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Abstract There is a natural bijection between Dyck paths and basis diagrams of the
Temperley–Lieb algebra defined via tiling. Overhang paths are certain generalisa-
tions of Dyck paths allowing more general steps but restricted to a rectangle in the
two-dimensional integer lattice. We show that there is a natural bijection, extend-
ing the above tiling construction, between overhang paths and basis diagrams of the
Brauer algebra.

Keywords Brauer algebra · Temperley–Lieb diagram · Pipe dream · Dyck path ·
Overhang path · Double-factorial combinatorics

1 Introduction

Consider the double factorial sequence given by Sn = (2n − 1)!! = (2n − 1) ×
(2n − 3) · · ·1. The sequence begins:

1,3,15,105,945, . . . .

There are many important sequences of sets whose terms have cardinalities given by
this sequence (see, for example, entry A001147 of [21]). The ‘abstract’ challenge
is, given a pair of such sequences, to find bijections between the nth terms in each
sequence that are natural in the sense that they can be described for all n simultane-
ously. We consider here Brauer diagrams (pair partitions of 2n objects) and overhang
paths (certain walks on a rectangular grid).
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A striking example of a natural bijection, for the sequence of Catalan numbers, is
the bijection between Temperley–Lieb diagrams (non-crossing pair partitions) and
Dyck paths (see e.g. [22]), given by ‘tiling’. Recall that a Dyck path is a non-
collapsing path in the upper half-plane starting at the origin in which each step in-
creases the x-coordinate by 1 and changes the y-coordinate by ±1, here with a speci-
fied end-point on the x-axis. Here is an example of a tiling of a Dyck path giving rise
to a Temperley–Lieb diagram:

See Sects. 4 and 5 for more details.
The Dyck path basis of standard modules over the Temperley–Lieb algebra [25]

lends itself to the construction of Young’s orthogonal form for such modules. The
Young tableau realisation of Specht modules plays a similar role for the symmetric
group algebra and the Hecke algebra. From this one is able to read off the ‘uni-
tarisable’ part of the representation theory of the algebra in question for q a root of
unity—that is, the simple modules appearing in Potts tensor space [15, §8.2]. This is
much harder to do using the Temperley–Lieb diagrams themselves, where the nec-
essary combinatorial information is completely obscure. In fact, the Temperley–Lieb
diagrams define instead the fundamental integral form of the corresponding modules.
Therefore, the bijection between Temperley–Lieb diagrams and Dyck paths provides
a good example of an interesting bijection from a representation theory perspective.

Much progress has been made recently (see e.g. [7] and references therein) on the
representation theory of the Brauer algebra [5], but an analogue of the orthogonal
form/simple module construction cited above (and described in Sect. 12 in greater
detail) is not known. For this reason, as a first step towards this, it is of interest to
construct a parallel bijection between overhang paths and Brauer diagrams. We do
this here.

An overhang path is defined in the same way as a Dyck path, except that steps in
which the x-coordinate is decreased by 1 and the y-coordinate is increased by 1 are
also allowed. In addition, the path is not allowed to cross the y-axis. The proof that
the map we construct is a bijection is nontrivial, but a flavour can be given by the
following, in which a tiling of an overhang path gives rise to a Brauer diagram:
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See Sect. 4 for the definition of the tiling map, and Sects. 6 to 9 for the proof that
it is a bijection.

The eventual aim is to push this result on into representation theory, as in the
Temperley–Lieb case, but we restrict here to reporting on the initial combinatorial
work necessary.

The non-crossing pair partitions (Temperley–Lieb diagrams) are a subset of the set
of general pair partitions. Dyck paths are a subset of the set of overhang paths. With
this in mind we require that our bijection agrees with the Temperley–Lieb/Dyck path
correspondence when restricted to Temperley–Lieb diagrams.

There is in fact another bijection between Brauer diagrams and overhang paths
that is relatively easy to construct, but it does not preserve the Temperley–Lieb/Dyck
path correspondence in the above sense. We describe this simpler correspondence in
Sect. 11.

The article is organised as follows. In Sect. 2, we discuss Dyck paths and overhang
paths and their properties. In Sect. 3, we recall Brauer diagrams and define some
simple notions on such diagrams which will be useful later. In Sect. 4, we define a
tiling map from overhang paths to Brauer diagrams. In Sect. 5, we recall a tiling-type
bijection between Dyck paths and Temperley–Lieb diagrams. In Sects. 6 to 9 we show
that the map in Sect. 4 has an inverse, thus proving our main result, Theorem 9.10,
that there is a bijection between overhang paths and Brauer diagrams which extends
the bijection described in Sect. 5. In Sect. 10, we give an example. In Sect. 11, we
describe the simpler bijection between Brauer diagrams and overhang paths (which
does not extend the tiling map in the Temperley–Lieb case). Finally, we explain some
of our motivation in terms of the orthogonal form construction in the Temperley–
Lieb/Dyck path setting in Sect. 12.

We would like to thank M. Grime for bringing to our attention a certain notion
of paths in the plane (we refer to them here as overhang paths of degree n; see 2.3)
and also for his initial question which motivated us to start work on this article. He
mentioned to us that it was known that the number of overhang paths of degree n

coincides with the number of Brauer diagrams of degree n (for formal reasons: the
generating functions are identical) and asked the question as to whether this could be
proved concretely.

After we completed work on this article, we learnt of the article [20], which also
gives a bijection between overhang paths and Brauer diagrams. This bijection is dif-
ferent from both of the bijections we define here, and we do not know a way of
defining it using tilings.

We remark that there are a number of other examples of sets in natural bijection
with Brauer diagrams. As well as those in entry A001147 of [21], there are examples
in [10]. For information on bijections between Brauer diagrams (and more general
partitions) and tableaux and pairs of walks, we refer to [6, 12, 14, 17, 23, 24, 26]. We
also remark that the article [2] gives a bijection between fixed-point free involutions
of a set of size 2n and certain sets of tuples of non-intersecting walks on the natural
numbers arising in statistical mechanics (the random-turns model of vicious random
walkers).
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2 Overhang paths

2.1 Consider the semi-infinite rectangle R ⊆ R
2 with base given by the line segment

from (0,0) to (n,0) and sides x = 0 and x = n. Let RZ denote the set of integral
points (a, b) in this rectangle. We consider steps between points in RZ of the follow-
ing form:

(1) (a, b) → (a + 1, b + 1), or
(2) (a, b) → (a + 1, b − 1), or

(2′) (a, b) → (a − 1, b + 1).

