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Abstract Fix a Dynkin graph and let λ be a coweight. When does there exist an
element w of the corresponding Weyl group such that w is λ-minuscule and w(λ)

is dominant? We answer this question for general Coxeter groups. We express and
prove these results using a variant of Mozes’ game of numbers.

Keywords Dominant weights · Minuscule Weyl group elements · Numbers game
with a cutoff

1 Introduction

Mazur’s Inequality [17, 18] is an important p-adic estimate of the number of ra-
tional points of certain varieties over finite fields. It can be formulated in purely
group-theoretic terms, and the classical version can be viewed as a statement
for the group GLn (see [15]). Kottwitz and Rapoport formulated a converse to
this inequality [16], which is also related to the non-emptiness of certain affine
Deligne–Lusztig varieties, and they reduced the proof to a purely root-theoretic
problem, which is solved in [12]. A crucial step in [12] involves the use of
Theorem 1.1 below, which we state after recalling some standard notation and
terminology.
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Let Γ be a simply-laced Dynkin graph,1 with corresponding simple roots
α1, . . . , αn, positive roots �+, Weyl group W , and simple reflections s1, . . . , sn ∈ W .
Let PΓ be the lattice of coweights corresponding to Γ . Following Peterson, for
λ ∈ PΓ and w ∈ W , we say that w is λ-minuscule if there exists a reduced expression
w = si1si2 · · · sit such that

sir sir+1 · · · sit λ = λ + α∨
ir

+ α∨
ir+1

+ · · · + α∨
it
, ∀r ∈ {1,2, . . . , t},

where α∨
i ∈ PΓ is the simple coroot corresponding to αi . Equivalently (cf. [22]),

a reduced product w = s1s2 · · · sit is λ-minuscule if and only if 〈λ,α∨
it
〉 = −1 as well

as 〈sir+1 · · · sit λ,α∨
ir
〉 = −1, for all r ∈ {1, . . . , t − 1}, where 〈 , 〉 is the Cartan pairing.

Recall that an element μ ∈ PΓ is called dominant if 〈μ,α∨
i 〉 ≥ 0,∀i = 1, . . . , n.

Theorem 1.1 For λ ∈ PΓ , there exists a λ-minuscule element w ∈ W such that w(λ)

is dominant if and only if

〈λ,α∨〉 ≥ −1, ∀α ∈ Δ+. (1.1)

The proof of this theorem is straightforward, and is given in Sect. 3. We also
generalize the result to the case of extended Dynkin graphs, in the following manner.
Let ˜Γ be a simply-laced extended Dynkin graph, ˜W be its Weyl group, and R

˜Γ be the
root lattice, i.e., the span of the simple roots αi . Let ˜Δ+ ⊂ R

˜Γ be the set of positive
real roots (i.e., positive-integral combinations α of simple roots such that 〈α,α〉 =
2). Define P

˜Γ in this case to be the dual to the root lattice R
˜Γ . Given α ∈ R

˜Γ and
λ ∈ P

˜Γ , denote their pairing by α ·λ. Let δ ∈ R
˜Γ be the positive-integral combination

of simple roots which generates the kernel of the Cartan form on R
˜Γ . Finally, for

α ∈ ˜Δ+, let α∨ ∈ P
˜Γ be the element such that β · α∨ = 〈β,α〉 for all β ∈ ˜�+. Then,

the notion of λ-minusculity carries over to this setting.

Theorem 1.2 For nonzero λ ∈ P
˜Γ , there exists a λ-minuscule element w ∈ ˜W such

that w(λ) is dominant if and only if

(i) α · λ ≥ −1, ∀α ∈ ˜�+, and
(ii) δ · λ 	= 0.

We generalize the theorems above in two directions. First, we allow λ to be non-
integral, i.e., to lie in PΓ ⊗Z R (respectively P

˜Γ ⊗Z R) and not just in PΓ (respectively
P

˜Γ ). Second, we consider all Coxeter groups, not just finite and affine ones. For
example, in the first direction, if λ ∈ PΓ ⊗Z R, the notion of λ-minuscule Weyl group
element should be generalized accordingly: w ∈ W is λ-minuscule if there exists a
reduced expression w = si1 · · · sit such that sir · · · sit λ = λ+ ξrα

∨
ir

+· · ·+ ξtα
∨
it

for all
r ∈ {1, . . . , t}, for some positive real numbers ξ1, . . . , ξt ≤ 1.

In the original situation (for λ ∈ PΓ “integral” and Γ Dynkin), we prove a stronger
result:

1No information is lost in thinking of a simply-laced Dynkin diagram as an undirected graph, and so we do
so throughout. In Sect. 5, we consider non-simply-laced diagrams, which we will consider as undirected
graphs together with additional data.
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Theorem 1.3 Under the assumptions of Theorem 1.1, there exists a λ-minuscule
element w ∈ W such that w(λ) is dominant if and only if

(i) 〈λ,α∨
i 〉 ≥ −1 for every simple root αi , and

(ii) For every connected subgraph Γ ′ ⊆ Γ , the restriction λ|Γ ′ is not a negative
coroot.

In the theorem, the restriction λ|Γ ′ ∈ PΓ ′ is the unique element such that
〈λ|Γ ′ , α∨

i 〉 = 〈λ,α∨
i 〉 for all simple roots αi associated to the vertices of Γ ′.

We also prove a similar result for extended Dynkin graphs (see Theorem 4.1), and
generalize it so as to include the case where λ lies in a finite Weyl orbit.

Remark 1.4 Condition (1.1) is equivalent to the non-negativity of the coefficients of
Lusztig’s q-analogues of weight multiplicity polynomials (see [3, Theorem 2.4]). It
is also equivalent to the vanishing of the higher cohomology groups of the line bundle
that corresponds to λ on the cotangent bundle of the flag variety (op. cit.). We hope
to address and apply this in future work.

