On the representation theory of an algebra of braids and ties

Steen Ryom-Hansen

Received: 5 May 2009 / Accepted: 16 April 2010 / Published online: 7 May 2010
© Springer Science+Business Media, LLC 2010

Abstract

We consider the algebra $\mathcal{E}_{n}(u)$ introduced by Aicardi and Juyumaya as an abstraction of the Yokonuma-Hecke algebra. We construct a tensor space representation for $\mathcal{E}_{n}(u)$ and show that this is faithful. We use it to give a basis of $\mathcal{E}_{n}(u)$ and to classify its irreducible representations.

Keywords Diagram algebras • Symmetric group • Specht modules

1 Introduction

We initiate in this paper a systematic study of the representation theory of an algebra $\mathcal{E}_{n}(u)$ defined by Aicardi and Juyumaya. Let G be a Chevalley group over \mathbb{F}_{q} with Borel group B and maximal unipotent subgroup U. The origin of $\mathcal{E}_{n}(u)$ is in the Yokonuma-Hecke algebra $\mathcal{Y}_{n}(u)$, which is defined similarly as the Iwahori-Hecke algebra but with B replaced by U. That is, $\mathcal{Y}_{n}(u)$ is the endomorphism algebra of the induced G-module $\operatorname{ind}_{U}^{G}$ 1. It is a unipotent Hecke algebra in the sense of [20]. Yokonuma gave in [21] a presentation of $\mathcal{Y}_{n}(u)$ along the lines of the standard T_{i} presentation of the Iwahori-Hecke algebra, but the introduction of $\mathcal{E}_{n}(u)$ is more naturally motivated by the new presentation of $\mathcal{Y}_{n}(u)$ found by Juyumaya in [15], see also $[14,16]$. For type A_{n}, this new presentation has generators $T_{i}, i=1, \ldots, n-1$ and $f_{i}, i=1, \ldots, n$ where the f_{i} generate a product of cyclic groups and the T_{i} satisfy the usual braid relation of type A, but do not coincide with Yokonuma's T_{i} generators. The quadratic relation takes the form

$$
T_{i}^{2}=1+(u-1) e_{i}\left(1+T_{i}\right),
$$

for e_{i} a complicated expression involving f_{i} and f_{i+1}.

Supported in part by Programa Reticulados y Simetría and by FONDECYT grants 1051024 and 1090701.

[^0]The algebra $\mathcal{E}_{n}(u)$ is obtained by leaving out the f_{i}, but declaring the e_{i} new generators, denoted E_{i}. It was introduced by Aicardi and Juyumaya in [1]. They showed that $\mathcal{E}_{n}(u)$ is finite dimensional and that it has connections to knot theory via the Vasiliev algebra. They also constructed a diagram calculus for $\mathcal{E}_{n}(u)$ where the T_{i} are represented by braids in the usual sense and the E_{i} by ties. Using results from [3], they moreover showed that $\mathcal{E}_{n}(u)$ can be Yang-Baxterized in the sense of Jones [11].

In this paper we initiate a systematic study of the representation theory of $\mathcal{E}_{n}(u)$, obtaining a complete classification of its simple modules for generic choices of the parameter u. In [1], this was achieved only for $n=2$, 3. An interesting feature of this classification is the construction of a tensor space module $V^{\otimes n}$ for $\mathcal{E}_{n}(u)$. It was in part inspired by the tensor module for the Ariki-Koike algebra in [2]-see also [19]. A main property of $V^{\otimes n}$ is its faithfulness that we obtain as a corollary to our Theorem 3 giving a basis G for $\mathcal{E}_{n}(u)$. The dimension of $\mathcal{E}_{n}(u)$ turns out to be $B_{n} n$! where B_{n} is the Bell number, i.e. the number of set partitions of $\{1,2, \ldots, n\}$.

The appearance of the Bell number is somewhat intriguing and may indicate a connection to the partition algebra defined independently by P. Martin in [17] and V. Jones in [12], but as we indicate in the remarks following Corollary 4, we do not think at present that the connection can be very direct.

Given the tensor module, the classification of the irreducible modules follows the principles laid out in James's famous monograph on the representation theory of the symmetric group [10].

Let us briefly explain the organization of the paper. Section 2 contains the definition of the algebra $\mathcal{E}_{n}(u)$. In Sect. 3 we start out by giving the construction of the tensor space $V^{\otimes n}$. We then construct the subset $G \subset \mathcal{E}_{n}(u)$ and show that it generates $\mathcal{E}_{n}(u)$. Finally we show that it maps to a linearly independent set in $\operatorname{End}\left(V^{\otimes n}\right)$, thereby obtaining the faithfulness of $V^{\otimes n}$ and the dimension of $\mathcal{E}_{n}(u)$.

In Sect. 4 we recall the basic representation theory of the symmetric group and the Iwahori-Hecke algebra, and use the previous sections to construct certain simple modules for $\mathcal{E}_{n}(u)$ as pullbacks of the simple modules of these. In Sect. 5 we show that $\mathcal{E}_{n}(u)$ is selfdual by constructing a nondegenerate invariant form on it. This involves the Moebius function for the usual partial order on set partitions. In Sect. 6 we give the classification of the simple modules of $\mathcal{E}_{n}(u)$, to a large extent following the approach of James' book [10]. Thus, we especially introduce a parametrizing set \mathcal{L}_{n} for the irreducible modules, analogs of the permutations modules and prove James' submodule theorem in the setup. The simple modules, the Specht modules, turn out to be a combination of the Specht modules for the Hecke algebra and for the symmetric group and hence $\mathcal{E}_{n}(u)$ can be seen as a combination of these two. Finally, in the last section we raise some questions connected to the results of the paper.

It is a great pleasure to thank J. Juyumaya for telling me about $\mathcal{E}_{n}(u)$ and for many useful conversations. Thanks are also due to C. Stroppel and A. Ram for useful discussions during the ALT-workshop at the Newton Institute for Mathematical Sciences and to the referee for useful comments that helped improving the presentation of the paper. Finally, it is a special pleasure to thank V. Jones for useful discussions in Talca during his one month stay at the Universidad de Talca. During his visit the city of Talca was badly affected by an earthquake of magnitude 8.8 on the Richter scale, among the highest ever recorded.

2 Definition of $\mathcal{E}_{\boldsymbol{n}}(\boldsymbol{u})$

In this section we introduce the algebra $\mathcal{E}_{n}(u)$, the main object of our work. Let \mathcal{A} be the principal ideal domain $\mathbb{C}\left[u, u^{-1}\right]$ where u is an unspecified variable. We first define the algebra $\mathcal{E}_{n}^{\mathcal{A}}(u)$ as the associative unital \mathcal{A}-algebra on the generators T_{1}, \ldots, T_{n-1} and E_{1}, \ldots, E_{n-1} and relations

$$
\begin{array}{ll}
(E 1) & T_{i} T_{j}=T_{j} T_{i} \quad \text { if }|i-j|>1, \\
(E 2) & E_{i} E_{j}=E_{j} E_{i} \quad \forall i, j, \\
(E 3) & E_{i} T_{j}=T_{j} E_{i} \quad \text { if }|i-j|>1, \\
(E 4) & E_{i}^{2}=E_{i}, \\
(E 5) & E_{i} T_{i}=T_{i} E_{i}, \\
(E 6) & T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j} \quad \text { if }|i-j|=1, \\
(E 7) & E_{j} T_{i} T_{j}=T_{i} T_{j} E_{i} \quad \text { if }|i-j|=1, \\
(E 8) & E_{i} E_{j} T_{j}=E_{i} T_{j} E_{i}=T_{j} E_{i} E_{j} \quad \text { if }|i-j|=1, \\
(E 9) & T_{i}^{2}=1+(u-1) E_{i}\left(1+T_{i}\right) .
\end{array}
$$

It follows from ($E 9$) that T_{i} is invertible with inverse

$$
T_{i}^{-1}=T_{i}+\left(u^{-1}-1\right) E_{i}\left(1+T_{i}\right)
$$

so the presentation of $\mathcal{E}_{n}(u)$ is not efficient, since the generators E_{i} for $i \geq 2$ can be expressed in terms of E_{1}. However, for the sake of readability, we prefer the presentation as it stands.

We then define $\mathcal{E}_{n}(u)$ as

$$
\mathcal{E}_{n}(u):=\mathcal{E}_{n}^{\mathcal{A}}(u) \otimes_{\mathcal{A}} \mathbb{C}(u),
$$

where $\mathbb{C}(u)$ is considered as an \mathcal{A}-module through inclusion.
This algebra is our main object of study. It was introduced by Aicardi and Juyumaya, in [1], although the relation ($E 9$) varies slightly from theirs since we have changed T_{i} to $-T_{i}$. They show, among other things, that it is finite dimensional.

From $\mathcal{E}_{n}^{\mathcal{A}}(u)$ we can consider the specialization to a fixed value u_{0} of u which we denote $\mathcal{E}_{n}\left(u_{0}\right)$. However, we shall in this paper only need the case $u_{0}=1$, corresponding to

$$
\mathcal{E}_{n}(1)=\mathcal{E}_{n}^{\mathcal{A}}(u) \otimes_{\mathcal{A}} \mathbb{C},
$$

where \mathbb{C} is made into an \mathcal{A}-module by taking u to 1 . Letting S_{n} denote the symmetric group on n letters, there is a natural algebra homomorphism $\iota: \mathbb{C} S_{n} \rightarrow \mathcal{E}_{n}(1),(i, i+$ 1) $\mapsto T_{i}$. It can be shown to be injective, using the results of the paper.

3 The tensor space

For the rest of the paper we shall write $K=\mathbb{C}(u)$. Let V be the K-vector space

$$
V=\operatorname{span}_{K}\left\{v_{i}^{j} \mid i, j=1,2, \ldots, n\right\} .
$$

We consider the tensor product $V^{\otimes 2}$ and define $E \in \operatorname{End}_{K}\left(V^{\otimes 2}\right)$ by the rules

$$
E\left(v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}}\right)= \begin{cases}v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}} & \text { if } j_{1}=j_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Furthermore we define $T \in \operatorname{End}_{K}\left(V^{\otimes 2}\right)$ by the rules

$$
T\left(v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}}\right)= \begin{cases}v_{i_{2}}^{j_{2}} \otimes v_{i_{1}}^{j_{1}} & \text { if } j_{1} \neq j_{2}, \\ u v_{i_{2}}^{j_{1}} \otimes v_{i_{1}}^{j_{2}} & \text { if } j_{1}=j_{2}, i_{1}=i_{2}, \\ v_{i_{2}}^{j_{2}} \otimes v_{i_{i}}^{j_{1}} & \text { if } j_{1}=j_{2}, i_{1}<i_{2}, \\ u v_{i_{2}}^{j_{2}} \otimes v_{i_{1}}^{j_{1}}+(u-1) v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}} & \text { if } j_{1}=j_{2}, i_{1}>i_{2} .\end{cases}
$$

We extend these operators to operators E_{i}, T_{i} acting in the tensor space $V^{\otimes n}$ by letting E, T act in the factors $(i, i+1)$. In other words, E_{i} acts as a projection in the factors at the positions $(i, i+1)$ with equal upper index, whereas T_{i} acts as a transposition if the upper indices are different and as a Jimbo matrix for the action of the Iwahori-Hecke algebra in the usual tensor space if the upper indices are equal, see [13].

Theorem 1 With the above definitions $V^{\otimes n}$ becomes a module for the algebra $\mathcal{E}_{n}(u)$.

