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Abstract We consider Cayley graphs Γ over dihedral groups, dihedrants for short,
which admit an automorphism group G acting regularly on the arc set of Γ . We prove
that, if D2n ≤ G ≤ Aut(Γ ) is a regular dihedral subgroup of G of order 2n such that
any of its index 2 cyclic subgroups is core-free in G, then Γ belongs to the family of
graphs of the form (Kn1 ⊗ · · · ⊗ Kn�

)[Kc
m], where 2n = n1 · · ·n�m, and the numbers

ni are pairwise coprime. Applications to 1-regular dihedrants and Cayley maps on
dihedral groups are also given.

Keywords Arc-transitive graph · Cayley graph · Cayley map · Dihedral group ·
Core-free group

1 Introduction

All groups in this paper are finite, and all (undirected) graphs and digraphs are finite
and simple. For a (di)graph Γ , let V (Γ ), D(Γ ), and Aut(Γ ) denote the vertex set,
the arc set, and the group of all automorphisms of Γ , respectively. For a graph Γ,

let E(Γ ) denote the edge set of Γ ; then two vertices u and v of Γ are said to be
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adjacent if {u,v} is in E(Γ ). For a digraph Γ, a vertex u of Γ is said to be adjacent
to another vertex v of Γ if (u, v) is in D(Γ ). A k-arc of a (di)graph Γ is a sequence
of k + 1 vertices v1, v2, . . . , vk+1 in V (Γ ), not necessarily all distinct, such that any
two consecutive terms are adjacent and any three consecutive terms are distinct. For
a subgroup G ≤ Aut(Γ ), we say that Γ is G-k-arc-transitive, G-k-regular if G acts
transitively, regularly, respectively, on the set of k-arcs of Γ . In particular, Aut(Γ )-
k-arc-transitive and Aut(Γ )-k-regular are usually referred to as k-arc-transitive and
k-regular, respectively. Let G be a group with identity element e, and S ⊂ G with
e /∈ S. The Cayley digraph Cay(G,S) over G relative to S is the digraph with vertex
set G, and (x, y) ∈ G×G is an arc if and only if xy−1 ∈ S. Note that, when S = S−1

is inverse closed, then (x, y) is an arc of Cay(G,S) if and only if so is (y, x); hence
Cay(G,S) can be also regarded as a graph, in which case the terminology Cayley
graph is used.

The question which Cayley digraphs Cay(G,S) are s-arc-transitive for some s > 0
has been studied extensively. For instance, all 2-arc-transitive digraphs Cay(G,S) are
classified when G is an abelian group, see [14], or a dihedral group, see [4, 15, 16].
As for 1-arc-transitivity, arc-transitivity for short, a complete classification is known
over cyclic groups, see [8, 12], or can be found implicitly in [18, 19].

A natural next step to consider is the class of connected, arc-transitive Cayley
graphs over dihedral groups, that is, the class of arc-transitive dihedrants. Notice
that it is not restrictive to consider only Cayley graphs instead of Cayley digraphs.
Namely, if Cay(D2n, S) is connected and arc-transitive, where D2n is a dihedral group
of order 2n, then S = S−1 must hold, and hence Cay(D2n, S) is in fact a Cayley
graph. In this paper we focus on a the subclass of dihedrants Γ that admit a subgroup
of automorphisms G acting regularly on the arc set D(Γ ), or shortly, an arc-regular
subgroup G ≤ Aut(Γ ). In particular, if G = Aut(Γ ), then Γ is called 1-regular. Such
graphs have been studied in a number of papers: dihedrants of valency 4 or 6 in
[10, 22, 23], those of prime valency in [7], and finally, a construction of a 1-regular
dihedrant of valency 2k ≥ 4 is given in [11].

Here we consider the family F of dihedrants Γ satisfying the following condition:

(A) Γ is a connected dihedrant over the dihedral group D2n which admits an arc-
regular action of a subgroup D2n ≤ G ≤ Aut(Γ ), and moreover, any cyclic group
of index 2 in D2n is core-free in G.

Recall that, for a group A and its subgroup B ≤ A, the core of B in A is the largest
normal subgroup of A contained in B , denoted by coreA(B).

For graphs Γ1 and Γ2, the lexicographical product Γ1[Γ2] is the graph with vertex
set V (Γ1) × V (Γ2), and (u1, u2) is adjacent to (v1, v2) if and only if u1 is adjacent
to v1 in Γ1, or u1 = v1 and u2 is adjacent to v2 in Γ2. The tensor product Γ1 ⊗ Γ2 is
the graph with vertex set V (Γ1) × V (Γ2), and (u1, u2) is adjacent to (v1, v2) if and
only if u1 is adjacent to v1 in Γ1 and u2 is adjacent to v2 in Γ2. The complement of a
graph Γ is denoted by Γ c, and the complete graph with n vertices by Kn.

The main result of this paper is the following.

Theorem 1.1 Let Γ be a connected dihedrant over the dihedral group D2n which
admits an arc-regular action of a subgroup D2n ≤ G ≤ Aut(Γ ), and moreover, the



J Algebr Comb (2011) 33: 409–426 411

cyclic group of index 2 in D2n is core-free in G. Then

Γ ∼= (Kn1 ⊗ · · · ⊗ Kn�
)
[
Kc

m

]
, (1)

where 2n = mn1 · · ·n� and the numbers ni are pairwise coprime.

Remark Theorem 1.1 gives only a possible structure of the dihedrants Γ belonging
to the family F . However, we do not know which of the graphs in (1) really do belong
to the family F . To the best of our knowledge, the only known examples are K4 and
K4[Kc

2] (with the corresponding group G = A4 and G = S4, respectively), and the
complete bipartite graphs Kn,n

∼= K2[Kc
n] (see Sect. 3 for the proof of the latter fact).

The paper is organized as follows. In Sect. 2 we describe minimal blocks of groups
G described in (A). In Sect. 3 we prove that the complete bipartite graphs Kn,n be-
long to the family F . Herzog and Kaplan [6] proved that the coreG(C) of a cyclic
subgroup C in a group G is nontrivial if [G : C] ≤ |C|. In Sect. 4 we prove a result
of this type for dihedral subgroups (Theorem 4.3), which is of independent interest
but is also used in the proof of Theorem 1.1 given in Sect. 5. Finally, in Sect. 6 we
apply Theorem 1.1 to 1-regular dihedrants and Cayley maps over dihedral groups
(in short, dihedral maps). In particular, we give a short proof of the fact that every
1-regular dihedrant of prime valency is normal, a result first proved in [7] (see The-
orem 6.3). Moreover, a direct translation of Theorem 1.1 into the language of maps
on surfaces gives us that in a chiral dihedral map M whose automorphism group
Aut(M) coincides with the automorphism group of its underlying graph, the index
2 cyclic subgroup in the corresponding regular dihedral subgroup of Aut(M) has
nontrivial core in Aut(M) (see Corollary 6.4).

