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Abstract We prove that slices of the unitary spread of Q+(7, q), q ≡ 2 (mod 3),
can be partitioned into five disjoint classes. Slices belonging to different classes are
non-equivalent under the action of the subgroup of P�O+(8, q) fixing the unitary
spread. When q is even, there is a connection between spreads of Q+(7, q) and sym-
plectic 2-spreads of PG(5, q) (see Dillon, Ph.D. thesis, 1974 and Dye, Ann. Mat. Pura
Appl. (4) 114, 173–194, 1977). As a consequence of the above result we determine
all the possible non-equivalent symplectic 2-spreads arising from the unitary spread
of Q+(7, q), q = 22h+1. Some of these already appeared in Kantor, SIAM J. Algebr.
Discrete Methods 3(2), 151–165, 1982. When q = 3h, we classify, up to the action of
the stabilizer in P�O(7, q) of the unitary spread of Q(6, q), those among its slices
producing spreads of the elliptic quadric Q−(5, q).
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1 Introduction

Let Q = Q+(7, q) be the hyperbolic quadric of PG(7, q). A spread S of Q is a
partition of the pointset of Q into 3-dimensional totally singular subspaces. Denote
by M1 and M2 the two families of maximal singular subspaces of Q (for definition
and details see [14]). Then the spread S consists of q3 + 1 subspaces of Q belonging
either to M1 or to M2. Two spreads S and S ′ of Q are said to be isomorphic if there
is a collineation of P�O+(8, q) mapping any element of S into an element of S ′.

An ovoid of Q is a set of points of Q which has exactly one point in common with
every 3-dimensional totally singular subspace of Q; an ovoid of Q consists of q3 + 1
points. Two ovoids O and O′ of Q are said to be isomorphic if there is a collineation
of P�O+(8, q) mapping O into O′.

Ovoids and spreads of Q are related by triality. Precisely, let P be the point set
of Q and let L be the set of all lines contained in Q. A triality map τ of Q is a
map of order 3 such that τ : L → L and τ : P → M1 → M2 → P , which preserves
the incidence between members of L and members of P ∪ M1 ∪ M2 (see [16, 17]).
Hence, if we set S ⊂ M1, then O = S τ 2

is an ovoid of Q, and conversely.
Let, now, Π be any non-singular hyperplane of PG(7, q), then the set S ′ = {Π ∩

S: S ∈ S} defines a spread of the parabolic quadric Q′ = Q(6, q) = Π ∩ Q, i.e. a set
of q3 + 1 singular planes partitioning the points of Q′. We refer to these spreads as
the slices of the spread S . Conversely, start from a spread S ′ of a parabolic quadric
Q′ = Q(6, q) of PG(6, q); and embed Q′ as a non-singular hyperplane section of
the hyperbolic quadric Q = Q+(7, q). For any spread element consider the totally
singular 3-dimensional space of Q, of fixed type, passing through it. This set of 3-
dimensional subspaces is a spread of Q and S ′ is one of its slices.

A 2-spread of the projective space P = PG(5, q) is a family S of mutually dis-
joint planes partitioning the pointset of P . The spread S is said to be symplectic with
respect to a symplectic polarity of P if all elements of S are totally isotropic with
respect to this symplectic polarity. We denote by W(5, q) the polar space associated
with a symplectic polarity of PG(5, q). Since when q is even the parabolic quadric Q′
is isomorphic to a symplectic space W(5, q), there is a connection between spreads
of the hyperbolic quadric Q and 2-spreads of W(5, q) and vice-versa. This was orig-
inally pointed out by Dillon [3] and Dye [4]. Moreover, if two 2-spreads of W(5, q)

are isomorphic (i.e. equivalent under the action of P�Sp(6, q)), then the associated
spreads of Q also are. The converse is not generally true (see [9]). This fact leads
to the following definition in [9]: two 2-spreads of W(5, q), q even, are said to be
cousins if the associated spreads in the hyperbolic quadric Q+(7, q), obtained as de-
scribed above, are equivalent. In the light of this fact one can construct all cousins of
a given 2-spread of W(5, q) by slicing a spread of a hyperbolic quadric; i.e. in the fol-
lowing way: construct the spread of Q+(7, q) associated with the starting 2-spread in
W(5, q), then consider its various slices. As suggested in [9], we are only interested
in those cousins that are not isomorphic under the action of the stabilizer of S in the
orthogonal group P�O+(8, q). Similarly, one can define the slice of an ovoid of Q
or of an ovoid of Q′.1

1An ovoid of Q′ = Q(6, q) is a set of points of Q′ which has exactly one point in common with every

totally singular plane of Q′ . Also in this case, an ovoid has q3 + 1 points.
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In [9] and [8], Kantor defines the so called unitary ovoid and unitary spread of Q
and Q′, when q ≡ 2 (mod 3) and q ≡ 0 (mod 3), respectively; although, the unitary
ovoid for q ≡ 2 (mod 3) already appeared in [16]. The stabilizers of both these geo-
metric objects contain, up to isomorphism, the projective unitary group PGU(3, q).
Also, when q ≡ 0 (mod 3), the parabolic quadric Q′ can be embedded in a hyperbolic
quadric and the unitary ovoid of Q′ is an ovoid of this hyperbolic quadric, as well.
Nevertheless, the unitary spread of Q′ defines a spread of the relevant hyperbolic
quadric also permuted by PGU(3, q) [9, Theorem 6.14]. For q = 32h+1 this latter
spread already appeared in [15].

Unitary spread and unitary ovoid, seen as geometric objects of a hyperbolic
quadric, are related to each other by a triality map of the hyperbolic quadric (see
e.g. [9]). In [8] the author studies, when q ≡ 2 (mod 3), the intersection of the unitary
ovoid of Q with singular hyperplanes which are polar hyperplanes, with respect to
the polarity defined by Q, of points not belonging to the ovoid. These intersections
project into ovoids of Q+(5, q). When q ≡ 0 (mod 3), he considers the intersection of
the unitary ovoid of Q′ both with hyperplanes which are polar hyperplanes of singular
points not belonging to the ovoid and with non-singular hyperplanes intersecting Q′
in a hyperbolic quadric Q+(5, q), obtaining ovoids of Q(4, q) and Q+(5, q), respec-
tively. These ovoids produce, through the Klein correspondence, spreads of PG(3, q)

and hence translation planes of order q2.
Regarding the unitary spread in [9] the author exhibits three slices inequivalent

under the action of PGU(3, q), and hence three inequivalent symplectic 2-spreads of
PG(5, q).

