Explicit formulae for Kerov polynomials

P. Petrullo · D. Senato

Received: 4 September 2009 / Accepted: 27 May 2010 / Published online: 16 June 2010 © Springer Science+Business Media, LLC 2010

Abstract We prove two formulae expressing the Kerov polynomial Σ_k as a weighted sum over the set of noncrossing partitions of the set $\{1, \ldots, k+1\}$. We also give a combinatorial description of a family of symmetric functions specializing in the coefficients of Σ_k .

Keywords Kerov polynomials · Noncrossing partitions · Symmetric group · Normalized characters · Symmetric functions

1 Introduction

The *n*th free cumulant R_n can be thought of as a function $R_n : \lambda \in \mathcal{Y} \mapsto R_n(\lambda) \in \mathbb{Z}$, defined on the set of all Young diagrams \mathcal{Y} , which we identify with the corresponding integer partitions, and taking integer values. Indeed, after a suitable representation of a Young diagram λ as a function in the plane \mathbb{R}^2 [4], it is possible to determine the sequences of integers x_0, \ldots, x_m and y_1, \ldots, y_m , consisting of the *x*-coordinates of the local minima and maxima of λ , respectively. In this way, if we set

$$\mathcal{H}_{\lambda}(z) = \frac{\prod_{i=0}^{m} (z - x_i)}{\prod_{i=1}^{m} (z - y_i)},$$

then $R_n(\lambda)$ is the coefficient of z^{n-1} in the formal Laurent series expansion of $\mathcal{K}_{\lambda}(z)$ such that $\mathcal{K}_{\lambda}(\mathcal{H}_{\lambda}(z)) = \mathcal{H}_{\lambda}(\mathcal{K}_{\lambda}(z)) = z$. It can be shown that $R_1(\lambda) = 0$ for all λ .

P. Petrullo \cdot D. Senato (\boxtimes)

Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy e-mail: domenico.senato@unibas.it

P. Petrullo e-mail: p.petrullo@gmail.com So, the *k*th Kerov polynomial is a polynomial $\Sigma_k(R_2, ..., R_{k+1})$ which satisfies the following identity,

$$\Sigma_k(R_2(\lambda),\ldots,R_{k+1}(\lambda)) = (n)_k \frac{\chi^{\lambda}(k,1^{n-k})}{\chi^{\lambda}(1^n)},$$

where $\chi^{\lambda}(k, 1^{n-k})$ denotes the value of the irreducible character of the symmetric group \mathfrak{S}_n indexed by the partition λ on *k*-cycles. Two remarkable properties of Σ_k have to be stressed. First, it is a "universal polynomial", that is, it depends neither on λ nor on *n*. Second, its coefficients are nonnegative integers. A combinatorial proof of the positivity of Σ_k is quite recent and is due to Féray [8]. An explicit combinatorial description of such coefficients is due to Dołęga, Féray and Śniady [6]. Until now, several results on Kerov polynomials have been proved and conjectured; see, for instance, [5, 10, 12, 17] and [9] for a more detailed treatment.

Originally, free cumulants arise in the noncommutative context of free probability theory [15]. To the best of our knowledge, their earliest applications in the asymptotic character theory of the symmetric group are due to Biane; see, for instance, [3]. In 1994, Speicher [16] showed that the formulae connecting moments and free cumulants of a noncommutative random variable X obey the Möbius inversion on the lattice of noncrossing partitions of a finite set. This result highlights the strong analogy between free cumulants and classical cumulants, which are related to the moments of a random variable X, defined on a classical probability space, via the Möbius inversion on the lattice of all partitions of a finite set. More recently, Di Nardo, Petrullo and Senato [7] have shown how the classical umbral calculus provides an alternative setting for the cumulant families which passes through a generalization of the Abel polynomials.

In 1997, it was again Biane [2] who showed that the lattice NC_n of noncrossing partitions of $\{1, ..., n\}$ can be embedded into the Cayley graph of the symmetric group \mathfrak{S}_n . Thus it seems reasonable that a not too complicated expression of the Kerov polynomials involving noncrossing partitions, or the Cayley graph of \mathfrak{S}_n , should exist. In particular, such a formula, conjectured in [4], appeared with a rather implicit description in [6, 8].