2 Minimal blocks and quotients

We first set some notation and terminology. Let G be a group acting on a set X. For
a subset Y ⊆ X ∪ 2X ∪ 2(2X) ∪ · · · , GY denotes the elementwise stabilizer of Y in
G. Some special cases of this notation: if Y ⊆ X, then GY denotes the elementwise
stabilizer of Y , while G{Y } denotes the setwise stabilizer of Y . If Y,Z ⊆ X, then
G{Y,Z} = {g ∈ G : Yg = Y,Zg = Z}. For a G-invariant subset Y ⊆ X, denote by
gY ∈ Sym(Y ) the permutation of Y induced by g ∈ G, and set GY := {gY : g ∈ G}.
For Y ⊆ X, we abbreviate (G{Y })Y as GY{Y }. Suppose that G acts transitively on X,
and let B be an imprimitivity system of G. Then GB := {g ∈ G : ∀B∈B Bg = B}
is the kernel of the action of G induced on B. We say that B is normal if GB acts
transitively on each block B ∈ B. A block B of G is a minimal block if it does not
contain any nontrivial proper block of G, and the imprimitivity system B of G is
minimal if it is generated by a minimal block B , i.e., B = {Bg |g ∈ G}.

Suppose that, in addition, G contains a regular dihedral subgroup D, |D| > 4, and
let C ≤ D denote the corresponding cyclic subgroup. The elements of D \ C will
be called reflections and those of C rotations. In what follows we write Cd for the
unique subgroup of C of order d . If B is a block of G, then D{B} is a subgroup of D
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of order |B|. We say that B is of cyclic (dihedral resp.) type if D{B} ≤ C (D{B} �≤ C

resp.).
Let Γ be a G-arc-regular graph, and B be an imprimitivity system of G. The

quotient Γ of Γ with respect to B is the graph with vertex set B, and (B,B ′) ∈ B × B
is an arc if and only if Γ contains an arc (x, x′) with x ∈ B and x′ ∈ B ′. Denote by
G the permutation group of B induced by G acting on B. In what follows, to G we
shall also refer as the quotient of G with respect to B. The particular case that Γ is
a dihedrant and B is minimal is analyzed in this section (see Proposition 2.2). For a
similar result, we refer to [13, Lemma 6.5].

Let G ≤ Sym(X) be a transitive permutation group, and let H ≤ G be a regular
subgroup such that H is either cyclic or dihedral. In what follows, we denote by
H� the subgroup generated by the elements of H of the largest order. Thus, if H

is dihedral of order greater than 4, then H� is the unique cyclic subgroup of order
|H |/2, and H� = H if H is cyclic.

Lemma 2.1 Let G ≤ Sym(X) be a 2-transitive group, and let H ≤ G be a regular
subgroup, H is cyclic or dihedral, |H | > 4, and |H | is nonprime. Then each normal
subgroup N ≤ G which contains H� is 2-transitive.

Proof If N is elementary abelian of order pd , then |X| = pd . It follows from H� ≤ N

that |H ∗| = p. Thus, either |X| = p (if H is cyclic) or |X| = 2p = 4 (H is dihedral).
Both of the cases contradict the assumption that |H | is nonprime and |H | > 4.

Assume now that N is not elementary abelian. By [25, Exercises 12.3–4], N is
primitive. If H is cyclic, then H = H� ≤ N , and by Schur’s Theorem [25, Theo-
rem 25.3], N is 2-transitive. If H is dihedral and H ≤ N , then a result of Wielandt
[24, Satz 2] yields the result. Consider the remaining case H �≤ N . The group HN

is primitive and contains H , and we conclude, as before, that HN is 2-transitive.
The inclusions H� < H and H� ≤ N imply that H ∩ N = H�, and, therefore,
[HN : N ] = 2. Therefore, if N is not 2-transitive, it is of rank three with two nontriv-
ial suborbits of the same length. But in this case the degree of G is odd, contrarily to
|H | being even. �

Proposition 2.2 Let Γ be a connected, G-arc-regular dihedrant over the dihedral
group D2n of order 2n, where D2n ≤ G ≤ Aut(Γ ). Let Cd ≤ D2n be a cyclic sub-
group, |Cd | = d , and let B be a minimal imprimitivity system having blocks of cardi-
nality r . Denote by Γ and G the respective quotient graph and group, respectively.
Then either r is a prime or r = 4, and one of the following holds.

(a) If r is odd, then either Cr � G or 〈CG
r 〉 ∼= Z

2
r , the quotient graph Γ is G-arc-

regular with valency k/r , and Γ = Γ [Kc
r ].

(b) If r = 2 and B is of cyclic type, then C2 � G.
(c) If r = 2 and B is of dihedral type, then Γ is a G-arc-transitive circulant the edge

stabilizer of which is a subgroup of Z
2
2.

(d) If r = 4, then B is of dihedral type, 〈CG
2 〉 ∼= Z

t
2,2 ≤ t ≤ 4, and 〈CG

2 〉 acts transi-
tively on B .
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Proof Assume, toward a contradiction, that r is not prime and r > 4. Let H ≤ D

be a setwise stabilizer of B in D and C := H�. Then C is a nontrivial subgroup
of GB , and, therefore, 1 �= CB ≤ GB

B . Thus, GB
B is a nontrivial normal subgroup of

GB{B} which contains CB . Since B is minimal, GB{B} is primitive, which, together with

GB{B} ≥ HB{B}, implies that GB{B} is 2-transitive on B . Since GB
B � GB{B}, Lemma 2.1

implies that GB
B is also 2-transitive on B . Let B ′ ∈ B be a block connected to B by an

edge of Γ . Then GB acts semiregularly on the edges of Γ between B and B ′. There-
fore, |GB| ≤ |B|2. On the other hand, GB

B is a homomorphic image of GB which acts
2-transitively on B . Therefore, |GB| ≥ |GB

B| = m|B|(|B| − 1). Now the inequality
m|B|(|B| − 1) ≤ |B|2 yields m = 1, that is, GB

B is 2-transitive Frobenius group of
order |B|(|B| − 1). Hence GB

B contains an elementary abelian normal subgroup, N

say, of order pk = |B| = |H |. It follows from |GB
B| = pk(pk − 1) that N is a unique

Sylow p-subgroup of GB
B . Since CB ≤ GB

B and the order of CB is either pk or pk/2
(in this case p = 2), we obtain CB ≤ N . However, CB ∼= C is cyclic, while N is
elementary abelian, a contradiction.

To prove the rest of the statement, we pick an arbitrary B ′ ∈ B connected with B

by an edge (x, x′) of Γ (x ∈ B,x′ ∈ B ′).
CASE (A) r is odd.

In this case Cr ≤ GB , and the blocks of B are orbits of Gr . If CB
r is not normal

in GB
B , then by Burnside’s theorem GB

B is 2-transitive. Arguing as before, we obtain
that GB

B is a Frobenius group, a contradiction. Thus, CB
r � GB

B . Hence a Sylow r-
subgroup R of GB is normal in GB and, therefore, normal in G. Clearly Cr ≤ R. It
follows from Rxy = 1 that either |R| = r or |R| = r2. In the first case, R = Cr and we
are done. In the second case, Rx acts transitively on B ′ implying that Γ ∼= Γ [Kc

r ].
In the latter case factoring over B we obtain a G-arc-regular graph Γ on 2n/r points
with valency k/r and |G| = |G|/r2.

CASE (B) r = 2, and B is of cyclic type.

In this case C2 is the only semiregular subgroup of GB . Therefore, C2 � G.

CASE (C) r = 2 and B is of dihedral type.

In this case Γ is a circulant. The edge stabilizer of Γ is a factor-group of G{B,B ′}
over GB . Now the claim follows, since G{B,B ′} is embedded into Z2 × Z2.