Proof We must show that the operators satisfy the defining relations ($E 1$), $\ldots,(E 9)$. Here the relations $(E 1), \ldots,(E 5)$ are almost trivially satisfied, since E_{i} acts as a projection.

To prove the braid relation (E6) we may assume that $n=3$ and must evaluate both sides of ($E 6$) on the basis vectors $v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}} \otimes v_{i_{3}}^{j_{3}}$ of $V^{\otimes 3}$. The case where j_{1}, j_{2}, j_{3} are distinct corresponds to the symmetric group case and (E6) certainly holds. Another easy case is $j_{1}=j_{2}=j_{3}$, where ($E 6$) holds by Jimbo's classical result [13].

We are then left with the case $j_{1}=j_{2} \neq j_{3}$ and its permutations. In order to simplify notation, we omit the upper indices of the factors of the equal j 's and replace the third j by a prime, e.g. $v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}} \otimes v_{i_{3}}^{j_{3}}$ is written $v_{i_{1}} \otimes v_{i_{2}} \otimes v_{i_{3}}^{\prime}$ and so on.

We may assume that the lower indices of the unprimed factors are 1 or 2 since the action of T just depends on the order. Furthermore we may assume that the lower index of the primed factor is always 1 since T always acts as a transposition between a primed and an unprimed factor. This gives 12 cases. On the other hand, the cases where the two unprimed factors have equal lower indices are easy, since both sides of (E6) act through $u \sigma_{13}$, where σ_{13} is the permutation of the first and third factor of the tensor product. So we are left with the following 6 cases

$$
\begin{array}{lll}
v_{1} \otimes v_{2} \otimes v_{1}^{\prime}, & v_{1} \otimes v_{1}^{\prime} \otimes v_{2}, & v_{1}^{\prime} \otimes v_{1} \otimes v_{2} \\
v_{2} \otimes v_{1} \otimes v_{1}^{\prime}, & v_{2} \otimes v_{1}^{\prime} \otimes v_{1}, & v_{1}^{\prime} \otimes v_{2} \otimes v_{1}
\end{array}
$$

Both sides of (E6) act through σ_{13} on the first three of these subcases whereas the last three subcases involve each one Hecke-Jimbo action. For instance

$$
T_{1} T_{2} T_{1}\left(v_{2} \otimes v_{1} \otimes v_{1}^{\prime}\right)=u v_{1}^{\prime} \otimes v_{1} \otimes v_{2}+(u-1) v_{1}^{\prime} \otimes v_{2} \otimes v_{1}
$$

which is the same as acting with $T_{2} T_{1} T_{2}$. The other subcases are similar.
Let us now verify that ($E 7$) holds for our operators. We may once again assume that $n=3$ and must check (E7) on all basis elements $v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}} \otimes v_{i_{3}}^{j_{3}}$. Once again, the cases of j_{1}, j_{2}, j_{3} all distinct or all equal are easy. We then need only consider $j_{1}=j_{2} \neq j_{3}$ and its permutations and can once again use the prime/unprime notation as in the verification of ($E 6$).

Let us first verify that $E_{1} T_{2} T_{1}=T_{2} T_{1} E_{2}$. We first observe that E_{2} acts as the identity on exactly those basis vectors that are of the form $v_{i_{1}}^{\prime} \otimes v_{i_{2}} \otimes v_{i_{3}}$. Hence

$$
T_{2} T_{1} E_{2}\left(v_{i_{1}}^{\prime} \otimes v_{i_{2}} \otimes v_{i_{3}}\right)=v_{i_{2}} \otimes v_{i_{3}} \otimes v_{i_{1}}^{\prime}=E_{1} T_{2} T_{1}\left(v_{1}^{\prime} \otimes v_{i_{2}} \otimes v_{i_{3}}\right)
$$

The missing basis vectors are of the form $v_{i_{1}} \otimes v_{i_{2}}^{\prime} \otimes v_{i_{3}}$ or $v_{i_{1}} \otimes v_{i_{2}} \otimes v_{i_{3}}^{\prime}$ and are hence killed by E_{2} and therefore $T_{2} T_{1} E_{2}$. But one easily checks that they are also killed by $E_{1} T_{2} T_{1}$.

The relation $E_{2} T_{1} T_{2}=T_{1} T_{2} E_{1}$ is verified similarly.
Let us then check the relation ($E 8$). Once again we take $n=3$ and consider the action of $E_{1} E_{2} T_{2}, E_{1} T_{2} E_{1}$ and $T_{2} E_{1} E_{2}$ in the basis vector $v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}} \otimes v_{i_{3}}^{j_{3}}$. If the j_{1}, j_{2}, j_{3} are distinct, the action of the three operators is zero, and if $j_{1}=j_{2}=j_{3}$ they all act as T_{2}. Hence we may once again assume that exactly two of the j 's are equal.

But it is easy to check that each of the three operators acts as zero on all vectors of the form $v_{i_{1}}^{\prime} \otimes v_{i_{2}} \otimes v_{i_{3}}, v_{i_{1}} \otimes v_{i_{2}}^{\prime} \otimes v_{i_{3}}$ and $v_{i_{1}} \otimes v_{i_{2}} \otimes v_{i_{3}}^{\prime}$. and so we have proved that $E_{1} E_{2} T_{2}=E_{1} T_{2} E_{1}=T_{2} E_{1} E_{2}$.

Similarly one proves that $E_{2} E_{1} T_{1}=E_{2} T_{1} E_{2}=T_{1} E_{2} E_{1}$.
Finally we check the relation ($E 9$), which by ($E 5$) can be transferred into

$$
T_{i}^{2}=1+(u-1)\left(1+T_{i}\right) E_{i} .
$$

It can be checked taking $n=2$. We consider vectors of the form $v_{i_{1}}^{j_{1}} \otimes v_{i_{2}}^{j_{2}}$. If $j_{1} \neq j_{2}$ then E_{i} acts as zero and we are done. And if $j_{1}=j_{2}$, the relation reduces to the usual Hecke algebra square. The theorem is proved.

Since the above proof is only a matter of checking relations, it also works over $\mathcal{E}_{n}^{\mathcal{A}}(u)$ and hence we get

Remark 1 There is a module structure of $\mathcal{E}_{n}^{\mathcal{A}}(u)$ on $V^{\otimes n}$.
Our next goal is to prove that $V^{\otimes n}$ is a faithful representation of $\mathcal{E}_{n}(u)$. Our strategy for this will be to construct a subset G of $\mathcal{E}_{n}^{\mathcal{A}}(u)$ that generates $\mathcal{E}_{n}^{\mathcal{A}}(u)$ as an \mathcal{A}-module and maps to a linearly independent subset of $\operatorname{End}_{\mathcal{A}}\left(V^{\otimes n}\right)$ under the representation. We will then also have determined the dimension of $\mathcal{E}_{n}(u)$.

Let us start out by stating the following useful lemma.

Lemma 1 The following formulas hold in $\mathcal{E}_{n}(u)$ and $\mathcal{E}_{n}^{\mathcal{A}}(u)$.
(a) $T_{j} E_{i} T_{j}^{-1}=T_{i}^{-1} E_{j} T_{i}$ if $\left.\mid i-j\right]=1$,
(b) $T_{i}^{-1} T_{j} E_{i}=E_{j} T_{i}^{-1} T_{j}$ if $\left.\mid i-j\right]=1$,
(c) $T_{j} E_{i} T_{j}^{-1}=T_{i} E_{j} T_{i}^{-1}$ if $\left.\mid i-j\right]=1$.

Proof The formula (a) is just a reformulation of (E7) whereas the formula (b) follows from

$$
T_{i}^{-1}=T_{i}+\left(u^{-1}-1\right) E_{i}\left(1+T_{i}\right)
$$

combined with (E7) and (E8). Formula (c) is a variation of (b).
For $1 \leq i<j \leq n$ we define $E_{i j}$ by E_{i} if $j=i+1$, and otherwise

$$
E_{i j}:=T_{i} T_{i+1} \cdots T_{j-2} E_{j-1} T_{j-2}^{-1} \cdots T_{i+1}^{-1} T_{i}^{-1}
$$

We shall from now on use the notation $\mathbf{n}:=\{1,2, \ldots, n\}$. For any nonempty subset $I \subset \mathbf{n}$ we extend the definition of $E_{i j}$ to

$$
E_{I}:=\prod_{(i, j) \in I \times I, i<j} E_{i j}
$$

where by convention $E_{I}:=1$ if $|I|=1$. We now aim at showing that this product is independent of the order in which it is taken.

Let us denote by s_{i} the transposition $(i, i+1)$. Write $E_{\{j, k\}}$ for $E_{\min \{j, k\}, \max \{j, k\}}$. Then we have

Lemma 2 We have for all i, j, k that
(a) $T_{i} E_{j k} T_{i}^{-1}=E_{\left\{s_{i} j, s_{i} k\right\}}$,
(b) $T_{i}^{-1} E_{j k} T_{i}=E_{\left\{s_{i} j, s_{i} k\right\}}$.

Proof Let us prove (a). We first consider the case where i is not any of the numbers $j-1, j, k-1$ or k. In that case we must show that T_{i} and $E_{j, k}$ commute. For $i<j-1$ and $i>k$ this is clear since T_{i} then commutes with all of the factors of $E_{j, k}$. And for $j<i<k-1$ one can commute T_{i} through $E_{j, k}$ using (E6) and (E3).

For $i=j-1$ the formula follows directly from the definition of $E_{j, k}$. For $i=k$ we get that T_{i} commutes with all the T_{l} factors of $E_{j, k}$ and hence it reduces to showing that

$$
T_{k} E_{k-1} T_{k}^{-1}=T_{k-1} E_{k} T_{k-1}^{-1},
$$

which is true by formula (c) of Lemma 1. For $i=k-1$ the formula follows from the definitions and (E7).

Finally, we consider the case $i=j$. To deal with this case, we first rewrite $E_{j k}$, using (c) of Lemma 1 repeatedly starting with the innermost term, in the form

$$
\begin{equation*}
E_{j k}=T_{k-1} T_{k-2} \cdots T_{j+1} E_{j} T_{j+1}^{-1} \cdots T_{k-2}^{-1} T_{k-1}^{-1} . \tag{1}
\end{equation*}
$$

The formula of the lemma now follows from relation (E7).
Formula (b) is proved the same way.

With this preparation we obtain the commutativity of the factors involved in E_{I}. We have that

Lemma 3 The $E_{i j}$ are commuting idempotents of $\mathcal{E}_{n}(u)$ and $\mathcal{E}_{n}^{\mathcal{A}}(u)$.
Proof The $E_{i j}$ are obviously idempotents in $\mathcal{E}_{n}(u)$ and $\mathcal{E}_{n}^{\mathcal{A}}(u)$ so we just have to prove that they commute.

Thus, given $E_{i j}$ and $E_{k l}$ we show by induction on $(j-i)+(l-k)$ that they commute with each other. The induction starts for $(j-i)+(l-k)=2$, in which case $E_{i j}=E_{i}$ and $E_{k l}=E_{k}$, that commute by ($E 2$).