In this paper, we state two explicit formulae relating Σ_k and the set NC_{k+1} of noncrossing partitions of $\{1, \ldots, k+1\}$. More precisely, if NC_{k+1}^{irr} denotes the subset of NC_{k+1} of partitions having 1 and k+1 in the same block, then a new partial order \leq^{irr} on NC_{k+1}^{irr} is considered, thanks to which we have

$$\Sigma_k = \sum_{\tau \in NC_{k+1}^{\operatorname{irr}}} \left[\sum_{\tau \leq \operatorname{irr}_{\pi}} (-1)^{\ell_{\pi} - 1} W_{\tau}(\pi) \right] R_{\tau}.$$

Here, ℓ_{π} is the number of blocks of π , $W_{\tau}(\pi)$ is a suitable weight depending on τ and π , and $R_{\tau} = \prod_{B} R_{|B|}$, with *B* ranging over the blocks of τ having at least 2 elements. The special structure of the weight $W_{\tau}(\pi)$ allows us to give a combinatorial description of the symmetric functions $g_{\mu}(x_1, \ldots, x_k)$'s, that evaluated at $x_i = i$ return the coefficient of $\prod_{i\geq 2} R_i^{m_i}$ in Σ_k , for every integer partition μ of size k + 1having m_i parts equal to *i*. A second formula expressing Σ_k as a weighted sum over the whole NC_{k+1} is proved by means of the notion of irreducible components of a noncrossing partition. In particular, if d_{τ} is the number of irreducible components of τ , then we have

$$\Sigma_k = \sum_{\tau \in NC_{k+1}} \left[(-1)^{d_{\tau}-1} V_{\tau} \right] R_{\dot{\tau}},$$

where V_{τ} is a suitable weight depending on τ .

2 Kerov polynomials

Let *n* be a positive integer and let $\lambda = (\lambda_1, ..., \lambda_l)$ be an integer partition of size *n*, that is, $1 \le \lambda_1 \le \cdots \le \lambda_l$ and $\sum_i \lambda_i = n$. Denote by \mathcal{Y}_n the set of all Young diagrams of size *n*, and set $\mathcal{Y} = \bigcup_n \mathcal{Y}_n$. From now on, an integer partition and its Young diagram will be denoted by the same symbol λ . Moreover, as is usual we write $\lambda \vdash n$ if λ is an integer partition of size *n*.

After a suitable representation of a Young diagram λ as a function in the plane \mathbb{R}^2 [4], it is possible to determine the sequences of integers x_0, \ldots, x_m and y_1, \ldots, y_m , consisting of the *x*-coordinates of its local minima and maxima, respectively. Then, by expanding the rational function

$$\mathcal{H}_{\lambda}(z) = \frac{\prod_{i=0}^{m} (z - x_i)}{\prod_{i=1}^{m} (z - y_i)}$$

as a formal power series in z^{-1} one has $\mathcal{H}_{\lambda}(z) = z^{-1} + \sum_{n \ge 1} M_n(\lambda) z^{-(n+1)}$. The integer $M_n(\lambda)$ is said to be the *n*th *moment* of λ . Now, define $\mathcal{K}_{\lambda}(z) = \mathcal{H}_{\lambda}^{(-1)}(z)$, that is $\mathcal{K}_{\lambda}(\mathcal{H}_{\lambda}(z)) = \mathcal{H}_{\lambda}(\mathcal{K}_{\lambda}(z)) = z$, and consider its expansion as a formal Laurent series, $\mathcal{K}_{\lambda}(z) = z^{-1} + \sum_{n \ge 1} R_n(\lambda) z^{n-1}$. Then, the integer $R_n(\lambda)$ is named the *n*th *free cumulant* of λ . It is not difficult to see that $M_1(\lambda) = R_1(\lambda) = 0$ for all λ . By setting $\mathcal{M}_{\lambda}(z) = z^{-1}\mathcal{H}_{\lambda}(z^{-1})$ and $\mathcal{R}_{\lambda}(z) = z\mathcal{K}_{\lambda}(z)$, we obtain two formal power series in z, $\mathcal{M}_{\lambda}(z) = 1 + \sum_{n \ge 1} M_n(\lambda) z^n$ and $\mathcal{R}_{\lambda}(z) = 1 + \sum_{n \ge 1} R_n(\lambda) z^n$, such that

$$\mathcal{M}_{\lambda}(z) = \mathcal{R}_{\lambda}(z \,\mathcal{M}_{\lambda}(z)). \tag{2.1}$$

