau of type 1m such that β(Ṡ) = S
and the numbers in each row of tβ appear in row order in Ṡ. Then d(Ṡ) is the unique
element of minimal length in the double coset Sαd(Ṡ)Sβ by [12, Proposition 4.4],
and by [12, (4.6)]

mS =mṠ

∑

w∈DS

Tw,

where DS is the set of all w ∈Sβ such that if i < j lie in the same row of Ṡw then
(i)w < (j)w. In fact, by [12, Proposition 4.4] again, DS =Dσ ∩Sβ where the com-
position σ is given by Sσ = d(Ṡ)−1Sαd(Ṡ) ∩Sβ and Dσ = {d(s)|s ∈ RStd(σ )} is
the set of distinguished (or minimal length) right coset representatives of Sσ in Sn.
Write β = (β1, . . . , βb). Then Sβ = Sβ1 × · · · ×Sβb

and every element w of Sβ

can be written uniquely as a product of commuting permutations w = w1 · · ·wb

where, abusing notation slightly, wi ∈ Sβi
for 1 ≤ i ≤ b. Let DS(i) = DS ∩ Sβi

for 1≤ i ≤ b. Define DS =DS(1) · · ·DS(b), where DS(i)=∑
w∈DS(i) Tw . Then we

have

mS =mṠDS =mtαTd(Ṡ)DS. (3.1)

Example 3.4 Suppose that α= (7,2), β= (4,3,2) and S= ∈ RStd(α,β).

Then Ṡ= and

mS =mtαT7,9T6,8T5T4(1+ T3 + T3T2 + T3T2T1)(1+ T6 + T6T5).

The following technical result is needed later to prove Corollary 3.12.

Lemma 3.5 Let a, b, c and g are integers with 1 ≤ a < c < b ≤ m and g ∈
{1, . . . ,m} \ {a, . . . , b} and let β = (1a−1, b−a+1,1m−b), a composition of m. Sup-
pose α is a partition of m and that t is a row-standard α-tableau such that a, . . . , b

are in row order in t, rowt(c − 1) < rowt(c) and i′ = rowt(g) < i = rowt(c). Let
s= t(c, g), T= β(t) and S= β(s). Then

ms

(
c+l∑

j=c

Tc,j

)

DT(a)= qs
[
Sa

i′
]
mS,

where l = Sa
i and s = Sa

(i′,i).

Proof We prove the lemma using some standard properties of the distinguished coset
representatives of Coxeter groups. To exploit these results it is convenient to introduce
some new notation which is only needed for the proof of this result.

If σ is a composition of m let Jσ = {1≤ i < m | rowtσ (i)= rowtσ (i + 1)}. Then
Sσ is generated by {(i, i + 1) | i ∈ Jσ } and the map σ �→ Jσ defines a bijection
between the set of compositions of m and the subsets of �m = {1,2, . . . ,m− 1}. If
J = Jσ ⊆�m set mJ =mσ , SJ =Sσ , DJ =Dσ and DJ =Dσ . If J ⊆K ⊆�m set
DK

J =DJ ∩SK . Then DK
J is a complete set of coset representatives for SJ in SK
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and, moreover, the following two properties hold:

(D1) Suppose that J ⊆K ⊆A⊆�m. Then DA
J =DK

J DA
K .

(D2) Suppose that J,K,L⊆�m with J ⊆K and |k− l|> 1 for all k ∈K and l ∈ L.
Then DK

J =DK∪L
J∪L .

Property (D1) is well-known and easy to prove: see, for example, [1, Lemma 2.1].
The second statement (D2) is trivial because the assumptions imply that SK∪L =
SK ×SL and SJ∪L =SJ ×SL.

Let A= {a, a + 1, . . . , b− 1} and let E = {e ∈A | rowt(e)= rowt(e+ 1)}. Then
DT(a)=DT =DA

E . Similarly, let

E′ = {
e ∈A | rowṠ(e)= rowṠ(e+ 1)

}

= {
e ∈E | rowt(e) /∈ (

i′, i
)}∪ {

e+ 1 | e ∈E and rowt(e) ∈ [i′, i)
} \ {c}.

Then DS(a) = DS = DA
E′ . To prove the lemma we consider various subsets of A

which depend on E and E′. Let

C = {
e ∈E ∩E′ | rowt(e)= i

}
and C′ = {

e ∈E ∩E′ | rowt(e)= i′
}

and let L,L′ ⊆A be the subsets of A such that

E = C � {c} �L and E′ = C′ � {c′} �L′ (disjoint unions),

where c′ ∈A is maximal such that rowt(c
′)= i′. Note that c′ ≤ c and Sa

(i′,i) = c− c′.
In particular, c= c′ if and only if s = Sa

(i′,i) = 0.
Armed with these definitions we can now prove the lemma. We have

ms

(
c+l∑

j=c

Tc,j

)

DT(a) = mṠTc′,cD
C∪{c}
C DA

E =mṠTc′,cD
E
C∪LDA

E

= mṠTc′,cD
A
C∪L,

where the last two equalities follow by (D2) and (D1), respectively. Let d =
(c′, c′ + 1) · · · (c − 1, c) so that Tc′,c = Td . Then SC∪L = d−1SC′∪L′d and d ∈
DC′∪L′ ∩ D−1

C∪L so that mC′∪L′Td = TdmC∪L. (In fact, DA
C′∪L′ = dDA

C∪L by
[1, Lemma 2.4], however, this is not enough for our purposes because, in general,
DA

C′∪L′ �= TdDA
C∪L.) Now, mṠTw = q�(w)mṠ for all w ∈SC′∪L′ , so mṠ = hmC′∪L′

for some h ∈H Z
m . Consequently, continuing the last displayed equation,

ms

(
c+l∑

j=c

Tc,j

)