CASE (D) r = 4.

Assume, toward a contradiction, that B is of cyclic type. Then CB
4 is a regular

cyclic subgroup contained in GB{B}. Since GB{B} is 2-transitive, we obtain GB{B} ∼= S4.

It follows from C4 ≤ GB that GB
B is a normal subgroup of S4 containing a 4-cycle.

Therefore, GB
B

∼= S4 implying GB
B = GB{B} ∼= S4. Thus, GB ∼= GB∪B ′

B is a subdirect
product of S4 × S4 the order of which is at least 24. On the other hand, |GB| =
|(x, x′)GB | ≤ 16, a contradiction. Thus, B is of dihedral type. Since B is minimal,
GB{B} is primitive, and, therefore GB{B} is either A4 or S4.

The group CB
2 is nontrivial and is contained in the Klein subgroup of Sym(B).

Therefore, 〈CG
2 〉B is isomorphic to Z

2
2 implying that 〈CG

2 〉 is an elementary abelian
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2-group. Now 1-regularity of G implies that 〈CG
2 〉 ∼= Z

t
2 with t ≤ 4. The inequality

2 ≤ t follows from 〈CG
2 〉B ∼= Z

2
2. �

3 An arc-regular action on Kn,n

In this section we are going to show that the complete bipartite graphs Kn,n belong
to family (A). Our argument utilizes the well-known correspondence between G-arc-
transitive graphs and double cosets of a point stabilizer of G, a special case of coset
graphs, see [1, p. 128].

Let G be any group, and H ≤ G be a core-free subgroup. Then the action of
G on the set G/H of right H -cosets is a faithful permutation representation of G.
The G-arc-transitive digraph Cos(G,H,HgH), corresponding to the double coset
HgH , is the digraph with vertex set G/H , and arcs are all pairs (Hx,Hy) such that
xy−1 ∈ HgH . Note that Cos(G,H,HgH) is undirected and connected if and only
if HgH = Hg−1H and 〈H,g〉 = G, respectively. Also, it is not difficult to see that
Cos(G,H,HgH) is isomorphic to Kn,n (where 2n = [G : H ]) if and only if HHg is
a subgroup of G of index 2.

Proposition 3.1 Let G be a finite group which contains an index two subgroup N

such that N ∼= Dn × Dn where n = 2m, m is odd. If G/N interchanges the direct
factors of N , then G ∼= (Dn × Dn) � 〈σ 〉, where σ is an automorphism of Dn × Dn

interchanging the coordinates (that is, (x, y)σ = (y, x)).

Proof Let U be one of the dihedral subgroups mentioned in the assumption. First we
show that G \ N contains an element of order 2. We can always choose g ∈ G \ N

to be a 2-element. Since g2 ∈ N and a Sylow 2-subgroup of N is isomorphic to
Z2 × Z2, either o(g) = 2 or o(g) = 4. There is nothing to prove in the first case.
So we may assume that o(g) = 4. Then Ug2 = U . Since U has an odd number of
involutions, there exists one, say u, centralized by g2. Since Ug and U are trivially
intersecting normal subgroups of N , the elements u and ug are distinct and commute.
Thus, 〈u,ug〉 ∼= Z2 × Z2. Since g normalizes 〈u,ug〉, the group 〈u,ug〉〈g〉 is a 2-
group of order at least 8. But a Sylow 2-subgroup of G has order 8. Therefore,
∣∣〈u,ug

〉〈g〉∣∣ = 8 =⇒ g2 ∈ 〈
u,ug

〉 =⇒ uugg−2 = 1 =⇒ (
ug−1)2 = 1.

Thus, ug−1 is a required element from G \ N of order 2.
Let s be an involution contained in G \ N . Then G ∼= N � 〈s〉. Since G/N

interchanges the direct factors of N , N is a direct product of U and Us . Iden-
tifying now N with U × U via the isomorphism (u, v) �→ uvs , we obtain that
G ∼= (Dn × Dn) � 〈σ 〉. �

In what follows we write Dn for the group (Dn × Dn) � 〈σ 〉. The elements of Dn

will be written as triples (a, b, σ i) where a, b ∈ Dn and i ∈ Z2. The product of two
triples is defined via the action of σ on Dn × Dn:

(
a, b,σ i

)(
c, d, σ j

) =
{

(ac, bd,σ i+j ) if i = 0;
(ad, bc, σ i+j ) if i = 1.
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If X ≤ D2n, write (X,X,1) := {(a, b,1) | a, b ∈ X} and set N := (D2n,D2n,1).
We fix two involutions s, t ∈ Dn which generate Dn and denote Cm := 〈c〉, c := st .
The subset D := {(a, b,1) |a ∈ Dn,b ∈ 〈s〉} is a subgroup of N isomorphic to
Dn × Z2 ∼= D2n. In what follows we denote by C a unique cyclic subgroup of
D of order n, that is, C = {(a, b,1) |a ∈ Cm,b ∈ 〈s〉}. Let p be a prime divi-
sor of n = 2m, and Cp be a unique subgroup of C of order p. If p is odd, then
Cp = 〈(cm/p,1,1)〉 and NDn

(Cp) = N . If p = 2, then Cp = 〈(1, s,1)〉. In this case
NDn

(Cp) = CDn
((1, s,1)) = (Dn, 〈s〉,1) = D ≤ N . Therefore,

⋃

p∈π(n)

NDn
(Cp) = N, (2)

implying that coreDn
(C) is trivial.

Proposition 3.2 Every dihedral subgroup of N of order 2n is Dn-conjugate to D.

Proof Let F ∼= D2n be a subgroup of N . Then F contains a unique central involution,
say g = (a, b,1). If a, b �= 1, then CN(g) has order 4 contrary to F ≤ CN(g). Thus,
a = 1 or b = 1. In both cases, g is Dn-conjugate to (1, s,1). So, we may assume that
g = (1, s,1). Since F centralizes g, we obtain F ≤ CN(g) = D. Hence F = D. �

The connected coset digraphs arising from Dn are determined in the next proposi-
tion.

Proposition 3.3 Let A ≤ Dn be a core-free subgroup satisfying AD = Dn and A ∩
D = 1. Consider the transitive action of Dn on the set Dn/A of right A-cosets. Then
every connected arc-transitive digraph of Dn is isomorphic to Kn,n.

Proof First we classify all the subgroups A satisfying the assumptions of our state-
ment. It follows from AD = Dn and A∩D = 1 that |A| = n = 2m. Since [G : N ] = 2,
either A ≤ N or [A : A ∩ N ] = 2. The first case is impossible because D ≤ N and
AD = G. Therefore [A : A∩N ] = 2, implying |A∩N | = m. Since m is odd, all invo-
lutions of A are contained in A \ (A ∩ N) ⊂ Dn \ N . Let r = (x, y, σ ) ∈ A \ (A ∩ N)

be an involution. Then r2 = 1 yields y = x−1 and r = (x,1,1)(1,1, σ )(x−1,1,1).
Therefore r is conjugate in Dn with (1,1, σ ). So, without loss of generality, we may
assume that r = (1,1, σ ) ∈ A.