Let $\mu \vdash n$ and denote by $\chi^{\lambda}(\mu)$ the value of the irreducible character of \mathfrak{S}_n indexed by λ on the permutations of type μ . So that, if $\mu = (k, 1^{n-k})$, that is, $\mu_1 = k$ and $\mu_2 = \cdots = \mu_{n-k+1} = 1$, then the value $\widehat{\chi}^{\lambda}(k, 1^{n-k})$ of the normalized character indexed by λ on the *k*-cycles of \mathfrak{S}_n is given by

$$\widehat{\chi}^{\lambda}(k, 1^{n-k}) = (n)_k \frac{\chi^{\lambda}(k, 1^{n-k})}{\chi^{\lambda}(1^n)},$$

where $(n)_k = n(n-1)\cdots(n-k+1)$. The *k*th Kerov polynomial is a polynomial Σ_k in *k* commuting variables which satisfies the following interesting identity,

$$\Sigma_k(R_2(\lambda),\ldots,R_{k+1}(\lambda)) = \widehat{\chi}^{\lambda}(k,1^{n-k}).$$

If we think of $R_n(\lambda)$ as the image of a map $R_n : \lambda \in \mathcal{Y} \mapsto R_n(\lambda) \in \mathbb{Z}$, then also Kerov polynomials become maps $\Sigma_k = \Sigma_k(R_2, \ldots, R_{k+1})$, which are polynomials in the R_n 's, such that $\Sigma_k(\lambda) = \hat{\chi}^{\lambda}(k, 1^{n-k})$. Since the coefficients of Σ_k depend neither on λ nor on n, but only on k, such polynomials are said to be "universal". A second remarkable property of Kerov polynomials is that all their coefficients are positive integers. This fact is known as the "Kerov conjecture" [11]. The first proof of the Kerov conjecture was given with combinatorial methods by Féray [8]. By using rather different techniques, the same author with Dolęga and Śniady [6] have then stated an explicit combinatorial interpretation of such coefficients. The following formula for Σ_k can be found in Stanley [17]. It is also stated in Biane [4], where the author quotes it as a private communication with A. Okounkov.

Theorem 2.1 Let $\mathcal{R}(z) = 1 + \sum_{n \ge 2} R_n z^n$. If $\mathcal{F}(z) = \frac{z}{\mathcal{R}(z)}$ and $\mathcal{G}(z) = \frac{z}{\mathcal{F}^{(-1)}(z^{-1})}$, then we have

$$\Sigma_k = -\frac{1}{k} [z^{-1}]_{\infty} \prod_{j=0}^{k-1} \mathcal{G}(z-j).$$
(2.2)

More precisely, if $[z^n]f(z)$ denotes the coefficient of z^n in the formal power series f(z), then $[z^{-1}]_{\infty}f(z) = [z]f(z^{-1})$. This way, Identity (2.2) states that Σ_k is obtained by expressing the right-hand side in terms of the free cumulants R_n 's. Moreover, thanks to the invariance of the residue under translation of the variable, if $\mathcal{M}(z) = 1 + \sum_{n \ge 1} M_n z^n$, then by virtue of (2.1) we have $z \mathcal{G}(z)^{-1} = \mathcal{M}(z^{-1})$, and (2.2) can be rewritten in the following equivalent form,

$$\Sigma_{k} = -\frac{1}{k} [z^{k+1}] \prod_{j=1}^{k} \frac{1 - jz}{\mathcal{M}(\frac{z}{1 - jz})}.$$
(2.3)

For all j = 1, ..., k, we denote by $\lambda \boxplus j$ the image of the diagram λ under the translation of the plane given by $x \mapsto x + j$. The *i*th local minimum and maximum of $\lambda \boxplus j$ are $x_i + j$ and $y_i + j$, respectively, so that

$$\mathcal{H}_{\lambda\boxplus j}(z) = \frac{\prod_{i=0}^{m} z - (x_i + j)}{\prod_{i=1}^{m} z - (y_i + j)} \quad \text{and} \quad \mathcal{M}_{\lambda\boxplus j}(z) = \frac{1}{1 - jz} \mathcal{M}_{\lambda}\left(\frac{z}{1 - jz}\right).$$

In this way, we may rewrite (2.3) as follows:

$$\Sigma_{k} = -\frac{1}{k} [z^{k+1}] \prod_{j=1}^{k} \frac{1}{\mathcal{M}_{\lambda \boxplus j}(z)}.$$
(2.4)

Denote by $\mathcal{R}_{\lambda \boxplus j}(z)$ the formal power series such that $\mathcal{M}_{\lambda \boxplus j}(z) = \mathcal{R}_{\lambda \boxplus j}(z\mathcal{M}_{\lambda \boxplus j}(z))$. It is immediate to verify that

$$\mathcal{R}_{\lambda \boxplus j}(z) = jz + \mathcal{R}_{\lambda}(z). \tag{2.5}$$

3 Irreducible noncrossing partitions

A partition of a finite set *S* is an unordered sequence $\tau = \{A_1, \ldots, A_l\}$ of pairwise disjoint nonempty subsets of *S*, called the blocks of τ , such that $\bigcup_i A_i = S$. We say that τ refines π , written $\tau \leq \pi$, if and only if each block of π is a union of blocks of τ . If $T \subset S$, then the restriction of τ to *T* is the partition $\tau_{|T}$ obtained by removing from τ all the elements in $S \setminus T$.