DT(a) = hmC′∪L′TdDA
C∪L = hTdmC∪LDA

C∪L

= hTdmA = q�(d)hmA = q�(d)hmC′∪L′DA
C′∪L′ .
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Observe that �(d)= c− c′ = Sa
(i′,i) = s. Therefore, using (D1) and (D2) again,

ms

(
c+l∑

j=c

Tc,j

)

DT(a) = qsmṠDE′
C′∪L′D

A
E′ = qsmṠD

C′∪{c′}
C′ DA

E′

= qs
[
Sa

i′
]
mṠDA

E′,

where the last equality follows because mṠTw = q�(w)mṠ for all w ∈ SC′∪{c′} by
Lemma 3.1. We have already observed that DS =DA

E′ , so an application of (3.1) now
completes the proof. �

Example 3.6 Suppose that a = 4, b= 9, c= 8 and that g = 3. Then

t= �⇒ s= , T= and S= .

Abusing notation and identifying ms with s and S with mS, we have

(1+ T8)DT(4)= q2[3] ,

where DT(4)=∑
w∈DT

Tw . By definition, DT(4)= DT is the set of minimal length
coset representatives of S{4,5} ×S{6,7} ×S{8,9} in S{4,...,9}.

For any composition σ = (σ1, σ2, . . .) let σk = σ1 + · · · + σk , for k ≥ 0.

Lemma 3.7 Suppose that η⊆ ν is a partition of n and set ξ = (ν1−η1, ν2−η2, . . .),
a composition of γ . Then

mtν
η
=mtν

z−1∏

i=0

ξi−1∏

k=0

Tνz−i−k,n+ξz−i−k.

Proof For 0≤ j ≤ γ , let t(j) be the ν-tableau such that the entries n+j+1, . . . , n+
γ appear in the same position that they appear in tνη and the entries 1,2, . . . , n+ j

are in row order. Consider t(γ − 1). Suppose that n + γ appears (at the end of)
row r in tνη . Then mt(γ−1) = mtν Tνr · · ·Tn+γ−1 = mtν Tνr ,n+γ by Lemma 3.1. The
general case now follows by downwards induction on j using essentially the same
observations. �

Similarly, it is straightforward to check the following lemma.

Lemma 3.8 Suppose t ∈ RStd(ν) and let η= Shape(t↓n). Then

mt =mtν Td(tν
η)Tw

for a unique permutation w ∈Sn ×Sγ .
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We are now ready to start proving the main results of this section. Recall that if
η ⊆ ν is a partition of n then the almost initial tableau tνη was defined in Sect. 2.4. If
1≤ r ≤ z then define c

η
r = ηr − r .

Lemma 3.9 Suppose that t= tνη is an almost initial tableau such that rowt(n+1) �= z

and let j ≥ 1 be maximal such that r = rowt(n+ j) < z. For i ≥ 1 set ξi = νi − ηi

and if 1≤ g ≤ n then let c(g)= c
η
m where rowt(g)=m. Then

mtLn+j =
[
ct(n+ j)

]
mt + qξr−1

n∑

g=νr−j+1

qc(g)mt(g,n+j).

Proof Using in turn, Lemma 3.7, Lemma 3.3(g) and Lemma 3.2, we find

mtLn+j =
(

mtν

r−1∏

i=0

ξr−i−1∏

k=0

Tνr−i−k,n+ξ r−i−k

)

Ln+j

= mtν Tνr ,n+jLn+j

(
ξr−1∏

k=1

Tνr−k,n+j−k

)(
r−1∏

i=1

ξr−i−1∏

k=0

Tνr−i−k,n+ξ r−i−k

)

= mtν

(

Lνr Tνr ,n+j +
n+j∑

x=νr+1

L′xTνr ,n+j\x

)(
ξr−1∏

k=1

Tνr−k,n+j−k

)

×
(

r−1∏

i=1

ξr−i−1∏

k=0

Tνr−i−k,n+ξ r−i−k

)

= [
ct(n+ j)

]
mt +mtν

n+j∑

x=νr+1

qctν (x)Tνr ,n+j\x

(
ξr−1∏

k=1

Tνr−k,n+j−k

)

×
(

r−1∏

i=1

ξr−i−1∏

k=0

Tνr−i−k,n+ξ r−i−k

)

.

Now fix x with νr + 1≤ x ≤ n+ j . To complete the proof, we show that

qctν (x)mtν Tνr ,n+j\x

(
ξr−1∏

k=1

Tνr−k,n+j−k

)(
r−1∏

i=1

ξr−i−1∏

k=0

Tνr−i−k,n+ξ r−i−k

)

= qξr−1qc(x−j)mt(x−j,n+j).

Note that x lies in the same position of tν that x − j lies in t. Let rowtν (x) = m.
Therefore

mtν Tνr ,n+j\x = mtν (x−1,x−2,...,νr )Tx,n+j

= qc(x−j)−ctν (x)mtν (x−1,x−2,...,νr )Tνm,n+j

= qc(x−j)−ctν (x)mt′ ,
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where t′ = tν(x − 1, x − 2, . . . , νr )(n+ j,n+ j − 1, . . . , νm). Using induction on ε,
where 1≤ ε ≤ ξr , it follows that

mt′

(
ε−1∏

k=1

Tνr−k,n+j−k

)

=mt′

(
ε−1∏

k=1

qTνr−k,n+j−k\x−k

)

.

Applying a second inductive argument, we find

mt′

(
ξr−1∏

k=1

Tνr−k,n+j−k\x−k

)(
r−1∏

i=1

ξr−i−1∏

k=0

Tνr−i−k,n+ξ r−i−k

)

=mt(x−j,n+j).