Let π denote the projection of N onto the second coordinate. Since ker(π) ≤ D

and A ∩ N ∩ D = 1, we obtain π(A ∩ N) ∼= A ∩ N . In particular, |π(A ∩ N)| = m.
Since π(N) is a dihedral group of order 2m, A ∩ N ∼= π(A ∩ N) is a cyclic
group of order m. Therefore A ∩ N = 〈(ci, cj ,1)〉 for some i, j ∈ Zm. It follows
from |〈(ci, cj ,1)〉| = m that gcd(i, j,m) = 1. Since (ci, cj ,1)o(cj ) ∈ D, we ob-
tain that o(cj ) = m or, equivalently, gcd(j,m) = 1. Raising (ci, cj ,1) into j−1-
power, we obtain A ∩ N = 〈(cx, c,1)〉 for some x ∈ Zm. Since r normalizes
A ∩ N , we obtain (c, cx,1) ∈ 〈(cx, c,1)〉, implying x2 ≡ 1(mod m). Thus, A =
(A ∩ N)〈r〉 = {(cxj , cj , σ k) | j ∈ Zm,k ∈ Z2}. A direct calculation shows that
AA(1,s,1) = O〈(s, s,1), (1,1, σ )〉 is a subgroup of Dn of index 2 (where O :=
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(Cm,Cm,1)). Thus, the digraph corresponding to the double coset A(1, s,1)A is
isomorphic to Kn,n. �

4 A Herzog–Kaplan-type theorem

Herzog and Kaplan [6] proved that the coreG(C) of a cyclic subgroup C in a group
G is nontrivial if [G : C] ≤ |C| [6, Theorem B]. In this section we prove a similar
result about dihedral subgroups (Theorem 4.3). We start with the following.

Proposition 4.1 Let C = 〈c〉 be a cyclic subgroup of G. Let p be a prime divisor of
|C|, and P ≤ C be the subgroup of order p. Assume that N := 〈P G〉 is an elementary
abelian p-group. Then |coreG/N(CN/N)| ≤ |coreG(C)|.

Proof Let Q ≤ C be such that coreG/N(CN/N) = QN/N . Then Q ∩ N = P , and,
consequently, P ≤ Z(QN). It follows from QN � G that Z(QN) � G. Together
with P ≤ Z(QN) and N = 〈P G〉, we obtain that N ≤ Z(QN). But QN/N is cyclic.
Hence, QN/Z(QN) is cyclic too. Therefore, QN is an abelian normal subgroup
of G. The subgroup (QN)p generated by pth powers of QN is characteristic in
QN and, therefore, normal in G. But (QN)p = Qp , implying Qp � G =⇒ Qp ≤
coreG(C). Since Q is cyclic, [Q : Qp] = p. It follows from the definition of Q that
|Q| = |coreG/N(CN/N)|p. Now the claim follows. �

Lemma 4.2 Let D ≤ G be a dihedral subgroup of order 2n,n ≥ 3, and C ≤ D its
cyclic subgroup of order n. If [G : D] ≤ n and coreG(C) = 1, then either [G : D] = n

and G ∼= Dn, or Cg ∩ C �= 1 for each g ∈ G.

Proof Assume that Cg0 ∩C = 1 for some g0 ∈ G. Consider the intersection Dg0 ∩D.
It follows from Cg0 ∩C = 1 that |Dg0 ∩D| ≤ 4. If |Dg0 ∩D| = 3, then |Cg0 ∩C| = 3,
which is impossible. Therefore, |Dg0 ∩ D| = 1,2,4. If |Dg0 ∩ D| ≤ 2, then

|G| ≥ |D| + |Dg0D| ≥ 2n + (2n)2/2 = 2n(n + 1),

contrary to the assumption [G : D] ≤ n. Thus, |Dg0 ∩ D| = 4, and, consequently,
|Dg0 ∩ C| = |D ∩ Cg0 | = 2. In particular, n is even, and Dg0 ∩ C = {1, cn/2} where c

is a generator of C. It follows from Cg0 ∩ C = 1 that cn/2 = sg0 for some s ∈ D \ C.
Therefore, χ(cn/2) = χ(s) for any character χ of G.

Let now χ be the character of the permutation representation of G on the set G/D

of right D-cosets. Let O0 = {D},O1 = {Dg0d | d ∈ D},O2, . . . ,Or be the orbits
of D. Then the stabilizer of Dg0 in D is D ∩ Dg0 , implying that |O1| = n/2. It
follows from

Dg0dcn/2 = Dg0c
n/2d = Dg0s

g0d = Dg0d, d ∈ D,

that cn/2 acts trivially on O1, implying χ(cn/2) ≥ 1 + n/2. Since the action of D on
O1 is equivalent to the natural action of the dihedral group of order n on n/2 points,
an element s may fix at most two points of O1. If s acts nontrivially on O2 ∪· · ·∪Or ,
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then it should move at least two points. So, in this case, it could fix at most |O2 ∪
· · · ∪ Or | − 2 points. But |O2 ∪ · · · ∪ Or | ≤ n/2 − 1. Hence, if s acts nontrivially
outside O0 ∪ O1, then χ(s) ≤ n/2, contrary to χ(s) = χ(cn/2) ≥ n/2 + 1. Thus, s

acts trivially on O2 ∪ · · · ∪ Or , and |O2 ∪ · · · ∪ Or | = n/2 − 2, n/2 − 1.
Let us first show that n/2 is odd. Pick t ∈ D \ C to be a reflection with st = c

(such a reflection exists for any s ∈ D \ C). Then c = st restricted on O2 ∪ · · · ∪ Or

acts as t , and, therefore, c2 acts trivially on the set O2 ∪ · · · ∪ Or . So if n/2 is even,
then cn/2 = (c2)n/4 acts trivially on O2 ∪ · · · ∪ Or , and, therefore, on the whole set
G/D, implying cn/2 ∈ coreG(C), a contradiction.

If |O2 ∪ · · · ∪ Or | = n/2 − 2, then the inequality χ(s) ≥ n/2 + 1, together with
O2 ∪ · · · ∪ Or ⊆ Fix(s), implies that s fixes at least two points of O1. Recall that a
reflection of a dihedral group given in its natural action, may fix at most two points,
which happens only when the number of points is even. Hence n/2 is even, a contra-
diction.

Thus, |O2 ∪ · · · ∪ Or | = n/2 − 1 with n/2 being odd. In particular, |G/D| = n.
In this case s has one fixed point on O1, which yields χ(s) = n/2 + 1. Therefore,
χ(cn/2) = n/2+1, implying that cn/2 moves every point of O2 ∪· · ·∪Or . As before,
we chose t ∈ D \ C such that st = c. Then D = 〈s, t〉, and the orbits of D on O2 ∪
· · · ∪ Or coincide with the orbits of t . If t has a fixed point on O2 ∪ · · · ∪ Or , then
cn/2 also has a fixed point on O2 ∪· · ·∪Or , contradicting χ(cn/2) = n/2+1. Thus, t

has no fixed points outside O0 ∪ O1. Hence, the orbits of D outside of O0 ∪ O1 have
length 2. This implies that G is a transitive permutation group of degree n (on G/D)
with subdegrees 1, n/2,2, . . . ,2.