2.2 We define a Dyck step to be a straight line path of form (1) or (2), and a overhang
step to be a straight line path of form (2′).
2.3 A path in RZ is a sequence of steps between vertices of R. It is said to be
noncollapsing if it does not visit any vertex more than once. In particular, a Dyck path
(respectively, overhang path) is a noncollapsing path starting at (0,0) and consisting
of Dyck (respectively, Dyck or overhang) steps. We shall restrict our attention to
Dyck or overhang paths which end at (2n,0) for some n ∈ N; such paths will be said
to have degree n. Let G TL

n (respectively, Gn) denote the set of all Dyck (respectively,
overhang) paths of degree n. For an example of an overhang path of degree 8, see
Fig. 1 (the shading in the figure will be explained in 2.5).

2.4 There is an injective map from paths to finite sequences of elements from the set
{1,2,2′} given by writing a path as its sequence of steps. For example,

G2 = {1122,12′1222,1212}.
2.5 A path p ∈ Gn, together with the x-axis with the interval between (0,0) and
(2n,0) removed, partitions the plane into two regions. The intersection of these re-
gions with R will be referred to as the upper region and the lower region of p, re-
spectively. (In the example in Fig. 1, the lower region is shaded.)

2.6 We define a partial order on Gn by setting p < q if the lower region of p is
contained in the lower region of q . Thus, the lowest path is

p0 = 121212 . . .12.

Fig. 1 An overhang path from
(0,0) to (8,0)
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Fig. 2 Tiling an overhang path

2.7 If p < q , we shall write q/p for the ‘skew’ diagram—the lower region of q not
in the lower region of p.

2.8 We will consider the lower region of p not in the lower region of p0 to be tiled
with diamond tiles, and we will consider the lower region of p intersecting the lower
region of p0 to be tiled with half-diamond tiles. For an example, see Fig. 2.

Lemma Let n ∈ N. Then |Gn| = (2n − 1)!!.

Proof Given a sequence r = (r0, r1, . . . , rn−1) of integers satisfying 0 ≤ rk ≤ 2k for
0 ≤ k ≤ n − 1, we can form an overhang path in the following way. Start with the
path p0 described above. Then, for each k, add a rectangle Rk to the p0 with vertices
Ak = (2k,0),Bk = (2k+1,1),Ck = (2k−rk +1, rk +1) and Dk = (2k−rk, rk) (this
can be considered as a pile of rk diamonds piled up to the left of the step from (2k,0)

to (2k + 1,1) of p0). The upper boundary of the union of these rectangles consists of
steps of form (1) (corresponding to a line segment DkCk), form (2) (corresponding
to part of a line segment CkBk in the case where rk ≥ rk+1 or k = n), or form (2′)
(corresponding to part of a line segment AkDk in the case where rk ≤ rk−1). Hence
this forms the lower region of an overhang path.

Conversely, given an overhang path, steps of form (2) or (2′) from (a, b) do not
change the sum a + b, while a step of form (1) increases it by 2. It follows that
any overhang path must contain precisely n steps of form (1). By considering the
diamond tiles down and to the right of these steps, we see that the path must be of
the above form. It is clear that we now have a one-to-one correspondence between
overhang paths and tuples of integers as above. The result follows. For an example
with r = (0,0,3,2,8,8,1,12), see Fig. 3. �

2.9 For each p ∈ Gn, there is a unique maximal path t ≤ p that only uses Dyck
steps. We call this the root Dyck path (or just the root) of p. For example, in the
introduction, the Dyck path example is the root of the overhang path example.

2.10 For p ∈ Gn and q ∈ Gm, the side-by-side concatenation p ∗ q of p and q is a
path in Gn+m:

∗ : Gn × Gm → Gn+m.

Note that not every path in Gn+m that passes through (2n,0) arises in this way.
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Fig. 3 Constructing an
overhang path from rectangles

2.11 An element of Gn is said to be prime if it cannot be expressed non-trivially in
the form a ∗ b.

3 Brauer diagrams

3.1 Given a finite set S, a pair partition of S is a partition of S into subsets of
cardinality 2. A Brauer diagram of degree n is a picture of a pair partition of 2n

distinct vertices arranged on the boundary of the lower half-plane. The two vertices
in each part of the pair partition are joined by an arc in the lower half-plane. Two
Brauer diagrams are identified if their underlying vertex pair partitions are the same.
Let Jn denote the set of all Brauer diagrams of degree n. See Fig. 4 for an example.
The additional arc and vertex labels are explained below.

3.2 We remark that Brauer diagrams are often defined using 2n vertices on the bound-
ary of a disk or in a horizontal rectangle, with n vertices along the top and n vertices
along the bottom, but we shall not consider such representations here.

3.3 By a partial Brauer diagram we mean a Brauer diagram with the extra possibility
that parts of cardinality 1 are also allowed. We denote by J l

n the set of partial Brauer
diagrams containing n pairs and l singletons (and thus a total of 2n + l vertices).

3.4 See Fig. 12(a) for an example of a partial Brauer diagram which is not a Brauer
diagram. We remark that a partial Brauer diagram can be completed on the left by
adding another partial Brauer diagram to the left with the same number of singletons,

Fig. 4 A Brauer diagram with arc labels
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Fig. 5 The arc subdiagram D1

and then pairing up the singletons in the first diagram with those in the second. Note
that such a completion is in general not unique.

3.5 A TL diagram (or Temperley–Lieb diagram) is a Brauer diagram without cross-
ings. We shall write J TL

n for the subset of Jn consisting of TL diagrams.

3.6
Definition ((right-)standard arc labelling) Let D be a partial Brauer diagram. We
number the vertices of D which are right-hand ends of arcs or singletons, in order
from right to left. A vertex k which is the right-hand end of an arc gets labelled
kR, and we label the other end of the arc kL. Sometimes we will label the arc with
endpoints kL and kR with the number k.

For an example, see Fig. 4.

3.7 We define similarly a left-standard labelling, which again numbers from right to
left, but according to the order of the left-hand endpoints of arcs (and singletons as
before).

3.8 Later we will use the pair (a(i), i) of left- and right-standard labels for an arc in
a fixed diagram D. That is, if i is the right-standard label of an arc, then a(i) will be
the left-standard label of the same arc.

3.9 We will not need the, perhaps more natural, orderings from left to right. This
handedness comes from the handedness of the overhang diagrams that we chose.