The result follows. �

Suppose 1 ≤ u ≤ v ≤ n and that π ∈ Sn. Let D(u, v,π) be the set of tu-
ples p = (p0,p1, . . . , pε) such that u − 1 = p0 < p1 < p2 < · · · < pε = v and
(p1)π > (p2)π > · · · > (pε)π . For each p ∈ D(u, v,π) let p̌ be the permutation
(p1,p1 − 1, . . . , p0 + 1)(p2,p2 − 1, . . . , p1 + 1) · · · (pε,pε − 1, . . . , pε−1 + 1). Let
�(p)= ε − 1 and

b(p)=
ε−1∑

i=0

#
{
j | pi < j < pi+1 and (j)π > (pi+1)π

}
.

Lemma 3.10 Suppose 1≤ u≤ v ≤ n and that π ∈Sn. Then

Tu,vTπ =
∑

p∈D(u,v,π)

qb(p)(q − 1)�(p)Tp̌π .

Proof We use induction on v−u, the case u= v being trivial. Assume v−u≥ 1 and
that the lemma holds for v − u− 1. By induction,

Tu,vTπ =
∑

p∈D(u+1,v,π)

qb(p)(q − 1)�(p)TuTp̌π .

If p= (p0,p1, . . . , pε) ∈D(u+ 1, v,π) then

TuTp̌π =
{

Tp̌′π , (u)π < (p1)π,

qTp̌′π + (q − 1)Tp̌′′π , (u)π > (p1)π,

where p′ = (u − 1,p1, . . . , pε) and p′′ = (u − 1,p0,p1, . . . , pε). The result fol-
lows. �

3.2 Bumping tableaux

In this section we prove a series of ‘bumping lemmas’ which culminate in the proof
of Proposition 3.18. This result contains Proposition 2.5 as a special case, so it com-
pletes the proof of Theorem 2.7. Throughout this section, ν is an arbitrary partition
of n+ γ .
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Suppose that t ∈ RStd(ν). Suppose that 1≤ j ≤ n+ γ and that rowt(j)= r . Say
that s is obtained from t by bumping j down t if there exists ε ≥ 1 and integers
r = r0 < r1 < · · · < rε ≤ z and j > d1 > · · · > dε ≥ 1 such that rowt(di) = ri for
1≤ i ≤ ε and s= t(j, d1, . . . , dε). If s is such a tableau, write s≺j t. Define �t(s)=
ε − 1 and

bs
t = cη

rε
− ε +

ε−1∑

i=0

#
{
j | ri ≤ rowt(j) < ri+1 and j > di+1

}

= cη
rε
− ε +

ε−1∑

i=0

s
>di+1
[ri ,ri+1)

.

The notation s
>di+1
[ri ,ri+1)

was introduced in Sect. 2.2.

Lemma 3.11 Suppose t ∈ RStd(ν) is such that η = Shape(t↓n) �= μ and the en-
tries n + 1, n + 2, . . . , n + γ are in row order. Choose j maximal such that
r = rowt(n+ j) < z. Then

mt

(
Ln+j − [cr ]

)=
∑

s≺n+j t

qbs
t (q − 1)�t(s)ms.

Proof Following Lemma 3.8, let π be the permutation such that mt =mtν
η
Tπ . Since

π ∈ Sn we have that mtLn+j = mtν
η
Ln+j Tπ . We apply Lemma 3.9, keeping the

notation of that lemma, except that we set V = νr − j + 1. For V ≤ g ≤ n, let σg =
Shape(t(g,n+ j)↓n). Then

mt

(
Ln+j − [cr ]

) = mtν
η

(
Ln+j − [cr ]

)
Tπ

= qξr−1
n∑

g=V

qc(g)mt(g,n+j)Tπ

= qξr−1
n∑

g=V

qc(g)mtν
σg

TV,gTπ

= qξr−1
n∑

g=V

qc(g)
∑

p∈D(V ,g,π)

qb(p)(q − 1)�(p)mtν
σg

Tp̌π

by Lemma 3.10. Now notice that there is a bijection

{s | s≺n+j t} ∼←→ {
(g,p) | V ≤ g ≤ n and p ∈D(V ,g,π)

}

given as follows. For each pair (g,p) as above, let d= (d1, . . . , dε) where di = (pi)π

for 1≤ i < ε and dε = (g)π . By construction, n+ j > d1 > · · ·> dε and if 1≤ i <

j ≤ ε then (pi)π > (pj )π and so rowt(i) > rowt(j). Thus s= t(n+ j, d1, . . . , dε)
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is formed by bumping n+ j down t. Under this correspondence, since p̌π ∈Sn, in
order to see that

mtν
σg

Tp̌π =mt(n+j,d1,...,dε)

it is enough to observe that the permutations d(tνσg
)p̌π and (n+ j, d1, . . . , dε) agree.

It remains to check that

qξr−1qc(g)qb(p)(q − 1)�(p) = qbs
t (q − 1)�t(s),

which again follows from the definitions. �

Now suppose that T is a ν-tableau of arbitrary type which contains an entry equal
to k in row r . We generalize the notion of bumping by saying that a tableau U is
obtained from T by bumping k from row r if there exist an integer ε ≥ 1 and integers
r = r0 < r1 < · · ·< rε ≤ z and k > d1 > · · ·> dε such that for 1≤ i ≤ ε, row ri of T
contains an entry equal to di and U is obtained by repeatedly exchanging k in row ri
with di+1 in row ri+1. If U is obtained from T in this way, write U≺k,r T. We suppress

r if T contains only one entry equal to k. Define �T(U)= ε − 1, f U
T =

∏�T(U)
i=0 [Udi+1

ri ]
and

bU
T = cη

rε
+

ε−1∑

i=0

(
U

>di+1
ri +U

≥di+1
(ri ,ri+1)

)
.

This agrees with the previous definition of bU
T when T is a tableau of type (1n+γ ).