We claim that B0 := O0 ∪O2 ∪O3 ∪· · ·∪Or is a block of G. Consider a subgroup
〈c2〉. Since each Oi is an orbit of 〈c〉 and o(c) = n with n/2 being odd, we conclude
that Fix(〈c2〉) = B0. If B0 ∩B

g

0 �= ∅, then both 〈c2〉 and 〈c2〉g are subgroups of GDg
∼=

D2n for some Dg ∈ B0 ∩ B
g

0 . Since D2n contains a unique cyclic subgroup of order
n/2, we obtain 〈c2〉 = 〈c2〉g , and, consequently, B0 = B

g

0 . Thus, B0 is a block of G

of size n. Since |G/D| = 2n, the complement of B0 is also a block of G.
Let N ≤ G be a setwise stabilizer of the block B1. Then it stabilizes B0, and

[G : N ] = 2. Since N contains a stabilizer of a point D, we obtain D ≤ N . Denote
by N0 (resp. N1) the pointwise stabilizer of B0 (resp. B1). Then N0,N1 are trivially
intersecting normal subgroups of N . Hence, |N0||N1| ≤ |N |. Every element of G \N

interchanges N0 and N1. Therefore, N0 ∼= N1, implying |N0|2 ≤ |N | =⇒ |N0| ≤ n.
A reflection s acts trivially on B0. Therefore, s ∈ N0, implying that 〈sN 〉 ≤ N0.

But 〈sN 〉 ≥ 〈sD〉. The subgroup 〈sD〉 has order n. Therefore, N0 = 〈sD〉 ∼= Dn, and,
consequently, N ∼= N0 × N1 (since |N | = n2). By Proposition 3.1, G ∼= Dn. �

The main result of this section is the following theorem.

Theorem 4.3 Let D ≤ G be a dihedral subgroup of order 2n,n > 2, and let C be its
cyclic subgroup of order n. If [G : D] ≤ n and coreG(C) = 1, then [G : D] = n and
G ∼= Dn.

Proof We proceed by induction on n. By Lemma 4.2, either [G : D] = n and G ∼= Dn,
or C ∩ Cg �= 1 for each g ∈ G. In the first case we are done. Hence, we may assume
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that C ∩ Cg �= 1 for each g ∈ G. Let π be the set of primes dividing |C|, and Cp ≤ C

the unique subgroup of order p,p ∈ π . Then G = ⋃
p∈π NG(Cp). Let π0 ⊆ π be a

minimal subset with the property G = ⋃
p∈π0

NG(Cp). Since coreG(C) is trivial, we
can write |π0| ≥ 2. Since a group cannot be a union of two proper subgroups, we
obtain that |π0| ≥ 3. In particular, n is divisible by at least three distinct primes.

Let q = max{p | p ∈ π0}, hence, q ≥ 5. We copy an argument of Herzog and Ka-
plan [6] to show that the normal closure N := 〈CG

q 〉 is an elementary abelian group.
It is easily verified that |π0| ≤ q − 2. Thus, from [6, Lemma 1] we get that each
q-element in G is contained in

⋂
p∈π0

NG(Cp). Therefore, each q-element in G is

contained in
⋂

p∈π0
CG(Cp). Let Gq be a Sylow q-subgroup of G, and let 〈GG

q 〉 be

its normal closure in G. Then 〈GG
q 〉 ≤ ∩p∈π0CG(Cp), implying 〈GG

q 〉 ≤ CG(Cq); in
particular, N = 〈CG

q 〉 is an elementary abelian group.

Thus, N ∩ C = Cq , and since Cq is not normal in G, |N | = q�, � ≥ 2. Since q

is odd, D ∩ N = C ∩ N = Cq . Consider the quotient group G := G/N . We have
that D ∼= D2n/q and [G : D] = [G : D]/q�−1 ≤ n/q = |C|. It follows from Propo-
sition 4.1 that coreG(C) = 1. Since n is divisible by at least three primes, n/q > 2,
and we can apply the induction hypothesis. Thus, [G : D] = n/q and G ∼= Dn/q . It
follows from G = ⋃

p∈π0
NG(Cp) that

G =
⋃

p∈π0

NG(Cp) =
( ⋃

p∈π0\{q}
NG(Cp)

)
∪ NG(Cq).

It follows from NG(Cp) ≤ NG(Cp) that

G =
( ⋃

p∈π0\{q}
NG(Cp)

)
∪ NG(Cq).

If p �= q , then p divides |C|, and Cp is a subgroup of C of order p (note that Cq is
trivial). Therefore, the union

⋃
p∈π0\{q} NG(Cp) is contained in a subgroup of G ∼=

Dn/q of index 2 (see (2)). Since a group cannot be a union of two proper subgroups,
we obtain that NG(Cq) = G. Together with N ≤ NG(Cq), this implies NG(Cq) = G,
a contradiction. �

As a direct consequence, we obtain the following:

Corollary 4.4 Let D ≤ G be a dihedral subgroup of index m. Then there exists a
normal subgroup N of G contained in D such that [G : N ] ≤ 2m2.

Proof The statement is immediate if |D| = 4. So we assume that |D| ≥ 6. In this
case, D contains a unique cyclic subgroup C of index 2.

Denote N := coreG(C), where C ≤ D. Then coreG/N(C/N) is trivial. If
|C/N | > 2, then by Theorem 4.3 we obtain that

[G/N : C/N] = m ≥ |C/N | = [G : N ]/2m,

implying that [G : N ] ≤ 2m2. If |C/N | ≤ 2, then [G : N ] = 4m ≤ 2m2, as desired. �
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5 Proof of Theorem 1.1

We turn back to the dihedrants Γ in family (A), and we are going to show that these
are of the form (1). Observe that Theorem 4.3 implies that Γ has valency d ≥ n, and
if d = n, then Γ = Kn,n, so the statement is true in this case. Below we handle the
case of d > n, but three preliminary results are first necessary.

The first result can be deduced from the classification of arc-transitive circulants,
see [18, Theorem 3.1] or [8, Theorem 4].

Proposition 5.1 Let Γ be a connected, arc-transitive circulant of order 2n and of
valency d > n. Then

Γ ∼= (Kn1 ⊗ · · · ⊗ Kn�
)
[
Kc

m

]
,

where 2n = mn1 · · ·n�, and the numbers ni are pairwise coprime.

Proposition 5.2 Let G be a group acting transitively on a set X, and let N be an
arbitrary normal subgroup acting nonsemiregularly on X. Then for each x ∈ X, the
set Fix(Nx) is a proper block of G.

Proof Note that |Nx | does not depend on the choice of x. If z ∈ Fix(Nx) ∩ Fix(Ny),
then Nx ≤ Nz and Ny ≤ Nz, implying Nx = Nz = Ny . Thus, Fix(Nx) = Fix(Ny). The
set Nx is a proper subset because N acts nonsemiregularly on X. �

We remark that it can happen that Fix(Nx) = {x}.
Let G ≤ Sym(X) contain a regular, normal, elementary abelian subgroup of or-

der pd . Now if G contains a full cycle, i.e., a permutation whose cyclic decomposi-
tion is one cycle of length pd , then d = 1 or d = p = 2, see [17]. This implies the
following result.

Proposition 5.3 Let G ≤ Sym(X) be a transitive permutation group containing a
full cycle. If N ≤ G is an elementary abelian normal p-subgroup, then the orbits of
N are of length p or 4.

Everything is prepared to prove Theorem 1.1.