The paper is organized as follows. The second section introduces the terminology
of Mozes’ game of numbers [19] and its variant with a cutoff [12], which provides a
useful language to state and prove our results. We also recall some preliminaries on
Dynkin and extended Dynkin graphs. In the third section we solve the numbers game
with a cutoff for Dynkin and extended Dynkin graphs (Theorem 3.1), in particular
proving Theorems 1.1 and 1.2 and the non-integral versions thereof. Next, in Sect. 4,
we give a more explicit solution in the integral case, which proves Theorem 1.3 and
the corresponding result for extended Dynkin graphs. In the last section, we general-
ize Theorem 1.1 to the case of arbitrary Coxeter groups.

Convention In Sects. 3, 4, and 5, all the graphs we consider will be simply-laced
Dynkin and extended Dynkin graphs (i.e., of types ADE and ˜A˜D˜E). We generalize
our results to non-simply-laced diagrams in Sect. 5.

2 The numbers game with and without a cutoff

In this section we introduce the numbers game with a cutoff, which provides a use-
ful language to state our results. We begin with some preliminaries on Dynkin and
extended Dynkin graphs.

2.1 Preliminaries on Dynkin and extended Dynkin graphs

As was mentioned in the introduction, in this section as well as in the next two,
we will largely restrict our attention to simply-laced Dynkin and extended Dynkin
graphs. By this, we mean graphs of type An,Dn, or En, or Ãn, D̃n, or Ẽn.
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For such a graph Γ , let � be the set of (real)2 roots of the associated root system,
and �+ the set of positive roots. Let I denote its set of vertices, so that αi are the sim-
ple roots for i ∈ I , and let ωi be the corresponding fundamental coweights. Identify
Z

I with the root lattice (i.e., the integral span of the αi ), so that � ⊆ Z
I , and αi ∈ Z

I

are the elementary vectors. Although we will use subscripts (e.g., βi of β ∈ Z
I ) to

denote coordinates, we will never use them for a vector denoted by α or ω, to avoid
confusion with the simple roots αi and the fundamental coweights ωi .

We briefly recall the essential facts about �+ and �. We have � = �+ � (−�+),
and �+ = {α ∈ Z

I≥0 : 〈α,α〉 = 2}, where 〈 , 〉 is the Cartan form

〈αi,αj 〉 =
{2, if i = j ,

−1, if i is adjacent to j ,
0, otherwise,

which is positive-definite in the Dynkin case and positive-semidefinite in the ex-
tended Dynkin case. It is well known that �+ is finite in the Dynkin case. Con-
sider the extended Dynkin case, and let us switch notation to ˜Γ , ˜�, ˜�+, and ˜I . We
may write ˜Γ � Γ where Γ is the Dynkin graph of corresponding type. The vertex
i0 = ˜I \ I is called an extending vertex (the other extending vertices being obtained
as the complements of different choices of Γ ). Let �+ the set of positive roots for Γ .
There is an inclusion �+ ⊂ ˜�+ obtained by setting the coefficient at i0 to zero, and
˜�+ = (�+ + Z≥0δ) � (−�+ + Z>0δ), for the unique vector δ ∈ Z

˜I
>0 characterized

by 〈δ,u〉 = 0 for all u ∈ R
˜I and δi0 = 1.

Switching back to Γ,�+, and I , for either the Dynkin or extended Dynkin case,
we recall the simple reflections. For any vertex i ∈ I , let si : R

I → R
I be defined

by si(β) = β − 〈β,αi〉αi . It is well known that β ∈ �+ implies si(β) ∈ �+ unless
β = αi , in which case si(αi) = −αi . Also, si(δ) = δ for all i.

For any β ∈ �+, its height, h(β), is defined as h(β) = ∑

i∈I βi , where β = (βi) =
∑

i βiαi . Note that β may be obtained from some simple root αi by applying h(β)−1
simple reflections, and is not obtainable from any simple root by applying fewer
simple reflections.

2.2 The numbers game with and without a cutoff

We first recall Mozes’ numbers game [19]. Fix an unoriented, finite graph with no
loops and no multiple edges. (For the generalized version of this game, with multi-
plicities, see Sect. 5.) Let I be the set of vertices. The configurations of the game
consist of vectors R

I . The moves of the game are as follows: For any vector v ∈ R
I

and any vertex i ∈ I such that vi < 0, one may perform the following move, called
firing the vertex i: v is replaced by the new configuration fi(v), defined by

fi(v)j =
⎧

⎨

⎩

−vi, if j = i,
vj + vi, if j is adjacent to i,
vj , otherwise.

(2.1)

2These are sometimes called “real roots” in the literature to exclude multiples of the so-called imaginary
root δ below, which are also roots of the associated Kac–Moody algebra. We will omit the adjective “real.”
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Fig. 1 Examples of winning (D5) and losing (E6) configurations

The entries vi of the vector v are called amplitudes. The game terminates if all the
amplitudes are nonnegative. Let us emphasize that only negative-amplitude vertices
may be fired.3

In [11], the numbers game with a cutoff was defined: The moves are the same as
in the ordinary numbers game, but the game continues (and in fact starts) only as long
as all amplitudes remain greater than or equal to −1. Such configurations are called
allowed. Every configuration which does not have this property is called forbidden,
and upon reaching such a configuration the game terminates (we lose). We call a
configuration winning if it is possible, by playing the numbers game with a cutoff, to
reach a configuration with all nonnegative amplitudes.

Call a configuration losing if, no matter how the game is played, one reaches a
forbidden configuration. By definition, any losing configuration remains so by play-
ing the numbers game. We will see that the same is true for winning configurations
(Corollary 5.2).