3.10 To each arc i (in the right-standard labelling) of a diagram D we may associate
an arc (left) subdiagram Di of D. This is the collection of arcs whose right-hand
vertex is strictly contained within arc i (i.e. the interval from iL to iR), together with
their endpoints. We retain the initial (right-standard) labelling of the vertices inherited
from D.

3.11
Example Let D be the diagram in Fig. 4 above. The arc subdiagram D1 is shown
in Fig. 5.

3.12 To any diagram D in Jn we may associate a diagram in Jn+1, denoted [D],
which is the diagram obtained from D by adding a new vertex at each end of D and
an arc between them.

Similarly, for D ∈ Jn and D′ ∈ Jm, we will understand by DD′ ∈ Jn+m the dia-
gram obtained by simple side-by-side concatenation.
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3.13 We shall call a diagram prime if it cannot be expressed non-trivially in the form
D = D1D2. (This is a different definition of prime than has been used elsewhere,
e.g. [13, 19].) Note that if a diagram D is Temperley–Lieb and prime, then it can be
expressed in the form D = [D′].

4 The tile map

4.1 There is a map from overhang paths to Brauer diagrams

Ψ : Gn → Jn

defined by replacing each ‘blank’ tile with a patterned tile. Tiles in the root Dyck path
of p ∈ Gn are replaced using the following rules:

or

Tiles in the lower region of p but above the root of p are replaced using the following
rule:

A horizontal line above the overhang path is fixed (the “top” of the diagram).
Strands are then connected together with vertical segments joining two ends or join-
ing an end with the top of the diagram. This can also be realised by continuing the
tiling into the upper region of the path (up to the horizontal line), using half-tiles on
the boundary, and using the following tiling rules for the new tiles:
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Fig. 6 Computation of the Brauer diagram Ψ (p) for the path p in Fig. 2

For an example (with the tiles in the upper region omitted for clarity), see Fig. 6.

4.2 We note that the patterned tiling of the lower part of p in the above construction
can be regarded as a pipe dream [11] (also known as an rc-graph [3]). In general it
will be non-reduced, i.e. two arcs may cross twice in the resulting configuration (see
the introduction for an example of this).

4.3 By the construction of Ψ , we have:

Lemma The map Ψ commutes with side-by-side concatenation:

Ψ (a ∗ b) = Ψ (a)Ψ (b)

for all a, b ∈ Gn.

5 The Temperley–Lieb case

5.1 Note that the map Ψ has image within the set of TL diagrams when restricted to
the set of roots, given by ‘tiling’:

Ψ |G TL
n

: G TL
n → J TL

n .

See e.g. [22].

5.2 The inverse of the restricted map is also well known. A convenient in-line repre-
sentation of a TL diagram D is to read from left to right and to replace each vertex
that is the left-hand end of an arc with an open bracket, “( ”, and to replace each vertex
that is the right-hand end of an arc with a close bracket, “ )”. It is clear that this gives
rise to a well-nested sequence of brackets. Replacing each “( ” with a 1 and each “ )”
with a 2, we obtain the in-line sequence for a Dyck path, call it ΦTL(D).

5.3 By construction, we have the following:

Lemma The map ΦTL commutes with side-by-side concatenation:

ΦTL(DD′) = ΦTL(D) ∗ ΦTL(D′)

for all TL diagrams D,D′.
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Lemma The map ΦTL is the inverse of Ψ |G TL
n

.

Proof This is implicit in [1] (see [15]), but we include a proof for the convenience
of the reader. We show that for all TL-diagrams D, Ψ (ΦTL(D)) = D. We do this
by induction on n, with n = 0 as base. Suppose that the result is true for smaller n.
If D is a TL diagram of degree n, suppose first that D has an arc joining vertices
1 and 2n. Let D′ be the TL-diagram obtained by removing this arc. By induction,
Ψ (ΦTL(D′)) = D′. It follows that Ψ (ΦTL(D)) = D, since ΦTL(D) is the same as
the Dyck path ΦTL(D′) except that an extra step 1 at the start and an extra step 2 at
the end have been added.

If D has no arc joining 1 and 2n, then it is of the form D1D2 where D1 and
D2 are non-empty TL diagrams. By the inductive hypothesis, ΦTL(Ψ (Di)) = Di for
i = 1,2, and it follows that ΦTL(Ψ (D)) = D. The result follows by induction.

It is well known that the cardinalities of G TL
n and J TL

n are the same (given by the
nth Catalan number), so the result follows. �

6 A map from Brauer diagrams to Dyck paths

6.1 Our ultimate aim is to define a map

Φ : Jn → Gn

and show that it is inverse to Ψ . The difficulty is that the overhang path corresponding
to a Brauer diagram may be hard to find. In the example given in the introduction, the
realisation of the Brauer diagram obtained from the overhang path is not the simplest
one: it contains more crossings than are necessary (one of the strings crosses one of
the others twice: both crossings could be removed). Our approach will be to find first
what will turn out to be the root of the desired overhang path and then add extra tiles
to the corresponding Dyck path in order to give the required crossings.

Thus we will first of all define a map Π : Jn → J TL
n associating a Temperley–Lieb

diagram to each Brauer diagram. In the next section, we shall see that this gives us
a useful labelling of each Brauer diagram. We will then study the properties of this
labelling. This will give us control of the crossings and allow us to define Φ . (The
definition of Φ appears in Definition 9.8, and the main result is Theorem 9.10.)

6.2 The (right) chain ch(D) of arcs of D ∈ Gn is the sequence a1, a2, . . . of arc labels
of D such that a1 = 1 and ai (if it exists) is the arc label of the first right-hand end
vertex to occur moving from right to left from the left-hand end vertex of the arc with
label ai−1.

6.3
Example for the diagram in Fig. 4, we have ch(D) = (1,7) (in the right-standard
labelling), while ch(D1) = (2,4) (borrowing the same labelling).

Note that the set of arcs in the chain ch(D), together with the sets of arcs in the
arc subdiagrams for the arcs in the chain (that are clearly disjoint sets), forms the
complete set of arcs of D.
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6.4

Definition (Right chain tree of D) Fix a diagram D. Firstly, for each arc i of D,
define a planar rooted tree with root i and other vertices the chain arcs of Di arranged
in right chain order, right to left, at tree distance 1 from the root. For example, for the
arc 1 in Fig. 4, we obtain:

Note that the second row contains the right chain arcs of D1 given above. Define
a planar rooted tree τR(D) with vertices the arcs of D together with a root vertex ∅.
The tree is obtained by concatenating the planar rooted trees for the right chain arcs
of D in the obvious way, setting D∅ = D to include the root. We call this tree the
right-chain tree of D. We have thus defined a map τR from Jn to planar rooted trees.

