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Abstract We define a new lattice structure (W,�) on the elements of a finite Cox-
eter group W . This lattice, called the shard intersection order, is weaker than the
weak order and has the noncrossing partition lattice NC(W) as a sublattice. The new
construction of NC(W) yields a new proof that NC(W) is a lattice. The shard inter-
section order is graded and its rank generating function is the W -Eulerian polynomial.
Many order-theoretic properties of (W,�), like Möbius number, number of maximal
chains, etc., are exactly analogous to the corresponding properties of NC(W). There
is a natural dimension-preserving bijection between simplices in the order complex of
(W,�) (i.e. chains in (W,�)) and simplices in a certain pulling triangulation of the
W -permutohedron. Restricting the bijection to the order complex of NC(W) yields a
bijection to simplices in a pulling triangulation of the W -associahedron.

The lattice (W,�) is defined indirectly via the polyhedral geometry of the reflect-
ing hyperplanes of W . Indeed, most of the results of the paper are proven in the more
general setting of simplicial hyperplane arrangements.

Keywords Noncrossing partition · Shard · Coxeter group · Weak order

1 Introduction

The (classical) noncrossing partitions were introduced by Kreweras in [23]. Work
of Athanasiadis, Bessis, Biane, Brady, Reiner and Watt [2, 5, 6, 11, 40] led to the
recognition that the classical noncrossing partitions are a special case (W = Sn) of
a combinatorial construction which yields a noncrossing partition lattice NC(W) for
each finite Coxeter group W .
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Besides the interesting algebraic combinatorics of the W -noncrossing partition
lattice, there is a strong motivation for this definition arising from geometric group
theory. In that context, NC(W) is a tool for studying the Artin group associated to W .
(As an example, the Artin group associated to Sn is the braid group.) For the purposes
of Artin groups, a key property of NC(W) is the fact that it is a lattice. This was first
proved uniformly (i.e. without a type-by-type check of the classification of finite
Coxeter groups) by Brady and Watt [10]. Another proof, for crystallographic W , was
later given by Ingalls and Thomas [21].

The motivation for the present work is a new construction of NC(W) leading to
a new proof that NC(W) is a lattice. The usual definition constructs NC(W) as an
interval in a non-lattice (the absolute order) on W ; we define a new lattice struc-
ture (W,�) on all of W and identify a sublattice of (W,�) isomorphic to NC(W).
No part of this construction—other than proving that the sublattice is isomorphic to
NC(W)—relies on previously known properties of NC(W). Thus, one can take the
new construction as a definition of NC(W). The proof that NC(W) can be embedded
as a sublattice of (W,�) draws on nontrivial results about sortable elements estab-
lished in [33, 34, 37, 38].

Beyond the initial motivation for defining (W,�)—to construct NC(W) and prove
that it is a lattice—the lattice (W,�) turns out to have very interesting properties. In
particular, many of the properties of (W,�) are precisely analogous to the properties
of NC(W).

The lattice (W,�) is defined in terms of the polyhedral geometry of shards, certain
codimension-1 cones introduced and studied in [27, 28, 30, 34]. Shards were used to
give a geometric description of lattice congruences of the weak order. In this paper,
we consider the collection Ψ of arbitrary intersections of shards, which forms a lattice
under reverse containment. Surprisingly, Ψ is in bijection with W . The lattice (W,�)

is defined to be the partial order induced on W, via this bijection, by the lattice (Ψ,⊇).
Thus we call (W,�) the shard intersection order on W .

Except in Sect. 8, which deals specifically with NC(W), most arguments in this
paper are given, not in terms of Coxeter groups, but in the slightly more general
setting of simplicial hyperplane arrangements. Although the motivation for this paper
lies squarely in the realm of Coxeter groups, it is much more natural to argue in the
more general setting, because the arguments do not use the group structure of the
Coxeter groups at all. Instead, they rely on the polyhedral geometry of the Coxeter
arrangement (a simplicial hyperplane arrangement associated to W ) and the lattice
structure of weak order on W (the poset of regions of the arrangement).