A line spread (a spread for short) S of PG(5, q) is a set of lines partitioning the
point set of PG(5, q). The spread S is said to be normal if it induces a spread in any
3-dimensional subspace of PG(5, q) generated by two of its elements. In [11], the
author introduces an isomorphism β between the classical unital of the desarguesian
projective plane PG(2, q2) and the unitary ovoid introduced by Kantor, by means of
the Grassmannian variety G of the lines of a 5-dimensional projective space (for de-
finitions and details on the Grassmannian variety see e.g. [7]). Precisely, it is proven
that a normal spread of PG(5, q) is represented on the Grassmannian of the sub-
spaces of rank 2 of PG(5, q) by a cap, say V , of PG(8, q). A Hermitian curve of
PG(2, q2) is represented by a hyperplane section of V and, for q ≡ 0,2 (mod 3),
this section is contained in the hyperbolic quadric Q and it is isomorphic, through β ,
to the unitary ovoid [11, Theorem 6] (see also [2]). In this article, using the iso-
morphism β and the classification of the intersection set of a pencil of Hermitian
curves in PG(2, q2) obtained by Kestenband in [10], we prove that the slices of the
unitary spread of Q, for q ≡ 2 (mod 3), can be partitioned into five disjoint classes
according to the geometric structure of the intersection between the non-singular hy-
perplane and the unitary ovoid of Q. Hyperplanes belonging to different classes are
non-equivalent under the action of the stabilizer of the unitary spread in the orthog-
onal group P�O+(8, q). When q is even (i.e. q = 22h+1), this provides the deter-
mination of all possible inequivalent symplectic spreads of PG(5, q) arising from the
unitary spread of Q+(7,22h+1), via the construction of Dillon and Dye.

Finally, we use a same approach to study the intersections of the unitary spread
of Q′ = Q(6, q), q ≡ 0 (mod 3) with hyperplanes of PG(6, q). Precisely, we focus
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on the slices of the unitary spread of Q′ with respect to non-singular hyperplanes
intersecting Q′ in an elliptic quadric Q−(5, q). These hyperplanes are divided into
two orbits under the action of the group stabilizing the unitary spread of Q′. Also
in this case, hyperplanes belonging to these orbits are characterized in terms of the
geometric structure of their intersection with the unitary ovoid Ω ′ of Q′. Intersecting
any element of the unitary spread with such hyperplanes we obtain two classes of
line spreads of Q−(5, q) and hence two classes of ovoids of the Hermitian surface
H(3, q2).

2 The setting

We start by recalling a construction of the unitary ovoid and of the unitary spread
exhibited by Kantor in [8].

Denote by M the 9-dimensional vector space of all the 3 × 3-matrices over Fq2

and, for any M ∈ M, set M = Mq , also denote by Mt the transpose of an element
of M. Consider the following Fq -vector subspace of M

V =
{(

x y c

z a yq

b zq xq

)
: x, y, z ∈ Fq2 , a, b, c ∈ Fq and a + x + xq = 0

}
.

Thus, V is an 8-dimensional Fq -vector subspace of M. Let P = PG(7, q) be the
projective space associated with V, i.e. the lattice of all vector subspaces of V and let

Q(M) = Tr(x)2 − N(x) + Tr(yz) + bc, (1)

where Tr :x ∈ Fq2 	→ x + xq ∈ Fq and N :x ∈ Fq2 	→ xq+1 ∈ Fq . Then, Q(M) = 0 is
a quadric of P with associated bilinear form Q(M +N)−Q(M)−Q(N) = tr(MN).
Now, Q(M) = 0 is a hyperbolic quadric Q = Q+(7, q) of PG(7, q) if and only if
q ≡ 2 (mod 3). Moreover, if q = 3h, the quadric Q(M) = 0 is a cone, say C , of
P with vertex 〈I 〉, where I is the identity matrix, having as a base the parabolic
quadric Q(6, q) (see [9]). If q ≡ 2 (mod 3) the set Ω = {〈X〉 ∈ V | X2 = 0} consists
of q3 + 1 points of Q pairwise non-perpendicular, that is, Ω is an ovoid of Q, while,
if q = 3h, it projects into an ovoid, say Ω ′, of the non-singular parabolic quadric
Q(6, q). Precisely, Ω consists of the points

(0 0 1
0 0 0
0 0 0

)
and

(
α αβq αq+1

β βq+1 αqβ

1 βq αq

)

with α,β ∈ Fq2 such that Tr(α) + N(β) = 0. While Ω ′ consists of the points

(0 0 1
0 0 0
0 0 0

)
and

(
α + Tr(α) αβq αq+1

β 0 αqβ

1 βq αq + Tr(α)

)
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with α,β ∈ Fq2 such that Tr(α) + N(β) = 0. Here the parabolic quadric Q(6, q)

containing Ω ′ has equation

x2 + Tr(yz) + bc = 0;
i.e. Q(6, q) = Π ∩ C where Π is the hyperplane of P with equation Tr(x) = 0. The
ovoids Ω and Ω ′ are called the unitary ovoids of Q and Q(6, q), respectively.

Finally, observe that, if q ≡ 1 (mod 3), then the quadratic form Q(M) defines in
PG(7, q) = PG(V,Fq) an elliptic quadric Q−(7, q). In this case, the set Ω = {〈X〉 ∈
V | X2 = 0} is a partial ovoid of Q−(7, q).

Let GU(3, q) be the unitary group of all the non-singular 3 × 3 matrices A over
Fq2 such that JAJ = (A

t
)−1, where

J =
(0 0 1

0 1 0
1 0 0

)
.

The group GU(3, q) acts on V by conjugation inducing PGU(3, q) on PG(7, q); nev-
ertheless, GU(3, q) preserves the quadric Q(M) = 0 and acts 2-transitively on the set
Ω ([9]).

Let T (X) = {M ∈ V: XM = MX = 0}, where X is a point of Ω . Then, T (X) is a
totally singular plane, and T (X) is disjoint from T (Y ) if X and Y are distinct points
of Ω . If q ≡ 2 (mod 3), we can fix one type of maximal totally singular subspaces
of Q, denote by F(X) the subspace of fixed type containing T (X) for any matrix
X ∈ Ω , and set SU = {F(X): X ∈ Ω}. The spread SU is called the unitary spread
of Q.

On the other hand, if q = 3h, the projection of any T (X) from the vertex 〈I 〉 of C
defines a totally singular plane, say T (X)′, of Q(6, q). The set S = {T (X)′: X ∈ Ω}
is called in [11] the unitary spread of Q(6, q).

Moreover, we can embed Q(6, q) in a hyperbolic quadric Q+(7, q) of a PG(7, q)

as intersection of Q+(7, q) with a non-singular hyperplane of PG(7, q); the set Ω ′ is
an ovoid of Q+(7, q) as well and S̃ = {M(X), X ∈ Ω}, where M(X) is the totally
singular 3-dimensional subspace of a fixed type of Q+(7, q) containing T (X)′, is a
spread of Q+(7, q). It will be useful for our purposes to consider this spread, too.
The spread S̃ is known as the unitary spread of Q+(7, q) when q = 3h.

Note that unitary spread and unitary ovoid in Q+(7, q) correspond to each other
via a triality map τ of the hyperbolic quadric Q+(7, q). This can be extracted
from [16].

3 Preliminary results

In this section we briefly recall the work done in [11, §4] and show some lemmas and
propositions that will be useful in the proof of our theorems.