6.5

Example The right-chain tree for our example D above is shown in Fig. 7.

6.6 Let γ denote the usual geometric dual map from planar rooted trees to TL dia-
grams. Thus, for a planar tree T , each arc of the TL diagram γ (T ) passes through a
unique edge of T . The dual TL diagram for the above example is shown in Fig. 8.

Fig. 7 An example of a
right-chain tree

Fig. 8 The geometric dual of a planar rooted tree
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Fig. 9 Example of a Dyck path
associated to a Brauer diagram

Fig. 10 Left-standard labelling
of a Temperley–Lieb diagram
and labelling of steps of form (1)
in the corresponding Dyck path

Combining, we have a map

Π := γ ◦ τR : Jn → J TL
n .

6.7 Note that the right-standard labelling of the arcs of D coincides with the labelling
of the vertices of τR(D) in order of first meeting, moving counterclockwise around
the tree from the root. An example of this can be seen in Fig. 8, where the arc ends
are given their right-standard labels.

Note also that applying the map ΦTL to Π(D) gives a Dyck path. So we can also
associate a Dyck path to each Brauer diagram. For our example, the Dyck path is
shown in Fig. 9.

6.8 Note that the left-standard labelling of arcs in a TL diagram induces a labelling
for steps of form (1) in the associated Dyck path, whereby each such step is given the
label of the arc passing through it. See Fig. 10 for an example.

7 Secondary arc labels

7.1 In this section we will show how the right-standard labellings of the arcs of D

and Π(D) can be used to obtain a new labelling (which we call secondary labelling)
of the arcs of D, by transferring the left-standard labelling of Π(D) to D. We shall
see later how the ordering on the arcs determined by this secondary labelling can be
used to uncross the arcs of D to get Π(D); this is a key notion in the construction of
the map Φ .

7.2 Fix a Brauer diagram D. Each arc of the TL diagram Π(D) has a pair (a(i), i)

of left and right-standard labels. Thus for each right-standard label i, there is a corre-
sponding left-standard label a(i).

For example, in the TL diagram in Fig. 11(b), we have a(3) = 1.
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Fig. 11 A Brauer diagram D and the corresponding Temperley–Lieb diagram Π(D) with labellings

7.3

Definition (Secondary arc label) For each arc i in D, there is an arc in Π(D) with
the same right-standard label. We call this association between arcs of D and arcs of
Π(D) the ‘right-correspondence’. We now associate a new ‘secondary’ label to each
arc in D—the left-standard label for the right-corresponding arc in Π(D).

7.4 For example, the secondary-labelling for the diagram D in Fig. 4 is shown in
Fig. 11(a). The labels at the top of the diagram are the right-standard labels, and
each arc has been given its left-standard label. We remark that if D ∈ J TL

n , then
Π(D) = D, so its secondary and left-standard labels coincide.

7.5

Definition (Right-agreement) Let us say that two diagrams right-agree up to a given
vertex x if there is a partial Brauer diagram on that vertex and the vertices to the right
of it which can be completed on the left to either of the two diagrams. If, in addition,
the two diagrams do not right-agree up to the vertex immediately to the left of x, we
shall say that they maximally right-agree up to x.

7.6 See Fig. 12 for an example. Diagrams (b) and (c) right-agree up to the fifth vertex
from the right since the partial Brauer diagram (a) can be completed to either of them.
It is clear that in fact the two diagrams maximally right-agree up to this vertex. Note
also that Π(D) and D in Fig. 11 maximally right-agree up to the third vertex from
the right (labelled 3R in both diagrams).

7.7

Lemma Suppose that D and Π(D) right-agree up to a given vertex x. Suppose
that there is an arc of D in the agreeing part. Then the right-corresponding arc in
Π(D) is also in the agreeing part (indeed, this is the same pair of vertices in the pair
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Fig. 12 An example of two
Brauer diagrams which
right-agree: each is a completion
of the partial Brauer diagram (a)

partition). These arcs have the same secondary label. Furthermore, the set of these
agreeing labels (if any) is of the form {1,2, . . . , r} for some r .

Proof Let E be the partial Brauer diagram which can be completed to either D or
Π(D) (on the vertex x and all vertices to its right). It follows from the definitions that
the right-standard labels on the vertices and the left-standard labels on the arcs of E

are the same in either completion.
Thus, on completion, an arc in E gives rise to a right-corresponding pair of arcs

in D and Π(D). By the definition of the secondary labels, the arc in D will have sec-
ondary label equal to the left-standard label of the (right-corresponding) arc in Π(D).

The consecutive property follows immediately from the definition of left-standard
labels. �

7.8

Lemma Let D ∈ Jn, and suppose that the left-hand end of the arc with right-
standard labels aL and aR is to the right of the right-hand end of the arc with right-
standard labels bL and bR. Let i be the secondary label of the former arc, and j the
secondary label of the latter arc. Then in τR(D), i and j are not descendants of each
other.

Proof By the definition of τR(D), the descendants of j arise from (some of) the arcs
whose right-hand end lies between the ends of i and cannot include j by assumption.
Similarly i cannot be a descendant of j . �

8 The relationship between D and Π(D)

8.1 In this section we study the relationship between D and Π(D); we shall use
these results to define Φ in the next section.

8.2

Lemma Let D ∈ Jn, and suppose that D and Π(D) maximally right-agree up to
vertex x. Then the vertex y immediately to the left of x is the left-hand end of an arc
in both D and Π(D).
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Fig. 13 Case II of Lemma 8.2:
Diagrams D (top) and Π(D)

Proof Case (I): If y were the right-hand end of an arc in both D and Π(D),
then D and Π(D) would right-agree up to vertex y, a contradiction to the assump-
tion. We complete the proof by ruling out the two remaining undesirable configura-
tions, i.e. the configurations in which y is a left-hand end of an arc only in D or only
in Π(D).