Denote by [n] the set $\{1, ..., n\}$. A partition $\tau = \{A_1, ..., A_l\}$ of [n] is said to be *noncrossing* if and only if $a, c \in A_i$ and $b, d \in A_j$ implies i = j, whenever $1 \le a < b < c < d \le n$. The set of all the noncrossing partitions of [n] is usually denoted by NC_n . Its cardinality equals the *n*th Catalan number $C_n = \frac{1}{n+1} {2n \choose n}$. The reader interested in this subject may refer to [1] and references therein for further details. Now, if we set $R_{\tau} = R_{|A_1|} \cdots R_{|A_l|}$ then we can state the following beautiful formula, due to Speicher [16], expressing the moments M_n 's in terms of their respective free cumulants R_n 's:

$$M_n = \sum_{\tau \in NC_n} R_{\tau}.$$

Following Lehner [13], if 1 and *n* lie in the same block of a partition τ of [*n*], then we say that τ is *irreducible*. Moreover, we denote by NC_n^{irr} the set of all the irreducible noncrossing partitions of [*n*]. Note that a partition of NC_{n+1}^{irr} is obtained from a partition of NC_n simply by inserting n + 1 in the block containing 1. By taking the sum of the monomials R_{τ} 's, τ ranging in NC_n^{irr} instead of NC_n , one defines a quantity B_n known as a boolean cumulant (see [13])

$$B_n = \sum_{\tau \in NC_n^{\text{irr}}} R_{\tau}.$$
(3.1)

In particular, if $\mathcal{B}(z) = \sum_{n \ge 1} B_n z^n$, then we have

$$\mathcal{M}(z) = \frac{1}{1 - \mathcal{B}(z)}.$$
(3.2)

If $\mu = (\mu_1, \dots, \mu_l)$ is an integer partition of size *n*, set $R_{\mu} = R_{\mu_1} \cdots R_{\mu_l}$ and define NC_{μ}^{irr} to be the subset of NC_n^{irr} consisting of all the irreducible noncrossing partitions of type μ . From (3.1) we have

$$B_n = \sum_{\mu \vdash n} \left| N C_{\mu}^{\text{irr}} \right| R_{\mu}.$$
(3.3)

Moreover, thanks to the Lagrange inversion formula, we recover

$$B_n = \frac{1}{n-1} [z^n] \mathcal{R}(z)^{n-1} = \sum_{\mu \vdash n} \frac{(n-2)_{\ell_{\mu}-1}}{m(\mu)!} R_{\mu}, \qquad (3.4)$$

Deringer

where $m(\mu)! = m_1(\mu)! \cdots m_n(\mu)!$, and $m_i(\mu)$ is the number of occurrences of *i* as a part of μ . By comparing (3.3) and (3.4), we deduce

$$\left| NC_{\mu}^{\rm irr} \right| = \frac{(n-2)_{\ell_{\mu}-1}}{m(\mu)!}.$$
(3.5)

The notion of noncrossing partition can be given for any totally ordered set S. In particular, NC_S^{irr} will denote the set of all the noncrossing partitions of S, such that the minimum and the maximum of S lie in the same block. Let us introduce a partial order on NC_S^{irr} .

Definition 3.1 (Irreducible refinement) Let $\tau, \pi \in NC_S^{\text{irr}}$. We say that τ refines π in an *irreducible way*, and write $\tau \leq^{\text{irr}} \pi$, if and only if $\tau \leq \pi$ and the restriction $\pi_{|_A}$, of π to each block A of τ , is in NC_A^{irr} . In particular, we say that π *covers* τ if and only if $\tau \leq^{\text{irr}} \pi$ and π is obtained by joining two blocks of τ .