Define a ν-tableau T to be basic if it is a semistandard tableau of type η+ 1γ for
some partition η of n such that η⊆ ν and the entries z+1, z+2, . . . , z+γ are in row
order. Note that for 1≤ j ≤ γ , the position of z+ j in T is the same as the position
of n+ j in Ṫ.

Corollary 3.12 Suppose that T is a basic tableau of type η+ 1γ such that η �= μ. Let
j be maximal such that r = rowT(z+ j) < z. Then

mT
(
Ln+j − [cr ]

)=
∑

U≺n+j T

qbU
T (q − 1)�T(U)f U

T mU.

Proof Let t = Ṫ = tνη, so that mT = mtDT by (3.1). Keeping the notation of
Lemma 3.11 we have

mT
(
Ln+j − [cr ]

) = mt

(
Ln+j − [cr ]

)
DT

=
∑

s≺n+j t

qbs
t (q − 1)�t(s)msDT.

Now apply Lemma 3.5 and the definitions. �

Lemma 3.13 Suppose that T is a basic tableau of type η+ 1γ such that z+ j lies in
row z and that c ∈ Z. Then mT(Ln+j − [c])= qc[cz − c− γ + j ]mT.
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Proof It follows from Lemma 3.2 and the proof of Lemma 3.11 that mT(Ln+j −
[c])= ([cz − γ + j ] − [c])mT = qc[cz − c− γ + j ]mT. �

Before generalizing the previous results to bumping tableaux we take a break and
prove the following useful Gaussian integer identity.

Lemma 3.14 Suppose that v ≥ r ≥ 0 and that Cx,Ux ∈ Z, for 1≤ x ≤ v. Then

v∑

x=r+1

(
x−1∏

y=1

qUy [Cy]
)

[Ux]
(

v∏

y=x+1

[Cy +Uy]
)

+
v∏

y=r+1

qUy [Cy] =
v∏

y=r+1

[Cy +Uy].

Proof The integer r does not play an essential role so we can, and do, assume that
r = 0. We claim that for 1≤m≤ v we have

v∑

x=m

(
x−1∏

y=1

qUy [Cy]
)

[Ux]
(

v∏

y=x+1

[Cy +Uy]
)

+
v∏

y=1

qUy [Cy]

=
m−1∏

y=1

qUy [Cy] ·
v∏

y=m

[Cy +Uy].

The lemma follows directly from the claim. To prove the claim, we use downwards
induction on m. If m= v then the equation gives

(
v−1∏

y=1

qUy [Cy]
)

[Uv] +
v∏

y=1

qUy [Cy] =
(

v−1∏

y=1

qUy [Cy]
)

[Cy +Uy].

Now suppose 1≤m < v and the claim holds for m+ 1. Then

v∑

x=m

(
x−1∏

y=1

qUy [Cy]
)

[Ux]
(

v∏

y=x+1

[Cy +Uy]
)

+
v∏

y=1

qUy [Cy]

=
(

m−1∏

y=1

qUy [Cy]
)

[Um]
(

v∏

y=m+1

[Cy +Uy]
)

+
m∏

y=1

qUy [Cy] ·
v∏

y=m+1

[Cy +Uy]

=
m−1∏

y=1

qUy [Cy] ·
v∏

y=m

[Cy +Uy].

This completes the proof of the claim and hence the lemma. �

Suppose that T is a ν-tableau of arbitrary type which contains an entry equal to
k in row r . We say that a tableau U is obtained by weakly bumping k from row r

into row z if there exist an integer ε ≥ 1 and integers r = r0 < r1 < · · ·< rε = z and
d1, d2, . . . , dε such that for 1 ≤ i ≤ ε, we have k > di and row ri of T contains an
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entry equal to di , and U is obtained by repeatedly exchanging k in row ri with di+1 in
row ri+1. We write U≺w

k,r T. Once again, we suppress r if T contains only one entry
equal to k.

Remark 3.15 The differences between bumping k from row r and weakly bumping k

from row r into row z are that, when U≺w
k,r T, we do not insist that d1 > d2 > · · ·> dε

but we do require that rε = z.

If U≺w
k,r T then the integers di, ri above are not necessarily unique. Nonetheless,

there is a unique sequence aU
T = (ar+1, . . . , az); namely, if r < i ≤ z, define

ai =
{

j, if U
j
i = T

j
i − 1 for some j,

ai+1, otherwise.
(3.2)

(In other words, U is obtained from T by moving an entry labeled k from row r to
row z, then an entry labeled az from row z to row z − 1 and so on, until an entry
labeled ar+1 is moved from row r + 1 into row r .) For r ≤ i ≤ z− 1, define

gU
T (i)=

⎧
⎪⎪⎨

⎪⎪⎩

[cz − ci − γ + j + U
ai+1
i ], if ai = ai+1,

[UaU
i+1

i ], if ai < ai+1 or i = r,

qcz−ci−γ+j [Uai+1
i ], if ai > ai+1.

Set gU
T = gU

T (r) · · ·gU
T (z− 1) and if r ≤ x ≤ y ≤ z, let bT

U(x, y)=∑y−1
i=x U

>ai+1
i .

Lemma 3.16 Suppose T is a basic tableau of type η+ 1γ such that η �= μ. Let j be
maximal such that r = rowT(z+ j) < z. Then

mT

z−1∏

i=r

(
Ln+j − [ci]

)= qcr+1+···+cz−γ+j
∑

U≺w
z+j T

qbT
U(r,z)gU

T mU.

Proof We use induction on z− r combined with Corollary 3.12. If r = z− 1 then the
result follows from Corollary 3.12. Now suppose that r < z− 1 and that Lemma 3.16
holds for r < r ′ ≤ z. Let Ln+j =∏z−1

i=r (Ln+j −[ci]). Then by Corollary 3.12 and in-
duction, it is clear that mT Ln+j is a linear combination of terms mU where U ≺w

z+j T.