Suppose now $(j-i)+(l-k)>2$ and that $E_{i j}, E_{k l}$ is not a pair of the form $E_{s-1, s+2}, E_{s, s+1}$ for any s. One checks now there is an r such that $E_{S_{r}\{i, j\}}, E_{S_{r}\{k, l\}}$ is covered by the induction hypothesis. But then, using (a) from the previous lemma together with the induction hypothesis, we find that

$$
\begin{aligned}
E_{i j} E_{k l} & =T_{r}^{-1} E_{S_{r}\{i, j\}} T_{r} T_{r}^{-1} E_{S_{r}\{k, l\}} T_{r}=T_{r}^{-1} E_{S_{r}\{i, j\}} E_{S_{r}\{k, l\}} T_{r} \\
& =T_{r}^{-1} E_{S_{r}\{k, l\}} E_{S_{r}\{i, j\}} T_{r}=T_{r}^{-1} E_{S_{r}\{k, l\}} T_{r} T_{r}^{-1} E_{S_{r}\{i, j\}} T_{r}=E_{k l} E_{i j}
\end{aligned}
$$

as needed. Finally, if our pair is of the form $E_{s-1, s+2}, E_{s, s+1}$ we use ($E 8$) to finish the proof the lemma as follows

$$
\begin{aligned}
E_{s-1, s+2} E_{s, s+1} & =T_{s-1} T_{s} E_{s+1} T_{s}^{-1} T_{s-1}^{-1} E_{s}=E_{s} T_{s-1} T_{s} E_{s+1} T_{s}^{-1} T_{s-1}^{-1} \\
& =E_{s, s+1} E_{s-1, s+2}
\end{aligned}
$$

We have now proved that the product involved in E_{I} is independent of the order taken. We then go on to show that many of the factors of this product can be left out.

Lemma 4 Let $I \subset \mathbf{n}$ with $|I| \geq 2$ and set $i_{0}:=\min I$. Then

$$
E_{I}=\prod_{i: i \in I \backslash\left\{i_{0}\right\}} E_{i_{0} i} .
$$

Proof It is enough to show the lemma for I of cardinality three. By a direct calculation using the definition of $E_{k l}$ one sees that this case reduces to $I=\{1,2, i\}$. Set now

$$
\begin{aligned}
& E^{1}:=E_{1} T_{1} T_{2} \cdots T_{i-1} E_{i} T_{i-1}^{-1} \cdots T_{2}^{-1} T_{1}^{-1}, \\
& E^{2}:=T_{2} T_{3} \cdots T_{i-1} E_{i} T_{i-1}^{-1} \cdots T_{3}^{-1} T_{2}^{-1} .
\end{aligned}
$$

Then the left hand side of the lemma is $E^{1} E^{2}$ while the right hand side is E^{1}, so we must show that $E^{1} E^{2}=E^{1}$. But using formula (a) of Lemma 1 repeatedly this
identity reduces to

$$
E_{1} T_{1} E_{2} T_{1}^{-1} E_{2}=E_{1} T_{1} E_{2} T_{1}^{-1}
$$

which is true by relations (E5) and (E8).
In order to generalize the previous results appropriately we need to recall some notation. A set partition $A=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ of \mathbf{n} is by definition an equivalence relation on \mathbf{n} with classes I_{j}. This means that the I_{j} are disjoint, nonempty subsets of \mathbf{n} with union \mathbf{n}. We also refer to the I_{j} as the blocks of A. The number of distinct set partitions of \mathbf{n} is called the nth Bell number and is written B_{n}. For example $B_{1}=1$, $B_{2}=2$ and $B_{3}=5$. The five set partitions of $\mathbf{3}=\{1,2,3\}$ are

$$
\begin{array}{lll}
\{\{1\},\{2\},\{3\}\}, & \{\{1\},\{2,3\}\}, & \{\{2\},\{1,3\}\}, \\
\{\{3\},\{1,2\}\}, & \{\{1,2,3\}\} .
\end{array}
$$

Let us denote by \mathcal{P}_{n} the set of all set partitions of \mathbf{n}. There is natural partial order on \mathcal{P}_{n}, denoted \subset. It is defined by $A=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\} \subset B=\left\{J_{1}, J_{2}, \ldots, J_{l}\right\}$ if and only if each J_{i} is a union of certain I_{i}.

Let R be a subset of $\mathbf{n} \times \mathbf{n}$. Write $i \smile_{R} j$ if $(i, j) \in R$ and write \sim_{R} for the equivalence relation induced by $i \smile_{R} j$. Then $i \sim_{R} j$ iff $i=j$ or there is a chain $i=i_{1}, i_{2}, \ldots, i_{k}=j$ such that $i_{s} \smile_{R} i_{s+1}$ or $i_{s+1} \smile_{R} i_{s}$ for all s. Let $\langle R\rangle$ denote the set partition corresponding to \sim_{R}. For example, if $R=\emptyset$ we get that $\langle R\rangle$ is the trivial set partition whose blocks are all of cardinality one.

For $A=\left\{I_{1}, \ldots, I_{k}\right\} \in \mathcal{P}_{n}$ we define

$$
E_{A}:=\prod_{i} E_{I_{i}} .
$$

It follows from Lemma 3 that the product is independent of the order in which it is taken.

For $w \in S_{n}$ we define $w A:=\left\{w I_{1}, w I_{2}, \ldots, w I_{k}\right\} \in \mathcal{P}_{n}$. If $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ is a reduced form of w, we write as usual $T_{w}=T_{i_{1}} T_{i_{2}} \cdots T_{i_{n}}$. Then we have

Corollary 1 With $A \in \mathcal{P}_{n}$ and w as above the following formula holds:

$$
T_{w} E_{A} T_{w}^{-1}=E_{w A} .
$$

Proof This is a consequence of Lemma 2(a) and the definitions.
The next lemma is an important ingredient in the construction of the basis for $\mathcal{E}_{n}(u)$.

Lemma 5 Suppose $R \subset \mathbf{n} \times \mathbf{n}$. Then the following formula is valid:

$$
\prod_{i, j:(i, j) \in R} E_{\{i, j\}}=E_{\langle R\rangle} .
$$

Proof Writing $E_{R}:=\prod_{i, j:(i, j) \in R} E_{\{i, j\}}$ we must prove that $E_{R}:=E_{\langle R\rangle}$. Clearly, all the factors of E_{R} are also factors of $E_{\langle R\rangle}$. We show that the extra factors of $E_{\langle R\rangle}$ do not change the product of E_{R}. For this, suppose first that the following equations hold for $i<j<k$

$$
\begin{equation*}
E_{i j} E_{i k}=E_{i j} E_{j k}=E_{i k} E_{j k}=E_{i j} E_{j k} E_{i k} \tag{2}
\end{equation*}
$$

Assume now that $i, j \in \mathbf{n}$ satisfy $i \sim_{R} j$. Then, by definition, there is a chain $i=i_{1}, i_{2}, \ldots, i_{k}=j$ with $\left(i_{s}, i_{s+1}\right) \in R$ or $\left(i_{s+1}, i_{s}\right) \in R$ for all s. Let $1 \leq l<k$ and assume recursively that we have $E_{R}=E_{R} E_{\left\{i, i_{l}\right\}}$. Then using (2) we get that also $E_{R}:=E_{R} E_{\left\{i, i_{l+1}\right\}}$. Continuing, we find that $E_{R}:=E_{R} E_{\{i j\}}$, and so indeed the extra factors of $E_{\langle R\rangle}$ do not change the product E_{R}. Thus we are reduced to proving (2).

The equation $E_{i j} E_{i k}=E_{i j} E_{j k} E_{i k}$ was shown in the previous lemma so we only need show that $E_{i k} E_{j k}=E_{i j} E_{j k} E_{i k}$ and $E_{i j} E_{j k}=E_{i j} E_{j k} E_{i k}$.

We consider the involution inv of $\mathcal{E}_{n}^{\mathcal{A}}(u)$ given by the formulas

$$
\operatorname{inv}\left(T_{i}\right)=T_{n-i}, \quad \operatorname{inv}\left(E_{i}\right)=E_{n-i}
$$

Using (1) we find that

$$
\operatorname{inv}\left(E_{i j}\right)=E_{n-j, n-i}
$$

But then $E_{i k} E_{j k}=E_{i j} E_{j k} E_{i k}$ follows from $E_{i j} E_{i k}=E_{i j} E_{j k} E_{i k}$.
We then show that $E_{i j} E_{j k}=E_{i j} E_{j k} E_{i k}$. By the above, it can be reduced to showing the identity

$$
E_{i j} E_{j k}=E_{i j} E_{i k}
$$

Using the definition of the $E_{i j}$ it can be reduced to the case $i=1, j=2$, i.e. $E_{1} E_{2 k}=E_{1} E_{1 k}$. Using formula (a) of Lemma 1 it becomes the valid identity $E_{1} E_{2}=E_{1} T_{1} E_{2} T_{1}^{-1}$.

From the lemma we get the following compatibility between the partial order on \mathcal{P}_{n} and the E_{A}.

Corollary 2 Assume $A, B \in \mathcal{P}_{n}$ and let $C \in \mathcal{P}_{n}$ be minimal with respect to $A \subseteq C$ and $B \subseteq C$. Then $E_{A} E_{B}=E_{C}$.

We are now in position to construct the subset G of $\mathcal{E}_{n}^{\mathcal{A}}(u)$. We define

$$
\begin{equation*}
G:=\left\{E_{A} T_{w} \mid A \in \mathcal{P}_{n}, w \in S_{n}\right\} . \tag{3}
\end{equation*}
$$

With the theory developed so far we can state the following theorem.
Theorem 2 The set G generates $\mathcal{E}_{n}^{\mathcal{A}}(u)$ over \mathcal{A}.
Proof Consider a word $w=X_{i_{1}} X_{i_{2}} \cdots X_{i_{k}}$ in the generators T_{i} and E_{i}, i.e. $X_{i_{j}}=T_{i_{j}}$ or $X_{i_{j}}=E_{i_{j}}$ for all j. Using Lemma 2 we can move all the E_{i} to the front position, at each step changing the index set by its image under some reflection, and are finally
left with a word in the T_{i}, which is possibly not reduced. If it is not so, it is equivalent under the braid relations (E6) to a word with two consecutive T_{i}, see [7] Chap. 8. Expanding the T_{i}^{2} gives rise to a linear combination of $1, E_{i}$ and $T_{i} E_{i}$, where the E_{i} can be commuted to the front position the same way as before. Continuing this way we eventually reach a word in reduced form, that is a linear combination of elements of the form $\prod_{(i, j) \in R, w \in S_{n}} E_{i j} T_{w}$ for some subset R of $\mathbf{n} \times \mathbf{n}$, satisfying $(i, j) \in R$ only if $i<j$. Using Lemma 5 we may rewrite it as a linear combination of $E_{\langle R\rangle} T_{w}$ and the proof is finished.

With these results at hand we can prove the following main theorem.
Theorem 3 The set G is a basis of $\mathcal{E}_{n}^{\mathcal{A}}(u)$ and induces bases of $\mathcal{E}_{n}(u)$ and $\mathcal{E}_{n}(1)$.
Proof By the previous theorem it is enough to show that G is an \mathcal{A}-linearly independent subset of $\mathcal{E}_{n}^{\mathcal{A}}(u)$ and induces K and \mathbb{C}-linearly independent subsets of $\mathcal{E}_{n}(u)$ and $\mathcal{E}_{n}(1)$.

Assume that there exists a nontrivial linear dependence $\sum_{g \in G} \lambda_{g} g=0$ where $\lambda_{g} \in$ \mathcal{A} for all g. Let $\lambda \in \mathcal{A}$ be the greatest common divisor of the λ_{g} and write $\lambda=$ $(v-1)^{M} \lambda_{1}$ with $\lambda_{1} \in \mathcal{A}$ and $\lambda_{1}(1) \neq 0$. Setting $\mu_{g}:=\lambda_{g} /(v-1)^{M} \in \mathcal{A}$ we obtain an \mathcal{A}-linear dependence $\sum_{g \in G} \mu_{g} g=0$ satisfying $\mu_{g}(1) \neq 0$ for at least one g. By specializing, we obtain from this a nontrivial \mathbb{C}-linear dependence $\sum_{g \in G} \mu_{g}(1) g=0$ in $\mathcal{E}_{n}(1)$.