For instance, let $\tau = \{\{1, 5\}, \{2, 3\}, \{4\}\}, \pi = \{\{1, 2, 3, 5\}, \{4\}\}$ and $\sigma = \{\{1, 5\}, \{2, 3, 4\}\}$. Then $\tau, \pi, \sigma \in NC_5^{\text{irr}}$ and τ refines both π and σ . However, $\tau \leq^{\text{irr}} \pi$ and in particular π covers τ , while it is not true that $\tau \leq^{\text{irr}} \sigma$, since $\tau_{|_{\{2,3,4\}}} = \{\{2, 3\}, \{4\}\}$ is not irreducible.

The singletons of the noncrossing partitions will play a special role. For all $\tau \in NC_n$, we denote by $U(\tau)$ the subset of [n] consisting of all the integers *i* such that $\{i\}$ is a block of τ , while $\dot{\tau}$ will be the partition obtained from τ by removing its singletons. When $\tau, \pi \in NC_n^{\text{irr}}$ and $\tau \leq^{\text{irr}} \pi$, then π_{τ} is the restriction of π to $U(\tau)$. Note that $\pi_{\tau} \in NC_{U(\tau)}$.

We define a tree-representation for the partitions of NC_n^{irr} in the following way. Assume $\tau = \{A_1, \ldots, A_l\} \in NC_n^{irr}$ and $\min A_i < \min A_{i+1}$. Construct a labeled rooted tree t_{τ} by the following steps:

- Choose A_1 as the root of t_{τ} ;
- If $2 \le i < j \le l$ then draw an edge between A_i and A_j if and only if *i* is the biggest integer such that min $A_i < \min A_j \le \max A_j < \max A_i$;
- Label each edge $\{A_i, A_j\}$ with min A_j .

For example, if $\tau = \{\{1, 2, 7, 12\}, \{3, 5, 6\}, \{4\}, \{8, 9\}, \{10, 11\}\}$ then t_{τ} is the following tree,

Now, let $E(\tau)$ be the set of labels of t_{τ} , and choose $j \in E(\tau)$. We denote by $t_{\tau,j}$ the tree obtained from t_{τ} by deleting the edge labeled by j and joining its nodes (i.e.,

joining the blocks). In the following, we will say that $t_{\tau,j}$ is the tree obtained from t_{τ} by removing *j*. Hence, $t_{\tau,3}$ is given by

Now, $t_{\tau,j}$ is the tree-representation of an irreducible noncrossing partition, here denoted by $\tau_{\{j\}}$, whose blocks are the nodes of $t_{\tau,j}$. By construction, we have $\tau \leq^{irr} \tau_{\{j\}}$ and $E(\tau_{\{j\}}) = E(\tau) \setminus \{j\}$. More generally, given a subset $S \subseteq E(\tau)$, we denote by τ_S the only partition whose tree t_{τ_S} is obtained from t_{τ} by successively removing all labels in *S*. We note that $\tau_{\emptyset} = \tau$ and that τ_S depends only on the set *S* and not on the order in which labels are chosen. The following proposition is easy to prove.

Proposition 3.1 Let $\tau, \pi \in NC_n^{irr}$. Then, we have $\tau \leq^{irr} \pi$ if and only if $\pi = \tau_S$ for some $S \subseteq E(\tau)$. In particular, if $\ell(\tau)$ is the number of blocks of τ , then we have

$$\left|\left\{\sigma \mid \tau \leq^{\operatorname{irr}} \sigma\right\}\right| = \left|2^{E(\tau)}\right| = 2^{\ell(\tau)-1},$$

where $2^{E(\tau)}$ is the powerset of $E(\tau)$, and

$$|\{\sigma \mid \sigma \text{ covers } \tau\}| = |E(\tau)| = \ell(\tau) - 1.$$

4 Kerov polynomial formulae

By means of the results of previous sections, we are able to give new formulae for the Kerov polynomials Σ_k . In particular, the first formula is related to the partial order \leq^{irr} on the irreducible noncrossing partitions of the set [k + 1], instead the second formula expresses Σ_k as a weighted sum over NC_{k+1} .