We now explain how to interpret the results from the introduction in terms of this
language. Let Γ be a Dynkin graph, with set of vertices I . To every element λ ∈ PΓ

one can associate naturally an integral configuration of Γ , still denoted by λ, where
the amplitude corresponding to the vertex αi is given by 〈λ,α∨

i 〉. Firing the vertex αj

changes these amplitudes to 〈sj (λ),α∨
i 〉, i.e., gives the natural configuration (on the

vertices of Γ ) associated to the simple reflection sj (λ) of λ. In other words, using the
identifications made in the previous subsection between the coroot space and Z

I , and
letting · denote the standard dot product on R

I , we have

si(α) · v = α · fi(v), si(α) · fi(v) = α · v, (2.2)

for any configuration v. In terms of Lie theory, we may think of the si as acting on
R

I with basis given by the simple roots, and the fi as acting on the dual R
I , with

basis given by the fundamental coweights. (Formula (2.2) remains true in the case of
extended Dynkin graphs.)

The existence of an element w ∈ W such that w(λ) is dominant is then equiva-
lent to the winnability of the usual numbers game with initial configuration λ (and
hence, one always wins). Of course, we want to impose the extra condition that w

be λ-minuscule, which is equivalent to imposing the −1 cutoff to the numbers game.
Thus, Theorem 1.1 gives a characterization of the winning configurations v ∈ Z

I for
the numbers game with a cutoff, where vi = 〈λ,α∨

i 〉, λ ∈ PΓ , and the graph Γ is a

3In some of the literature, the opposite convention is used, i.e., only positive-amplitude vertices may be
fired.
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Dynkin one. Later on, we will give similar descriptions in terms of the numbers game
with a cutoff for the other results stated in the introduction.

Note that in the paragraph above we only considered the case of integral λ, but the
analogy holds in the non-integral case as well, and now we study the winnability of
the numbers game with a cutoff with real amplitudes, where we may fire any vertex
with amplitudes from [−1,0) and not just those with amplitude −1 as in the integral
case.

Example 2.1 In Fig. 1, in the case of Γ = D5, we have 〈λ,α∨
i 〉 = vi , with v1 = 1,

v2 = −1, v3 = 0, v4 = 1, and v5 = 0, where we have labeled the vertices of the graph
as in [2], Plate IV, p. 271. Therefore, if we write λ in the basis of the fundamental
coweights (ωi)i=1,...,5, we find that λ = ω1 − ω2 + ω4. It can easily be seen that w =
s5s3s2 is λ-minuscule and w(λ) = ω5, so w(λ) is dominant. The simple reflections
s5, s3, and s2 correspond to the firing (in the reverse order) of the corresponding
vertices of the Dynkin graph.

Continuing with Fig. 1, for Γ = E6, we see that in this case λ = −ω2, but there
exists no w ∈ W such that both w is λ-minuscule and w(λ) is dominant, since the
numbers game with a cutoff is losing for the configuration (〈λ,α∨

i 〉)i∈I . Here we
have used the same labeling of vertices of Γ as in [2], Plate V, p. 276.

The language of the numbers game with a cutoff is useful because it makes ap-
parent certain phenomena that already occur without the bound of −1 or indeed with
a different bound. It also allows one to use results from the usual Mozes’ numbers
game, which has been widely studied (cf. [4–10, 20, 21, 23, 24]),4 and yields use-
ful algorithms for computing with the root systems and reflection representations of
Coxeter groups (see [1, Sect. 4.3] for a brief summary).

Finally, we recall some basic results about the usual numbers game, and why it
exhibits special behavior in the Dynkin and extended Dynkin cases:

Proposition 2.2

(i) [19] If the usual numbers game terminates, then it must terminate in the same
number of moves and at the same configuration regardless of how it is played.

(ii) In the Dynkin case, the usual numbers game must terminate.
(iii) [7] In the extended Dynkin case, for v 	= 0, the usual numbers game terminates

if and only if δ · v > 0.
(iv) [7] Whenever the usual numbers game does not terminate, it reaches infinitely

many distinct configurations, except for the case of an extended Dynkin graph
where δ ·v = 0, in which case only finitely many configurations are reached (i.e.,
the game “loops”).5

Thus, provided we can determine which configurations are winning (for the num-
bers game with a cutoff) in the Dynkin case and the extended Dynkin case, then with

4Mozes’ numbers game originated from (and generalizes) a 1986 IMO problem.
5Stronger results were stated in [7], and a detailed study appears in [13].
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the additional condition δ · v > 0, these and v = 0 are also the ones that terminate in a
nonnegative configuration, and this configuration (and the number of moves required
to get there) is unique.

3 The (extended) Dynkin case

Theorem 3.1 In the Dynkin case, a configuration v ∈ R
I is winning if and only if

α · v ≥ −1, ∀α ∈ �+. (3.1)

Otherwise, v is losing.
In the extended Dynkin case, v 	= 0 is winning if and only if both

α · v ≥ −1, ∀α ∈ ˜�+, (3.2)

and δ · v 	= 0. If (3.2) is satisfied but δ · v = 0 (and v 	= 0), then v is looping and the
game cannot terminate. Finally, if (3.2) is not satisfied (e.g., if δ · v < 0), then v is
losing.

Remark 3.2 Theorem 3.1 implies Theorems 1.1 and 1.2, as well as their “non-
integral” versions.

The above theorem shows, in particular, that exactly one of the following is true:
v is winning, looping, or losing. If we return to Example 2.1 (see also Fig. 1), we see
that in the case of the graph of type E6 the coweight λ = −ω2 is such that when paired
with the coroot α∨

1 +2α∨
2 +2α∨

3 +3α∨
4 +2α∨

5 +α∨
6 we get −2, so the corresponding

configuration is losing, as we have noted already.
To prove the theorem, it is helpful to introduce the set

Xv := {

(α,α · v) | α ∈ �+, α · v < 0
}

. (3.3)

Consider the projections

Xv

π1 π2

�+ R<0.