Proof (Theorem 1.1) It is carried out by induction on the order of the graph. By the
above discussion, we may assume that Γ is of valency d > n. The statement is evi-
dent if G is primitive. So, we may assume that G is imprimitive. Let B be a minimal
nontrivial block of G, r := |B|, B := {Bg |g ∈ G} the corresponding imprimitivity
system, N := GB , G and Γ the quotient group and graph, respectively (see Sect. 2),
and let B ′ ∈ B be a block connected with B by an arc of Γ , say (b, b′). By Proposi-
tion 2.2, either r is a prime, or r = 4.

If r is an odd prime, then part (a) of Proposition 2.2 and the assumption
coreG(Cn) = 1 imply that Γ is a G-arc-regular connected dihedrant of valency
d/r > n/r . Since 〈CG

r 〉 ≤ N and Cr is not normal in G, part (a) of Proposition 2.2
implies that 〈CG

r 〉 is an elementary abelian group of order r2. Now Proposition 4.1
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yields that coreG(Cn) is trivial. Thus, the induction hypothesis is applicable, and the
result follows.

If r = 2, then B should be of dihedral type, since, otherwise C2 � G (see part (b)
of Proposition 2.2), contradicting the assumption coreG(Cn) = 1. The group G{B,B ′}
is a subgroup of Z

2
2. Therefore, the number of arcs of Γ from the block B to the block

B ′ is 1, 2, or 4. On the other hand, the inequalities

n < d and
∣∣D

(
Γ

)∣∣ = ∣∣D(Γ )
∣∣/∣∣D(Γ ) ∩ (

B × B ′)∣∣ = d · 2n/
∣∣D(Γ ) ∩ (

B × B ′)∣∣ ≤ n(n − 1)

imply that 3 ≤ |D(Γ ) ∩ (B × B ′)|. Thus, |D(Γ ) ∩ (B × B ′)| = 4, implying that
Γ = Γ [Kc

2]. In particular, d = d/2 > n/2. The quotient graph Γ is a circulant. Now
the claim follows from Proposition 5.1.

We are left with the case r = 4 (note that, in this case, n is even). We may assume
that B is a unique minimal imprimitivity system of G. Indeed, if A is another one,
then it should be of order 4 (otherwise we can use induction factoring over A). By
Proposition 2.2, B and A are of dihedral type. But an intersection of two imprimitivity
systems of order 4 and dihedral type is an imprimitivity system of order 2, which
contradicts the minimality of B. Thus, B is a unique minimal imprimitivity system
of G. Hence, any block A of G which intersects B nontrivially must contain B .

By part (d) of Proposition 2.2, B is of dihedral type, and 〈CG
2 〉 is an elementary

abelian group of order 2t ,2 ≤ t ≤ 4. Since 〈CG
2 〉 acts transitively on the blocks of B,

the imprimitivity system B is normal. Therefore, |Γ (x) ∩ B ′| does not depend on the
choice of b ∈ B . Let us denote this number by �. Then |D(Γ ) ∩ (B × B ′)| = 4�, and

∣∣D
(
Γ

)∣∣ = ∣∣D(Γ )
∣∣/∣∣D(Γ ) ∩ (

B × B ′)∣∣ = d · 2n

4�
>

n2

2�
.

Together with |D(Γ )| ≤ n
2 ( n

2 − 1), this implies � > 2. Thus, � = 3,4.
If � = 4, then Γ = Γ [Kc

4]. The quotient graph Γ is a circulant of order n/2 and
valency d/4 > 1

2 (n/2). By Proposition 5.1, Γ is of the required form.
We complete the proof by showing that the case � = 3 is impossible. In this case

the induced subgraph ΓB∪B ′ is K4,4 minus a matching. Therefore, G{B,B ′} acts faith-
fully on B . Now the inclusions 〈CG

2 〉 ≤ N ≤ G{B,B ′} imply that both 〈CG
2 〉 and N

are faithful on B , implying 〈CG
2 〉 ∼= Z

2
2. Since G{B,B ′} is embedded into S4 and

|G{B,B ′}| = |D(Γ ) ∩ (B × B ′)| = 12, we obtain G{B,B ′} ∼= A4. Thus, there are two
possibilities: either N = 〈CG

2 〉 ∼= Z
2
2, or N = G{B,B ′} ∼= A4.

In the second case, Fix(Nb) is a proper block of G (Proposition 5.2). Since
|Nb| = 3 and A4 contains four pairwise conjugate subgroups of order 3, there are
four blocks of that type. Hence, |Fix(Nb)| = n/2. Since Nb acts on B as a 3-cycle,
B ∩ Fix(Nb) = {b}. But this contradicts the assumption that B is a unique minimal
imprimitivity system of G. Hence, N = 〈CG

2 〉 ∼= Z
2
2.

Since N acts semiregularly and the orbits of N form a minimal imprimitivity
system (which is B), N is a minimal normal subgroup of G. Write N = {1, x1, x2, x3},
where x1 := cn/2 (note that x1x2x3 = 1). The set {x1, x2, x3} is a conjugacy class
of G. Hence, Ki := CG(xi) is a subgroup of G of index 3. If i �= j , then Ki ∩ Kj =
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CG(N) � G. Since the action of G on {x1, x2, x3} is equivalent to either A3 or S3,
the index of CG(N) in Ki is either one or two.

To ease the notation, we will write K instead of K1. Since K centralizes x1, the
group KB{B} centralizes xB

1 . Since xB
1 has cyclic type (2,2), its centralizer in Sym(B)

is a 2-group. Thus, KB{B} is a 2-group. It follows from K{B,B ′} ≤ K{B} that KB
{B,B ′}

is a 2-group as well. Since KB∪B ′
{B,B ′} is a subdirect product of KB

{B,B ′} and KB ′
{B,B ′}

and both of them are 2-groups, KB∪B ′
{B,B ′} is a 2-group. By G-arc-regularity, the action

of K{B,B ′} on B ∪ B ′ is faithful. Therefore, K{B,B ′} is a 2-group. Now it follows
from N{B,B ′} ≤ K{B,B ′} ≤ G{B,B ′} and [G{B,B ′} : N{B,B ′}] = 3 that N{B,B ′} = K{B,B ′},
implying N = K{B,B ′}.

Consider now the factor-group K := K/N which acts faithfully on B. The cyclic
subgroup Cn

∼= Cn/2 acts regularly on B. It follows from N = K{B,B ′} that K{B,B ′} is
trivial. We claim that Γ is a K-arc-regular graph. Since (B,B ′) is an arc of Γ and its
stabilizer K{B,B ′} is trivial, it is sufficient to show that |K| = |D(Γ )|. Indeed,

∣∣K
∣∣ = |K|/4 = |G|/12 = ∣∣D(Γ )

∣∣/12 = ∣∣D(Γ )
∣∣/∣∣D(Γ ) ∩ (

B × B ′)∣∣ = ∣∣D
(
Γ

)∣∣.

Thus, Γ is a K-arc-regular circulant. Therefore, |KB | < |B| − 1 = n/2 − 1 =
|Cn| − 1. By the Kaplan–Herzog result, coreK(Cn) is nontrivial. Let p denote the
maximal prime dividing |coreK(Cn)|.
CASE A. p > 2.