Denoting by $\psi: \mathcal{E}_{n}^{\mathcal{A}}(u) \rightarrow \operatorname{End}_{\mathcal{A}}\left(V^{\otimes n}\right)$ the representation homomorphism we get by specializing a homomorphism $\psi_{1}: \mathcal{E}_{n}(1) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V^{\otimes n}\right)$. We use it to obtain the nontrivial linear dependence $\sum_{g \in G} \mu_{g}(1) \psi_{1}(g)=0$ in $\operatorname{End}_{\mathbb{C}}\left(V^{\otimes n}\right)$. It is now enough to show that $\left\{\psi_{1}(g) \mid g \in G\right\}$ is a \mathbb{C}-linearly independent set of $\operatorname{End}_{\mathbb{C}}\left(V^{\otimes n}\right)$.

But for $u=1$, the action of T_{i} in $V^{\otimes n}$ is just permutation of the factors $(i, i+1)$. Hence, in this case, $E_{k l}$ acts as a projection in the space of equal upper indices in the $k l$ 'th factors of $V^{\otimes n}$. In formulas

$$
\begin{aligned}
& E_{k l}\left(v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{k}}^{j_{k}} \otimes \cdots \otimes v_{i_{l}}^{j_{l}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}\right) \\
& \quad= \begin{cases}v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{k}}^{j_{k}} \otimes \cdots \otimes v_{i_{l}}^{j_{l}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}} & \text { if } j_{k}=j_{l}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thus, for a set partition $A=\left\{I_{1}, I_{2}, \ldots, I_{s}\right\} \in \mathcal{P}_{n}$ we get that E_{A} acts as the projection π_{A} on the space of equal upper indices in factors corresponding to each of the I_{k}. In formulas

$$
\begin{aligned}
& E_{A}\left(v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{r}}^{j_{r}} \otimes \cdots \otimes v_{i_{s}}^{j_{s}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}\right) \\
& \quad=\left\{\begin{array}{l}
0 \quad \text { if there exist } r, s, k \text { such that } r, s \in I_{k} \text { and } j_{r} \neq j_{s}, \\
v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{r}}^{j_{r}} \otimes \cdots \otimes v_{i_{s}}^{j_{s}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}} \quad \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Let us now consider a linear dependence:

$$
\begin{equation*}
\sum_{w \in S_{n}, A \in \mathcal{P}_{n}} \lambda_{w, A} T_{w} \pi_{A}=0 \tag{4}
\end{equation*}
$$

with $\lambda_{w, A} \in \mathbb{C}$. Take $A_{0} \in \mathcal{P}_{n}$ such that $\lambda_{w, A_{0}} \neq 0$ for some $w \in S_{n}$ and A_{0} is minimal with respect to this condition, where minimality refers to the partial order on \mathcal{P}_{n} introduced above. Suppose that $A_{0}=\left\{I_{1}, I_{2}, \ldots, I_{s}\right\}$. If we take a basis vector of $V^{\otimes n}$

$$
v^{A_{0}}=v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{k}}^{j_{k}} \otimes \cdots \otimes v_{i_{l}}^{j_{l}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}
$$

such that $j_{k}=j_{l}$ if and only if k, l belong to the same I_{i}, then we get on evaluation in (4), using the minimality of A_{0}, that

$$
\sum_{w \in S_{n}} \lambda_{w, A_{0}} T_{w} v^{A_{0}}=0 .
$$

We now furthermore take $v^{A_{0}}$ such that its lower i-indices are all distinct. But then $\left\{T_{w} v^{A_{0}}, w \in S_{n}\right\}$ is a linearly independent set and we conclude that $\lambda_{w, A_{0}}=0$ for all w, which contradicts the choice of A_{0}.

This shows that the set $\left\{T_{w} \pi_{A} \mid w \in S_{n}, A \in \mathcal{P}_{n}\right\}$ is linearly independent. To get the linear independence of $\left\{\pi_{A} T_{w} \mid w \in S_{n}, A \in \mathcal{P}_{n}\right\}$ we apply Corollary 1.

We have shown that G induces a \mathbb{C}-independent subset of $\mathcal{E}_{n}(1)$ and we then conclude, as described above, that it is an \mathcal{A}-independent subset of $\mathcal{E}_{n}^{\mathcal{A}}(u)$. Since K is the quotient field of \mathcal{A} it also induces a K-independent subset of $\mathcal{E}_{n}(u)$ and the theorem is proved.

Corollary 3 We have $\operatorname{dim} \mathcal{E}_{n}(u)=n!B_{n}$, where B_{n} is the Bell number, i.e. the number of set partitions of \mathbf{n}. For example $\operatorname{dim} \mathcal{E}_{2}(u)=4, \operatorname{dim} \mathcal{E}_{3}(u)=30$, etc.

The appearance of set partitions in the above, notably Corollary 2, might indicate a connection between $\mathcal{E}_{n}(u)$ and the partition algebra $A_{n}(K)$ introduced independently by P. Martin in [17] and V. Jones in [12], see also [6] for an account of the representation theory of $A_{n}(K)$. On the other hand, the special relation $(E 9)$ of $\mathcal{E}_{n}(u)$ does complicate the direct comparison $\mathcal{E}_{n}(u)$ with known variations of the partition algebra and at present we do not believe that there can be any straightforward connection. The relation (E9) reveals the origin of $\mathcal{E}_{n}(u)$ in the Yokonuma-Hecke algebra. Since $u \neq 1$, it behaves like a kind of skein relation in the diagram calculus for $\mathcal{E}_{n}(u)$, which seems awkward to interpret in a partition algebra context. Note that $\mathcal{E}_{n}(u)$ becomes infinite dimensional if ($E 9$) is left out.

Corollary 4 The tensor space $V^{\otimes n}$ is a faithful $\mathcal{E}_{n}(u)$-module.
Proof We proved that G is a basis of $\mathcal{E}_{n}(u)$ that maps to a linearly independent set in $\operatorname{End}_{K}\left(V^{\otimes n}\right)$.

4 Representation theory, first steps

We initiate in this section the representation theory of $\mathcal{E}_{n}(u)$. We construct two families of irreducible representations of $\mathcal{E}_{n}(u)$ as pullbacks of irreducible representations of the symmetric group and of the Hecke algebra.

Let $I \subset \mathcal{E}_{n}(u)$ be the two-sided ideal generated by E_{i} for all i; actually E_{1} is enough to generate I. Let furthermore $J \subset \mathcal{E}_{n}(u)$ be the two-sided ideal generated by $E_{i}-1$ for all i; once again $E_{1}-1$ is enough to generate J. Recall that S_{n} denotes the symmetric group on n letters. Let $H_{n}(u)$ be the Hecke algebra over K of type A_{n-1}. It is the K-algebra generated by T_{1}, \ldots, T_{n-1} with relations $T_{i} T_{j}=T_{j} T_{i}$ if $|i-j|>1$ and

$$
T_{i} T_{i \pm 1} T_{i}=T_{i \pm 1} T_{i} T_{i \pm 1} \quad\left(T_{i}-u\right)\left(T_{i}+1\right)=0,
$$

where i is any index such that the expressions make sense.
Lemma 6 (a) There is an isomorphism $\varphi: K S_{n} \rightarrow \mathcal{E}_{n}(u) / I, s_{i} \mapsto T_{i}$.
(b) There is an isomorphism $\psi: H_{n}(u) \rightarrow \mathcal{E}_{n}(u) / J, T_{i} \mapsto T_{i}$.

Proof We first prove $a)$. In $\mathcal{E}_{n}(u) / I$ we have $T_{i}^{2}=1$ and hence we obtain a surjection $\varphi: K S_{n} \rightarrow \mathcal{E}_{n}(u) / I$ by mapping s_{i} to T_{i}. Consider once again the vector space $V=$ $\operatorname{span}_{K}\left\{v_{i}^{j} \mid i, j=1, \ldots, n\right\}$ and its tensor space $V^{\otimes n}$ as a representation of $\mathcal{E}_{n}(u)$. We consider the following subspace $M \subset V^{\otimes n}$.

$$
M=\operatorname{span}_{K}\left\{v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}} \mid \text { the upper indices are all distinct }\right\} .
$$

It is easy to check from the rules of the action of $\mathcal{E}_{n}(u)$ that M is a submodule of $V^{\otimes n}$. Since the E_{i} act as zero in M we get an induced homomorphism $\rho: \mathcal{E}_{n}(u) / I \rightarrow$ $\operatorname{End}_{K}(M)$, where $\rho\left(T_{i}\right)$ is the switching of the i 'th and $i+1$ 'th factors of the tensor product. But then the image of $\rho \circ \varphi$ has dimension n ! and we conclude that φ indeed is an isomorphism.

In order to prove (b) we basically proceed in the same way. In the quotient $\mathcal{E}_{n}(u) / J$ we have $T_{i}^{2}=1+(u-1)\left(1+T_{i}\right)$ which implies the existence of a surjection $\psi: H_{n}(u) \rightarrow \mathcal{E}_{n}(u) / J$ mapping T_{i} to T_{i}. To show that ψ is injective we this time consider the submodule

$$
N=\operatorname{span}_{K}\left\{v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}} \mid \text { the upper indices are all equal to } 1\right\}
$$

All E_{i} act as 1 in N and so we get a induced map $\rho^{\prime}: \mathcal{E}_{n}(u) / J \rightarrow \operatorname{End}_{K}(N)$. The composition $\rho^{\prime} \circ \psi$ is the regular representation of $H_{n}(u)$ and hence $\operatorname{dim} \operatorname{Im}\left(\rho^{\prime} \circ \psi\right)=$ $n!$ which proves that also ψ is an isomorphism.

We now recall the well known basic representation theory of $K S_{n}$ and of $H_{n}(u)$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ be an integer partition of $|\lambda|:=n$ and let $Y(\lambda)$ be its Young diagram. Let t^{λ} (resp. t_{λ}) be the λ-tableau in which the numbers $\{1,2, \ldots, n\}$ are filled in by rows (resp. columns). Denote by $R(\lambda)$ (resp. $C(\lambda)$) the row (resp. column) stabilizer of t^{λ}. Define now

$$
r_{\lambda}=\sum_{w \in R(\lambda)} w, \quad c_{\lambda}=\sum_{w \in C(\lambda)}(-1)^{l(w)} w, \quad s_{\lambda}=c_{\lambda} r_{\lambda}
$$

Then s_{λ} is the Young symmetrizer and $S(\lambda)=K S_{n} s_{\lambda}$ is the Specht module associated with λ. Since Char $K=0$, the Specht modules are simple and classify the simple modules of $K S_{n}$.