Case (II): Suppose that y is the left-hand end of an arc in D but the right-hand end
of an arc in Π(D). Let aL and aR be the right-standard labels of the arc in D incident
with y in D, and let bL and bR be the right-standard labels of the arc incident with y

in Π(D). Note that aR must be x or to its right in D, so the vertex with right-standard
label aR in Π(D) must also be x or to the right of x, since D and Π(D) right-agree
up to vertex x, using Lemma 7.7. For the same reason, the vertex with right-standard
label aL in Π(D) must be to the left of x, since this is so in D. Since vertex y is
labelled bR and the arcs in Π(D) do not cross, the vertex with right-standard label
aL in Π(D) must be to the left of bL.

The vertex with right-standard label bR in D must be to the left of x, since this
is so in Π(D) (again using Lemma 7.7), so, since y is right-standard labelled aL in
D, the vertex with right-standard label bR in D must be to the left of the vertex with
right-standard label bL in D. Let i (respectively, j ) be the secondary label of the arc
with end-points aL and aR (respectively, bR and bL) in D. By Lemma 7.8, i and
j are not descendants of each other in τR(D). But this contradicts the fact that the
right-corresponding arcs (also labelled i and j ) in Π(D) are nested. See Fig. 13. The
dashed vertical line is drawn between vertices x and y (so the right-agreeing part of
D and Π(D) is to the right of this line).

Case (III): Suppose that y is the right-hand end of an arc in D but the left-hand
end of an arc in Π(D). Let aL and aR be the right-standard labels of the arc in D

incident with y in Π(D), and let bL and bR be the right-standard labels of the arc
incident with y in D. Note that aR must be x or to its right in Π(D), so the vertex
with right-standard label aR in Π(D) must also be x or to the right of x, since D and
Π(D) right-agree up to vertex x, using Lemma 7.7.

Since the vertex with right-standard label bR in D is to the left of x, its right-
correspondent in Π(D) must also be to the left of x (using Lemma 7.7), and thus
the whole of the arc with right-standard labels bL and bR must be to the left of the
vertex with right-standard label aL in Π(D). Let i (respectively, j ) be the secondary
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Fig. 14 Case III of Lemma 8.2:
Diagrams D (top) and Π(D)

label of the arc with end-points aL and aR (respectively, bR and bL) in D. These
are the left-standard labels of the right-corresponding arcs in Π(D), and by the above
neither is a descendant of the other in τR(D) by the definition of Π(D).

We claim that, using the definition of τR(D), j is a descendant of i in τR(D), a
contradiction. Since Π(D) and D right-agree up to vertex x, the diagram for D can
be drawn with no crossings to the right of a vertical line V drawn between vertices x

and y.
Let a1R,a2R, . . . , akR be the right-hand end-points of the arcs of D with right-

hand end-point at x or to its right and left-hand end-point to the left of x, with a1 <

a2 < · · · < ak . Note that the left-hand end-point of each of these arcs is to the left
of the vertex with right-standard label bR in D. It follows that arc j is in the sub-
diagram Da1 .

It follows similarly that arc j is in the subdiagram Da2 , and by continuing to
argue in this way we eventually obtain that arc j is in the subdiagram Di and thus is
a descendant of i as required. See Fig. 14.

We have thus ruled out all other possible configurations and can conclude that the
lemma holds. �

8.3

Lemma Let D ∈ Jn, and suppose that D and Π(D) maximally right-agree up to
a vertex x. Let y be the vertex immediately to the left of x, and let z be the vertex
immediately to the left of y. Then z is the left-hand end-point of an arc in Π(D).

Proof For a contradiction, we suppose that the vertex z in Π(D) is the right-hand
end of an arc. Let its right-standard label be cR. The vertex which is right-standard
labelled cR in D must occur to the left of vertex x in D, as it does in Π(D). Let dL

be the right-standard label of the vertex y in D (note that by Lemma 8.2 this vertex
must be the left-hand end-point of an arc in D).

We see that:

(*) The vertex with right-standard label cR in D occurs to the left of the vertex with
right-standard label dL.
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The right-hand end of the arc incident with dL must be either x or to the right of
x in D. This vertex is labelled dR. Then the vertex with right-standard label dL must
be to the left of x in Π(D), and the vertex with right-standard label dR must be x or
to the right of x in Π(D) (as both of these hold for the right-corresponding vertices
in D).

Since Π(D) has no crossings of arcs, the vertex with right-standard label dR in
Π(D) must be to the right of the vertex right-standard labelled bR in Π(D), and the
vertex with right-standard label dL in Π(D) must be to the left of the vertex with
right-standard label cL in Π(D). Thus,

(**) In Π(D), the arc with end-points dL and dR contains the arc with end-points
cL and cR.

Let i (respectively, j ) be the secondary label of the arc with end-points bL and
bR (respectively, cL and bR) in D. Let k be the secondary label of the arc with end-
points dL and dR in D; this coincides with the left-standard label of the arc in Π(D)

with these end-points, by the definition of secondary label. Then by (**) above and
the definition of Π(D), j is a descendant of k in τR(D). But by (*) and Lemma 7.8,
j is not a descendant of k in τR(D), a contradiction.

It follows that vertex z must be the left-hand end-point of an arc in Π(D), as
required. �

9 Main result

9.1 In this section we will define the map Φ : Jn → Gn and show that it is an inverse
to the tiling map Ψ , thus proving our main result that there is a bijection between
overhang paths and Brauer diagrams. We first need a key lemma:

9.2
Lemma Let D ∈ Jn, and suppose that D and Π(D) maximally right-agree up to
vertex x. Let r be as in Lemma 7.7. Then:

(a) The right-hand ends of the arcs in D and Π(D) with secondary label r + 1 lie
in the right-agreeing right-hand-end of the two diagrams.

(b) The left-hand end of the arc with secondary label r + 1 in D is further from
the right-hand end of D than the left-hand end of the arc with the same left-standard
(i.e. secondary) label in Π(D).

Proof The arc whose left-hand end-point is immediately to the left of vertex x in
Π(D) (see Lemma 8.2) has left-standard (i.e. secondary) label r + 1 by definition
of left-standard labelling. Therefore its right-hand end-point is in the right-agreeing
part of D and Π(D). The arc in Π(D) with secondary label r + 1 is the right-
corresponding arc in D. Since D and Π(D) right-agree up to x, its right-hand end
must also lie in the right-agreeing part, and (a) is shown. Since D and Π(D) max-
imally agree up to vertex x, the left-hand end of the arc with secondary label r + 1
in D cannot be the vertex immediately to the left of vertex x, but it cannot be in the
right-agreeing part of D and Π(D) since the left-hand end of the right-corresponding
arc in Π(D) does not lie in this right-agreeing part. The result follows. �
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9.3 Let XD denote the number of steps to the right that the left-hand end of arc with
secondary label r + 1 in D in Lemma 9.2 above would have to be moved in order
to right-agree with that arc in Π(D). Define δD to be the diagram resulting from
moving the left-hand end of the arc with secondary label r + 1 in this way.