A normal spread of PG(5, q) can be constructed in the following way. Let
Σ∗ = PG(5, q2) and let (x0, x1, x2, x3, x4, x5) be the projective homogeneous co-
ordinates of a point of Σ∗. Denote by σ the involutory collineation of Σ∗ defined
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by (x0, x1, x2, x3, x4, x5)
σ = (x

q

3 , x
q

4 , x
q

5 , x
q

0 , x
q

1 , x
q

2 ). The set of points fixed by σ is
a canonical subgeometry of Σ∗, i.e. Σ = {(x0, x1, x2, x

q

0 , x
q

1 , x
q

2 ): x0, x1, x2 ∈ Fq2}.
Let π ⊂ Σ∗ be a plane with equations x3 = x4 = x5 = 0. Then π is disjoint from
Σ and the plane πσ has equations x0 = x1 = x2 = 0. For each point x of π , let
L(x) = 〈x, xσ 〉, be the line joining the points x and xσ and put S ∗ = {L(x): x ∈ π}.
Then, S = {L(x) ∩ Σ : x ∈ π} is a line spread of Σ which turns out to be a nor-
mal spread. It is easy to show that the Grassmannian map g from the lines of
Σ∗ into the points of Λ∗ = PG(14, q2) maps the set S ∗ = {L(x): x ∈ π} into an
8-dimensional projective subspace Δ∗ of Λ∗. Precisely Δ∗ has equations p01 =
p02 = p12 = p34 = p35 = p45 = 0, and any of its point has homogenous coordinates
(p03,p04,p05,p13,p14,p15,p23,p24,p25).

Now, let V = g(S), i.e. let V be the representation of S on the Grassmannian G of
the lines of Σ ; this is an algebraic variety of a canonical subgeometry Λ  PG(14, q)

of Λ∗. It is easy to show that Δ∗ is a subspace of Λ as well, i.e. Δ = Δ∗ ∩ Λ has
rank 9; precisely,

Δ := {(
x0, x1, x2, x

q

1 , x4, x5, x
q

2 , x
q

5 , x8
)
, x0, x4, x8 ∈ Fq, x1, x2, x5 ∈ Fq2

}
.

Also, in [11], it has been proven that V is the complete intersection of the Grass-
mannian G with Δ.

Note that the vector space Δ underlies an 8-dimensional projective space contain-
ing the projective space P associated with V as a hyperplane. Moreover, a point p of
Δ belongs to V if and only if

p = (
a

1+q

0 , a0a
q

1 , a0a
q

2 , a1a
q

0 , a
1+q

1 , a1a
q

2 , a2a
q

0 , a2a
q

1 , a
1+q

2

)
,

where a0, a1 and a2 ∈ Fq2 .
Now, let m = 〈x, y〉 be a line of π , S∗ = 〈L(x),L(y)〉, S = S∗ ∩ Σ , and let N be

the spread of the 3-dimensional projective space S induced by S . Then the image of
N under g is an elliptic quadric Qm = Q−(3, q) which is the complete intersection of
V with a 3-dimensional projective subspace contained in Δ [11, Theorem 1]. Hence,
the incidence structure having as points the points of V , as lines the quadrics Qm

contained in V and whose incidence is the natural one, is isomorphic to PG(2, q2)

via the isomorphism β defined by the following rules x 	→ g(L(x)) and m 	→ Qm,
where x and m belong to the pointset and to the lineset of PG(2, q2), respectively.
If H(2, q2) is a non-singular Hermitian curve of PG(2, q2) with equation x0x

q

2 +
x

q+1
1 + x

q

0 x2, than the image of H(2, q2) under β is Ω = V ∩ P [11, Theorem 6].
This result was also independently obtained by Cooperstein [2, Lemma 2.3].

Denote by H both the stabilizer of Ω in the orthogonal group P�O+(8, q),
q ≡ 2 (mod 3) and the stabilizer of Ω ′ in P�O(7, q), q = 3h. The stabilizer of the
classical unital H(2, q2) is the group PGU(3, q) � Aut(Fq2), induced by GU(3, q)

and, because of the above arguments, it is isomorphic to H . Precisely, by using
the isomorphism β , one can see that the linear part H of H is isomorphic to
PGU(3, q) � C2, where C2 is the subgroup of Aut(Fq2) of order two.

Now, denote by G both the stabilizer of SU , q ≡ 2 (mod 3), and the stabilizer of
S̃ , q = 3h, in the orthogonal group associated with the relevant hyperbolic quadrics.
Note that when q ≡ 0 (mod 3) the stabilizer GΠ of the hyperplane Π in G coincides



J Algebr Comb (2011) 33: 37–56 43

with the stabilizer of the spread S of Q(6, q) = Π ∩ Q+(7, q) in P�O(7, q). Denote
by G and GΠ the linear part of G and GΠ , respectively. We have the following

Proposition 3.1 The group G is isomorphic to PGU(3, q) and the group, GΠ is
isomorphic to PGU(3, q) � C2 where C2 is the subgroup of Aut(Fq2) of order two.

Proof The unitary ovoid and the unitary spread of Q+(7, q) are related to each other
by a triality map of Q+(7, q). Denote by τ this map and suppose Ω = S τ 2

U (or Ω ′ =
S̃ τ 2

). This means that τGτ−1 is a subgroup of H . Also, by [9, Proposition 6.15(iii)],
the groups G and GΠ , both contain a subgroup isomorphic to PGU(3, q). This means
that G and GΠ are either isomorphic to PGU(3, q) or to PGU(3, q)�C2. Now, when
q ≡ 0 (mod 3), consider

X =
(0 0 1

0 0 0
0 0 0

)
,

then

T (X)′ =
{(0 y c

0 0 yq

0 0 0

) ∣∣∣ y ∈ Fq2 , c ∈ Fq

}
.

The group C2 fixes T (X)′. Nevertheless, suppose q ≡ 2 (mod 3), then q = p2h+1

with p a prime number such that p ≡ 2 (mod 3). Hence, since Fq does not contain
primitive cube roots of unity, the polynomial t2 + t + 1 is irreducible over Fq . Let ω

be a root of t2 + t +1 in Fq2 , then any element x ∈ Fq2 can be uniquely written as x =
x0ω + x1ω

q , where x0, x1 ∈ Fq . So T (x) = −(x0 + x1) and N(x) = x2
0 − x0x1 + x2

1
and it is easy to show that the two maximal totally singular subspaces containing
T (X) = T (X)′ are

F1(X) =
{(

x0ω y c

0 x0 yq

0 0 x0ω
q

) ∣∣∣ y ∈ Fq2 c, x0 ∈ Fq

}
,

F2(X) =
{(

x1ω
q y c

0 x1 yq

0 0 x1ω

) ∣∣∣ y ∈ Fq2 c, x1 ∈ Fq

}
.

These are mapped one into the other by C2. Since, up to isomorphisms, PGU(3, q)

acts transitively on the elements SU , on the elements of the spread S of Q(6, q) and
it is normal in PGU(3, q) � C2, the assertion follows. �

The next proposition can be extracted from [11] in fact, it slightly generalizes
Theorem 4 of that paper:

Proposition 3.2 Any Hermitian curve (possibly singular) of PG(2, q2) is isomorphic,
via β , to the intersection W ∩ V , where W is a hyperplane of Δ.

Hence, we have the following
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Proposition 3.3 Let K be any hyperplane of P. Then the intersection K ∩ Ω is iso-
morphic to the intersection set of a pencil of Hermitian curves of PG(2, q2), one of
them being H(2, q2).