To give the Specht modules for $H_{n}(u)$, we use Gyoja's Hecke algebra analog of the Young symmetrizer [9, 18]. In our setup it looks as follows: For $X \subset S_{n}$, define

$$
\iota(X)=\sum_{w \in X} T_{w}, \quad \epsilon(X)=\sum_{w \in X}(-u)^{-l(w)} T_{w}
$$

If for example $X=S_{n}$, we have

$$
T_{w} \iota\left(S_{n}\right)=u^{l(w)} \iota\left(S_{n}\right), \quad T_{w} \epsilon\left(S_{n}\right)=(-1)^{l(w)} \epsilon\left(S_{n}\right),
$$

for all T_{w}. We now define

$$
x_{\lambda}=\iota(R(\lambda)), \quad y_{\lambda}=\epsilon(R(\lambda)) .
$$

Let $w_{\lambda} \in S_{n}$ be the element such that $w_{\lambda} t^{\lambda}=t_{\lambda}$. Then the Hecke algebra analog of the Young symmetrizer is

$$
e_{\lambda}=T_{w_{\lambda}^{-1}} y_{\lambda^{\prime}} T_{w_{\lambda}} x_{\lambda}=c_{\lambda}(u) r_{\lambda}(u),
$$

where $c_{\lambda}(u):=T_{w_{\lambda}^{-1}} y_{\lambda} T_{w_{\lambda}}$ and $r_{\lambda}(u):=x_{\lambda}(u)$. The permutation module and the Specht module associated with λ are defined as $M_{u}(\lambda):=H_{n}(u) x_{\lambda}$ and $S_{u}(\lambda)=$ $H_{n}(u) e_{\lambda}$. Since u is generic, $S_{u}(\lambda)$ is irreducible.

For future reference, we recall the following result, see e.g. [4, 18].

Lemma 7 Suppose that $c_{\lambda}(u) M_{u}(\mu) \neq 0$. Then $\mu \unlhd \lambda$.

Here \unlhd refers to the dominance order on partitions of n, defined by $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \unlhd$ $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ iff $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \leq \mu_{1}+\mu_{2}+\cdots+\mu_{i}$ for all i. The dominance order is only a partial order, but we shall embed it into the total order $<$ on partitions of n, defined by $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)<\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ iff $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \leq$ $\mu_{1}+\nu_{2}+\cdots+\mu_{i}$ for some i and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j}=\mu_{1}+\mu_{2}+\cdots+\mu_{j}$ for $j<i$. We extend $<$ to a total order on all partitions by declaring $\lambda<\mu$ if $|\lambda|<|\mu|$.

It is known that $y_{\lambda^{\prime}} T_{w} x_{\lambda} \neq 0$ only if $w=w_{\lambda}$ see $[4,18]$. Using it we find that

$$
\begin{equation*}
c_{\lambda}(u) z r_{\lambda}(u)=C_{z} c_{\lambda}(u) r_{\lambda}(u) \quad \text { for all } z \in H_{n}(u), \tag{5}
\end{equation*}
$$

for a constant $C_{z} \in K$. It follows that $s_{\lambda}(u)$ is a preidempotent, i.e. an idempotent up to a nonzero scalar. There is a similar formula

$$
\begin{equation*}
c_{\lambda} z r_{\lambda}=C_{z} c_{\lambda} r_{\lambda} \quad \text { for all } z \in K S_{n} \tag{6}
\end{equation*}
$$

in the symmetric group case.
Using the Specht module $S(\lambda)$ for $K S_{n}$ or $S_{u}(\lambda)$ for $H_{n}(u)$ we use φ or ψ to obtain a simple module for $\mathcal{E}_{n}(u)$, by pulling back. On the other hand, these two series of simple modules do not exhaust all the simple modules for $\mathcal{E}_{n}(u)$ as we shall see in the next sections.

$5 \mathcal{E}_{n}(u)^{\prime}$ as a $\mathcal{E}_{n}(u)$-module

In this section we return to $\mathcal{E}_{n}(u)$. We show that it is selfdual as a left module over $\mathcal{E}_{n}(u)$ itself. As a consequence of this we get that all simple modules occur as left ideals in $\mathcal{E}_{n}(u)$.

Denote by $*: \mathcal{E}_{n}(u) \rightarrow \mathcal{E}_{n}(u)$ the K-linear antiautomorphism given by $T_{i}^{*}=T_{i}$ and $E_{i}^{*}=E_{i}$. To check that $*$ exists we must verify that $*$ leaves the defining relations $(E 1), \ldots,(E 9)$ invariant. This is obvious for all of them, except possibly for (E7) where it follows by interchanging i and j. There is a similar antiautomorphism for $\mathcal{E}_{n}(1)$, also denoted $*$.

We now make the linear dual $\mathcal{E}_{n}(u)^{\prime}$ of $\mathcal{E}_{n}(u)$ into a left $\mathcal{E}_{n}(u)$-module using $*$:

$$
(x f)(y):=f\left(x^{*} y\right) \quad \text { for } x, y \in \mathcal{E}_{n}(u), f \in \mathcal{E}_{n}(u)^{\prime} .
$$

We need to consider the linear map

$$
\epsilon: \mathcal{E}_{n}(u) \rightarrow K, \quad x \mapsto \operatorname{coeff}_{\mathrm{E}_{\mathbf{n}}}(x),
$$

where $\operatorname{coeff}_{\mathrm{E}_{\mathbf{n}}}(x)$ is the coefficient of $E_{\mathbf{n}}$ when $x \in \mathcal{E}_{n}(u)$ is written in the basis elements $T_{w} E_{A}$ of G, see (3). Here by abuse of notation, we write \mathbf{n} for the unique maximal set partition in \mathcal{P}_{n}. Its only block is \mathbf{n}.
With this we may construct a bilinear form $\langle\cdot, \cdot\rangle$ on $\mathcal{E}_{n}(u)$ by

$$
\langle x, y\rangle=\epsilon\left(x^{*} y\right) \quad \text { for } x, y \in \mathcal{\mathcal { E } _ { n }}(u) .
$$

And then we finally obtain a homomorphism φ by the rule

$$
\varphi: \mathcal{E}_{n}(u) \rightarrow \mathcal{E}_{n}(u)^{\prime}: x \mapsto(y \mapsto\langle x, y\rangle) .
$$

Theorem 4 With the above definitions, we get that φ is an isomorphism of left $\mathcal{E}_{n}(u)$ modules.

Proof One first checks that the bilinear form satisfies

$$
\langle x y, z\rangle=\left\langle y, x^{*} z\right\rangle \quad \text { for all } x, y, z \in \mathcal{E}_{n}(u),
$$

which amounts to saying that φ is $\mathcal{E}_{n}(u)$-linear.
Since $\mathcal{E}_{n}(u)$ is finite dimensional, it is now enough to show that $\langle\cdot, \cdot\rangle$ is nondegenerate. For this we first observe that our construction of $\langle\cdot, \cdot\rangle$ is valid over \mathcal{A} as well and hence also defines a bilinear form $\langle\cdot, \cdot\rangle_{\mathcal{A}}$ on $\mathcal{E}_{n}^{\mathcal{A}}(u)$. It is enough to show that $\langle\cdot, \cdot\rangle_{\mathcal{A}}$ is nondegenerate. Suppose $a \in \mathcal{E}_{n}^{\mathcal{A}}(u)$. Then as in the proof of Theorem 3 we can write it in the form $a=(u-1)^{N} a^{\prime}$ where $a^{\prime}=\sum_{g \in G} \lambda_{g} g$ and where $\lambda_{g}(1) \neq 0$ for at least one g. Letting $\pi: \mathcal{E}_{n}^{\mathcal{A}}(u) \rightarrow \mathcal{E}_{n}(1)$ be the specialization map we have $\pi\left(a^{\prime}\right) \neq 0$ since it was shown in the proof of that theorem that G is a basis of $\mathcal{E}_{n}^{\mathcal{A}}(1)$ as well.

Let us denote by $\langle\cdot, \cdot\rangle_{1}$ the bilinear form on $\mathcal{E}_{n}(1)$ constructed similarly to $\langle\cdot, \cdot\rangle$. Then we have that

$$
\langle\pi(a), \pi(b)\rangle_{1}=\langle a, b\rangle_{\mathcal{A}} \otimes_{\mathcal{A}} \mathbb{C} \quad \text { for all } a, b \in \mathcal{E}_{n}^{\mathcal{A}}(u)
$$

since π is multiplicative and satisfies $\pi\left(a^{*}\right)=\pi(a)^{*}$. We are now reduced to proving that $\langle\cdot, \cdot\rangle_{1}$ is nondegenerate. Let us therefore consider an arbitrary $a=$ $\sum_{w, A} \lambda_{w, A} E_{A} T_{w} \in \mathcal{E}_{n}(1)$, where $\lambda_{w, A} \in \mathbb{C}$. Let $A_{0} \in \mathcal{P}_{n}$ be minimal subject to the condition that $\lambda_{w, A_{0}} \neq 0$ for some w. Take $z \in S_{n}$ with $\lambda_{z, A_{0}} \neq 0$ and define

$$
b=E_{A_{0}} \prod_{A_{0} \subsetneq A}\left(1-E_{A}\right) T_{z} .
$$

We claim that $\langle b, a\rangle_{1} \neq 0$. Indeed, since $u=1$ we have

$$
b^{*} a=T_{z}^{-1} \prod_{A_{0} \subsetneq A}\left(1-E_{A}\right) E_{A_{0}} a .
$$

Since A_{0} was chosen minimal, there can be no cancellation of the coefficient of $E_{A_{0}} T_{z}$ in $E_{A_{0}} a$ which hence is $\lambda_{z, A_{0}}$. All E_{A} appearing in the expansion of $E_{A_{0}} a$ with respect to the basis $E_{A} T_{w}$ satisfy $A_{0} \subseteq A$. Except for $E_{A_{0}}$ they are all killed by $\prod_{A_{0} \subsetneq A}\left(1-E_{A}\right)$. By this we get

$$
T_{z}^{-1} \prod_{A_{0} \subsetneq A}\left(1-E_{A}\right) E_{A_{0}} a=\lambda_{z, A_{0}} T_{z}^{-1} \prod_{A_{0} \subsetneq A}\left(1-E_{A}\right) E_{A_{0}} T_{z} .
$$

The coefficient of $E_{\mathbf{n}}$ in this expression is by Corollary 1 equal to the coefficient of E_{n} in

$$
\lambda_{z}, A_{0} \prod_{A_{0} \subsetneq A}\left(1-E_{A}\right) E_{A_{0}} .
$$

On the other hand, the coefficient of $E_{\mathbf{n}}$ in $\prod_{A_{0} \subsetneq A}\left(1-E_{A}\right) E_{A_{0}}$ is given by the Moebius function associated with the partial order \subset on \mathcal{P}_{n}. It is equal to $(-1)^{k-1} k$!, where k is the number of blocks of A_{0}. Summing up we find that $\langle b, a\rangle_{1}=(-1)^{k-1} \lambda_{z, A_{0}} k!\neq 0$ which proves the theorem.

6 Classification of the irreducible representations

In this section we give the classification of the irreducible representations of $\mathcal{E}_{n}(u)$.
For M a left $\mathcal{E}_{n}(u)$-module we make its linear dual M^{\prime} into a left $\mathcal{E}_{n}(u)$-module using the antiautomorphism $*$. If M is a simple $\mathcal{E}_{n}(u)$-module then any $m \in M \backslash\{0\}$ defines a surjection

$$
\mathcal{E}_{n}(u) \rightarrow M, x \mapsto x m \quad \text { for } x \in \mathcal{E}_{n}(u) .
$$

By duality and by the last section, we then get an injection of M^{\prime} into $\mathcal{E}_{n}(u)$. On the other hand, the canonical isomorphism $M \rightarrow M^{\prime \prime}$ is $\mathcal{E}_{n}(u)$-linear because $* *=\mathrm{Id}$ and so we conclude that all simple $\mathcal{E}_{n}(u)$-modules appear as left ideals in $\mathcal{E}_{n}(u)$.