For the remainder of this proof fix a tableau U such that U ≺w
z+j T and let a= aU

T
be the sequence defined in (3.2) above. Set az+1 =∞ and let v ≥ r + 1 be minimal
such that av < av+1. Define integers r = r0 < r1 < r2 < · · ·< rs = v to be the points
at which arσ > arσ+1, for 1≤ σ < s. Then

ar0+1 = · · · = ar1 > ar1+1 = · · · = ar2 > · · ·> ars−1+1 = · · · = ars ,

and ars < ars+1. Finally, let R =RU
T = {rσ | 1≤ σ ≤ s}.

Suppose that r + 1 ≤ x ≤ v. Then rε−1 < x ≤ rε for some ε = ε(x), where
1 ≤ ε ≤ s. Define integers r ′0, r ′1, . . . , r ′ε and d1, . . . , dε by setting dσ = ar+σ , for
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1 ≤ σ ≤ ε, and r ′σ = rσ , for 0 ≤ σ < ε, and put r ′ε = x. Now define V(x) to be
the tableau obtained from U by repeatedly exchanging n + j in row r ′σ with dσ+1
in row r ′σ+1. Then the set of tableaux {V | U ≺w

n+l V ≺n+l T} is precisely the set
{V(x) | r + 1≤ x ≤ v}.

For this paragraph fix x with r+1≤ x ≤ v. For convenience we set Cx = cz−cx−
γ + j and Ux = U

ax+1
x . Recall that c

η
x = ηx − x, that is, c

η
x = cx for r + 1≤ x < z and

c
η
z = cz−γ +j . Then, by Corollary 3.12, the coefficient of mV(x) in mT(Ln+j −[cr ])

is

qb
V(x)
T (q − 1)ε−1f

V(x)
T = qc

η
x+bx

r (U,T)(q − 1)ε−1
x−1∏

y=r+1
y /∈R

qUy ·
ε−1∏

σ=1

[Urσ ].

If x �= z then, by induction, the coefficient of mU in mV(x)

∏z−1
i=x (Ln+j − [ci]) is

qcx+1+···+cz−γ+j+bT
U(x,z)[Ux]

z−1∏

τ=x+1

gU
T (τ ).

Finally, by Lemma 3.13,

mU

x−1∏

i=r+1

(
Ln+j − [ci]

)= qcr+1+···+cx−1

x−1∏

y=r+1

[Cy]mU.

As already noted, {V | U ≺w
n+l V ≺n+l T} = {V(x) | 1 ≤ x ≤ v}. Assume now

that v �= z; the case v = z is similar but contains some technical differences
which we leave to the reader. Collecting the terms above, the coefficient of
qcr+1+···+cz−γ+j+bT

U(r,z)mU in mT Ln+j is

v∑

x=r+1

(q − 1)ε(x)−1[Ux]
x−1∏

y=r+1
y /∈R

qUy ·
ε(x)−1∏

σ=1

[Urσ ] ·
z−1∏

τ=x+1

gU
T (τ ) ·

x−1∏

y=r+1

[Cy]

=
z−1∏

y=v+1

gU
T (y) ·

{
v∑

x=r+1

[Ux]
x−1∏

y=r+1
y /∈R

qUy [Cy] ·
ε(x)−1∏

σ=1

(
qCrσ − 1

)[Urσ ]

·
v∏

τ=x+1

gU
T (τ )

}

,

where the last equation follows by rearranging the terms using the identity
(q − 1)[C] = qC − 1, for any C ∈ Z. For 1≤ x ≤ v set

h(x)= [Ux]
x−1∏

y=r+1
y /∈R

qUy [Cy] ·
ε(x)−1∏

σ=1

(
qCrσ − 1

)[Urσ ] ·
v∏

y=x+1

gU
T (y).



450 J Algebr Comb (2010) 32: 417–457

To complete the proof of the lemma we need to show that
∑v

x=r+1 h(x) =
∏v

x=r gU
T (x). Hence, it is enough to establish the following claim and then set ε = 1:

Claim Suppose that 1≤ ε ≤ s. Then

v∑

x=rε−1+1

h(x)=
rε−1∏

y=r+1
y /∈R

qUy [Cy] ·
ε−1∏

σ=1

(
qCrσ − 1

)[Urσ ] ·
v∏

τ=rε−1+1

gU
T (τ )·

We prove the claim by downwards induction on ε. If ε = s then ε(x) = s, for
x = rs−1 + 1, . . . , rs = v, so

v∑

x=rs−1+1

h(x)=
v∑

x=rs−1+1

[Ux]
x−1∏

y=r+1
y /∈R

qUy [Cy] ·
s∏

σ=1

(
qCrσ − 1

)[Urσ ] ·
v∏

τ=x+1

gU
T (τ ).

Consulting the definitions reveals that for r + 1≤ y ≤ v we have

gU
T (y)=

⎧
⎪⎨

⎪⎩

[Uy], if y = v,

qCy [Uy], if v �= y ∈R,

[Cy +Uy], if y /∈R.