(3.4)

Each time a vertex, say i ∈ I , is fired, there is a natural isomorphism Xv \{(αi, vi)} ∼→
Xfiv , with (α,α · v) �→ (siα,α · v) = (siα, siα · fiv). The set Xv is defined similarly
in the extended Dynkin case, with �+ replaced by ˜�+, and there is still a natural
isomorphism Xv \ {(αi, vi)} ∼→ Xfiv .

Proof In the Dynkin case, Xv is finite. Since the size decreases by one in each step,
removing an element whose second projection is the amplitude at the vertex which is
fired, we see that the game is won precisely when π2(Xv) ⊂ [−1,0), and otherwise
it is lost. The former is equivalent to (3.1).
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In the extended Dynkin case, the game is won precisely when Xv is finite and
π2(Xv) ⊂ [−1,0); finiteness is equivalent to δ · v > 0. The condition π2(Xv) ⊂
[−1,0) is equivalent to (3.2), and implies δ · v ≥ 0, so for v to be winning we only
need to additionally assume that δ · v 	= 0.

Since, in the extended Dynkin case, a game that is not won is either lost or loops, it
remains to show that v is losing precisely when there exists α ∈ ˜�+ with α · v < −1,
i.e., when π2(Xv) 	⊂ [−1,0). It is clear that the condition is required for v to be los-
ing. Thus, suppose that α · v < −1 for some α ∈ ˜�+. We will show that v is losing.
We induct on the height of α. Suppose vi < 0, and that we fire the vertex i. Consider
two cases: first, suppose that h(siα) < h(α). Then, siα ·fiv < −1 and h(siα) < h(α),
completing the induction. Next, suppose h(siα) ≥ h(α), i.e., siα −α is a nonnegative
multiple of αi . Then, α · fiv ≤ siα · fiv (since (fiv)i > 0), and siα · fiv = α · v.
Thus, we may leave α unchanged. If we eventually fire a vertex i ∈ ˜I such that
h(siα) < h(α), the induction is complete. Otherwise, we would be playing the game
only on a Dynkin subgraph, which would have to terminate in finitely many moves,
and therefore reach a forbidden configuration (since π2(Xv) 	⊂ [−1,0)). �

Note that only finitely many inequalities in (3.2) are required: since (3.2) implies
δ ·v ≥ 0, (3.2) is equivalent to the conditions δ ·v ≥ 0, α ·v ≥ −1, and (δ−α) ·v ≥ −1
for all α which are positive roots of a corresponding Dynkin subgraph obtained by
removing an extending vertex. So, together with δ ·v ≥ 0, it is enough to assume (3.2)
for α ∈ �+ ∪ (δ − �+), which is finite.

Corollary 3.3 If δ · v = 0, then the game loops (and cannot terminate) if and only if,
after removing an extending vertex, both v and −v are winning.

Proof This follows from the fact that ˜�+ = (�+ + Z≥0δ) � (−�+ + Z>0δ). �

Another interpretation of the above corollary is the following: v continues indef-
initely if and only if the restriction of v to the complement of an extending vertex
cannot reach a forbidden configuration by playing the numbers game forwards or
backwards (i.e., firing vertices with positive instead of negative amplitudes).

For example, in Fig. 2, the configuration on the left is looping, but the one on the
right is losing, despite the fact that δ · v = 0.

Fig. 2 Examples of a looping and a losing configuration for ˜A3, both satisfying δ · v = 0
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Remark 3.4 T. Haines pointed out that Theorem 3.1 implies [14, Lemma 3.1]: for
every dominant minuscule6 coweight μ and every coweight λ ∈ Wμ, there exists a
sequence of simple roots α1, . . . , αp , such that s1(μ) = μ − α∨

1 , s2s1μ = μ − α∨
1 −

α∨
2 , . . . , and λ = spsp−1 · · · s1(μ) = μ − α∨

1 − · · · − α∨
p .

4 The integral case

Of particular relevance is the case of integral configurations v ∈ Z
I . Below, we apply

Theorem 3.1 to give a surprisingly simple, explicit description of the losing and loop-
ing integral configurations in the Dynkin and extended Dynkin cases. (Recall that we
are working only with simply-laced graphs. In the next section we study more general
situations.)

To state the theorem, we will make use of the interpretation of configurations v ∈
R

I as coweights. In particular, as in the introduction, for every Dynkin graph Γ , and
every root α ∈ �+, there is an associated coroot configuration α∨ ∈ Z

I , in the basis
of fundamental coweights, uniquely defined by β · α∨ = 〈β,α〉 for all β , using the
Cartan form as in Sect. 2.1. For every extended Dynkin graph ˜Γ , Dynkin subgraph Γ ,
and α ∈ ˜�+, we also have the configuration α∨ defined in the same way; in particular,
δ · α∨ = 0 (and the α∨

i are linearly dependent). Recall that we write ωi for the i-
th fundamental coweight (in the Dynkin case), and hence for the i-th elementary
vector in Z

I viewed as a configuration.7 Thus, αi · ωj = δij . For β ∈ �+ or ˜�+,
let its support, supp(β), be the (connected) subgraph on which its coordinates βi are
nonzero.

Theorem 4.1

(i) An integral configuration v on a Dynkin graph is winning if and only if
(1) vi ≥ −1 for all i, and
(2) for all α ∈ �+, v|supp(α) 	= −α∨;

(ii) An integral configuration v on an extended Dynkin graph is winning if and only
if (1) and (2) are satisfied (with α ∈ ˜�+), and furthermore,
(3) v 	= −ωi for any extending vertex i.