Let now I be a simple left ideal of $\mathcal{E}_{n}(u)$ and let $x_{0} \in I \backslash\{0\}$. Since the tensor space $V^{\otimes n}$ is a faithful $\mathcal{E}_{n}(u)$-module, we find a $v \in V^{\otimes n}$ such that $x_{0} v \neq 0$. But then the $\mathcal{E}_{n}(u)$-linear map

$$
I \rightarrow V^{\otimes n}, \quad x \mapsto x v \quad \text { for } x \in I
$$

is nonzero, and therefore injective. We conclude that all simple $\mathcal{E}_{n}(u)$-modules appear as submodules of $V^{\otimes n}$.

Consider a simple submodule M of $V^{\otimes n}$. Take $A_{0} \subset \mathbf{n}$ maximal such that $E_{A_{0}} M \neq 0$. By Sect. 3, in the two extreme situations $A_{0}=\emptyset$ or $A_{0}=\mathbf{n}$ we can give a precise description of M, since in those cases M is a module for $K S_{n}$ or $H_{n}(u)$. In other words, M is the pullback of a Specht module $S(\lambda)$ for $K S_{n}$ or a Specht module $S_{u}(\lambda)$ for $H_{n}(u)$ as described in Sect. 3. The general case is going to be a mixture of these two cases as we shall explain in this section.

Let \mathcal{L}_{n} be the set of tuples

$$
\mathcal{L}_{n}=\left\{\left(\lambda^{s}, m_{s}, \mu^{s}\right) \mid s=1, \ldots, k\right\},
$$

where λ^{s} is a partition, m_{s} a positive integer and μ^{s} a partition of m_{s} such that $\sum_{s} m_{s}\left|\lambda^{s}\right|=n$ and such that $\lambda^{1}<\lambda^{2}<\cdots<\lambda^{k}$ where $<$ is the total order on partitions defined above.

Suppose $\Lambda=\left(\lambda^{s}, m_{s}, \mu^{s}\right) \in \mathcal{L}_{n}$. We associate to it the vector $v_{\Lambda} \in V^{\otimes n}$ defined in the following way

$$
v_{\Lambda}:=v_{\lambda^{1}}^{1} \otimes v_{\lambda^{1}}^{2} \otimes \cdots \otimes v_{\lambda^{2}}^{m_{1}+1} \otimes v_{\lambda^{2}}^{m_{1}+2} \otimes \cdots \otimes v_{\lambda^{k}}^{l}
$$

where $l:=\sum_{s} m_{s}$ and where for any integer partition (even composition) $\mu=$ $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{r}\right)$ of m and any integer i we define $v_{\mu}^{i} \in V^{\otimes m}$ as follows

$$
v_{\mu}^{i}:=\left(v_{1}^{i}\right)^{\otimes \mu_{1}} \otimes\left(v_{2}^{i}\right)^{\otimes \mu_{2}} \otimes \cdots \otimes\left(v_{r}^{i}\right)^{\otimes \mu_{r}} .
$$

We moreover associate to $\Lambda=\left(\lambda^{s}, m_{s}, \mu^{s}\right)$ the set partition $A_{\Lambda} \in \mathcal{P}_{n}$, that has blocks of consecutive numbers, the first m_{1} blocks being of size $\left|\lambda^{1}\right|$, the next m_{2} blocks of size $\left|\lambda^{2}\right|$ and so on. The blocks correspond to the factors of v_{Λ} that have equal upper indices. Note that it is possible that $\left|\lambda^{1}\right|=\left|\lambda^{2}\right|$ making the first $m_{1}+m_{2}$ blocks of equal size and so on. Writing $A_{\Lambda}=\left(I_{1}, I_{2}, \ldots, I_{l}\right)$ we set

$$
\begin{gathered}
S_{\Lambda}:=S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{k}} \\
H_{\Lambda}(u):=H_{I_{1}}(u) \otimes H_{I_{2}}(u) \otimes \cdots \otimes H_{I_{l}}(u) .
\end{gathered}
$$

Let ι_{j} be the group isomorphism from $S_{m_{j}}$ to $1 \times \cdots \times S_{m_{j}} \times \cdots \times 1$ and also the algebra isomorphism from $H_{I_{j}}(u)$ to $1 \otimes \cdots \otimes H_{I_{j}}(u) \otimes \cdots \otimes 1$.

Corresponding to A_{Λ} there is an analogous block decomposition of the factors of $V^{\otimes n}$ and S_{Λ} acts on this by permutation of the blocks.

Let us illustrate this action on an example. Take $n=6, k=1$ and $\Lambda=(\lambda, 2, \mu)$ where $\lambda=(2,1)$ and $\mu=(1,1)$. Then $A_{\Lambda}=\{(1,2,3),(4,5,6)\}$ and S_{Λ} is the group of order two that permutes the two blocks, thus generated by $\sigma=(1,4)(2,5)(3,6)$. In other words

$$
\begin{aligned}
& v_{\Lambda}=v_{1}^{1} \otimes v_{1}^{1} \otimes v_{2}^{1} \otimes v_{1}^{2} \otimes v_{1}^{2} \otimes v_{2}^{2} \quad \text { and } \\
& \sigma v_{\Lambda}=v_{1}^{2} \otimes v_{1}^{2} \otimes v_{2}^{2} \otimes v_{1}^{1} \otimes v_{1}^{1} \otimes v_{2}^{1} .
\end{aligned}
$$

In general, we have that

$$
\begin{equation*}
T_{\sigma} v_{\Lambda}=\sigma v_{\Lambda} \quad \text { for } \sigma \in S_{\Lambda} \tag{7}
\end{equation*}
$$

since in a reduced expression $\sigma=\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{N}}$ the action of each $\sigma_{i_{j}}$ and $T_{i_{j}}$ on v_{Λ} will only involve distinct upper indices.

In the above example, we have $\sigma=\sigma_{3} \sigma_{4} \sigma_{5} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{3} \in S_{\Lambda}$ and hence

$$
T_{\sigma}=T_{3} T_{4} T_{5} T_{2} T_{3} T_{4} T_{1} T_{2} T_{3} \in \mathcal{E}_{n}(u)
$$

Both σ and T_{σ} will move the first v_{1}^{2} to the first position, then the second v_{1}^{2} to the second position and finally v_{2}^{2} to the third position.

We consider the row and column (anti)symmetrizer $r_{\mu^{i}}, c_{\mu^{i}} \in K S_{\left|\mu^{i}\right|}$ of the partitions μ^{i} as elements of $\mathcal{E}_{n}(u)$ by mapping each occurring σ to $T_{l_{i}(\sigma)}$. By Corollary 1, we then get that $r_{\mu^{i}}$ and $c_{\mu^{i}}$ commute with $E_{A_{\Lambda}}$.

We define $w_{\Lambda}:=\left(r_{\mu^{1}} \otimes r_{\mu^{2}} \otimes \cdots \otimes r_{\mu^{k}}\right) v_{\Lambda}$. It has the form $w_{\Lambda}:=w_{\lambda_{1}}^{\mu_{1}} \otimes \cdots \otimes w_{\lambda_{k}}^{\mu_{k}}$ where we for general λ, μ define

$$
w_{\lambda}^{\mu}:=\sum_{\sigma \in r_{\mu}} v_{\lambda}^{\sigma(1)} \otimes \cdots \otimes v_{\lambda}^{\sigma(m)}
$$

where $|\mu|=m$. We define the 'permutation module' as

$$
M(\Lambda):=\mathcal{E}_{n}(u)=\mathcal{E}_{n}(u) w_{\Lambda} .
$$

Define now

$$
e_{\Lambda}:=\left(c_{\mu^{1}} \otimes c_{\mu^{2}} \otimes \cdots \otimes c_{\mu^{k}}\right)\left(c_{\lambda^{1}}(u)^{\otimes m_{1}} \otimes \cdots \otimes c_{\lambda^{k}}(u)^{\otimes m_{k}}\right) E_{A_{\Lambda}},
$$

where $c_{\lambda^{i}}(u)$ is as in Sect. 4 . Note that the three factors of e_{Λ} commute by the definitions and Corollary 1. We define the 'Specht module' as

$$
S(\Lambda):=\mathcal{E}_{n}(u) e_{\Lambda} w_{\Lambda} \subset M(\Lambda)
$$

Actually, the factor $E_{A_{\Lambda}}$ could have been left out of e_{Λ} in the definition of the Specht module, since it commutes with $r_{\mu^{1}} \otimes r_{\mu^{2}} \otimes \cdots \otimes r_{\mu^{k}}$ and $E_{A_{\Lambda}} w_{\Lambda}=w_{\Lambda}$ by the next Lemma 8, but for later use we prefer to include it in e_{Λ}.

Lemma 8 In the above setting we have that

$$
E_{B} w_{\Lambda}= \begin{cases}w_{\Lambda} & \text { if } B \subseteq A_{\Lambda} \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

Proof If $B \subseteq A_{\Lambda}$ this is an immediate consequence of the definitions. If $B \nsubseteq A_{\Lambda}$ there are $i, j \in \mathbf{n}$ belonging to the same block of B and to different blocks of A_{Λ}, let these be $I_{\alpha(i)}$ and $I_{\alpha(j)}$. Since $E_{i j}$ is a factor of E_{B} it is enough to show that $E_{i j} \sigma v_{\Lambda}=0$ for $\sigma \in S_{\Lambda}$. But from formula (1) we have that

$$
E_{i j}=T_{j-1} T_{j-2} \cdots T_{i+1} E_{i} T_{i+1}^{-1} \cdots T_{j-2}^{-1} T_{j-1}^{-1} .
$$

Using it we can decompose $E_{i j}$ from the right to the left in an element of $\iota_{\alpha(j)}\left(H_{\left.I_{\alpha(j)}\right)}\right)$, followed by the product of the remaining T_{k}^{-1}, then E_{i} and finally the product of
the T_{k}. The action of $\iota_{j}\left(H_{I_{\alpha(j)}}\right)$ on σv_{Λ} produces a linear combination of basis elements v of $V^{\otimes n}$ where all appearing v are obtained from σv_{Λ} by permuting the factors corresponding to the block $I_{\alpha(i)}$. The upper indices of the factors of v are exactly as those of σv_{Λ}. The product of T_{k}^{-1} acts on each v by permuting the first factor of the $I_{\alpha(j)}$ block to the $i+1$ st position, that is inside the $I_{\alpha(i)}$ block. But E_{i} acts as zero on this and the lemma follows.

The main result of this section is the following theorem.

Theorem $5 S(\Lambda)$ is a simple module for $\mathcal{E}_{n}(u)$. The simple $\mathcal{E}_{n}(u)$-modules are classified by $S(\Lambda)$ for $\Lambda \in \mathcal{L}_{n}$.

Proof Write for simplicity $A:=A_{\Lambda}$.
Our first step is to show that $e_{\Lambda} M(\Lambda)=K e_{\Lambda} w_{\Lambda}$. For this we take $x \in \mathcal{E}_{n}(u)$ and first consider the element $E_{A} x w_{\Lambda} \in M(\Lambda)$.

We can write x as a linear combination of elements $E_{B} T_{w}$ from our basis G. By Corollary $2, E_{A} E_{B}$ is equal to a E_{C} for C with $A \subseteq C$. By Lemma 8 and Corollary 1 we have that $E_{C} T_{w} w_{\Lambda}=T_{w} E_{w^{-1} C} w_{\Lambda}=0$ unless $w^{-1} C=A$, since $A \subseteq C$. We may therefore assume that $B=A$ and $A=w A$ such that $E_{A} x$ is a linear combination of elements of the form $E_{A} T_{w}$ where T_{w} permutes the blocks of A of equal cardinality.