4.1 Kerov polynomials and irreducible refinement

Let $\tau, \pi \in NC_{k+1}^{irr}$ with $\tau \leq^{irr} \pi$, and let $\pi_{\tau} = \{A_1, \ldots, A_l\}$. Moreover, set $A_i = \emptyset$ for i > l and define $W_{\tau}(\pi)$ to be such that

$$W_{\tau}(\pi) = \frac{1}{k!} \sum_{w \in \mathfrak{S}_k} w(1)^{|A_1|} \cdots w(k)^{|A_k|}.$$

Theorem 4.1 We have

$$\Sigma_{k} = \sum_{\tau \in NC_{k+1}^{\text{irr}}} \left[\sum_{\tau \leq \text{irr}\pi} (-1)^{\ell_{\pi} - 1} W_{\tau}(\pi) \right] R_{\tau}.$$
 (4.1)

🖄 Springer

Proof Let $B_n(j) = -[z^n](\mathcal{M}_{\lambda \boxplus j}(z))^{-1}$ for all $n \ge 1$, and set $B_0(j) = 1$. Since $R_1(\lambda) = 0$, then from (2.5), (3.1) and (3.2) we deduce

$$B_n(j) = \sum_{\pi \in NC_n^{\text{in}}} j^{u(\pi)} R_{\dot{\pi}}(\lambda), \qquad (4.2)$$

where $u(\pi) = |U(\pi)|$. The right-hand side in (2.4) is equal to

$$-\frac{1}{k}\sum_{\substack{a_1,\dots,a_k\geq 0\\a_1+\dots+a_k=k+1}}\prod_{j=1}^k [z^{a_j}]\frac{1}{M_{\lambda\boxplus j}(z)} = \frac{1}{k}\sum_{\substack{\mu\vdash k+1\\\ell_{\mu}\leq k}}\frac{(-1)^{\ell_{\mu}-1}}{m(\mu)!(k-\ell_{\mu})!}\sum_{w\in\mathfrak{S}_k}\prod_{i=1}^k B_{\mu_i}(w(i)),$$

where $\mu_1, \ldots, \mu_{\ell_{\mu}}$ are the parts of μ and $\mu_i = 0$ when $i > \ell_{\mu}$. However, by taking into account (3.5), we may rewrite it in the following form:

$$\frac{1}{k!} \sum_{\pi \in NC_{k+1}^{irr}} (-1)^{\ell_{\pi}-1} \sum_{w \in \mathfrak{S}_{k}} \prod_{i=1}^{k} B_{|A_{i}|}(w(i)),$$

where $A_1, \ldots, A_{\ell_{\mu}}$ are the blocks of π and $A_i = \emptyset$ if $i > \ell_{\pi}$. Moreover, by means of identity (4.2), we obtain

$$\sum_{w\in\mathfrak{S}_k}\prod_{i=1}^k B_{|A_i|}(w(i)) = \sum_{\tau_1,\ldots,\tau_k}\sum_{w\in\mathfrak{S}_k}w(1)^{u(\tau_1)}\cdots w(k)^{u(\tau_k)}R_{\dot{\tau}_1}(\lambda)\cdots R_{\dot{\tau}_k}(\lambda),$$

where τ_i ranges over all $NC_{A_i}^{irr}$, with $NC_{\emptyset}^{irr} = \{\emptyset\}$.

Now, if we set $\tau = \tau_1 \cup \cdots \cup \tau_k$, then $\tau \in NC_{k+1}^{\text{irr}}$, $\tau \leq^{\text{irr}} \pi$ and $R_{\tau}(\lambda) = R_{\tau_1}(\lambda) \cdots R_{\tau_k}(\lambda)$. Finally, $u(\tau_i)$ is the number of singletons in $\tau_i = \tau_{|A_i|}$, that is, the cardinality of the set $A_i \cap U(\tau)$, which if nonempty is a block of π_{τ} . This completes the proof.

Remark 4.1 Consider the polynomial $\Omega_k(x_1, \ldots, x_k)$ defined by

$$\Omega_k(x_1,\ldots,x_k) = -\frac{1}{k} \left[z^{k+1} \right] \prod_{j=1}^k \frac{1-x_j z}{\mathcal{M}(\frac{z}{1-x_j z})}.$$

Of course, Ω_k is symmetric with respect to the x_i 's. Moreover, by virtue of (2.3), we obtain $\Omega_k(1, 2, ..., k) = \Sigma_k$. A formula for $\Omega_k(x_1, ..., x_k)$ is obtained from (4.1) simply by replacing w(j) with $x_{w(j)}$ in $W_{\tau}(\pi)$. More precisely, via Proposition 3.1, if μ is an integer partition of size k + 1 then the coefficient of R_{μ} in $\Omega_k(x_1, ..., x_k)$ is

$$\boldsymbol{g}_{\mu}(x_1, \dots, x_k) = \sum_{\tau \in NC_{\mu}^{\text{irr}}} \sum_{S \subseteq E(\tau)} (-1)^{|E(\tau)| - |S|} W_{\tau}(S; x_1, \dots, x_k),$$
(4.3)