(iii) An integral configuration on an extended Dynkin graph is looping if and only if
it is in the Weyl orbit of a vector μ = ωi − ωi′ for distinct extending vertices i,
i′. In this case, the numbers game can take the configuration to and from such a
vector μ.

Remark 4.2 The above result implies Theorem 1.3, as well as the extended Dynkin
version thereof.

As in the introduction, for Γ ′ ⊆ Γ , with vertex sets I ′ ⊆ I , the restriction v|Γ ′ is
the restriction R

I � R
I ′

of coordinates.

6Recall that minuscule means that 〈μ,α〉 ∈ {−1,0,1} for all α ∈ �.
7We use distinct notation αi ,ωi for the same vector in Z

I depending on whether it is viewed as a simple
root or a configuration, to avoid confusion.
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Fig. 3 Minimal losing
configurations for ˜An

We remark that an alternative way to state parts (i) and (ii) above is that the losing
configurations on (extended) Dynkin graphs which are winning on all proper sub-
graphs, which we call the minimal losing configurations, are exactly those of the
form −β∨ for fully supported roots β (which in the extended Dynkin case also sat-
isfy βi ≤ δi for all i), and −ωj for extending vertices j , together with the one-vertex
forbidden configurations.

Here, we have used that (β + cδ)∨ = β∨ for all c ∈ Z, so that in part (ii) it suf-
fices to assume that β ∈ ˜�+ satisfies βi ≤ δi for all i, i.e., βi ≤ 1 for all extending
vertices i. In fact, we can further restrict to the case of roots β that are supported on
a Dynkin subgraph, in exchange for adding the condition that vsupp(γ ) 	= γ ∨ for all
positive roots γ such that γi = 0 at all extending vertices i. This is because the fully
supported roots β such that βi ≤ δi for all i are exactly δ − γ where γ ∈ ˜�+ satisfies
γi = 0 at all extending vertices, and then −β∨ = γ ∨.

As a special case of (ii), for ˜An (with n ≥ 1), the only integral losing configurations
which are winning on all proper subgraphs are −ωi for all i (see Fig. 3). Also, by (iii),
there is no looping integral configuration on ˜E8 (but these exist for all other extended
Dynkin graphs).

Proof (i) Following the discussion above, we show that the minimal losing configu-
rations on Dynkin graphs with more than one vertex are exactly −β∨ for fully sup-
ported β ∈ �+. Note that it is clear that such configurations are minimal losing con-
figurations, since β · (−β∨) = −2 and γ · (−β∨) ∈ {−1,0,1} for all γ ∈ �+ \ {β}.
Thus, we only need to show that there are no other minimal losing configurations
(other than one-vertex ones).

For any minimal losing configuration v ∈ Z
I , Theorem 3.1 implies the existence

of β ∈ �+ such that β · v ≤ −2. By minimality, all such β are fully supported. It
suffices to prove that, when β is not simple (i.e., the graph has more than one vertex),
v = −β∨. We prove this by induction on the height of β , considering all Dynkin
graphs simultaneously.

Let i be a vertex such that h(siβ) < h(β), i.e., 〈β,αi〉 = 1. It follows that vi = −1;
otherwise, siβ · v ≤ −2, a contradiction. Since siβ · fiv ≤ −2, in the case that siβ is
not simple, we deduce from the inductive hypothesis that the restriction of fiv to the
support of siβ coincides with −(siβ)∨. In the case siβ = αj is simple, by minimality,
vi = −1 = vj , and hence (fiv)j = −2, which also coincides with −(siβ)∨j . In either
case, since −((siβ)∨)i = (β∨)i = 1, we deduce that fiv = −(siβ)∨ and hence v =
−β∨, as desired.

(ii) We prove that the minimal losing configurations in the extended Dynkin case
are exactly −β∨ for fully supported β ∈ ˜�+ satisfying βi ≤ δi for all i, and −ωi for
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extending vertices i. The former configuration is a minimal losing configuration by
the same argument as in the Dynkin case, and −ωi is a minimal losing configuration
since δ ·−ωi = −1 < 0 (so −ωi is losing) and β ·−ωi = −βi ∈ {−1,0} for all β ∈ ˜�+
(so −ωi is winning on all Dynkin subgraphs). Hence, it suffices to prove that there
are no other minimal losing configurations.

Let v be an integral losing configuration which is winning on all proper subgraphs,
and let β ∈ ˜�+ be of minimal height such that β · v ≤ −2. Once again, we can induct
on the height of β . We reach the desired conclusion unless β = cδ+αi for some c ≥ 1
and i ∈ ˜I , so assume this. Since vi ≥ −1, it follows that δ · v ≤ −1. Moreover, fix an
associated Dynkin subgraph Γ . Then, for all γ ∈ �+, we must have γ · v ∈ {−1,0}
(since (δ−γ ) ·v ≥ −1 and γ ·v ≥ −1 by minimality of β). In particular, vj ∈ {−1,0}
for all j . In this case, in order for v not to be losing on a Dynkin subgraph, we must
have v = −ωi , where i is an extending vertex.