Thus, let $S_{\Lambda} \leq S_{n}$ be the subgroup consisting of the permutations of the blocks of A of equal cardinality. Note that $S_{\Lambda} \leq \overline{S_{\Lambda}}$, the inclusion being strict in general. As in the case of S_{Λ}, the elements of S_{Λ} can be seen as elements of $\mathcal{E}_{n}(u)$, by the map $z \mapsto T_{z}$.

In this notation, if $E_{A} x w_{\Lambda}$ is nonzero it is a linear combination of elements of the form

$$
\begin{equation*}
T_{z}\left(T_{w_{1}} \otimes T_{w_{2}} \otimes \cdots \otimes T_{w_{l}}\right) w_{\Lambda}, \tag{9}
\end{equation*}
$$

where $z \in \overline{S_{\Lambda}}$ and $T_{w_{1}} \otimes T_{w_{2}} \otimes \cdots \otimes T_{w_{l}} \in H_{\Lambda}(u)$ and where we used that E_{A} commutes with the other factors and $E_{A} w_{\Lambda}=w_{\Lambda}$. Since the upper indices of the $w_{\lambda^{i}}^{j}$ are distinct, T_{z} acts by permuting the $T_{w_{i}}$-factors.

We need to show that $z \in S_{\Lambda}$ and therefore consider the action on $c_{\lambda^{1}}(u)^{\otimes m_{1}} \otimes$ $\cdots \otimes c_{\lambda^{k}}(u)^{\otimes m_{k}}$ on (9). Let from this $\lambda^{1}, \lambda^{2}, \ldots, \lambda^{t}$ be the partitions with $\left|\lambda^{i}\right|=$ $\left|\lambda^{1}\right|=\left|I_{1}\right|$. Note that in general $t \geq m_{1}$. Since the λ^{i} are ordered increasingly, we get by lemma 7 that the product is nonzero only if each factor $c_{\lambda^{k}}(u)$ of $c_{\lambda^{1}}(u)^{\otimes m_{1}} \otimes \cdots \otimes$ $c_{\lambda^{t}}(u)^{\otimes m_{t}}$ acts in a $T_{w_{a}} v_{\lambda^{k}}^{\sigma(a)}$-factor of (9), i.e. a factor with the same λ^{k} appearing as index. This argument extends to the other factors of $c_{\lambda^{1}}(u)^{\otimes m_{1}} \otimes \cdots \otimes c_{\lambda^{k}}(u)^{\otimes m_{k}}$ and so we may assume that $z \in S_{\Lambda}$ as claimed.

After this preparation, we can show the claim about $e_{\Lambda} M(\Lambda)$. We take $x \in \mathcal{E}_{n}(u)$ and consider $e_{\Lambda} x w_{\Lambda}$. By the above, it is a linear combination of elements of the form

$$
\left(c_{\mu^{1}} \otimes \cdots \otimes c_{\mu^{k}}\right) T_{z}\left(c_{\lambda^{1}}(u) \otimes \cdots \otimes c_{\lambda^{l}}(u)\right)\left(T_{w_{1}} \otimes \cdots \otimes T_{w_{l}}\right) w_{\Lambda}
$$

where $T_{w_{1}} \otimes T_{w_{2}} \otimes \cdots \otimes T_{w_{l}} \in H_{\Lambda}(u)$ and where $z \in S_{\Lambda}$ such that T_{z} commutes with $c_{\lambda^{1}}(u) \otimes \cdots \otimes c_{\lambda^{l}}(u)$. We now use the formulas (5), (6) and the definition of w_{Λ} to rewrite this as

$$
\begin{aligned}
& C_{1}\left(c_{\mu^{1}} \otimes \cdots \otimes c_{\mu^{k}}\right) T_{z}\left(s_{\lambda^{1}}(u) \otimes \cdots \otimes s_{\lambda^{l}}(u)\right) w_{\Lambda} \\
& \quad=C_{2}\left(c_{\mu^{1}} \otimes \cdots \otimes c_{\mu^{k}}\right) T_{z}\left(s_{\lambda^{1}}(u) \otimes \cdots \otimes s_{\lambda^{l}}(u)\right)\left(r_{\mu^{1}} \otimes \cdots \otimes r_{\mu^{k}}\right) w_{\Lambda} \\
& \quad=C_{2}\left(c_{\mu^{1}} \otimes \cdots \otimes c_{\mu^{k}}\right) T_{z}\left(r_{\mu^{1}} \otimes \cdots \otimes r_{\mu^{k}}\right)\left(s_{\lambda^{1}}(u) \otimes \cdots \otimes s_{\lambda^{l}}(u)\right) w_{\Lambda} \\
& \quad=C_{3}\left(s_{\mu^{1}} \otimes \cdots \otimes s_{\mu^{k}}\right)\left(s_{\lambda^{1}}(u) \otimes \cdots \otimes s_{\lambda^{l}}(u)\right) w_{\Lambda} \\
& \quad=C_{4}\left(c_{\mu^{1}} \otimes \cdots \otimes c_{\mu^{k}}\right)\left(c_{\lambda^{1}}(u) \otimes \cdots \otimes c_{\lambda^{l}}(u)\right) w_{\Lambda}=C_{4} e_{\Lambda} w_{\Lambda},
\end{aligned}
$$

where the $C_{i} \in K$ are constants and where we used that $r_{\mu^{1}} \otimes \cdots \otimes r_{\mu^{k}}$ commutes with $c_{\lambda^{1}}(u) \otimes \cdots \otimes c_{\lambda^{l}}(u)$ and $r_{\lambda^{1}}(u) \otimes \cdots \otimes r_{\lambda^{l}}(u)$ since $r_{\mu^{1}}$ permutes over equal factors $c_{\lambda^{1}}(u)$ etc. For $z=1$ all the constants are nonzero since the Young symmetrizers $s_{\lambda}(u)$ and s_{μ} are idempotents up to nonzero scalars and we have then finally proved that $e_{\Lambda} M(\Lambda)=K e_{\Lambda} w_{\Lambda}$, as claimed. Since $S(\Lambda) \subseteq M(\Lambda)$ we also have $e_{\Lambda} S(\Lambda) \subseteq K e_{\Lambda} w_{\Lambda}$.

We now proceed to prove that $S(\Lambda)$ is a simple module for $\mathcal{E}_{n}(u)$. We do it by setting up of version of James's submodule theorem [10]. Assume therefore $N \subset S(\Lambda)$ is a submodule. If $e_{\Lambda} N \neq 0$, we have by the above that $e_{\Lambda} N$ is a scalar multiple of $e_{\Lambda} w_{\Lambda}$ and so $N=S(\Lambda)$.

In order to treat the other case $e_{\Lambda} N=0$, we define a bilinear form on $V^{\otimes n}$ by setting

$$
\left\langle v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}, v_{i_{1}^{\prime}}^{j_{1}^{\prime}} \otimes \cdots \otimes v_{i_{n}^{\prime}}^{j_{n}^{\prime}}\right\rangle=v^{\bar{i}} \delta_{\bar{i}=\bar{i}^{\prime}, \bar{j}=\overline{j^{\prime}}}
$$

and extending linearly, where we write $\bar{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and similarly for $\overline{i^{\prime}}, \bar{j}, \overline{j^{\prime}}$. The power $v^{\bar{i}}$ is defined as follows. Order $v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}$ by first moving all factors $v_{i_{k}}^{j_{k}}$ with minimal upper indices to the left of $v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}$ but maintaining their relative position, then moving the factors $v_{i_{k}}^{j_{k}}$ with second smallest upper indices to the positions just to the right of the first ones and so on. This gives a permutation $\sigma \in S_{n}$ such that $\sigma\left(v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}\right)$ has increasing upper indices, let these be $f(1), f(2), \ldots, f(m)$ without repetitions. We then find compositions $\tau_{i}, i=1, \ldots, m$ and minimal coset representations $w_{i} \in S_{\left|I_{\tau_{i}}\right|} / S_{\tau_{i}}$ such that

$$
\sigma\left(v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}}\right)=w_{1} v_{\tau^{1}}^{f(1)} \otimes w_{2} v_{\tau^{2}}^{f(2)} \otimes \cdots \otimes w_{m} v_{\tau^{m}}^{f(m)}
$$

and define $v^{\bar{i}}:=v^{\sum l\left(w_{i}\right)}$.
This bilinear form is modeled on the one for the tensor space module for Hecke algebras [4], and inherits from it the following invariance property

$$
\langle x v, w\rangle=\left\langle v, x^{*} w\right\rangle \quad \text { for all } x \in \mathcal{E}_{n}(u), v, w \in V^{\otimes n}
$$

where $*$ is as in Sect. 4. We have that

$$
c_{\lambda}^{*}=c_{\lambda}, \quad r_{\lambda}^{*}=r_{\lambda}, \quad c_{\lambda}(u)^{*}=c_{\lambda}(u), \quad r_{\lambda}(u)^{*}=r_{\lambda}(u),
$$

where we used that $*$ is an antiautomorphism to show for instance that $T_{w_{\lambda}^{-1}} y_{\lambda^{\prime}} T_{w_{\lambda}}^{*}=$ $T_{w_{\lambda}^{-1}} y_{\lambda^{\prime}} T_{w_{\lambda}}$. Since the factors of e_{Λ} commute, we also have that

$$
e_{\Lambda}^{*}=e_{\Lambda} .
$$

We are now in position to finish the treatment of the case $e_{\Lambda} N=0$. We have

$$
0=\left\langle e_{\Lambda} N, M(\Lambda)\right\rangle=\left\langle N, e_{\Lambda} M(\Lambda)\right\rangle=\left\langle N, e_{\Lambda} w_{\Lambda}\right\rangle,
$$

which implies that $\langle N, S(\Lambda)\rangle=0$ that is $N \subset S(\Lambda)^{\perp}$. Since u is generic, we have that $\left\langle e_{\Lambda} w_{\Lambda}, e_{\Lambda} w_{\Lambda}\right\rangle \neq 0$ and therefore $S(\Lambda) \cap S(\Lambda)^{\perp}=0$. This gives a contradiction unless $N=0$. We have therefore proved that $S(\Lambda)$ is simple.

We next prove that different choices of parameters give different modules $S(\Lambda)$. Take Λ as before and suppose $\Upsilon=\left(\left(\nu^{t}\right),\left(n_{t}\right),\left(\tau^{t}\right)\right) \in \mathcal{L}_{n}$ such that $S(\Lambda) \cong S(\Upsilon)$. The element $A \in \mathcal{P}_{n}$ associated with $S(\Lambda)$ is maximal with respect to having blocks of consecutive numbers such that $E_{A} S(\Lambda) \neq 0$. Hence, if $B \in \mathcal{P}_{n}$ is the element associated with $S(\Upsilon)$, we have that $A=B$. But then $\left(\lambda^{s}\right)$ and $\left(\nu^{t}\right)$ must be partitions of the same numbers, corresponding to the block sizes of A, or B. Both $c_{\lambda^{1}}(u) \otimes \cdots \otimes$ $c_{\lambda^{l}}(u)$ and $c_{\nu^{1}}(u) \otimes \cdots \otimes c_{\nu^{l}}(u)$ act nontrivially in $E_{A} S(\Lambda)$ and hence by Lemma 7 we have $\lambda^{i} \leq \nu^{i}$ and $\lambda^{i} \geq \nu^{i}$ that is $\lambda^{i}=\nu^{i}$. Similarly, we get $\left(\mu^{s}\right)=\left(\tau^{t}\right)$. This proves the claim.