Proof Recall that, by [11], Ω = P ∩ V . Since K is a 6-dimensional subspace of Δ,
K = W1 ∩W2 ∩ · · ·∩Wq+1, where Wi , i = 1, . . . , q +1, is a hyperplane of Δ and we
can put W1 = P. Hence, we have K ∩ Ω = W1 ∩ W2 ∩ · · · ∩ Wq+1 ∩ Ω = W1 ∩ W2 ∩
· · · ∩ Wq+1 ∩ V . By Proposition 3.2, K ∩ Ω is then isomorphic to the intersection
set of a pencil of q + 1 Hermitian curves of PG(2, q2) and P ∩ V corresponds to
H(2, q2). �

Lemma 3.4 A collineation h ∈ H fixes a hyperplane K of P (a hyperplane U of Π )
if and only if h fixes the intersection K ∩ Ω (the intersection U ∩ Ω ′).

Proof We only need to prove the sufficient condition. To this purpose let h be a
collineation of H fixing K ∩ Ω and suppose K �= Kh. Then,

K = W1 ∩ W2 ∩ · · · ∩ Wq+1 and Kh = W ′
1 ∩ W ′

2 ∩ · · · ∩ W ′
q+1,

where Wi and W ′
i , i = 1, . . . , q + 1, are the hyperplanes of Δ = PG(8, q) con-

taining K and Kh, respectively. We can suppose W1 = W ′
1 = P. Now, by Proposi-

tion 3.2 each Wi and W ′
i , i = 1, . . . , q + 1, corresponds, via the isomorphism β , to

a Hermitian curve (possibly degenerate) of PG(2, q2); moreover both sets of q + 1
Hermitian curves define a pencil in PG(2, q2), whose base is (K ∩ Ω)β

−1
. Since

K ∩ Ω = Kh ∩ Ω , there exist two pencils of Hermitian curves both containing the
curve H(2, q2) with the same base; a contradiction. Hence, if h fixes K ∩ Ω , then
h fixes K . The same holds if we start by considering h fixing U ∩ Ω ′ were U is
a hyperplane of Π = PG(6, q); indeed, it is enough to observe that any such 5-
dimensional projective space can be uniquely extended to a hyperplane, say K of
P passing through the vertex 〈I 〉 of the cone C and that the group H fixes the vertex
〈I 〉 of the cone. �

Now, put H1 = H(2, q2) = Ωβ−1
and denote by H2 any other Hermitian curve of

PG(2, q2), possibly singular. So, H2 can be one of the following types: non-singular,
a Hermitian cone with vertex V and finally a line repeated q + 1 times. Also, denote
by E = H1 ∩ H2, the intersection of H1 and H2, and by |E | the size of E . The set E
defines a pencil of q + 1 Hermitian curves of PG(2, q2) which is independent of the
choice of H1 and H2 in the pencil.

In [10], the author completely classified all possibilities for the set E and the geo-
metric configurations of E can be extracted from Table 1.

Using this classification and Propositions 3.3 and 3.2, we have that 1, (q + 1)2,
q2 +q +1, q2 +1, q +1, and q2 −q +1 are also the possible sizes for the intersection
of Ω with a hyperplane of P.

In what follows we will denote by Ei , i ∈ {I, II, . . . ,VII}, the intersection set whose
geometric structure ensues from lines I, II, . . . ,VII listed in Table 1, respectively.
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Table 1 |ε| H2

I (q + 1)2 Hermitian cone; V /∈ H1;

the lines are chords of H1

II q2 + q + 1 Hermitian cone; V ∈ H1;

the lines are chords of H1

III q2 + 1 Hermitian cone; V /∈ H1;

2 tangents and q − 1 chords of H1

IV q2 + 1 Hermitian cone; V ∈ H1;

one tangent and q chords of H1

V q + 1 a chord of H1

VI 1 a tangent line of H1

VII q2 − q + 1 non-singular Hermitian curve

Lemma 3.5 Consider the non-singular Hermitian curve H1 of PG(2, q2). We have
that:

1. there are q3(q2−q+1)(q−1)(q−2)
6 sets of type EI;

2. there are q2(q3 + 1)(q − 1) sets of type EII;

3. there are q4(q3+1)
2 sets of type EIII;

4. there are q(q3 + 1)(q + 1) sets of type EIV;
5. there are q2(q2 − q + 1) sets of type EV;
6. there are q3 + 1 sets of type EVI;

7. there are q3(q+1)3(q−1)
3 sets of type EVII.

Proof The number of distinct intersection sets EV equals the number of chords of H1,
while the number of distinct intersection sets EVI equals the number of points of H1.
These can be easily computed, proving points 5 and 6, respectively. Since the pen-
cils with intersection sets EII, EIII and EIV contain exactly one cone H2 of the type
described in Table 1, counting the number of these intersection sets is equivalent to
counting the number of these cones. On the other hand, since there are three cones
of the same type in a pencil having as intersection set one of type EI, the number
of such intersection sets is the number of the cones described in Table 1 divided by
three. Let V be the vertex of the cone, if V ∈ H1 and � is a line of PG(2, q2) not
through V , then there exists exactly one point P ∈ � such that the line 〈V,P 〉 is a
tangent line to H1. Hence, the number of cones defining a sets EII is (q3 + 1)N1 and
the number of cones defining intersection sets EIV is (q3 + 1)N2, where N1 and N2
are the number of Baer sublines of � not through P and the number of Baer sublines
of � through P , respectively. On the other hand, if V /∈ H1, then there exists a Baer
subline of �, say �′, such that the lines joining V with any of the points of �′ are
tangent, the others being chords. Hence, the number of cones defining intersection
sets EI is q2(q2 − q + 1)N3/3 and the number of cones defining intersection sets EIII
is q2(q2 − q + 1)N4, where N3 is the number of Baer sublines of � skew to �′ and
N4 is the number of Baer sublines of � having two points in common with �′. Finally,
the numbers Ni , i = 1, . . . ,4, can be easily computed using the isomorphism between



46 J Algebr Comb (2011) 33: 37–56

the projective line PG(1, q2) and the elliptic quadric Q−(3, q) (see [6], Chap. 15). As
a consequence of Proposition 3.3, we get that the number of remaining intersection

sets, i.e., intersection sets EVII, is q3(q+1)3(q−1)
3 . This concludes the proof. �

Now we will determine the subgroup of the unitary group PGU(3, q) associated
with the non-singular Hermitian curve H(2, q2), fixing each Ei , i ∈ {I, II, . . . ,VII}.
In what follows we will denote by Zh a cyclic group of order h. The linear automor-
phism group Aut(Ei ) (i.e. the subgroup of PGL(3, q2) fixing Ei ) has been computed
in [5], for all i ∈ {I, II, . . . ,VII}. It is easy to see that, up to isomorphism, Aut(Ei ) ≤
PGU(3, q) whenever i ∈ {III, IV,VII} and we have that Aut(EIII)  Z2 � Zq2−1,
Aut(EIV)  Eq × AGL(1, q), where Eq is an elementary abelian group of order q ,
and finally Aut(EVII)  Z3 � Zq2−q+1. By [5, Lemma 2.6], Aut(EII) ∩ PGU(3, q) 
Eq � Zq+1. Also, Aut(EV) is the subgroup of PGU(3, q) fixing a chord of H1, and
Aut(EVI) is the subgroup of PGU(3, q) fixing a point of H1. Finally, regarding the
stabilizer of EI in PGU(3, q), we have the following result.