We now summarize the main results in the special case of Coxeter groups. These
are proved later in the paper in the generality of simplicial arrangements, and we
indicate, for each result, where to find the more general statement and proof. Ad-
ditional results in the body of the paper are phrased only in the broader generality.
In the following propositions, the right descents of w ∈ W are the simple generators
s ∈ S such that �(ws) < �(w). For the proofs, see Propositions 5.1 and 5.8 and an
additional argument given immediately after the proof of Proposition 5.8.

Proposition 1.1 The lattice (W,�) is graded, with the rank of w ∈ W equal to the
number of right descents of w. Alternately, the rank of a cone C ∈ Ψ is the codimen-
sion of C.
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In particular, the rank generating function of Ψ is the W -Eulerian polynomial. For
more information on the W -Eulerian polynomial, see [39].

Proposition 1.2 For any w ∈ W , the lower interval [1,w] in (W,�) is isomorphic to
(WJ ,�), where J is the set of right descents of w and WJ is the standard parabolic
subgroup generated by J .

The identity element of W is the unique minimal element of (W,�) and the
longest element w0 is the unique maximal element.

Theorem 1.3 The Möbius number of (W,�) is (−1)rank(W) times the number of ele-
ments of W not contained in any proper standard parabolic subgroup. Equivalently,
by inclusion/exclusion,

μ�(1,w0) =
∑

J⊆S

(−1)|J ||WJ |.

Theorem 1.3 is a special case of Theorem 5.9. (An alternate, Coxeter-theoretic
proof appears after the proof of Theorem 5.9.) Theorem 1.3 is very interesting in
light of an analogous description (Theorem 8.10, due to [3, 4]) of the Möbius number
of the noncrossing partition lattice NC(W). When W is the symmetric group, the
number in Theorem 1.3 is, up to sign, the number of indecomposable permutations,
or the number of permutations with no global descents. The latter play a role in the
Malvenuto-Reutenauer Hopf algebra of permutations [1]. See Sequence A003319
in [41] and the accompanying references. The corresponding sequences for W of
type Bn or Dn are A109253 and A112225 respectively.

Let MC(W) be the number of maximal chains in (W,�). For each s ∈ S, let 〈s〉
denote S \ {s}. The following result, proved near the end of Sect. 5, is the only main
result on (W,�) without a meaningful generalization to simplicial arrangements.

Proposition 1.4 For any finite Coxeter group W with simple generators S,

MC(W) =
∑

s∈S

( |W |
|W〈s〉| − 1

)
MC(W〈s〉).

The notation MC(W) clashes with the author’s use (in [35]) of MC(W) to denote
the number of maximal chains in the noncrossing partition lattice NC(W). In fact,
the number of maximal chains of NC(W) satisfies a recursion [35, Corollary 3.1]
very similar to Proposition 1.4. The latter recursion can be solved non-uniformly [35,
Theorem 3.6] to give a uniform formula first pointed out in [13, Proposition 9].

Recursions involving sums over maximal proper parabolic subgroups, such as the
recursion appearing in Proposition 1.4, are very natural in the context of Coxeter
groups and root systems. Besides Proposition 1.4 and [35, Corollary 3.1], there are at
least two other important examples: One is a recursive formula for the face numbers
of generalized associahedra [16, Proposition 3.7]. (Cf. [15, Proposition 8.3].) Yet
another is a formula for the volume of the W -permutohedron which can be obtained
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by simple manipulations from Postnikov’s formula [26, Theorem 18.3] expressing
volume in terms of Φ-trees.

Let �(W) be the pulling triangulation of the W -permutohedron, where the ver-
tices are ordered by the reverse of the weak order. This construction is described in
more detail in Sect. 5; see also [24].

Theorem 1.5 There exists a dimension-preserving bijection between �(W) and the
order complex of (W,�).

In particular, the f -vector of the order complex of (W,�) coincides with the f -
vector of �(W). For the proof, see Theorem 5.10.