Therefore,

v∑

x=rs−1+1

h(x) = [Uv] ·
rε−1∏

y=r+1
y /∈R

qUy [Cy] ·
s−1∏

σ=1

(
qCrσ − 1

)
{

v−1∏

y=rs−1+1

qUy [Cy]

+
v−1∑

x=rs−1+1

x−1∏

y=rs−1+1

qUy [Cy] · [Ux] ·
v−1∏

y=x+1

[Cy +Uy]
}

= [Uv] ·
rε−1∏

y=r+1
y /∈R

qUy [Cy] ·
s∏

σ=1

(
qCrσ − 1

) ·
v−1∏

i=rs−1+1

[Ci + Ui]

by Lemma 3.14. This proves the claim when ε = s. The proof of the claim when
ε < s follows easily by induction using a similar argument, so we leave the details to
the reader. �

Corollary 3.17 Suppose that T is a basic tableau and that j ∈ [1, γ ] is an integer
such that either j = γ or rowT(z+ j + 1) = z. Let r = rowT(n+ j) and fix y with
1≤ y ≤ r . If r = z then

mT

z−1∏

i=y

(
Ln+j − [ci]

)= qc1+···+cz−1

z−1∏

i=y

[cz − ci − γ + j ]mT.
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If r < z then

mT

z−1∏

i=y

(
Ln+j − [ci]

)= qc1+···+cz−cr+j−γ

r−1∏

i=y

[cz − ci − γ + j ]
∑

U≺w
n+j T

qbT
U(r,z)gU

T mU.

Proof This is an immediate consequence of Proposition 3.16 and Lemma 3.13. �

The next result will complete the proof of Theorem 2.7. Although we could prove
this result for a slightly more general class of partitions, we assume that νi−νi+1 ≥ γ ,
for 1 ≤ i < z, because this assumption significantly simplifies the notation that we
need.

Suppose t= tνη is an almost initial tableau. Choose k with 1 ≤ k ≤ γ and let η(k)

be the partition of n given by

η
(k)
i =

{
ηi + t

>n+γ−k

i , 1≤ i < z,

νi − k, i = z.

Write U
k←− t if U ∈ T0(ν, η+1γ ) and Shape(U↓z)= η(k) and the numbers z+1, z+

2, . . . , z+ γ in U are in row order.

Proposition 3.18 Assume that νi − νi+1 ≥ γ , for 1 ≤ i < z, and that t = tνη is an
almost initial tableau. Suppose that 1≤ k ≤ γ and that 1≤ y ≤ rowt(n+γ − k+1).
Then

mt

z∏

i=y

k∏

j=1

(
Ln+γ−j+1 − [ci]

)= qc(k)
∑

U
k←−t

(
z−1∏

i=y

[
U(i,z]

i

]!
k−U(i,z]

i −1
∏

j=0

[cz − ci − j ]
)

mU,

where

c(k)=
z∑

i=y

kci + t
>n+γ−k

i

(
t
(n,n+γ−k]
i − t

>n+γ−k

>i − ci

)
.

Proof For the duration of the proof we set L′
k′ =

∏z
i=y

∏k′
j=1(Ln+γ−j+1 − [ci]), for

1 ≤ k′ ≤ k. Then we have to compute mtL′k . First note that if T is the basic tableau
obtained by replacing each entry x with 1 ≤ x ≤ n in t by its row index in t and
each entry n + 1 ≤ x ≤ n + γ with x − n + z then mt = mT by (3.1). If k = 1 or
rowt(n+ γ − k+ 1)= z then the result follows from Corollary 3.17. So suppose that
1 < k ≤ γ and that rowt(n+ γ − k + 1)= r < z. By induction on k we can assume
that the Proposition holds for mtL′

k′ whenever 1≤ k′ < k.
Repeated applications of Corollary 3.17 show that mtL′k =mT L′k is a linear com-

bination of terms mU, where U
k←− t. That each tableau U is semistandard follows

because νi − νi+1 ≥ γ for all i. We now fix U with U
k←− t and compute the coeffi-

cient of mU in mT L′k .
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Suppose that V is a basic tableau such that U ≺w
n+γ−k+1 V

k−1←− t. By Corol-

lary 3.17, the coefficient of mU in mV
∏z−1

i=y (Ln+γ−k+1 − [ci]) is

qc1+···+cr−1+cr+1+···+cz+bz
r (U,V)−k+1gU

V

r−1∏

i=y

[cz − ci − k + 1].

By induction, the coefficient of mV in mtL′k−1 is

qc(k−1)
z−1∏

i=y

(
[
V(i,z]

i

]!
k−V(i,z]

i −1
∏

j=0

[cz − ci − j ]
)

.

Now observe that

c(k)= c(k − 1)+ c1 + · · · + cz − cr + t
(n,n+γ−k] − k + 1.

Therefore, the coefficient of qc(k)mU in mtL′k is

∑

V∈T0(ν,η+1γ )

U≺w
n+γ−k+1V

k−1←−t

qt
(n,n+γ−k]
r +bz

r (U,V)gU
V

r−1∏

i=y

[cz − ci − k+ 1]

×
z−1∏

i=y

(
[
V(i,z]

i

]!
k−V(i,z]

i −1
∏

j=0

[cz − ci − j ]
)

.

Consulting the definitions, if V ∈ T0(ν, η+ 1γ ) and U≺w
n+γ−k+1 V

k−1←− t then

V(i,z]
i =

{
U(i,z]

i , 1≤ i ≤ r − 1, or r + 1≤ i ≤ z and r + bi �= i,

U(i,z]
i − 1, i = r, or r + 1≤ i ≤ z and bi = i,

whenever 1≤ i ≤ z. This allows us to rewrite the last equation in terms of U. Before
we do this, however, we change the indexing set for the sum to something that is more
manageable.