Proposition 3.6 Denote by E the group Aut(EI) ∩ PGU(3, q). Then, we have the
following possibilities:

1. if q = 22h, then either E  (Zq+1 × Zq+1) � Z3 or E  Zq+1 × Zq+1;
2. if q = 22h+1, then E  Zq+1 × Zq+1;
3. if q = 3h, then either E  (Zq+1 × Zq+1) � Sym3 or E  Zq+1 × Zq+1;
4. if q = ph and p �= 3,2, then either E  Zq+1 ×Zq+1 or E  (Zq+1 ×Zq+1)�Z3,

or E  (Zq+1 × Zq+1) � Z2.

Proof In [5], the author reconstructs the intersection set E with geometric structure
described in I of Table 1, using as fixed non-singular Hermitian curve H of PG(2, q2)

containing E , that with equation X
q+1
0 +X

q+1
1 +X

q+1
2 = 0. He proves that the group

Aut(E ) is isomorphic to (Zq+1 ×Zq+1)�Sym3, where Sym3 is the symmetric group
acting on three elements. It is easy to see that the unitary group associated with H
contains the subgroup of Aut(E ) isomorphic to Zq+1 × Zq+1. Now, the subgroup
isomorphic to Sym3 is generated by the following collineations of PG(2, q2)

σ1 : (X0,X1,X2) 	→ (X2, aX0, bX1),

σ2 : (X0,X1,X2) 	→ (
cX1, c

−1X0,X2
)
,

where a, b, c ∈ Fq2 such that aq+1 = λ(1 − λ), bq+1 = − (1−λ)2

λ
, cq+1 = − 1

λ
. Here λ

is an element of Fq \ {0,1} such that the Hermitian cones Ki , i = 1,2,3 with equa-
tions

K1: λX
q+1
0 + X

q+1
1 = 0, K2: (λ − 1)X

q+1
1 + λX

q+1
2 = 0,

K3: (1 − λ)X
q+1
1 + X

q+1
2 = 0

belong to the pencil with base EI. Hence Sym3  {1, σ1, σ
2
1 , σ2, σ3, σ4}, where

σ3 : (X0,X1,X2) 	→ (
caX0, c

−1X2, bX1
)

and

σ4 : (X0,X1,X2) 	→ (
X2, acX1, bc−1X0

)
.
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Now, the collineation σ1 fixes H if and only if λ(1 − λ) = − (1−λ)2

λ
= 1, that is if

and only if λ2 −λ+1 = 0. Moreover, σ2 fixes H if and only if λ = −1. Nevertheless,
σ3 fixes H if and only if 2λ = 1 and finally, σ4 fixes H if and only if λ = 2. If q is
even, then σ2, σ3 and σ4 /∈ E. Moreover, if q = 22h+1, then σ1 /∈ E as well; while if
q = 22h, then σ1 ∈ E if and only if λ2 − λ + 1 = 0. This proves points 1 and 2. If
q = ph and p �= 3,2, then there are three possibilities, precisely, either λ is an element
of Fq such that λ2 −λ+1 = 0 or λ ∈ {−1,2, 1

2 } or λ2 −λ+1 �= 0 and λ /∈ {−1,2, 1
2 }.

As a consequence, we have the three stated forms for the group E. Finally, if q = 3h

then E has the described form according whether λ = −1 or λ �= −1. �

4 Slices of the unitary spread

Let q ≡ 2 (mod 3) and let SU and Ω be the unitary spread and the unitary ovoid of
the hyperbolic quadric Q = Q+(7, q) of P defined by the Quadratic form (1), respec-
tively. Let K be a non-singular hyperplane of P; the slice of SU with respect to K is
the 2-spread induced by SU in the parabolic quadric obtained intersecting Q with K .
Note that the stabilizer GK of K in G coincides with the stabilizer, in the orthogonal
group associated with the parabolic quadric, of the slice determined by K . As ob-
served in the previous section, any hyperplane of P intersects Ω in a set of points iso-
morphic, via the map β , to a set Ei , where i varies in the set {I, II, III, IV,V,VI,VII}.
We say that a hyperplane K of P, is of type i for i ∈ {I, II, III, IV,V,VI,VII}, if
(Ω ∩ K)β

−1 = Ei . We prove the following

Proposition 4.1 Let Q = Q+(7, q), q ≡ 2 (mod 3); there are five disjoint classes of
slices of the unitary spread SU ⊂ Q. These are obtained intersecting SU with hyper-
planes of P of types i, where i ∈ {I, II, III,V,VII}. Slices obtained by intersecting Q
with hyperplanes of different types are not equivalent under the action of the group G.

Proof By Proposition 3.1, we have that the linear part G of G is isomorphic to the
unitary group PGU(3, q). Let K be any hyperplane of P. By Lemma 3.4, the stabilizer
in the group G of K , i.e. the linear stabilizer of the slice determined by K , coincides
with the stabilizer in PGU(3, q) of K ∩ Ω and by Proposition 3.2, it is isomorphic
to the stabilizer in the relevant projective unitary group of one of the intersection sets
Ei , i ∈ {I, II, . . . ,VI,VII}. These groups and their orders have been described and
discussed in Sect. 2. In what follows we will determine which intersection sets Ei ,
i ∈ {I, II, III, IV,V,VI,VII}, correspond, through the map β , to the intersection of
Ω with non-singular hyperplanes of P. To this aim, we first observe that if K is a
singular hyperplane polar of a point P ∈ Ω , then K ∩Ω = P . Hence, the hyperplane
K corresponds, via the isomorphism β , to an intersection set EVI. This provides an
orbit of such hyperplanes of length q3 + 1 under the action of G. On the other hand,
if K is a singular hyperplane polar of a point P /∈ Ω , then K ∩ Ω projects into an
ovoid of a Q+(5, q) [8]. So, |K ∩ Ω| = q2 + 1. There are two types of intersection
sets of this size namely, the EIII’s and the EIV’s, (see Table 1). Now, let

P =
(0 1 0

0 0 1
0 0 0

)
;
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then P ∈ Q+(7, q) \ Ω and K = P ⊥ has equation Tr(z) = 0. So, we have

K ∩ Ω =
{(0 0 1

0 0 0
0 0 0

)
,

(
α αβq αq+1

β βq+1 αqβ

1 βq αq

) ∣∣∣ Tr(β) = 0 and Tr(α) + N(β) = 0

}
.

It is easy to show that K ∩Ω is isomorphic to the intersection, in PG(2, q2), between
the Hermitian curve H1 and the Hermitian cone K with equation X1X

q

2 +X
q

1 X2 = 0.
The cone K has vertex V = 〈(1,0,0)〉Fq

, hence V ∈ H1 and so the hyperplane
K = P ⊥ corresponds to a subset EIV of H1. The subgroup of PGU(3, q) fixing such
intersection has order q2(q − 1) (see [5]), hence the orbit of K under the action of

this group has length q3(q3+1)(q2−1)

q2(q−1)
= q(q3 + 1)(q + 1). There are q3(q3 + 1) re-

maining singular points; since the subgroup of PGU(3, q) fixing a intersection set
EIII has order 2(q2 − 1), the orbit of any of this point, under the action of the men-

tioned group, has length q3(q3+1)
2 . So, by Lemma 3.5, we conclude that there are two

orbits of singular hyperplanes and q − 2 orbits of non-singular hyperplanes intersect-
ing Ω in a set corresponding through β to an intersection set of type EIII in H1. The
above arguments show that non-singular hyperplanes correspond to intersection sets
of type Ei , i ∈ {I, II, III,V,VII} and, naturally, hyperplanes corresponding to different
intersection sets are not equivalent under the action of G. �

As mentioned in the introduction, when q is even, i.e. when q = 22h+1 there is a
connection between spreads of Q+(7, q) and 2-spreads of W(5, q).