Since (W,�) is defined in terms of shards, which encode lattice congruences of
the weak order, it should not be surprising that (W,�) is compatible with lattice
congruences on the weak order. Specifically, given a lattice congruence Θ on the
weak order, let πΘ↓ (W) denote the set of minimal-length congruence class represen-

tatives. The restriction (πΘ↓ (W),�) of the shard intersection order to πΘ↓ (W) is a
join-sublattice of (W,Θ) and shares many of the properties of (W,�). In particular,
direct generalizations of Propositions 1.1 and 1.2 and Theorems 1.3 and 1.5 are stated
and proved in Sect. 7.

For each Coxeter element c of W , there is a noncrossing partition lattice NCc(W).
The isomorphism type of NCc(W) is independent of c, so we suppressed the depen-
dence on c earlier in the introduction. The c-Cambrian congruence Θc is a lattice
congruence defined in [32] and studied further in [34, 37, 38]. The set π

Θc↓ (W) can
be characterized combinatorially [34] as the set of c-sortable elements of W . As a
special case of general results from [31], the c-Cambrian lattice defines a complete
fan which coarsens the fan defined by the Coxeter arrangement A(W) of reflecting
hyperplanes of W . This fan is combinatorially isomorphic [37] to the normal fan of
the W -associahedron, which was defined in [16].

Our discussion of noncrossing partitions is found in Sect. 8. As a special case of
the general result mentioned above, the c-sortable elements induce a join-sublattice
(π

Θc↓ (W),�) of (W,�). Drawing on results of [33, 38], we show that (π
Θc↓ (W),�)

is isomorphic to NCc(W). In particular, we obtain not only a new proof of the lat-
tice property for NCc(W) but also a completely new construction of NCc(W). Fur-
thermore, we show that (π

Θc↓ (W),�) is a sublattice of (W,�), rather than merely a

join-sublattice. Applying general results on (πΘ↓ (W),�) to the case Θ = Θc , we give
new proofs of old and new results on noncrossing partitions. In particular, we gener-
alize, to arbitrary W , a bijection of Loday [25] from maximal chains in the classical
noncrossing partition lattice (in the guise of parking functions) to maximal simplices
in a certain pulling triangulation of the associahedron. We also broaden the bijection
into a dimension-preserving bijection (Theorem 8.12) between simplices in the order
complex of NCc(W) and simplices in the triangulation. Both Theorem 8.12 and the
analogous statement (Theorem 1.5) for the permutohedron and (W,�) are special
cases of a much more general result, Theorem 7.16.

The construction of noncrossing partitions via shard intersections exhibits a sur-
prising connection to semi-invariants of quivers, which we hope to explain more fully
in a future paper. Some additional detail is given in Remark 8.19.
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2 Simplicial hyperplane arrangements

This section covers background information on simplicial hyperplane arrangements
that is used in the rest of the paper. We also explain how the weak order on a finite
Coxeter group fits into the context of simplicial hyperplane arrangements.

A linear hyperplane in a real vector space V is a codimension-1 linear subspace
of V . An affine hyperplane in V is any translate of a linear hyperplane. A hyper-
plane arrangement A in V is a finite collection of hyperplanes. Without exception,
throughout the paper, we take A to be central, meaning that all hyperplanes in A are
linear.

The rank of a central arrangement A is the codimension of the intersection
⋂

A
of all the hyperplanes in A. A central hyperplane arrangement A is called essential
if

⋂
A has dimension zero. We do not require our arrangements to be essential, be-

cause it is convenient to consider an arrangement A in the same vector space as a
subarrangement A′ ⊆ A, even when A′ has lower rank. However, it is easy to make
an essential arrangement with the same combinatorial structure as A by passing to
the quotient vector space V/(

⋂
A), and thus the reader may safely think in the es-

sential case. A central hyperplane arrangement A is a direct sum of A1 and A2 if
A = A1 ∪ A2 and V is a direct sum V = V1 ⊕V2 such that A1 = {H ∈ A : H⊥ ∈ V1}
and A2 = {H ∈ A : H⊥ ∈ V2}.