Suppose that U ≺w
n+γ−k+1 V. Then V is completely determined by a sequence

aU
V = (ar+1, . . . , az) as in (3.2). Let A = {a = (ar+1, . . . , az) | i ≤ ai ≤ z for

r ≤ i ≤ z}. Then aU
V ∈ A for each tableau V in the sum above. Conversely, if a ∈ A

and a does not correspond to one of the tableau above then there exists an i, with
r ≤ i ≤ z − 1, such that ai �= ai+1 and U

ai+1
i = 0. Therefore, ha

U(i) = 0, where we
define

ha
U(i)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[Ci +U
ai+1
i ][U(i,z]

i ], if i �= ai = ai+1,

[Ci +U(i,z]
i ][Uai+1

i ], if i = ai < ai+1, or if i = r,

[Uai+1
i ][U(i,z]

i ], if i �= ai < ai+1,

qCi [Uai+1
i ][U(i,z]

i ], if i �= ai > ai+1,
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where Ci = cz − ci − k + 1, for r ≤ i < z. Recall that bz
r (U,V) =∑z−1

i=r U
>ai+1
i =

∑z−1
i=r U

(ai+1,z]
i + t

(n,n+γ−k]
r . Therefore, by comparing the definitions of gV

U(i) and

ha
U(i), and observing that V(i,l)

i ≤ U(i,l)
i − 1, the coefficient of qc(k)mU in mtL′k given

above becomes

r−1∏

i=y

[Ci] ·
z−1∏

i=y

(
[
U(i,z]

i − 1
]!

k−U(i,z]
i −2
∏

j=0

[cz − ci − j ]
)

·
∑

a∈A

z−1∏

i=r

qU
(ai+1,z]
i ha

U(i),

where we adopt the convention that [−1]! = 1. By definition, U(i,z]
i = 0, for 1≤ i < r ,

and Ci +U(i,z]
i = cz − ci − (k−U(i,z]

i − 1), for 1≤ i < z. Therefore, to complete the
proof we need to show that

∑

a∈A

z−1∏

i=r

qU
(ai+1,z]
i ha

U(i)=
z−1∏

i=r

[
U(i,z]

i

][
Ci +U(i,z]

i

]
.

This will follow once we have established the following claim by setting x = r and,
for definiteness, a = r .

Claim Let Aa,x = {(a, ax+1, . . . , az) | i ≤ ai ≤ z for x + 1 ≤ i ≤ z} where r ≤ x ≤
z− 1 and x ≤ a ≤ z. Then

∑

a∈Aa,x

z−1∏

i=x

qU
(ai+1,z]
i ha

U(i)=
z−1∏

i=x

[
U(i,z]

i

][
Ci +U(i,z]

i

]
.

To prove the claim, we use downwards induction on x. If x = z− 1 then b= z− 1 or
b= z. If a = z− 1 or x = r then

∑

a∈Aa,x

z−1∏

i=x

qU
(ai+1,z]
i ha

U(i)= [
Cz−1 +U[z,z]z−1

][
Uz

z−1

]
,

and if a = z and x �= r then

∑

a∈Aa,x

z−1∏

i=x

qU
(ai+1,z]
i ha

U(i)= [
Cz−1 + Uz

z−1

][
U[z,z]z−1

]
.

Since Uz
z−1 = U[z,z]z−1 , the claim holds for x = z− 1. So suppose r + 1≤ x < z− 1 and

the claim holds for x + 1.

∑

a∈Aa,x

z−1∏

i=x

qU
(ai+1,z]
i ha

U(i) =
z∑

ax=x+1

qU
(ax+1,z]
x ha

U(x)
∑

a∈Aa,x+1

z−1∏

i=x+1

qU
(ai+1,z]
i ha

U(i)

=
z−1∏

i=x+1

[
U(i,z]

i

][
Ci +U(i,z]

i

]
z∑

ax+1=x+1

qU
(ax+1,z]
x ha

U(x)
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by induction. If a = x or x = r then

z∑

ax+1=x+1

qU
(ax+1,z]
x ha

U(x) =
z∑

ax+1=x+1

qU
(ax+1,z]
x

[
U

xa+1
x

]

= [
U(x,z]

x

]
.

If a �= x and x �= r then
∑z

ax+1=x+1 qU
(ax+1,z]
x ha

U(x) is equal to

[
U(x,z]

x

]
(

a−1∑

i=x+1

qCx qU(i,z]
x

[
Ui

x

]+ qU(a,z]
x

[
Cx + Ua

x

]+
z∑

i=a+1

qU(i,z]
x

[
Ui

x

]
)

= [
U(x,z]

x

][
Cx +U(x,z]

x

]
.

This completes the proof of both the claim and the proposition. �

As Proposition 2.5 is a special case of Proposition 3.18, this completes the proof
of Theorem 2.7 and, in fact, all of our main results when F is a field of characteristic
zero.

3.3 Gaussian integer division

In this section we prove Lemma 3.23 which we used in Sect. 2 to define the polyno-
mials βλμ(q) in (2.1). Therefore, the results in this subsection complete the proof of
our main results when F is a field of positive characteristic. Accordingly, we assume
that F is a field of characteristic p > 0, that e > 1 and that ζ is a primitive eth root of
unity in F .

Let K = F(q), where q is an indeterminate over F . For l ∈ Z, set [l]q = ql−1
q−1 ∈K .

Set [0]!q = 1 ∈K and for l ≥ 1 set [l]!q = [l − 1]!q [l]q . For l ∈ Z \ {0}, define νp(l) to
be the largest integer v ≥ 0 such that pv divides l (in Z) and set

νe,p(l)=
{

0, if e � l,

1+ νp( l
e
), otherwise.

Lemma 3.19 Suppose that r ≥ 1 and that (a1, a2, . . . , ar ) and (b1, b2, . . . , br ) are
two r-tuples of non-zero integers such that νe,p(aj ) ≥ νe,p(bj ), for 1 ≤ j ≤ r . Then
there exist polynomials f (q), g(q) ∈ F [q, q−1] such that g(ζ ) �= 0 and

∏r
j=1[aj ]q

∏r
j=1[bj ]q =

f (q)

g(q)
.