In [8] the author exhibits three slices of SU ⊂ Q+(7,22h+1) non-isomorphic with
respect to G  PGU(3, q). Precisely they are defined by the following non-singular
points of P:

i. N =
( 1 0 0

0 0 0
0 0 1

)
, in this case the stabilizer in PGU(3, q) of the corresponding slice is

Zq+1 × PGU(2, q);

ii. N ′ =
( a 0 1

0 1 0
1 0 aq

)
with a ∈ Fq2 such that Tr(a) = 1, in this case the stabilizer in

PGU(3, q) of the corresponding slice is Zq+1 × Zq+1;
iii. all points of an anisotropic line �, in this case the slice corresponding to any point

of � has as stabilizer a cyclic group of order q2 − q + 1.

The translation planes arising from these spreads are also investigated.
According to the terminology used in [9], referred to the desarguesian spread of

Q+(2n+1, q), we say that 2-spreads of W(5, q) obtained from the unitary spread SU

of Q+(7, q) are cousins. We are here mainly interested in those cousins that are non-
equivalent under the action of the stabilizer in P�O+(8, q) of SU . In what follows
we will use the same symbol S to denote both the slices and the symplectic 2-spreads
of PG(5, q) they produce. Moreover, we denote by Sp(6, q)S the stabilizer of S in the
group Sp(6, q) associated with the symplectic polarity of PG(5, q). As a consequence
of Proposition 4.1, we have the following
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Theorem 4.2 There are five classes of non-isomorphic symplectic 2-spreads of
PG(5, q) which can be obtained from the unitary spread of Q+(7, q)q = 22h+1; pre-
cisely

1. Sp(6, q)S ∼= Zq+1 ×Zq+1; there are at least q−2
6

d
2h+1 cousins in this class, where

d is a divisor of 2h + 1;
2. Sp(6, q)S ∼= Eq � Zq+1 where Eq is an elementary abelian group of order q;

there is a unique cousin in this class;
3. Sp(6, q)S ∼= Z2 � Zq2−1; there are at least (q − 2) d ′

2h+1 cousins in this class,
where d ′ is a divisor of 2h + 1;

4. Sp(6, q)S ∼= SL(2, q) × Zq+1; there is a unique cousin in this class;

5. Sp(6, q)S ∼= Z3 � Zq2−q+1; there are (q + 1) d ′′
2h+1 cousins in this class, where d ′′

is a divisor of 2h + 1.

Proof In [8] the slices of SU defined by the non-singular points of P

N =
(1 0 0

0 0 0
0 0 1

)
and N ′ =

(
a 0 1
0 1 0
1 0 aq

)
with Tr(a) = 1,

have been studied. Regarding the point N it is proven that the stabilizer in G 
PGU(3, q) of the corresponding slice S is isomorphic to Zq+1 × SL(2, q). Indeed, it
is easy to show that N⊥ ∩ Ω is isomorphic to an intersection set EV. Moreover, these
slices form a unique orbit under the action of the full stabilizer G of SU . Nevertheless,
regarding the point N ′, in [8] it is proven that the stabilizer in G of the corresponding
slice S is isomorphic to Zq+1 × Zq+1, indeed a straightforward calculation shows
that N ′⊥ ∩ Ω is isomorphic to an intersection set EI. These slices are partitioned into
q−2

6 orbits under the action of G (see point 1 of Lemma 3.5).
Now, let

N ′′ =
(0 a 1

1 0 aq

0 1 0

)

with a ∈ Fq2 such that the polynomial x3 + Tr(a)x + 1 is irreducible over Fq ; we
observe that it is always possible to choose an element in Fq2 with this property, in
fact this is equivalent to the existence of an element u ∈ Fq3 \ Fq whose trace and
norm over Fq are 0 and 1, respectively and, indeed, such an element exists for any
prime power q (for instance, see [12]).

The hyperplane (N ′′)⊥ has equation Tr(az) + Tr(y) + b = 0. Hence,

(
N ′′)⊥ ∩ Ω

=
{(

α αβq αq+1

β βq+1 αqβ

1 βq αq

)
: Tr

(
αβq

) + 1 + Tr(aβ) = 0 and Tr(α) + N(β) = 0

}

∪
{(0 0 1

0 0 0
0 0 0

)}
.
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Since q = 22h+1, the polynomial t2 + t + 1 = 0 is irreducible over Fq .
Let i ∈ Fq2 such that i2 + i +1 = 0 and let {i, iq} be a normal basis of Fq2 over Fq .

Any element α ∈ Fq2 can be uniquely written as follows α = α1i + α2i
q , where

α1, α2 ∈ Fq ; hence we have Tr(α) = α1 + α2 and N(α) = α2
1 + α2

2 + α1α2. So, the
system

{
Tr

(
αβq

) + 1 + Tr(aβ) = 0,

Tr(α) + N(β) = 0

can be written as follows

{
α1β2 + α2β1 + 1 + aβ + aqβq = 0,

α1 + α2 = N(β).

This system has solutions only when β ∈ Fq2 \Fq ; this implies that |(N ′′)⊥ ∩Ω| =
q2 − q + 1. Hence, (N ′′)⊥ ∩ Ω is isomorphic to an intersection set EVII of H1. The
stabilizer of the corresponding slice is then isomorphic to Z3 �Zq2−q+1. We note that
the slice corresponding to the non-singular point N ′′ is one of the examples stabilized
by a cyclic group of order q2 − q + 1 discussed by Kantor in [9, Example 7.6].
These slices are partitioned into q + 1 orbits under the action of G (see point 7 of
Lemma 3.5).

Let

N ′′′ =
(

a 0 1
0 1 0
0 0 aq

)

with Tr(a) = 1. The polar hyperplane (N ′′′)⊥ has equation Tr(aqx) + b = 0. Hence,

(
N ′′′)⊥ ∩ Ω =

{(
α αβq αq+1

β βq+1 αqβ

1 βq αq

)
: Tr

(
aqα

) + 1 = 0 and Tr(α) + N(β) = 0

}

∪
{(0 0 1

0 0 0
0 0 0

)}
.

It is easy to show that (N ′′′)⊥ ∩ Ω is isomorphic to the intersection of the Hermitian
curve H1 with the Hermitian cone with equation Tr(aqX0X

q

2 ) + X
q+1
2 . Hence it cor-

responds to an intersection set of type EIII in H1 and the stabilizer of the correspond-
ing slice is isomorphic to Z2 � Zq2−1. We have already shown that there are q − 2

orbits of such non-singular hyperplanes under the action of G.
Finally, let

N iv =
(1 0 1

0 0 0
0 0 1

)
.
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The polar hyperplane (N iv)⊥ has equation Tr(x) + b = 0. Hence,

(
N iv)⊥ ∩ Ω =

{(
α αβq αq+1

β βq+1 αqβ

1 βq αq

)
: Tr(α) = 1 and Tr(α) + N(β) = 0

}

∪
{(0 0 1

0 0 0
0 0 0

)}
.