9.4 For example, if D is the diagram in Fig. 11(a), then r = 0 and D and Π(D)

maximally right-agree up to the third vertex from the right. Since moving the left-
hand end-point of the arc with secondary label 1 in D five steps to the right would
make it right-agree with the arc with the same label in Π(D), we have XD = 5.

9.5 This means that δD and Π(D) exhibit greater right-agreement, that is, right-
agreement up to a vertex to the left of the right-agreeing part of D and Π(D).
(Note that in the example, δD and Π(D) maximally right-agree on the nine right-
most vertices.) We define D(r) = D and Xr = XD . Next we define D(r ′) = δD and
Xr ′ = XδD

(where r ′ is as in Lemma 7.7 for δD), and so on, iterating the procedure.
We thus obtain a sequence

D
XD(r)=XD→ D(r) → D(r ′) → ·· · → Π(D).

For any j not appearing in this sequence (i.e. no adjustment is required to bring the
arcs with secondary label j + 1 into right-agreement), we define D(j) to be D(s),
where s is minimal with the property that the arcs with secondary label j + 1 agree
in D(s) and Π(D). In such cases, we set Xj = 0.

9.6 Each single step counted by XD = Xr can be implemented on D by an adjacent
pair permutation of vertices. Thus by extending the diagram above to include a single
crossing σj(r) (say) in the appropriate position, for each such step, we can build up
the transformation D → δD. We repeat this procedure for each transformation in the
above sequence.

In our example, the extension for the first transformation is shown in Fig. 15.

9.7 Of course σ 2
j (i)

= 1, so applying the collection of these changes in reverse order
to Π(D) brings us to D.

Fig. 15 The first part of the
extension for D as in Fig. 11(a)
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Fig. 16 The diagram
D(3) = δD for D as in
Fig. 11(a)

Fig. 17 The diagram
δD(3) = D(4)

9.8

Definition (The inverse map, Φ) Given a Brauer diagram D, let Φ(D) be the dia-
gram obtained by starting from the Dyck path ΦTL(Π(D)) for Π(D) and, for each i,
appending to the step in the Dyck path of form (1) with label i a left-overhanging
stack of tiles of length XD(i). We remark that it follows from Lemma 8.3 that Φ(D)

is an overhang path.

9.9 It follows from the above that applying Ψ to Φ(D), we obtain the original dia-
gram D. (An example follows shortly.)

9.10 It is well known (see also Sect. 11) that the cardinality of Jn is equal to (2n −
1)!!, so it follows from Lemma 2.8 that |Jn| = |Gn|. We have therefore shown that:

Theorem The maps Φ and Ψ are inverse bijections between the set Jn of Brauer
diagrams of degree n and the set Gn of overhang paths of degree n.

10 Example of a δ-sequence

10.1 We now give an example demonstrating the main theorem.

10.2 Let D be the Brauer diagram in Fig. 11(a). We have seen already that Π(D)

is the TL diagram in Fig. 11(b) and that D and Π(D) maximally right-agree up to
the third vertex from the right, including r = 0 arcs in their entirety. Thus we write
D(0) = D. We have seen that XD = X0 = 5, so we first move the arc secondary
labelled 1 five steps to the right to obtain diagram δD; see Fig. 16.

10.3 We observe that δD and Π(D) maximally agree up to the ninth vertex from the
right, including the arcs secondary-labelled 1. In fact the arcs secondary-labelled 2
and 3 also right-agree, so r ′ = 3, and we write δD = D(3) (thus D(1) = D(2) = δD).
By moving the arc secondary-labelled r ′ + 1 = 4 three steps to the right we can make
it right-agree with the arc with the same secondary label in Π(D), giving the diagram
δD(3) shown in Fig. 17. Thus X3 = 3.
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Fig. 18 The diagram
δD(4) = D(6)

Fig. 19 The overhang path Φ(D) and its tiling

10.4 We see that the arcs secondary-labelled 1,2,3,4 lie in the right-agreeing parts
of δD(3) and Π(D), so δD(3) = D(4). We compute that X4 = 5, and diagram δD(4)

is shown in Fig. 18.

10.5 Next, the arcs secondary-labelled up to 6 lie in the right-agreeing parts of δD(4)

and Π(D), so δD(4) = D(6). We compute that X6 = 1 and δD(6) = Π(D).

10.6 Using this data to construct ΦD, we obtain the overhang path in Fig. 19. Note
that the tiling of this path does indeed return D.

11 A simple bijection between overhang paths and Brauer diagrams

11.1 In this section we give a simple bijection between overhang paths and Brauer
diagrams, also given by tiling. We note, however, that it does not have the property
that it restricts to the tiling bijection for the Temperley–Lieb case, described in Sect. 5.

Let n ∈ N. Recall that J 1
n−1 denotes the set of partial Brauer diagrams with n − 1

pairs and one singleton. There is a bijection

s2n : Jn → J 1
n−1,

given by deleting the rightmost vertex of a Brauer diagram. The inverse adds a single
vertex at the right-hand end and joins it with the singleton. There is a map from J 1

n−1
to Jn−1 obtained by deleting the singleton. There are 2n − 1 possibilities for the
singleton, giving a bijection

s− : J 1
n−1 → Jn−1 × 2n − 1,
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where k denotes the set {1,2, . . . , k} for any k. Thus d2n := s− ◦ s2n is a bijection
from Jn to Jn−1 × 2n − 1. It follows that

|Jn| = (2n − 1)|Jn−1|

and thus that |Jn| = (2n − 1)!!. It follows from the above that

κ := d2 ◦ d4 ◦ · · · ◦ d2n : Jn → An,

where

An := {
(x1, x2, . . . , xn) ∈ Z

n | 1 ≤ xi < 2i
}

is a bijection.

11.2 In this section only, we shall regard a Dyck path as a walk on Z × Z from (0,0)

using steps from {(1,0), (0,1)} such that the walk never drops below the line parallel
to the vector (1,1) (equivalently, if the height of a point (x, y) is defined to be y − x,
negative heights are not allowed). It is clear that such a path can be transformed into a
Dyck path as defined in Sect. 2 by rotating it through 45 degrees clockwise about the
origin and stretching it by a factor of

√
2. We consider such paths whose end-point is

(n,n).