In this case, C2pN � K . Since C2p ∩ N = C2, the group C2pN is abelian. There-
fore, its Sylow p-subgroup, Cp , is normal in K . Moreover, Cp is contained in
CG(N), and, therefore, Cp � CG(N). The orbits of Cp form an imprimitivity sys-
tem, say A of CG(N). To get a contradiction, it is enough to show that A is an
imprimitivity system of G (recall that G has a unique minimal nontrivial imprim-
itivity system, B). Since CG(N) � G, the conjugate partition Ag, g ∈ G, is also
an imprimitivity system of CG(N) of order p. We claim that CG(N) cannot have
more than one imprimitivity system of order p. The subgroup CD2n

(N) centralizes
cn/2 ∈ N . So, it can permute (by conjugation) only two elements of N \ C2. There-
fore, [D2n : CD2n

(N)] ≤ 2, and, consequently, CD2n
(N) acts semiregularly with one

or two orbits on V (Γ ). Since Cp is a unique normal subgroup of CD2n
(N) of prime

order p > 2, any CD2n
(N)-invariant imprimitivity system having blocks of size p

should coincide with the orbits of Cp . So, A is unique as imprimitivity system of
CG(N) of order p.

CASE B. p = 2.

As before, C4N is a normal subgroup of K of order 8. Write z1 := cn/4. Then
C4N = 〈z1〉N . Since 〈z1〉 � K , we obtain z1 ∈ Z(K). Since K,K2,K3 are pairwise
conjugate in G, there exist zi ∈ Ki such that xi = z2

i and zi ∈ Z(Ki). Since G per-
mutes the subgroups Ki , the elements z1, z2, z3 are either equal or pairwise distinct.
In the first case, C4N � G. The subgroup C4N is either abelian or dihedral. In both
cases the subgroup generated by the square elements (C4N)(2) = C2 � G, a con-
tradiction. Thus, the zi ’s are pairwise distinct. The set {z1, z2, z3} is a conjugacy
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class of G. Therefore, Z := 〈z1, z2, z3〉 � G. It follows from K ∩ K2 = K2 ∩ K3 =
K3 ∩ K = CG(N) ≥ N that K ∩ K2 = K2 ∩ K3 = K3 ∩ K = CG(N). Therefore,
Z ≤ CG(CG(N)).

The orbits of CG(N) form an imprimitivity system for G. Since [D2n : CD2n
(N)]

≤ 2, the number of CG(N)-orbits is at most two. If CG(N) has exactly two orbits,
then we get a G-invariant imprimitivity system of index 2, which is impossible be-
cause d > n. Thus, CG(N) is transitive on V (Γ ), and, therefore, CG(N) is transitive
on B. This implies that Z := 〈z1, z2, z3〉 acts semiregularly on B. So each orbit of Z

has cardinality 2m where 2m := |Z| and 2m | n
2 .

CASE B1. n/4 is odd.

In this case, also m is odd. Therefore, [zi, zj ] �= 1 for i �= j (otherwise zi, zj

generate a subgroup of Z of order divisible by 4). Since zi �= zj for i �= j , we have
m > 1. Since {z1, z2, z3} is a conjugacy class of G, we obtain

z2
z1 = z3, z2

z3 = z1, z2
z3 = z1.

Therefore, z1 · z2 = z3 · z1 = z2 · z3. Denote y := z1z2. Then

〈z1, z2〉 = 〈z1, y〉 = 〈z1, z3〉 ∼= D2m,

implying Z ∼= D2m and o(y) = m. Since m is odd, the conjugacy class of z1 in Z

has size m. But {z1, z2, z3} is a conjugacy class of G. Hence, m = 3. It follows from
〈y〉 char Z � G that 〈y〉 � G. Therefore, the orbits of 〈y〉 form an imprimitivity
system of G, say A. A Sylow 3-subgroup P of GA is an elementary abelian normal
3-subgroup of GA. Therefore, P � G. Since c acts regularly on B, the blocks of
A are also orbits of 〈cn/6〉. Therefore, 〈cn/6〉 ≤ P . If 〈cn/6〉 = 〈y〉, then 〈cn/6〉 � G,
and 3 divides |coreK(Cn)|, contrary to the assumption p = 2. Thus, 〈cn/6〉 ∩ 〈y〉 = 1,
and, consequently, |P | ≥ 9. Let P denote the preimage of P in G. Then P � G and
P = NP3, where P3 is a Sylow 3-subgroup of P . Since |P3| ≥ 9 and |N | = 4, O3(P )

is nontrivial. Therefore, G contains a normal 3-subgroup. The orbits of this subgroup
form an imprimitivity system the order of which is a power of 3. But this contradicts
the assumption that B is a unique minimal nontrivial imprimitivity system of G.

CASE B2. 8 |n.

Since c centralizes z1, the set {z2, z3} is c-invariant. Therefore, c2 centralizes each
zi, i = 1,2,3. Now it follows from z1 = cn/4 = (c2)n/8 that z1 commutes with z2
and z3. Therefore, all the elements z1, z2, z3 pairwise commute, which yields Z ∼= Z

t
2

where t = 2,3. Since t = 3 contradicts Proposition 5.3, we obtain that t = 2.
It follows from [z2, z1] = 1, [z3, z1] = 1 that z2, z3 ∈ K . So, Z � K . Let A be the

set of orbits of Z. Then A is an imprimitivity system of K , and, therefore, A also is a
complete set of orbits of cn/8. Thus, 〈cn/8〉 and Z are contained in M := (K)A. Let A

be a block of A. Since 〈cn/8〉A is a regular cyclic group of order 4 and Z
A

is a regular

elementary abelian group of order 4, the restriction of M
A

has order at least 8. On

the other hand, [z1,K] = 1 implies M
A ≤ CSym(A)(z1

A) ∼= D8. Thus, M
A ∼= D8.

Let A1 ∈ A be a block connected to A by an edge of Γ , say (B,B ′) (recall that
the vertices of Γ are the blocks of B). Since Γ is a K-arc-regular graph, |M| ≤ 16.
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Together with M
A ∼= D8, this gives us the two possibilities that either |M| = 16 or

|M| = 8. The graph Γ has valency d/3 > n/3 > n/4 = |V (Γ )|/2. Therefore, Γ

cannot be bipartite. This implies that K has no block of index 2. We will show that in
every case, K has an imprimitivity system of index 2, which leads to a contradiction.

Consider first the case of |M| = 16. It follows from |MA| = 8 that MA (the
pointwise stabilizer of A in M) has order 2. Since MA � M and M is a 2-group,
MA ≤ Z(M). Together with z1 ∈ Z(M), we obtain |Z(M)| ≥ 4. Since M is non-
abelian, the factor-group over the center cannot be cyclic. Therefore, |Z(M)| ≤ 4,
implying |Z(M)| = 4, and so that Z(M) = 〈z1,MA〉. Since Z(M) char M , Z(M) � K .
Since the pointwise stabilizer MA is contained in Z(M), the group Z(M) is not semi-
regular. Therefore, by Proposition 2.2, Fix(Z(M)B) is a proper block of K . Since
Z(M) ∼= Z

2
2, there are three subgroups of order 2. The subgroup 〈z1〉 is semiregular.

Therefore, the index of Fix(Z(M)B) is at most 2. Since the block is proper, its index
is at least 2. Finally, Fix(Z(M)B) has index 2, as required.

Let now |M| = 8. Then M ∼= M
A ∼= D8. So, M contains three subgroups of in-

dex 2:

1. the cyclic subgroup 〈cn/8〉 ∼= Z4 acting semiregularly on B;
2. the subgroup Z ∼= Z

2
2 acting semiregularly on B;

3. an elementary abelian subgroup, say L, of order 4 acting not-semiregularly on B.