A region of A (or “A-region”) is the closure of a connected component of the
complement V \ (

⋃
A) of A. Each region of a central arrangement is a closed convex

polyhedral cone whose dimension equals dim(V ). (A convex polyhedral cone is a set
of points determined by a finite system of linear inequalities.) The set of regions
is denoted by R or R(A). We speak of faces of a region R in the usual polyhedral
sense. A facet of R is a maximal proper face of R. A region is simplicial if the normal
vectors to its facet-defining hyperplanes form a linearly independent set. When A is
essential, a region is simplicial if and only if it is a cone over a simplex. A central
hyperplane arrangement A is simplicial if every A-region is simplicial.

We now fix a base region B ∈ R, and define the poset of regions (R(A),≤B) or
simply (R,≤). (In [7, 27, 28, 30, 31], this poset is denoted by P (A,B) or P (H,B).)
Given a region R ∈ R, the separating set S(R) of R is the set of hyperplanes H ∈ A
such that H separates R from B . The poset of regions sets Q ≤ R if and only if
S(Q) ⊆ S(R). This partially ordered set is a lattice [7, Theorem 3.4] with a unique
minimal element B and a unique maximal element −B . Cover relations in (R,≤)

are Q � R such that Q and R share a facet, and the hyperplane defining that facet
separates R from B . The involution R �→ (−R) is an antiautomorphism of (R,≤).

Let (W,S) be a finite Coxeter group, and represent W in the usual way as a
group of orthogonal transformations of some Euclidean vector space V . The set
T = {wsw−1 : w ∈ W,s ∈ S} is the collection of all elements of W that act as reflec-
tions in V . For each reflection t ∈ T , let Ht be the hyperplane fixed by t . The Coxeter
arrangement A(W) = {Ht : t ∈ T } is a central, simplicial hyperplane arrangement
whose rank equals the rank of W . The regions of A(W) are in bijection with the
elements of W as follows: one first chooses the base region B to be a region whose
facet-defining hyperplanes are {Hs : s ∈ S}. (There are two choices, related by the
antipodal map.) The bijection maps w ∈ W to the region wB .
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Fig. 1 (a) An arrangement of
five lines in R

2. (b) The
corresponding poset of regions.
(c) The shards

Example 2.1 Let A be a set of five distinct lines through the origin in R
2. If the

lines all meet at equal angles, then A is the Coxeter arrangement for the dihedral
Coxeter group I2(5). Figure 1a shows the arrangement A with the ten regions labeled.
Figure 1b shows the poset of regions (R(A),≤B).

Example 2.2 The Coxeter group W of type A3 is isomorphic to the symmetric
group S4. The Coxeter arrangement A(W) consists of six hyperplanes through the
origin in R

3. These planes, intersected with the unit sphere in R
3, define an arrange-

ment of six great circles on the sphere. A stereographic projection yields an arrange-
ment of six circles in the plane. This arrangement of circles is shown in Fig. 2. Re-
gions of A appear as curved-sided triangles. Each region is labeled with the corre-
sponding permutation in S4. We choose the base region B to be the small triangle,
labeled 1234, which is inside the three large circles. Of necessity, some labels near
the center of the picture are quite small. These are included for the benefit of readers
viewing this paper electronically. For the benefit of those reading this paper in print:
The label on the triangle inside all circles is 1234. The label on its lower neighbor is
1324, the label on its top-left neighbor is 2134 and the label on its top-right neighbor
is 1243.

The weak order is a partial order on W which can be defined combinatorially in
terms of reduced words. (There are two isomorphic weak orders on W ; we consider
the “right” weak order, as opposed to the “left” weak order.) Alternately, the weak
order is defined in terms of containment of inversion sets. In the latter guise, the weak
order is seen to be isomorphic to the poset of regions (R(A(W)),≤B), for the choice
of B described above.

Example 2.3 The weak order on Sn can be described in terms of the combinatorics of
permutations. A covering pair consists of two permutations which agree, except that
two adjacent entries have been swapped. The lower permutation of the two, in the
weak order, is the permutation in which the two adjacent entries occur in numerical
order. The weak order on S4 is shown in Fig. 3.

For the remainder of the paper, we assume that A is a simplicial hyperplane
arrangement in the real vector space V , with a chosen base region B . Let B be the
set of facet-defining hyperplanes of B . Since A is simplicial, the cardinality of B is
equal to the rank of A. Given a set K ⊆ B, let A K be the set {H ∈ A : H ⊇ (

⋂
K)}.