(iii) Let i be an extending vertex, and let v ∈ Z
I satisfy δ · v = 0 but v 	= 0. If

we play the numbers game by firing only vertices other than i, we must eventually
obtain either a forbidden configuration (if the restriction of v to the complement of i

is losing) or a configuration whose sole negative amplitude occurs at i. In the latter
case, in order to not be forbidden, we must have −1 at the vertex i, and hence, in
order to satisfy δ · v = 0, there can only be one positive amplitude, it must be 1, and
it must occur at another extending vertex, say i′. So, v is winning when restricted to
the complement of i if and only if one can obtain μ = ωi′ − ωi from v. This implies
that v is in the same Weyl orbit as μ. On the other hand, if v is in the Weyl orbit of
μ, then δ · v = 0 and the usual numbers game loops, and since α · v ∈ {−1,0,1} for
all α ∈ ˜�+, the numbers game with a cutoff also loops. Hence, the conditions that v

is looping, that v is in the Weyl orbit of such a μ, and that μ can be obtained from
v by playing the numbers game with a cutoff, are all equivalent. Since, in this case,
−v is also looping, we see also that −v can reach a configuration ν = ωj − ωi′ for
some extending vertex j , and since ν is in the same Weyl orbit as −μ, we must have
ν = −μ (since −μ and ν are dominant on the complement of i′). Hence, v can be
obtained from μ by playing the numbers game, which proves the remainder of the
final assertion. �

Remark 4.3 In the Dynkin case, the above may be interpreted as saying that every
losing integral configuration which is winning on all proper subgraphs is obtainable
from the maximally negative coroot by playing the numbers game: this configura-
tion is the one with vi = −1 when i is adjacent to the extending vertex of ˜Γ , and
vi = 0 otherwise. On the other hand, in the non-integral case, losing configurations
are not necessarily obtainable from nonpositive ones by playing the numbers game:
for example, on D4, one may place −1 at all three endpoint vertices, and 3

2 at the
node (Fig. 4).

Fig. 4
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Remark 4.4 Note that the extended Dynkin case with δ · v ≥ 0 and v losing, integral,
and winning on all proper subgraphs may similarly be described as those configura-
tions obtainable from αi

∨ = 2ωi − ∑

j adjacent to i ωj , for i not an extending vertex,
by playing the numbers game. This contrasts with the non-integral case: see the next
remark.

Remark 4.5 In the extended Dynkin case, it is perhaps surprising that all losing
integral configurations with δ · v > 0 are also losing on a proper subgraph. This
is not true in the non-integral case (except in the case ˜An): e.g., one may take a
configuration β∨ + εωi , for β ∈ ˜�+ which satisfies βj = 0 for all extending ver-
tices j , and ε ∈ (0, 1

δi
) for any fixed i ∈ ˜I . Similarly, one may find losing configura-

tions with δ · v = 0 which are winning on all Dynkin subgraphs, but are not β∨ for
β ∈ �+ (although there are still none for ˜An): for example, εβ∨ for ε ∈ ( 1

2 ,1) and
β as before. For another example, we can take any configuration in ˜Dn with values
a, b, c, d ≥ −1 at exterior vertices such that σ := a+b+c+d

2 < −1 and σ − x ≥ −1
for all x ∈ {a, b, c, d}. Finally, there are many more losing non-integral configura-
tions with δ · v < 0 that are winning on all proper subgraphs than just −ωi for i

an extending vertex: for example, −ωi + u for any nonnegative vector u such that
δ · u < 1.

5 Generalization to arbitrary graphs with multiplicities

In [10, 19], the numbers game was stated in greater generality than the above.
Namely, in addition to a graph with vertex set I (and no loops or multiple edges),
we are given a Coxeter group W with generators si, i ∈ I and relations (sisj )

nij for
nij ∈ {1,2, . . .} ∪ {∞} (with nij = 1 exactly when i = j ), together with a Cartan
matrix C = (cij )i,j∈I , such that cii = 2 for all i, cij = 0 whenever i and j are not ad-
jacent, and otherwise cij , cji < 0 and either cij cji = 4 cos2( π

nij
) (when nij is finite)

or cij cji ≥ 4 (when nij = ∞).
We recall that the numbers game is modified as follows in terms of C: The config-

urations are again of the form v ∈ R
I , and, we may fire the vertex i in a configuration

v ∈ R
I if and only if the amplitude vi < 0. The difference is that the new configura-

tion fi(vi) is now given by

fi(v)j = vj − cij vi . (5.1)

We call this the weighted numbers game. The non-weighted numbers game is recov-
ered in the case cij = −1 for all adjacent i, j .

The reflection action of W on R
I is defined by

si(β)j =
{

βj , if j 	= i,
−βi − ∑

k 	=i cikβk, if j = i. (5.2)

Recall from [10] that, in this situation, the usual numbers game is strongly convergent:
if the game can terminate, then it must terminate, and in exactly the same number of
moves and arriving at the same configuration, regardless of the choices made.
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We remark that, while it is standard to take C to be symmetric, there are cases
when this is not desired, particularly for the non-simply-laced Dynkin diagrams Γ ,
where C can be taken to be integral only if allowed to be non-symmetric. In these
cases, if we choose C to be integral, playing the numbers game on Γ is equivalent
to playing the numbers game without multiplicities on a simply-laced graph Γ ′ with
some symmetry group S, such that Γ ′/S = Γ , if we restrict to S-invariant configu-
rations on Γ ′, where we allow simultaneous firing of any orbit of vertices under S

(since these orbits consist of nonadjacent vertices, it makes sense to fire them simul-
taneously).

Let � = ⋃

i∈I Wαi be the set of (real) roots.8 Let �+ ⊂ � be the subset of pos-
itive roots: these are the elements whose entries are nonnegative. Note that, by a
standard result (see, e.g., [1, Proposition 4.2.5]), � = �+ � (−�+).

Finally, we recall a useful partial ordering from, e.g., [1, Sect. 4.6]. For β ∈ �+,
we say that β < siβ if and only if βi < (siβ)i . Generally, for α,β < �+, we say
α < β if there exists a sequence α < si1α < si2si1α < · · · < simsim−1 · · · si1α = β .
The argument of [1, Lemma 4.6.2] shows that this is a graded partial ordering. The
grading, dp(α), called the depth, is defined to be the minimum number of simple
reflections required to take α to a negative root. Thus, α < siα implies dp(siα) =
dp(α) + 1.