where $R_{\mu} = \prod_{i \ge 2} R_i^{m_i(\mu)}$, and where $W_{\tau}(S; x_1, \dots, x_k)$ is obtained by replacing w(j) with $x_{w(j)}$ in $W_{\tau}(\tau_S)$. Now, let $\lambda_{\tau}(S)$ denote the integer partition corresponding

to the type of π_{τ} , with $\pi = \tau_S$. Then, it is not difficult to see that

$$k!W_{\tau}(S; x_1, \ldots, x_k) = m(\lambda_{\tau}(S))!(k - \ell(\lambda_{\tau}(S)))!\boldsymbol{m}_{\lambda_{\tau}(S)}(x_1, \ldots, x_k),$$

with $\boldsymbol{m}_{\lambda_{\tau}(S)}(x_1, \ldots, x_k)$ being the monomial symmetric function indexed by the partition $\lambda_{\tau}(S)$ [14]. This way, the coefficient of R_{\perp} in $\Omega_k(x_1, \ldots, x_k)$ is a symmetric function $\boldsymbol{g}_{\mu}(x_1, \ldots, x_k)$ of degree $m_1(\mu)$. Assume that

$$\boldsymbol{g}_{\mu}(x_1,\ldots,x_k) = \sum_{\lambda} g_{\mu,\lambda} \boldsymbol{m}_{\lambda}(x_1,\ldots,x_k).$$

The left-hand side of (4.3) says that, for every λ of size $m_1(\mu)$, we have

$$g_{\mu,\lambda} = \frac{1}{k!} \sum_{\tau \in NC_{\mu}^{\text{irr}}} \sum_{\substack{S \subseteq E(\tau) \\ \lambda_{\tau}(S) = \lambda}} (-1)^{|E(\tau)| - |S|} m(\lambda)! (k - \ell_{\lambda})!,$$

thus we have provided a combinatorial formula for the $g_{\mu,\lambda}$'s.

Finally, we stress that the coefficients in the expressions of g_{μ} in terms of the classical basis, and Schur basis, are not positive integers. Indeed, we have

$$\boldsymbol{g}_{(3,1,1,1)} = \frac{4}{5}\boldsymbol{m}_{(1,1,1)} - \frac{3}{5}\boldsymbol{m}_{(1,2)} + \frac{4}{5}\boldsymbol{m}_{(3)}.$$

4.2 Kerov polynomials via irreducible components of noncrossing partitions

We will state a second formula expressing Σ_k as a weighted sum over the whole NC_{k+1} . To this end, we introduce the notion of an irreducible component of a non-crossing partition.

Given $\tau \in NC_n$, let j_1 be the greatest integer lying in the same block as 1. Set $\tau_1 = \tau_{|j_1|}$ so that τ_1 is an irreducible noncrossing partition of $[j_1]$. Now, let j_2 be the greatest integer lying in the same block of $j_1 + 1$ and set $\tau_2 = \tau_{|j_1+1,j_2|}$. By iterating this process, we determine the sequence of irreducible noncrossing partitions τ_1, \ldots, τ_d , which we name the *irreducible components* of τ , such that $\tau = \tau_1 \cup \cdots \cup \tau_d$. For all $\tau \in NC_n$, we denote by d_{τ} the number of its irreducible components. Note that $d_{\tau} = 1$ if and only if τ is an irreducible noncrossing partition.

Theorem 4.2 We have

$$\Sigma_k = \sum_{\tau \in NC_{k+1}} \left[(-1)^{d_{\tau} - 1} V_{\tau} \right] R_{\dot{\tau}} , \qquad (4.4)$$

where

$$V_{\tau} = \frac{1}{k} \sum_{1 \le i_1 < \dots < i_d \le k} i_1^{u(\tau_1)} \cdots i_d^{u(\tau_d)},$$

if $d = d_{\tau}$.