It is clear from this description that conjugating by elements of K cannot in-
terchange these subgroups. Therefore, each of them is normal in K . In particular,
L � K . The group L contains three involutions. One of them, z1, is fixed-point-
free. Therefore, Fix(LB) has index at most 2. Since L is not semiregular, the block
Fix(LB) has index exactly 2. Thus, K has an imprimitivity systems with two blocks,
as required, and by this the proof of Theorem 1.1 is completed. �

6 On 1-regular dihedrants and associated chiral dihedral maps

Given an arbitrary group G, recall that a Cayley digraph Cay(G,S) is said to be a
normal Cayley digraph of G if the right regular representation, denoted here by Ĝ, is
normal in Aut(Cay(G,S)). Observe that Ĝ ≤ Aut(Cay(G,S)). For a Cayley digraph
Cay(G,S), let Aut(G,S) = {α ∈ Aut(G) | Sα = S} be the group of automorphisms of
G which fix S setwise. Then Aut(G,S) is clearly a subgroup of the stabilizer of the
identity element e ∈ G in Aut(Cay(G,S)). Xu [27] characterized the normal Cayley
digraphs as follows.

Proposition 6.1 A Cayley digraph Cay(G,S) is normal if and only if Aut(G,S) is
the stabilizer of the identity element e ∈ G in Aut(Cay(G,S)).

As an application of Theorem 1.1, we give in Theorem 6.3 below a short proof of
a result due to Kim, Kwon, and Lee [7], mentioned as Proposition 4.1 in [11].

The following proposition, interesting on its own, will be used in that respect.
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Proposition 6.2 Let D ≤ S2n, n ≥ 3, be a regular dihedral group of degree 2n, and
let C be its cyclic subgroup of order n. If G is a group satisfying D ≤ G ≤ S2n and
C � G, then D is normal in G.

Proof Our claim is equivalent to saying that NS2n
(C) = NS2n

(D). The inclusion
NS2n

(D) ≤ NS2n
(C) follows from the fact that C is a characteristic subgroup of

D. Since D is regular, we have that |NS2n
(D)| = |D||Aut(D)| = 2n · nϕ(n), where

ϕ(n) is the Euler function. Since C is semiregular with two orbits, we obtain
|CS2n

(C)| = 2n2, and, therefore, |NS2n
(C)| = |CS2n

(C)||Aut(C)| = 2n2 · ϕ(n). Now
the claim follows. �

Theorem 6.3 Every 1-regular dihedrant of prime valency is normal.

Proof Let Γ = Cay(D2n, S) be a 1-regular dihedrant of prime valency p, where
D2n = 〈a, b | an = b2 = baba = 1〉. We may assume that p > 2. For g ∈ D2n,
we denote by ĝ the permutation of D2n acting according to the rule ĝ : x �→ xg.
Thus, D̂2n = {ĝ | g ∈ D2n}. Let Ĉn = 〈â〉. Further, we put A = Aut(Γ ) and N =
coreA(Ĉn).

Let us consider the action of A on the set A/D̂2n of right D̂2n-cosets in A. Let K

be the corresponding kernel, coreA(D̂2n), and, of course, D̂2n is the point stabilizer
of this action. Therefore, p does not divide the index [Ĉn : N ]. The orbits of N form
an imprimitivity system of A; denote it by B. Let Γ be the quotient of Γ with respect
to B, and let A be the permutation group A ≤ Sym(B) induced by the action of A on
B. Let us assume that N is a proper subgroup of Ĉn. Then Γ is of valency p. Further,

Γ is connected, A-arc-regular, and coreA(Ĉn) = 1. By Theorem 1.1, it follows that
either Γ ∼= K2[Kc

p] or Γ ∼= Kp+1. In the first case, [Ĉn : N ] = p, a contradiction. In

the second case, A is a 2-transitive Frobenius group of degree p + 1 and of order
p(p + 1). Thus, A contains a regular elementary abelian normal subgroup M with
|M| = p +1 = q�. As |A| = p(p+1), we have that M is a unique Sylow q-subgroup

of A. Since D̂2n ≤ A and |D̂2n| = p + 1, we find that D̂2n = M is normal in A,
implying that D̂2n is normal in A.

We may therefore assume that N = Ĉn. Since Ĉn is normal in A, Proposition 6.2
gives us that D̂2n is normal in A. �

To wrap up this paper, we mention a direct consequence of Theorem 1.1 to chiral
dihedral maps.

A map M is an embedding of a finite connected graph Γ into a surface so that it
divides the surface into simply connected regions, called the faces of M. To each face
f , there is an associated closed walk of Γ with edges surrounding f . An automor-
phism of M is an automorphism of Γ which preserves the above closed walks of Γ .
A map is regular in the sense of [26] (also called rotary) if it admits an automorphism
cyclically permuting the consecutive edges of a face f (as a one-step rotation of f )
and an automorphism cyclically permuting the consecutive edges incident to some
vertex v of f (as a one-step rotation of the neighbors of v). Hence, the automorphism
group of a regular map acts transitively on the vertex set, arc set, and face set. If in
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addition, a regular map M contains an automorphism which “flips” an edge e of a
face f and preserves f , we say that M is reflexible. If no such automorphism exists,
then M is called chiral. In the latter case, Aut(M) acts regularly on the arc set of M.
A map M is said to be a Cayley map over a group G if Aut(M) contains a subgroup
isomorphic to G which acts regularly on the vertex set of M. In particular, a Cayley
map over a dihedral group is also referred to as a dihedral map. Maps in general and
dihedral maps in particular have recently been one main focus of research interest in
the algebraic combinatorics community (see [2, 3, 5, 9, 20, 21]).

We may now rephrase Theorem 1.1 in the context of dihedral maps.

Corollary 6.4 Let M be a chiral dihedral map with underlying graph Γ such that
Aut(M) = Aut(Γ ). Then the unique cyclic subgroup of index 2 in the corresponding
regular dihedral subgroup D of Aut(M) has nontrivial core in Aut(M).

Proof Since M is chiral, Γ is not isomorphic to K4; thus, D ∼= D2n, where n > 2,
and D contains a unique cyclic subgroup C of index 2. Clearly, Γ is 1-regular. Hence,
if C were core-free in Aut(Γ ), then Γ would belong to the family F . But in view of
Theorem 1.1, no graph in F is 1-regular, a contradiction. �
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16. Marušič, D.: Corrigendum to “On 2-arc-transitivity of Cayley graphs”. J. Comb. Theory, Ser. B 96,

761–764 (2006) [J. Comb. Theory, Ser. B 87, 162–196 (2003)]
17. McSorley, J.P.: Cyclic permutations in doubly-transitive groups. Commun. Algebra 25, 33–35 (1997)
18. Muzychuk, M.: On the structure of basic sets of Schur rings over cyclic groups. J. Algebra 169(2),

655–678 (1994)



426 J Algebr Comb (2011) 33: 409–426

19. Muzychuk, M.: On the isomorphism problem for cyclic combinatorial objects. Discrete Math.
197/198, 589–605 (1999)

20. Nedela, R.: Regular maps-combinatorial objects relating different fields of mathematics. J. Korean
Math. Soc. 38, 1069–1105 (2001)
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