Theorem 5.1 Let Γ,C be associated to a Coxeter group. Assume that C satisfies
cij = cji whenever nij is odd (and finite). Then, v can reach a forbidden configura-
tion if and only if β ·v < −1 for some β ∈ �+, and in this case, the minimum number
of moves required to take v to a forbidden configuration is

m(v) := min
{

dp(β) − 1 | β · v < −1, β ∈ �+
}

. (5.3)

Furthermore, if vi < 0, then m(fiv) ∈ {m(v),m(v) − 1}.

Note that, in the non-simply-laced Dynkin cases with C integral, we may always
take cij = cji whenever nij is odd (and in these cases, this implies nij = 3), so the
theorem applies.

Corollary 5.2 Under the assumptions of the theorem, v is winning if and only if the
usual numbers game terminates and

α · v ≥ −1, ∀α ∈ �+. (5.4)

Moreover, if (5.4) is not satisfied and the usual numbers game terminates, then v is
losing.

Also, under the hypotheses of the theorem, any winning configuration remains so
regardless of what moves are made.

8Note that, when the Cartan matrix C is associated to a nonreduced root system (i.e., BCn), then � is a
proper subset of the whole root system, which does not contain 2α, for any simple root α.
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We can also make a statement for arbitrary C and Γ :

Theorem 5.3 If C and Γ are arbitrary (associated to a Coxeter group), then v can
reach a forbidden configuration if and only if there exists β ∈ �+ and i ∈ I such that
both β · v < −1 and β > αi . In this case, the minimum number of moves required to
reach a forbidden configuration is

m′(v) := min
{

dp(β) − 1 | β · v < −1, and there exists i ∈ I with β > αi

}

. (5.5)

Moreover, in this case, if i ∈ I is such that vi < 0, then m′(fiv) ≥ m′(v)−1 (provided
m′(fiv) is defined, i.e., fiv can reach a forbidden configuration).

The difference from Theorem 5.1 is that we added the condition β > αi , and re-
placed the equality for m under numbers game moves by an inequality.

We remark that the usual numbers game, beginning with v, terminates if and only
if

#P{β ∈ �+ | β · v < 0} < ∞, (5.6)

for arbitrary Γ,C, where P means modding by nonzero scalar multiplication, since
each move decreases the size of this set by one. (We do not need to mod by scalar
multiples if cij = cji whenever nij is odd.) So, this gives a completely root-theoretic
description of the winning conditions above.9

For the finite and affine cases, we have the following corollary, which generalizes
Theorem 3.1. As before, in the affine case, let δ ∈ R

I
>0 be the additive generator of

the semigroup {δ′ ∈ R
I
>0 | α ∈ �+ ⇒ α + δ′ ∈ �+}. In particular, 〈δ,α〉 = 0 for all

α ∈ �.

Corollary 5.4 Let Γ,C be associated to a finite or affine Coxeter group and let v be
a nonzero configuration. Then, exactly one of the following is true:

(a) (5.4) is satisfied, and δ · v 	= 0 or the Coxeter group is finite: then v is winning,
and cannot reach a forbidden configuration.

(b) (5.4) is satisfied but δ · v = 0: then v is looping, and cannot reach a forbidden
configuration.

(c) (5.4) is not satisfied. Then, provided cij = cji whenever nij is odd, v is losing.

Note that, by Theorem 5.3, we can strengthen this slightly by replacing (5.4) by
the condition that α · v ≥ −1 only for α such that α > αi for some i ∈ I .

Proof of Corollary 5.4 (a) In the affine case, δ · v > 0, so in either case, the usual
numbers game terminates. Then, v is winning by Theorem 5.3, and a forbidden con-
figuration cannot be reached.

9Also, this observation easily implies the main results (Theorems 2.1 and 4.1) of [4]: if vi ≤ 0 for all i and
v 	= 0, then the usual numbers game can only terminate if Γ,C are associated to a finite Coxeter group:
otherwise (assuming Γ is connected), infinitely many elements β ∈ �+ which are not multiples of each
other satisfy β · v < 0: note that, for each i ∈ I , the set P(Wαi) essentially does not depend on the choice
of C for a given Coxeter group.
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(b) v is looping, as in the simply-laced case, since the usual numbers game cannot
terminate, and the configuration is uniquely determined by its restriction to a sub-
graph obtained by removing an extending vertex, where the configuration remains in
the orbit of the restriction of v under the associated finite Coxeter group. The rest
follows from Theorem 5.3.

(c) In this case (we assume cij = cji whenever nij is odd), v can reach a forbidden
configuration. Moreover, in the proof of Theorem 5.1, we see that there always exists
a vertex i ∈ I so that, for any configuration v′ obtained from v by firing vertices other
than i, we have m(fiv

′) = m(v′) − 1. In the affine Coxeter group case, in order for
the numbers game to continue indefinitely, all vertices must be fired infinitely many
times. This proves the result. �

Remark 5.5 The weakened conclusions of Theorem 5.3 are needed. Indeed, if
cij 	= cji for some i, j with nij odd, then it is possible that a winning configu-

ration can become a losing one. For example, take I = {1,2} and C = ( 2 −2
− 1

2 2

)

,

with n12 = 3. Then, the configuration (− 1
2 ,− 1

2 ) is winning under the sequence
(− 1

2 ,− 1
2 ) �→ (− 3

4 , 1
2 ) �→ ( 3

4 ,−1) �→ ( 1
2 ,1), but if we instead fired vertex 1 first, we

would get ( 1
2 ,− 3

2 ), which is forbidden.