Proof It is sufficient to show that if a, b ∈ Z \ {0} and νe,p(a) ≥ νe,p(b) then
[a]q/[b]q can be written in this form. Since [l]q = −ql[−l]q , we may assume
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that a, b > 0. If νe,p(b) = 0 then [a]q/[b]q itself is of the correct form. So take
a = xepk, b= yepl where p � x, y and k ≥ l. Then

[a]q
[b]q =

1+ q + · · · + qa−1

1+ q + · · · + qb−1
= 1+ qepl + · · · + q(xpk−l−1)epl

1+ qepl + · · · + q(y−1)epl
.

Since ζ is an eth root of unity and p � y, the value of the denominator of the right
hand term at ζ is non-zero. �

Lemma 3.20 Suppose that K,γ,m > 0. For any integer l define l′ by writing l =
l∗m + l′ where 0 ≤ l′ < m. Let C = −K . For 0 ≤ X ≤ γ , let MX be the multiset
{1,2, . . . ,X,K,K+1, . . . ,K+γ −X−1} and let N(X) be the number of elements
of MX which are divisible by m. Then

N(X)=
{

max{0, " γ−C′
m
#}, X′ < (γ +K)′,

max{0, � γ−C′
m
�}, X′ ≥ (γ +K)′.

Proof By definition, N(X) is equal to the number of elements of {K,K+1, . . . ,K+
γ −X′ − 1} which are divisible by m. It is then straightforward to check that

N(X)=max

{

0,

⌈
γ −C′ −X′

m

⌉}

.

Noting that (γ −C′)′ = (γ +K)′, the result follows. �

Lemma 3.21 Suppose K > 0 and γ ≥ e. For 0≤X ≤ γ , let MX be the multiset

MX = {1,2, . . . ,X,K,K + 1, . . . ,K + γ −X− 1}.
For i ≥ 0, set N(X)i = #{x ∈MX | νe,p(x)≥ i}. Let s be maximal such that γ ≥ eps

and A minimal such that Aeps ≥K and set β = γ −Aeps +K , so that

Mβ =
{
1,2, . . . , γ −Aeps +K,K,K + 1, . . . ,Aeps − 1

}
.

Then 0≤ β ≤ γ and if 0≤X ≤ γ then N(β)i ≤N(X)i , for all i ≥ 0.

Proof That 0≤ β ≤ γ is clear from the definitions. To prove the second claim i ≥ 0.
For any integer l ≥ 0 define l′ by l = l∗epi + l′ where 0≤ l′ < epi . By Lemma 3.20,
to show that N(β)i ≤ N(X)i whenever 0≤X ≤ γ it is sufficient to prove that β ′ ≥
(γ +K)′. In fact, our choice of β gives β ′ = (γ +K)′. �

Corollary 3.22 Suppose that γ > 0 and C < 0. For 0 ≤ X ≤ γ , let MX denote the
multiset MX = {1,2, . . . ,X,C,C − 1, . . . ,C − γ +X+ 1}. For i ≥ 0 let

N(X)i = #
{
x ∈MX | νe,p(x)≥ i

}
.

Then there exists an integer β with 0 ≤ β ≤ γ such that N(β)i ≤ N(X)i whenever
0≤X ≤ γ and i ≥ 0.
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Proof If γ < e then set β = γ . Otherwise set K = −C. Then for all i, N(X)i is
the number of elements x ∈ {1,2, . . . ,X,K,K + 1, . . . ,K + γ − X − 1} such that
νe,p(x)≥ i. Hence, the result follows from Lemma 3.21. �

Lemma 3.23 Suppose that γ > 0 and that C < 0. Write γ = γ ∗e + γ ′ where
0 ≤ γ ′ < e. Then there exists an integer β , with 0 ≤ β ≤ γ , and polynomials
fX(q), gX(q) ∈ F [q, q−1] such that gX(ζ ) �= 0 and

[X]!q
∏γ−X−1

j=0 [C − j ]q
[β]!q

∏γ−β−1
j=0 [C − j ]q

= fX(q)

gX(q)
,

whenever 0≤X ≤ γ . Moreover, if C ≡ 0 mod ep�p(γ ∗) then β = γ and fX(ζ ) �= 0 if
and only if X = γ .

Proof Using the notation of Corollary 3.22, there exists an integer β with 0≤ β ≤ γ

such that N(β)i ≤N(X)i for all i ≥ 0. Therefore it is possible to reorder the elements
in the multisets MX = {x1, x2, . . . , xγ } and Mβ = {b1, b2, . . . , bγ } in such a way that
νe,p(xj )≥ νe,p(bj ), for 1≤ j ≤ γ . Hence, by Lemma 3.19, there exists an integer β

with the required properties. Note that Corollary 3.22 does not determine β uniquely.
Now suppose that C ≡ 0 mod ep�p(γ ∗). Note that ep�(γ ∗) > γ . By Lemma 3.21,

we may take β = γ . Now, suppose X �= β . Reorder MX and Mβ as above so that
νe,p(xj )≥ νe,p(bj ) for 1≤ j ≤ γ . Assume that x1 = C. By Lemma 3.19

∏γ

j=1[xj ]
∏γ

j=1[bj ] =
[C]qf ′X(q)

[b1]qg′X(q)

for some f ′X(q), g′X(q) ∈ F [q, q−1] with g′X(ζ ) �= 0. Since 1 ≤ b1 ≤ γ , we have
νe,p(b1) < νe,p(C). Consider [C]q/[b1]q . If e � b1 then the evaluation of [C]q at
ζ is zero. Otherwise, write −C = xepk, b1 = yepl where p � x, y so that k > l.
Then

[C]q
[b1]q =

−q−C(1+ qepl + · · · + q(xpk−l−1)epl
)

1+ qepl + · · · + q(y−1)epl
.

Since p | xpk−l , the numerator of the last term evaluated at ζ is zero. �
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