It is easy to show that (N iv)⊥ ∩ Ω is isomorphic to an intersection set EII and the
stabilizer of the corresponding slice is isomorphic to Eq � Zq+1. By Lemma 3.5 we
have that there is a unique orbit of such non-singular hyperplanes. This concludes the
proof. �

We end the section with the following remark.

Remark 4.3 In [8], it is proven that the intersection of the unitary ovoid Ω with a
singular hyperplane gives arise to spreads and hence to translation planes. Indeed, if
P is a singular point not in Ω , then P ⊥ ∩ Ω projects into an ovoid of Q+(5, q); via
the Klein map, an ovoid of Q+(5, q) corresponds to a spread of PG(3, q) and hence
to a translation plane of order q2. In [8] some subgroups of the automorphism group
of such a spread are studied. By the arguments used in the proof of Theorem 4.1, we
can see that these subgroups are indeed isomorphic to subgroups of PGU(3, q) fixing
intersection sets of types EIII and EIV of H1.

5 Slices of the unitary spread of Q(6, q), q = 3h

Let V be the 8-dimensional vector space described in Sect. 2. If q = 3h, then the
Quadratic form (1) on V, defines a cone of the associated projective space P with ver-
tex the point 〈I 〉Fq

where I is the identity matrix, and with base a parabolic quadric
Q′ = Q(6, q). We can choose as base of the cone the quadric contained in the hyper-
plane Π with equation Tr(x) = 0; i.e. Q′ has equation

−N(x) + Tr(yz) + bc = 0.

The set Ω exhibited in Sect. 2 then projects into an ovoid say Ω ′ of Q′, indeed(0 0 1
0 0 0
0 0 0

)
and

(
α + Tr(α) αβq αq+1

β 0 αqβ

1 βq αq + Tr(α)

)

with α,β ∈ Fq2 such that Tr(α) + N(β) = 0.
In this section we classify the slices of the unitary spread S = {T (X)′: X ∈ Ω}

of Q′ with respect to hyperplanes of Π intersecting Q′ in elliptic quadrics, up to the
action of GΠ  PGU(3, q) � C2. First, we prove the following

Theorem 5.1 Let U be a hyperplane of Π  PG(6, q), then the following possibili-
ties can occur:
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1. U is the polar hyperplane of a point of Ω ′. There is a unique orbit of such hyper-
planes; also, U ∩ Ω ′ is isomorphic to an intersection set EVI.

2. U is the polar hyperplane of a singular point not belonging to Ω ′. There is a
unique orbit of such hyperplanes; also, U ∩ Ω ′ is isomorphic to an intersection
set EIV.

3. U is a non-singular hyperplane intersecting the Q(6, q) in a Q+(5, q); such hy-
perplanes form a unique orbit; also, U ∩ Ω ′ is isomorphic to an intersection
set EIII.

4. U is a non-singular hyperplane intersecting the Q(6, q) in a Q−(5, q); there are

two orbits of such hyperplanes, say O1 and O2, the first of length q3(q2−q+1)(q−1)
6

and the second one of length q3(q+1)2(q−1)
3 , such that for any U ∈ O1, U ∩ Ω ′ is

isomorphic to an intersection set EI, while for any U ∈ O2, U ∩ Ω ′ is isomorphic
to an intersection set EVII.

Proof By Proposition 3.3, we know that the intersection K ∩ Ω (K a hyperplane
of P) is isomorphic to the intersection of two Hermitian curves. Also, any hyperplane
U of Π can be uniquely extended to a hyperplane K of P passing through the vertex
of C and K ∩ Ω is isomorphic to U ∩ Ω ′.

If U is a hyperplane polar of the point P ∈ Ω ′, then we have that U ∩ Ω ′ is
isomorphic to a subset EVI of H1. Consider, on the other hand,

P =
(0 1 0

0 0 1
0 0 0

)

and denote by ⊥ the polarity defined by the parabolic quadric Q(6, q), then P ∈
Q(6, q) \Ω ′ and P ⊥ has equation Tr(z) = 0. Arguing as in the proof of Theorem 4.1
we can prove that the intersection of this hyperplane with Ω ′ is isomorphic to an
intersection set EIV in H1. The subgroup of PGU(3, q) fixing such an intersection
has order q2(q − 1) (see [5]), hence the orbit of U under the action of GΠ has length
q3(q3+1)(q2−1)

q2(q−1)
= q(q3 + 1)(q + 1).

So, we can state that any singular hyperplane which is the polar hyperplane of a
point not in Ω ′ intersects Ω ′ in a set isomorphic to a set of type EIV in H1. Slicing
the unitary ovoid Ω ′ with one of these singular hyperplanes we obtain a set of points
which projects into a Kantor ovoid of Q(4, q) as already proven in [8]. Consider,
now, the hyperplane U of PG(6, q) defined by the following points

{( 0 y c

z 0 yq

b zq 0

)
: y, z ∈ Fq2 , b, c ∈ Fq

}
.

The intersection of Q with such a hyperplane is the hyperbolic quadric Q+(5, q)

of equation Tr(yz) + bc = 0. The points of Ω ′ ∩ U are:

(0 0 1
0 0 0
0 0 0

)
and

( 0 β2q+1 β2(q+1)

β 0 β2+q

1 βq 0

)
,
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with β ∈ Fq2 . Hence |Ω ′ ∩ U | = q2 + 1; since the unique orbit of hyperplanes, with
respect to the action of GΠ , intersecting Ω ′ in a set isomorphic to a EIV consists of
singular hyperplanes, the only possibility is that U ∩Ω ′ is isomorphic to a set of type
EIII and such hyperplanes form a unique orbit as well [8]. Let, now,

U =
{(

x y −b

z 0 yq

b zq xq

)
: x, y, z ∈ Fq2 , x + xq = 0, b ∈ Fq

}
.

In this case, the intersection U ∩ Q is the elliptic quadric Q−(5, q) with equation
x2 + Tr(yz) − b2 = 0. The points of Ω ′ ∩ U are

(
α + Tr(α) αβq −1

β 0 αqβ

1 βq αq + Tr(α)

)
,

with α,β ∈ Fq2 such that Tr(α)+N(β) = 0 and αq+1 = −1. So, |U ∩Ω ′| = (q +1)2

and by Proposition 3.6 the stabilizer of U ∩ Ω ′ is isomorphic to ((Zq+1 × Zq+1) �

Sym3) � C2; indeed if this was not the case then we would have an orbit of such hy-
perplanes of length greater then the number of elliptic quadric in Q(6, q). Hence, we

have one orbit of length q3(q2−q+1)(q−1)
6 , with respect to the action of GΠ , of hyper-

planes containing a Q−(5, q) and intersecting Ω ′ in a set isomorphic to a set EI. There

are, then, q3(q+1)2(q−1)
3 hyperplanes containing a Q−(5, q) left and, by Lemma 3.5,

the only possibility is that they form one orbit and they intersect Ω ′ in a set isomor-
phic to a EVII. �

Let U be a hyperplane of Π intersecting Q′ in a Q+(5, q), then the set Ω ′ ∩
Q+(5, q) is an ovoid of Q+(5, q) and, by Theorem 5.1, it consists of q − 1 pairwise
disjoint conics and two special points. This set corresponds, via the Klein map, to
a spread of the 3-dimensional projective space PG(3, q) containing q − 1 disjoint
reguli and two special lines. In what follows, we explicitly describe such a spread. To
this aim, consider the elliptic quadric Q+(5, q) with equation Tr(yz) + bc = 0 and
note that the set Ω ′ ∩ Q+(5, q) consists of the points:

(0 0 1
0 0 0
0 0 0

)
and

( 0 β2q+1 β2(q+1)

β 0 β2+q

1 βq 0

)

with β ∈ Fq2 . Let ξ be a fixed non-square element in Fq . Then any element
x of Fq2 can be uniquely written as x0 + x1σ , where x0, x1 ∈ Fq and σ 2 = ξ .
Consider the following isomorphism (y, z, b, c) ∈ Fq2 × Fq2 × Fq × Fq 	→
(y0, y1, b, c,−z1ξ,−z0) ∈ F

6
q . Then, the equation Tr(yz) + bc = 0 can be writ-

ten in the following way −y0z0 − y1z1ξ + bc = 0, and applying the above iso-
morphism it is isomorphic to the Klein quadric with equation x1x6 + x2x5 +
x3x4 = 0. In this setting, Ω ′ ∩ Q+(5, q) = {P∞,Pβ} where P∞ = (0,0,0,1,0,0)

and Pβ = (βq+1β0,−βq+1β1,1, β2(q+1),−β1ξ,−β0), β ∈ Fq2 . Applying the in-
verse of the Klein map, we get: P∞ 	→ �∞ = 〈(0,1,0,0), (0,0,1,0)〉Fq

and Pβ 	→
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�β = 〈(1, β1ξ,−β0,0), (0, β0β
q+1,−β1β

q+1,1)〉Fq
. The set L = {�∞, �β}, β ∈ Fq2 ,

is a spread of PG(3, q). Consider the hyperbolic quadrics Qd := Q+(3, q) with equa-
tion x2

1ξd + x2
2 − x2

3ξ − x2
4d3 = 0, where d is an element of F

∗
q . The line �β is con-

tained in Qd if and only if βq+1 = d , and hence the spread L contains q − 1 disjoint
reguli. The lines �0 and �∞ are not contained in any of the q − 1 quadrics but they
are pairwise polar with respect to the polarity defined by Qd ∀d ∈ F

∗
q . This spread

is spawned by a regular hyperbolic fibration of PG(3, q). Hyperbolic fibrations were
introduced in [1] and in fact they consist of q − 1 hyperbolic quadrics and two lines
such that they form a partition of the point-set of PG(3, q); if the two lines are pair-
wise polar with respect to the polarity induced by any of the hyperbolic quadric, then
the hyperbolic fibration is said to be regular. Choosing one regulus in each quadric,
we get a line-spread of PG(3, q).

In [1, Theorem 2.2], the authors exhibit three families of regular hyperbolic fibra-
tions. One of these is the following

J0 = {
V

[
t,0,−ωtp

i

,1,0,−ω
]
: t ∈ Fq

} ∪ {l0, l∞}, i ∈ {0,1,2, . . . , h},
where ω is a fixed non-square element in Fq and for any t ∈ F

∗
q

V
[
t,0,−ωtp,1,0,−ω

] = tx2
1 − ωtp

i

x2
2 + x2

3 − ωx2
4 .

Straightforward computations show that the hyperbolic fibration spawned by the
spread L is isomorphic to the hyperbolic fibration J0 when p = 3 and i = 1.

The authors also find a linear automorphism group G in the stabilizer of J0; the
group G has order 4(q2 − 1) and is proven to be the semidirect product of a cyclic
group of order q2 − 1 and a Klein 4-group. The subgroup G′ of G fixing L has or-
der 2(q2 − 1), since G′ does not contain the collineation of order two interchang-
ing the two reguli of each hyperbolic quadric belonging to J0. Also, the authors
state that MAGMA computations for q = 9 show that the full linear stabilizer of J0
has order 8(q2 − 1). As a consequence of Theorem 5.1 we have that the full lin-
ear stabilizer of J0 has always order at least 8(q2 − 1). Indeed, by Theorem 5.1,
the automorphism group of L is isomorphic to (Aut(EIII) ∩ PGU(3, q)) � C2, where
Aut(EIII)∩PGU(3, q) is the semidirect product of a group of order two permuting the
two special lines l0 and l∞ and leaving the remaining invariant and a cyclic group of
order q2 − 1, acting regularly on the lines of the spread different from l0 and l∞. The
group C2 fixes the lines l0 and l∞ and fixes each regulus of the fibration. Moreover,
C2 fixes �β if and only if β ∈ Fq and this is possible if and only if d is a square in Fq ;
so, in q−1

2 reguli there are no fixed lines while in the remaining ones two fixed lines.
Hence, the full linear stabilizer of L has size 4(q2 − 1) and we can conclude that for
any q = 3h, the full linear stabilizer of a regular fibration which belongs to the family
J0 has order at least 8(q2 − 1).

Now, let U be a non-singular hyperplane intersecting Q in an elliptic quadric
Q−(5, q): the intersection U ∩Ω ′ is a partial ovoid of Q−(5, q); on the other hand the
intersection U ∩ S , where S = {T (X)′: X ∈ Ω}, induces a spread say S ′ of Q−(5, q).
Lemma 3.4 can be applied to see that the partial ovoid and the spread S ′ have the
same stabilizer. Also, in the previous theorem, we have pointed out that there are two
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types of non-singular hyperplanes intersecting Q(6, q) in a Q−(5, q). Let U ∩ Ω ′
be isomorphic to a set EI in H1; the set U ∩ Ω ′ consists of q + 1 pairwise disjoint
conics. More precisely, taking into account the structure of the pencil of Hermitian
curve of PG(2, q2) with intersection set EI, one can see that there are three different
possible partitions of U ∩Ω ′ into a set of q +1 disjoint conics, say {P1, P2, P3}. The
subgroup of H fixing this set is isomorphic to ((Zq+1 × Zq+1) � Sym3) � C2, where
Sym3 is the symmetric group over three objects and Zq+1 is a cyclic group of order
q + 1; for any i ∈ {1,2,3} one of the two copies of Zq+1 acts regularly on the conics
of Pi , the other one acts regularly on the points of the conics of Pi . Moreover, the
group Sym3 acts on the set {P1, P2, P3}. Now, looking at the action of this group on
the spread S ′ we have that it has one orbit of length (q + 1)2, which is in fact formed
by the lines of S ′ containing the points of Q−(5, q) ∩ Ω ′.

Finally, let U be a hyperplane of Π containing Q−(5, q) such that U ∩ Ω ′ is
isomorphic to an intersection set of type EVII. In this case |U ∩ Ω ′| = q2 − q + 1 and
this set of points has the property that three of them are never contained in a conic.
The automorphism group is isomorphic to Aut(EVII)�C2 and acts transitively on the
points of this partial ovoid and hence on the lines of the induced spread containing
these points.

It is worth mentioning that since the generalized quadrangle Q−(5, q) is isomor-
phic to the dual of the generalized quadrangle H(3, q2) (for more details we refer to
[13]), these two classes of spreads of Q−(5, q) produce two non-isomorphic classes
of ovoids of the Hermitian surface H(3, q2) admitting ((Zq+1 ×Zq+1)�Sym3)�C2
and (Z3 � Zq2−q+1) � C2.
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