Remark 5.6 It is natural to ask what can happen in the numbers game with a cutoff if
it continues indefinitely. Suppose this happens, and let Γ ′ be the subgraph on vertices
which are fired infinitely many times. If Γ ′ corresponds to an affine Coxeter group,
then the configuration restricted to Γ ′ is looping, and in this case, in order for a
forbidden configuration not to be reached, Γ ′ must be the whole graph (assuming that
our whole graph is connected). Otherwise, if our graph is not affine, then Γ ′ cannot be
associated to an affine or finite Coxeter group. Then, for any affine subgraph Γ0 ⊆ Γ ′
(where by this we allow reducing the numbers nij for edges between vertices of Γ0),
the dot product of the restriction of v with the associated δ0 must remain positive,
and the value must be decreasing. It must converge to some nonnegative number,
and hence all amplitudes of vertices in Γ ′ must converge to zero. In particular, the
configuration v must converge to some limiting allowed configuration (which is zero
on Γ ′), and one could continue the numbers game from this limit if desired. Note
that, in the case that cij = cji for all odd nij , we must also have α · v > −1 for all
α ∈ �+ supported on Γ ′, i.e., v|Γ ′ cannot reach a forbidden configuration by playing
the numbers game on Γ ′.

5.1 Proof of Theorems 5.1 and 5.3

We will use the following lemma which is interesting in itself (and is the connection
between the two theorems):

Lemma 5.7 If Γ,C are such that cij = cji whenever nij is odd, then for all β ∈ �+,
we have αi ≤ β for some i ∈ I .

We remark that it is well known (and obvious) that the lemma holds when C is
symmetric.



398 J Algebr Comb (2011) 33: 383–399

Proof The case nij is odd is exactly the case when, on the subgraph with vertices i

and j only, αi is in the W -orbit of some positive multiple of αj and vice-versa (and
this multiple is 1 if and only if cij = cji ). Thus, this assumption is exactly what is
needed so that, whenever β = aαi + bαj ∈ �+ and dαi < β for some d ∈ R, then
d = 1. As a result, using the Coxeter relations, it follows inductively on depth that, if
αi < β for some i ∈ I , then if γ < β and γ ∈ �+ is not simple, we also have αj < γ

for some j ∈ I . Thus, for all β ∈ �+, there exists i ∈ I with αi ≤ β . �

Proof of Theorem 5.1 It will be convenient to think of m(v) as being allowed to be
infinite (infinite if and only if the set appearing in the right hand side is empty). Simi-
larly, call the number of moves required to reach a forbidden configuration “infinite”
if and only if a forbidden configuration cannot be reached. We clearly have m(v) ≥ 0,
and Lemma 5.7 implies that m(v) = 0 if and only if v is forbidden. Thus, using in-
duction, the theorem may be restated as: if v is not forbidden, then for any vertex i

with vi < 0, we have m(fiv) ∈ {m(v),m(v) − 1}, and there exists at least one such i

with m(fiv) = m(v) − 1. Here, ∞ + c := ∞ for any finite c.
Suppose that α ∈ �+ and j ∈ I are such that α · v < −1 and vj < 0. If we fire j ,

then the set {β ∈ �+ : β · v < −1} changes by applying sj and intersecting with �+.
Hence, m(fjv) ∈ {m(v) − 1,m(v),m(v) + 1}. In particular, m(fjv) ≥ m(v) − 1.

Suppose that α ∈ �+ is such that α ·v < −1 and dp(α)−1 = m(v), and let i ∈ I be
such that siα < α. Then, if vi ≥ 0, then siα · v ≤ α · v < −1, which would contradict
the minimality of the depth of α. Thus, vi < 0, and it follows that m(fiv) = m(v)−1.
So, there exists i such that m(fiv) = m(v) − 1.

Next, suppose that vi < 0 and siα > α. Then, α ·fiv ≤ siα ·fiv < −1. As a result,
we have m(fiv) ∈ {m(v),m(v) − 1}. Thus, for any i ∈ I such that vi < 0, we have
m(fiv) ∈ {m(v),m(v) − 1}. �

Proof of Theorem 5.3 This is similar to the proof of Theorem 5.1. Define the set

Yv := {β ∈ �+ : β · v < −1 and β > αi for some i}.
We need to show that, whenever vj < 0, the minimum depth of an element of Yfj v is
at most one less than that of Yv , and that we can achieve exactly one less by picking
j appropriately. We first prove the inequality. Let α ∈ Yfj v be an element of minimal
depth. If sjα > α, then sjα ∈ Yv and the statement follows. If sjα < α, then vj < 0
implies that α ∈ Yv , and the statement follows. Next, for the equality, let α ∈ Yv be
an element of minimal depth. It suffices to show that there exists j such that sjα < α

and sjα ∈ Yfj v . For this, it suffices to choose j so that there exists i such that sjα < α

and αi < sjα. This exists by definition. �

Remark 5.8 Note that, as a corollary of Lemma 5.7, we see that, for a general Coxeter
group W , vertex i ∈ I , and matrix C, the set {j ∈ I | ∃b ∈ R, bαj ∈ Wαi} is the
set of vertices j connected to i by a sequence of edges i′ �→ j ′ corresponding to
odd integers ni′,j ′ . It is clear that all such j are in the set; conversely, if an edge
corresponding to an even integer or ∞ is required to connect i to j , then if wαi =
bαj , then by modifying the elements of C corresponding to the edges with even or
infinite ni′j ′ , we would be able to change the value b such that bαj ∈ Wαi . But this is
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impossible, since b = 1 whenever ci′j ′ = cj ′i′ for all odd ni′j ′ , and symmetrizing the
latter values of C would rescale b by a fixed amount independent of the other values
of C (and independent of b itself).
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