11.3 Similarly, in this section only, we shall regard an overhang path as a general-
isation of such a walk in which steps of the form (−1,0) are also allowed, but the
walk also never drops below (i.e. to the left of) the line defined by the (−1,1) vector
(and the path may not visit the same vertex twice). Such a path is characterised by
the sequence of x-coordinates of its (0,1)-steps. The first entry in this sequence is
necessarily 0, the second lies in {−1,0,1}, the third lies in {−2,−1,0,1,2}, and so
on. (In the Dyck path case the negative positions do not occur.) Let On denote the set
of such paths ending at (n,n).

11.4 It is clear that there is a bijection from An to On taking an element
(x1, x2, . . . , xn) of An to the overhang path with sequence of x-coordinates of its
(0,1)-steps given by xi − i, i = 1,2, . . . , n.

11.5 We have thus constructed a bijection

Jn → An → On.

One way to construct the inverse of the above bijection is to start with an element
of On and to regard this as a partial tiling of the plane with 1 × 1 tiles. That is, one
fills the interval between a given overhang path and the lowest path with tiles. One
also tiles the interval between the (1,1) line and the lowest path with half-tiles in the
obvious way. One then decorates all the square tiles with crossed lines from edge to
opposite edge; and the triangular tiles each with a single line from short edge to short
edge. This decoration gives the corresponding element of Jn.
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12 The Temperley–Lieb/Dyck path paradigm

12.1 In this section we explain how Dyck paths and related walks arise in the repre-
sentation theory of the Hecke algebra, via representations arising from outer product
representations of the symmetric group.

12.2 Fix q ∈ C and n ∈ N. Let Hn = Hn(q) denote the usual Hecke algebra of degree
n over C (we work over C for simplicity). Thus Hn is the C-algebra with generators
g1, g2, . . . , gn−1 subject to relations gigj = gjgi if |i − j | > 1, gigjgi = gjgigj if
|i − j | = 1, and (gi + q2)(gi − 1) = 0.

12.3

Definition For d ∈ N, we denote by Γ d
n the set of all d-tuples λ = (λ1, λ2, . . . , λd)

of Young diagrams with |λ| = ∑d
i=1 |λi | = n.

Fix λ ∈ Γ d
n . Then a tableau of shape λ is any arrangement of the ‘symbols’

1,2, . . . , n in the n boxes of λ. Such a tableau is said to be standard if each com-
ponent tableau is standard. We denote the set of all standard tableaux of shape λ

by T λ.

12.4 We number the rows of λ by placing the whole of the component diagram λi+1

under λi for all i, and numbering the rows from top to bottom. We then define a total
order < on standard tableaux of shape λ by setting T < U if the highest number
which appears in different rows of T and U is in an earlier row in U .

12.5 Let T be a tableau. For i ∈ {1,2, . . . , n−1}, let σi = (i i+1) ∈ Σn, the symmet-
ric group of degree n. We define σi(T ) to be the tableau obtained by interchanging i

and i + 1. In this way we get an action of Σn on the set of all tableaux of shape λ,
but we note that this action does not necessarily take a standard tableau to a standard
tableau.

12.6 Let x = (x1, x2, . . . , xd) ∈ R
d . For i, j ∈ {1,2, . . . , n − 1} and T ∈ Γ d

n , let
hx

ij = hx
ij (T ) denote the generalised hook length between the symbols i and j in T .

Thus hx
ij is given by

hx
ij = h0

ij + x#i − x#j ,

where h0
ij is the usual hook length obtained by superimposing the component

tableaux of T containing i and j , and #i is the number of the component containing
i in T . See [18] (note that there is a typographical error in this paper at the relevant
point) and also [15, p. 244]. Geometrically, one may think of putting all the individual
Young diagrams λi in the same plane, each with its top left box in position (0, xi).

For an integer m, we will write, as usual,

[m] = qm − q−m

q − q−1
.

12.7



J Algebr Comb (2011) 33: 427–453 449

Fig. 20 Standard tableaux of shape ((2), (2)) and the corresponding walks

Proposition [18] Let λ ∈ Γ d
n and assume that [hx

i,i+1(T )] �= 0 for all i ∈ {1,2, . . . ,

n − 1} and all T ∈ T λ. Then the set T λ is a basis for a left Hn-module Rλ. For
i ∈ {1,2, . . . , n − 1} and T ∈ T λ, the action is as follows:

(a) If i, i + 1 lie in the same row of T , then giT = T .
(b) If i, i + 1 lie in the same column of T , then giT = −q2T .
(c) If neither (a) nor (b) hold, then σi(T ) is also standard. Let h = hx

i,i+1. Then the
action is given by

gi

(
T λ

p

σi(T
λ
p )

)
=

((
1 0
0 1

)
− q

[h]
( [h + 1] [h − 1]

[h + 1] [h − 1]
))(

T λ
p

σi(T
λ
p )

)
,

provided that T < σi(T ).

(Young’s orthogonal form (see e.g. [4, IV.6]) involves an action via symmetric matri-
ces related to those above via conjugation.)

12.8 We now restrict attention to the situation in which λ has exactly two compo-
nents, each consisting of exactly one row. We can represent T ∈ T λ by an n-tuple
(a1, a2, . . . , an) with entries in {1,2}, defined by the condition that i ∈ λai for all
i ∈ {1,2, . . . , n}. Such a tuple can be regarded as a walk of length n in Z

2 starting at
the origin. The ith step of the walk consists of adding the vector (1,1) if ai = 1 or
adding the vector (1,−1) if ai = 2.

12.9 For example, if n = 4 and each component of λ is a row of length 2, the elements
of T λ and the corresponding tuples and walks are as shown in Fig. 20.

12.10 We note that in the walk realisation of a standard tableau T , σi swaps a pair
of steps (1,2) with the pair (2,1), i.e. a local maximum is swapped with a local
minimum or vice versa. Thus, in order for there to be mixing between two basis
elements as in Proposition 12.7(c), the corresponding walks must agree in all but
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Fig. 21 Example of a walk and
corresponding standard tableau

their ith and (i + 1)st steps, and in each diagram separately the second coordinate (or
height) after i − 1 steps and after i + 1 steps must coincide.