It remains to be shown that any simple module L is of the form $S(\Lambda)$ for some $\Lambda \in \mathcal{L}_{n}$. We saw in the remarks preceding the theorem, that it can be assumed that $L \subset V^{\otimes n}$. Choose $A=\left\{I_{1}, \ldots, I_{l}\right\} \in \mathcal{P}_{n}$ maximal with respect to having blocks of consecutive numbers and $E_{A} L \neq 0$. For $\sigma \in S_{n}$, the map $\varphi^{\sigma}: V^{\otimes} \rightarrow V^{\otimes}$ given by

$$
\varphi^{\sigma}: v_{i_{1}}^{j_{1}} \otimes \cdots \otimes v_{i_{n}}^{j_{n}} \rightarrow v_{i_{1}}^{\sigma\left(j_{1}\right)} \otimes \cdots \otimes v_{i_{n}}^{\sigma\left(j_{n}\right)}
$$

is an $\mathcal{E}_{n}(u)$-linear isomorphism and replacing L by $\varphi_{\sigma} L$ for an appropriately chosen σ we may assume that $\left|I_{i}\right| \leq\left|I_{i+1}\right|$ for all i. We have now that $E_{A} L$ is a module for the tensor product $H_{I_{1}}(u) \otimes \cdots \otimes H_{I_{l}}(u)$. Choose for each I_{i} a partition λ_{i} of $\left|I_{i}\right|$ such that the product $c_{\lambda^{1}}(u) \otimes c_{\lambda^{2}}(u) \otimes \cdots \otimes c_{\lambda^{l}}(u)$ acts nontrivially in $E_{A} L$. Choose next partitions μ^{i} such that $s_{\mu^{1}} \otimes s_{\mu^{2}} \otimes \cdots \otimes s_{\mu^{k}}$ acts nontrivially in $\left(c_{\lambda^{1}}(u) \otimes \cdots \otimes\right.$ $\left.c_{\lambda^{l}}(u)\right) E_{A} L$. The data so collected give rise to a Λ with $S(\Lambda)=\mathcal{E}_{n}(u) e_{\Lambda} w_{\Lambda} \subset L$. But since L is simple, the inclusion must be an equality. With this we have finally proved all statements of the theorem.

Let us work out some low-dimensional cases. For $n=2$ we have the following possibilities for Λ :

$$
\begin{array}{ll}
\left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 1, \square), & \left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 1, \square), \\
\left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 2, \square \square), & \left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 2, \square)
\end{array}
$$

They all give rise to irreducible representations of dimension one. The first two are the one-dimensional representations of $H_{2}(u)$. By our construction the third is given by $v_{1}^{1} \otimes v_{1}^{2}+v_{1}^{2} \otimes v_{1}^{1}$ and the last by $v_{1}^{1} \otimes v_{1}^{2}-v_{1}^{2} \otimes v_{1}^{1}$. They correspond to the trivial and the sign representation of $K S_{2}$. The square sum of the dimensions is 4 , which is also the dimension of $\mathcal{E}_{2}(u)$.

For $n=3$ we first write down the multiplicity free possibilities of Λ, i.e. those having $m_{s}=1$ and so $\mu_{s}=\square$ for all s. They are

$$
\begin{gathered}
\left(\lambda^{1}\right)=\left(\begin{array}{|}
\square \square &)
\end{array} \quad \quad\left(\lambda^{1}\right)=\left(\begin{array}{|}
\square & \square
\end{array}, \quad\left(\lambda^{1}\right)=(\square),\right.\right. \\
\left(\lambda^{1}, \lambda^{2}\right)=(\square, \square \square), \quad\left(\lambda^{1}, \lambda^{2}\right)=(\square, \square)
\end{gathered}
$$

The first three of these are the Specht modules for $H_{3}(u)$, their dimensions are respectively 1,2 and 1 . The fourth is given by the vector $v_{1}^{1} \otimes v_{1}^{2} \otimes v_{1}^{2}$ and the last by the vector $v_{1}^{1} \otimes\left(v_{1}^{2} \otimes v_{2}^{2}-u^{-1} v_{2}^{2} \otimes v_{1}^{2}\right)$, according to our construction. In both cases, one gets dimension three.

Allowing multiplicities, we have the following possibilities:

$$
\left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 3, \square), \quad\left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 3, \square),
$$

and

$$
\left(\lambda^{1}, m_{1}, \mu^{1}\right)=(\square, 3, \square) .
$$

We get the Specht modules of $K S_{3}$ of dimensions 1, 2 and 1 .
The square sum of all the dimensions is 30 , in accordance with the dimension of $\mathcal{E}_{3}(u)$. We have thus proved that $\mathcal{E}_{n}(u)$ is semisimple for $n=2$ and $n=3$.

The classification of the simple modules for $n=2$ and $n=3$ has also been done in [1] with a different method.

7 Questions

The results of the paper raise a number of questions.
There is a canonical inclusion $\mathcal{E}_{n}(u) \subset \mathcal{E}_{n+1}(u)$ which at diagram level is given by adding a through line to the right of a diagram element from $\mathcal{E}_{n}(u)$. It gives rise to restriction and induction functors res and ind, that should obey a branching rule for the decomposition of res $S(\Lambda)$. Our first question is to give a description of it. Apart from the independent interest in such a branching rule, one possible application would be to obtain a dimension formula for $S(\Lambda)$.

We do not know what the general branching rule looks like, but using the above calculations, we can at least explain the cases $n=2,3$, corresponding to res $S(\Lambda)$ for $\Lambda \in \mathcal{P}_{2}$ and $\Lambda \in \mathcal{P}_{3}$, These cases are rather easy, since one only needs consider $n=3, \Lambda=\left(\lambda^{s}, m_{s}, \mu^{s}\right), m_{s}=1$ and μ^{s} trivial and

$$
\left(\lambda^{1}, \lambda^{2}\right)=(\square, \square \square), \quad\left(\lambda^{1}, \lambda^{2}\right)=(\square, \square)
$$

because, as we saw above, all other choices of Λ give Specht modules that are pullbacks of Specht modules of the symmetric group or of the Hecke algebra and therefore obey the usual branching rule. For both of them, the restriction contains the trivial and the sign module for $K S_{2}$ corresponding to the third and fourth Specht modules for $\mathcal{E}_{2}(u)$ in the above description. But the first of them moreover contains the trivial module for $\mathcal{H}_{2}(u)$ corresponding to the first Specht module of the classification, whereas the second contains the nontrivial one-dimensional module for $\mathcal{H}_{2}(u)$ corresponding to the fourth module of the classification. The question is now how to generalize this to higher n.

The paper treated the representation theory of $\mathcal{E}_{n}(u)$ for u generic, where one expects $\mathcal{E}_{n}(u)$ to be semisimple, as observed above for $n=2$, 3 . It is therefore natural to ask for a formal proof of semisimplicity beyond the cases $n=2,3$. If one had an explicit formula for the dimension of $S(\Lambda)$ it would be natural to try to generalize the above proof for $n=2,3$. On the other hand, in view of the nondegeneracy of the form defined in Sect. 5 and Wenzl's treatment of the Brauer algebra in [22], an attractive alternative approach to proving semisimplicity of $\mathcal{E}_{n}(u)$ would be to look for an analog of the Jones basic construction [8] in the setting, using the embedding $\mathcal{E}_{n}(u) \subset \mathcal{E}_{n+1}(u)$.

As already mentioned in Sect. 2, it is possible to define a specialized algebra $\mathcal{E}_{n}\left(u_{0}\right)$, for example by choosing u_{0} to be an l th root of unity. This should be a nonsemisimple algebra. A natural first step into the representation theory of this specialized algebra is to show that $\mathcal{E}_{n}(u)$ is a cellular algebra in the sense of [5]. We firmly believe that this indeed is the case, but also think that a new set of tools would be needed to establish it. In this paper, the tensor module was a crucial ingredient in our determination of the rank of $\mathcal{E}_{n}(u)$ and so for the completeness of the paper we found it most natural to construct the Specht modules inside it.

Finally, the tensor module itself raises the question of determining its endomorphism algebra End $\mathcal{E}_{n}(u)\left(V^{\otimes n}\right)$ and setting up an analog of Schur-Weyl duality. Given the result of the paper, $\operatorname{End}_{\mathcal{E}_{n}(u)}\left(V^{\otimes n}\right)$ should be an interesting combination of quantum groups and symmetric groups/Hecke algebras.

References

1. Aicardi, F., Juyumaya, J.: An algebra involving braids and ties. ICTP preprint IC2000179, http://streaming.ictp.trieste.it/preprints/P/00/179.pdf
2. Ariki, S., Terasoma, T., Yamada, H.: Schur-Weyl reciprocity for the Hecke algebra of $\mathbb{Z} / r \mathbb{Z} \imath \mathfrak{S}_{n}$. J. Algebra 178, 374-390 (1995)
3. Cheng, Y., Ge, M.L., Wu, Y.S., Xue, K.: Yang-Baxterization of braid group representations. Commun. Math. Phys. 136, 195-208 (1991)
4. Dipper, R., James, G.D.: Representation of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 54(3), 20-52 (1987)
5. Graham, J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1-34 (1996)
6. Halverson, T., Ram, A.: Partition algebras. Eur. J. Comb. 26, 869-921 (2005)
7. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29 (1990)
8. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989)
9. Gyoja, A.: A q-analogue of Young symmetrizer. Osaka J. Math. 23, 841-852 (1986)
10. James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Math., vol. 682. Springer, Berlin (1978)
11. Jones, V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125, 459 (1989)
12. Jones, V.F.R.: The Potts model and the symmetric group. In: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras, Kyuzeso, 1993, pp. 259-267. World Scientific, River Edge (1994)
13. Jimbo, M.: A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys. 10, 63-69 (1985)
14. Juyumaya, J.: A new algebra arising from the representation theory of finite groups. Rev. Math. Phys. 11, 929-945 (1999)
15. Juyumaya, J.: Sur les nouveaux générateurs de l'algèbre de Hecke $\mathcal{H}(G, U, 1)$. J. Algebra 204, 40-68 (1998)
16. Juyumaya, J., Kennan, S.: Braid relations in the Yokonuma-Hecke algebra. J. Algebra 239, 272-295 (2001)
17. Martin, P.P.: Temperley-Lieb algebras for non-planar statistical mechanics-the partition algebra construction. J. Knot Theory Ramif. 3, 51-82 (1994)
18. Murphy, G.E.: On the representation theory of the symmetric group and associated Hecke algebras. J. Algebra 152, 492-519 (1992)
19. Ryom-Hansen, S.: The Ariki-Terasoma-Yamada tensor space and the blob algebra. J. Algebra, to appear
20. Thiem, N.: Unipotent Hecke algebras of $G l_{n}\left(\mathbb{F}_{q}\right)$. J. Algebra 294, 559-577 (2005)
21. Yokonuma, T.: Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini. C. R. Acad. Sci. Paris 264, 344-347 (1967)
22. Wenzl, H.: On the structure of Brauer's centralizer algebras. Ann. Math. (2) 128(1), 173-193 (1988)

[^0]: S. Ryom-Hansen (\boxtimes)

 Instituto de Matemática y Física, Universidad de Talca, Talca, Chile
 e-mail: steen@inst-mat.utalca.cl