The arrangement A K is called a standard subarrangement of A. (In [30], the term
parabolic subarrangement was used for what we are here calling a standard sub-
arrangement of A.) Also associated to K is a subset RK of R defined as follows:
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Fig. 2 The Coxeter arrangement A(W) for W = S4

For each A-region R, there exists [30, Lemma 6.2] a (necessarily unique) A-region
RK such that S(RK) = S(R) ∩ A K . The set RK = {RK : R ∈ R}, called a standard
parabolic subset of R, is the set of regions whose separating sets are contained in the
standard subarrangement AK .

Standard subarrangements are a special case of a more general notion. If A′ ⊆ A
is the collection of all hyperplanes in A containing a particular subset of V then A′
is called a full subarrangement of A. Let B ′ be the A′-region containing B . The
basic hyperplanes of A′ are the facet-defining hyperplanes of B ′. The set of basic
hyperplanes of A is B and the set of basic hyperplanes of a standard subarrangement
A K is K.

Full subarrangements of a Coxeter arrangement correspond to parabolic subgroups
of the Coxeter group. The subarrangement is the set of reflecting hyperplanes of the
parabolic subgroup; the parabolic subgroup is the subgroup generated by reflections
in hyperplanes of the subarrangement. In the same sense, standard subarrangements
of a Coxeter arrangement correspond to standard parabolic subgroups. Standard par-
abolic subsets also correspond to standard parabolic subgroups of W , but in a dif-
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Fig. 3 The weak order on S4

ferent sense: Recall that the set R of A(W)-regions is in bijection with the elements
of W ; a standard parabolic subset RK is the set of A(W)-regions corresponding to
elements of WK , where K = {s ∈ S : Hs ∈ K}.

Example 2.4 This example refers to Fig. 2, which represents the Coxeter arrange-
ment A(W) for W = S4, as explained in Example 2.2. The basic hyperplanes B of
A(W) are represented by the circles defining the boundary of the regions B (labeled
by 1234). These are H(1 2), H(2 3) and H(3 4), the hyperplanes separating B from the
regions labeled 2134, 1324 and 1243. Consider the point p defined as the intersection
of the triangle labeled 3421 with the triangle labeled 3124. The set of three circles
containing p describes a (nonstandard) full subarrangement A′ of A(S4). (There is a
ray in R

3 whose projection is p, and A′ is the set of hyperplanes containing that ray.)
The basic hyperplanes of A′ are represented by the circle separating 3124 from 3214
and the circle separating 3124 from 3142. Consider K = {H(1 2),H(2 3)} ⊆ B. The
standard subarrangement A(W)K consists of all of the hyperplanes of A(W) con-
taining the intersection of H(1 2) and H(2 3). These are the three hyperplanes separat-
ing the region labeled 3214 from the region B , labeled 1234. The standard parabolic
subset RK of R consists of regions labeled {1234,2134,1324,2314,3124,3214}.

The following lemma will be useful in the next section.

Lemma 2.5 Let K ⊆ B, let H1 ∈ (A − A K), let H2 ∈ A K and let A′ be the rank-two
full subarrangement containing H1 and H2. Then (A′ ∩ A K) = {H2} and H2 is basic
in A′.

Proof The special case where |K| = |B| − 1 is precisely the statement of [30,
Lemma 6.6]. The general result follows easily from the fact that any subset K ⊆ B is
the intersection of subsets K′ ⊆ B with |K′| = |B| − 1, together with the observation
that A K′∩K′′ = A K′ ∩ A K′′ for any K′, K′′ ⊆ B. �

The collection of regions, together with all of their faces, forms a complete fan F
or F (A) in V . (For background information on fans, see, for example, [42, Lec-
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ture 7].) The interaction of the fan F with the poset of regions (R,≤) is discussed
extensively in [31]. The following proposition and theorem summarize a very small
part of the discussion, found at the beginning of [31, Sect. 4].