12.11 In fact, in this case the height after i − 1 steps coincides with the usual hook
length h0

i,i+1: i + 1 appears in the first component of T (in the kth box, say) and i

in the second component of T (in the lth box, say), and the height of the walk after
the (i − 1)st step is (k − 1) − (l − 1) = k − l, i.e. the hook length. For an example,
see Fig. 21. Here it can be seen that the height of the walk after the 5th step is equal to
the hook length h0

6,7 = 3. In general, we have that if T < σi(T ), then hx
i,i+1 is equal

to the sum of x1 − x2 and the height of the walk after i − 1 steps.

12.12 If hx
i,i+1 = 1, it follows from the description of the action in case (c) that the

elements are not actually mixed. It follows that, if we choose x so that x1 − x2 = 1,
there is an action of Hn on the set of (standard tableaux corresponding to) walks
which do not go below the horizontal axis given by the formulas in Proposition 12.7.
In fact, in this case, the action cannot be extended to the whole of T λ since the action
is not defined for hook length zero.

12.13 Similarly, if we set x1 −x2 = 2, only the walk (2,2,1,1) is decoupled from the
rest. In other words, changing the value of x allows us to define a module for Hn with
basis elements corresponding to walks which do not go below a certain “exclusion”
line.

12.14 Let ΓZ be the graph with vertices Z and edges joining integers with differ-
ence 1. Then the walks we have been considering can be regarded as walks on ΓZ by
projecting onto the second coordinate. Thus, in summary, we have extracted an Hn-
module with a basis of walks on ΓZ which only visit vertices on a certain subgraph,
from the formal closure of a Zariski-open set of modules (that is, actions depending
on a parameter) whose bases consist of walks on a larger subgraph. The decoupling
of the subgraph, in this sense, is determined by the structure of the graph.

12.15 The case x1 − x2 = 1 is special in that the decoupled module is irreducible
for generic values of q . It is an analogue of setting the usual ρ-shifted position of the
boundary of the dominant region in the Weyl group construction in Lie theory. The
generic irreducible module is denoted by ΔTL

n (λ1, λ2). The most interesting step,
however, is the next one. We now fix x1 − x2 = 1 and also specialise q to be an
lth root of unity, so that [l] = 0. In this situation, there is a further decoupling: we
obtain a module whose basis corresponds to walks whose height is bounded above
by l − 1. In other words, we now only include walks that lie between two ‘walls’: the
lines given by setting the second coordinate to 0 and l − 1. It can be shown that this
module is simple in this specialisation. Such simple modules are otherwise very hard
to extract, but here their combinatorics is manifested relatively simply.
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12.16 It is this feature that we aim, eventually, to duplicate for the Brauer algebra.
Although we reiterate that in this article we have not addressed the representation
theory of the Brauer algebra—as a first step, we have considered a Brauer analogue
of the underlying combinatorial correspondence.

12.17 The evidence for an analogy with the Brauer algebra is captured by the fol-
lowing summary of Cox–De Visscher–Martin’s geometrical machinery for the repre-
sentation theory of the Brauer algebra [7, 8, 16].

12.18 Let Bn(δ) denote the Brauer algebra of rank n with parameter δ ∈ R. For this
case, we may generalise our graph ΓZ (as in 12.14) and its role in representation
theory as follows. Let E

n = R
n be Euclidean n-space, and Z

n the integral lattice.
Let E

n ↪→ E
n+1 be the natural inclusion and E

f denote the inverse limit, with basis
{e1, e2, . . .}. Thus Z

f ⊂ Z
N. Define ΓZn (for n ∈ N, or n = N) to be the graph with

vertex set Z
n ∪ (Z + 1/2)n and an edge (x, x′) if x − x′ = ±ei .

12.19 Define (ij)± : R
n → R

n by

(ij)±(x1, x2, . . . , xi, . . . , xj , . . .) = (x1, x2, . . . ,±xj , . . . ,±xi, . . .).

Write H(ij)± for the reflection hyperplane in R
n associated to (ij)±; HA = {H(ij)+}ij ;

and H = {H(ij)±}ij . The open (codimension 0) components of R
N \HA are chambers.

12.20 By definition, a regular part of ΓZn is the full subgraph on vertices lying in a
fixed chamber. A vertex in ΓZn is A-regular if it lies on no hyperplane of form H(ij)+ .
A walk on ΓZn is A-regular if it visits only A-regular vertices.

12.21 The TL module bases we have been reviewing correspond (after some tweak-
ing) to the case n = 1. We now consider n = N.

12.22 Define −2ω = (1,1,1, . . .), −ρ = (0,1,2, . . .) and, for any δ ∈ R, ρδ = δω +
ρ in R

N. Note that ρδ is A-regular for any δ. We call the chamber containing ρ the
dominant chamber. We call the full subgraph of Γ

ZN with vertices in the dominant
chamber the dominant part of ΓZN and denote it (Γ

ZN)ρ .

12.23 For δ ∈ R, define eδ : Z
f ↪→ R

N by λ �→ λ + ρδ , Xδ = eδ(Z
f ), and define

(ΓZN )
ρ
ρδ to be the connected component of (ΓZN )ρ containing ρδ .

12.24
Lemma For δ ∈ Z, eδ extends to a map from the Young graph Y to Γ

ZN , inducing an
isomorphism from Y to (ΓZN )

ρ
ρδ .

12.25
Theorem [9] (Corollary) The set of A-regular walks of length n on Γ

ZN from ρδ to
ρδ + λ is a basis for the Bn(δ)-module Δn(λ) (for any δ).

12.26 Note that we are not quite in a position to consider unrestricted walks as in
12.8 here, since there are infinitely many.

12.27 Theorem 12.25 is an analogue of the geometrical walk basis construction of
ΔTL

n (λ1, λ2) in 12.15. However here Cox–De Visscher–Martin do not give an action



452 J Algebr Comb (2011) 33: 427–453

(the proof is abstract representation theory). They go further and give bases for Brauer
simple modules for fixed δ ∈ Z in terms of walks further restricted by H(ij)− hyper-
planes (an analogue of 12.15), but again an action does not follow automatically.
What is needed is an analogue of the geometrical (hook length) mixing criterion.

12.28 Altogether then, Cox–De Visscher–Martin give rather strong evidence that
there is a geometrical walk-based construction for simple modules but leave crucial
pieces of the guiding analogy with TL to be filled in. One of these is a tiling map, and
that is what we have provided here.
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