Proof Let $\mathcal{B}_{\lambda \boxplus j}(z) = 1(\mathcal{M}_{\lambda \boxplus j}(z))^{-1}$. From (2.4) we obtain

$$\Sigma_{k} = -\frac{1}{k} [z^{k+1}] \prod_{j=1}^{k} (1 - B_{\lambda \boxplus j}(z))$$
$$= \sum_{d=1}^{k} \frac{(-1)^{d-1}}{k} \sum_{1 \le i_{1} < \dots < i_{d} \le k} [z^{k+1}] \mathcal{B}_{\lambda \boxplus i_{1}}(z) \cdots \mathcal{B}_{\lambda \boxplus i_{d}}(z).$$

Of course, the complex $B_n(j) = [z^n] \mathcal{B}_{\lambda \boxplus j}(z)$ is the *n*-boolean cumulant of $\lambda \boxplus j$ and satisfies (4.2). This way we deduce

$$[z^{k+1}]\mathcal{B}_{\lambda\boxplus i_1}(z)\cdots\mathcal{B}_{\lambda\boxplus i_d}(z) = \sum_{\substack{a_1,\dots,a_d \ge 1\\a_1+\dots+a_d=k+1}} \sum_{\pi_1,\dots,\pi_d} i_1^{u(\pi_1)}\cdots i_d^{u(\pi_d)}R_{\pi_1}\cdots R_{\pi_d},$$

where π_i ranges over $NC_{a_i}^{irr}$. Let $a_0 = 0$ and consider the intervals $A_i = [a_0 + \dots + a_{i-1} + 1, a_0 + \dots + a_i]$ for $i = 1, \dots, k+1$. Each translation $h \in [1, a_i] \mapsto h + a_0 + \dots + a_{i-1} \in A_i$ induces a bijection $\pi \in NC_{a_i}^{irr} \mapsto \tau \in NC_{A_i}^{irr}$. Hence, in the identity above we may replace each π_i with the corresponding τ_i obtaining

$$[z^{k+1}]\mathcal{B}_{\lambda\boxplus i_1}(z)\cdots\mathcal{B}_{\lambda\boxplus i_d}(z) = \sum_{\substack{a_1,\ldots,a_d \ge 1\\a_1+\cdots+a_d=k+1}} \sum_{\substack{\tau_1,\ldots,\tau_d}} i_1^{u(\tau_1)}\cdots i_d^{u(\tau_d)} R_{\tau_1}\cdots R_{\tau_d}$$

Now, set $\tau = \tau_1 \cup \cdots \cup \tau_d$ so that $\tau \in NC_{k+1}$, τ_i is the *i*th irreducible component of τ , and (4.4) follows.

Acknowledgement The authors thank the referees for their useful remarks and suggestions improving the technical quality of the paper.

References

- Armstrong, D.: Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Am. Math. Soc. 202, 949 (2009)
- 2. Biane, P.: Some properties of crossings and partitions. Discrete Math. 175, 41-53 (1997)
- 3. Biane, P.: Representations of symmetric groups and free probability. Adv. Math. **138**(1), 126–181 (1998)
- Biane, P.: Characters of the Symmetric Group and Free Cumulants. Lecture Notes in Math., vol. 1815, pp. 185–200. Springer, Berlin (2003)
- Biane, P.: On the formula of Goulden and Rattan for Kerov Polynomials. Sémin. Lothar. Comb. 55 (2006)
- Dołęga, M., Féray, V., Śniady, P.: Explicit combinatorial interpretation of Kerov character polynomials as number of permutation factorizations. Adv. Math. (2010). doi:10.1016/j.aim.2010.02.011
- Di Nardo, E., Petrullo, P., Senato, D.: Cumulants and convolutions via Abel polynomials. Eur. J. Combin. (2010). doi:10.1016/j.ejc.2010.03.002
- Féray, V.: Combinatorial interpretation and positivity of Kerov's character polynomials. J. Algebr. Comb. 29, 473–507 (2009)
- Féray, V.: Fonctions sur l'ensemble des diagrammes de Young: caractères du groupe symétrique et polynômes de Kerov. Ph.D. thesis (2009). Available at http://feray.fr/valentin/Math/Feray_these.pdf

- Goulden, I.P., Rattan, A.: An explicit form for Kerov's character polynomials. Trans. Am. Math. Soc. 359, 3669–3685 (2007)
- 11. Kerov, S.V.: Talk at IHP Conference (2000)
- 12. Lassalle, M.: Two positive conjectures for Kerov polynomials. Adv. Appl. Math. 41, 407–422 (2008)
- 13. Lehner, F.: Free cumulants and enumeration of connected partitions. Eur. J. Comb. 22, 1025–1031 (2002)
- Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, London (1995)
- 15. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge University Press, Cambridge (2006)
- Speicher, R.: Multiplicative functions on the lattice on nocrossing partitions and free convolution. Math. Ann. 298, 611–628 (1994)
- Stanley, R.P.: Kerov's character polynomial and irreducible symmetric group characters of rectangular shape. Transparencies from a talk at CMS meeting, Quebec City (2002)