Proposition 2.6 For any face F ∈ F , the set {P ∈ R : P ⊇ F } is an interval [Q,R]
in (R,≤). Furthermore, F is the intersection of the facets of R separating R from
cones P with Q ≤ P � R. Dually, F is the intersection of the facets of Q separating
Q from cones P with Q � P ≤ R. The interval [Q,P ] is isomorphic to the poset
of regions (R(A′),≤B ′), where A′ is the full subarrangement of A consisting of
hyperplanes in A containing F , and B ′ is the A′-region containing B .

Theorem 2.7 Any linear extension of the poset of regions (R,≤) (or of its dual
(R,≥)) is a shelling order on the maximal cones of F (A).

In Theorem 2.7, the assertion about (R,≤) is, by [31, Proposition 4.2], a special
case of a more general result [31, Proposition 3.4]. The assertion about (R,≥) fol-
lows because R �→ −R is an antiautomorphism of (R,≤) and the antipodal map is
an automorphism of F . In the following lemma,

⋂∅ = V by convention.

Lemma 2.8 If K is a subset of the basic hyperplanes of A then RK is the set of
regions containing the face B ∩ ⋂

K of F . Furthermore, |RK| coincides with the
number of regions containing the face (−B) ∩ ⋂

K of F .

Proof Suppose R contains the face F = B ∩ ⋂
K. Then one can choose a point x in

the interior of B and y in the interior of R such that the line segment xy intersects F

and no other face of B or of R. Thus S(R) contains only hyperplanes containing F ,
or equivalently, only hyperplanes containing

⋂
K. In other words, R = RK . This

argument is easily reversed.
The second assertion follows because R �→ −R is an involution on R and the

antipodal map is an automorphism of F . �

A point x in V is said to be below a hyperplane H ∈ A if x is contained in H or if
x and B are on the same side of H . The point x is strictly below H if x is below H

but is not contained in H . A subset of V is below, or strictly below H if each of its
points is. The notions of above and strictly above are defined similarly.

In the same spirit, given a region R ∈ R, we define a lower hyperplane of R to be
a hyperplane in A containing a facet of R which separates R from a region Q � R.
The set of lower hyperplanes of R is written Lower(R).

Proposition 2.9 For any R ∈ R, let F be the intersection of all facets of R separat-
ing R from a region covered by R and let A′ be the full subarrangement consisting of
hyperplanes containing F . Then the lower hyperplanes Lower(R) of R are the basic
hyperplanes of A′.

Proof Let B ′ be the A′-region containing B . Then the basic hyperplanes of A′ are
the facet-defining hyperplanes of B ′, or equivalently, the facet-defining hyperplanes
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of −B ′. These coincide with the facet-defining hyperplanes of R that contain F , or
equivalently, the lower hyperplanes Lower(R) of R. �

We conclude the section with a useful technical lemma.

Lemma 2.10 Let F be a complete fan of convex polyhedral cones. Let C1 and C2

be convex polyhedral cones, each of which is a union of faces of F . Let F1 be a face
of F contained in C1 with dim(F1) = dim(C1). If C1 ⊆ C2 then there exists a face
F2 of F with F1 ⊆ F2 ⊆ C2 and dim(F2) = dim(C2).

Proof Let x be a vector in the relative interior of F1 and let y be a generic vector in
the relative interior of C2. For sufficiently small positive ε, the vector (1 − ε)x + εy

is in the relative interior of a face F2 with the desired properties. �

3 Cutting hyperplanes into shards

Recall that, throughout the paper, A is a real, simplicial hyperplane arrangement
and B is a choice of base region. In the first half of this section, we review a “cut-
ting” relation on hyperplanes in A and review the use of the cutting relation to define
shards. Proposition 3.3 and Theorem 3.6, below, provide some motivation for the
notion of shards. Further motivation for shards, arising from the study of lattice con-
gruences on (R,≤), appears later in Sect. 6. The second part of this section is devoted
to proving lemmas which are crucial in the study of intersections of shards. Although
the definition of shards is valid even when A is not simplicial, most results discussed
in this section rely on the assumption that A is simplicial.

The cutting relation depends implicitly on the choice of B . Given two hyperplanes
H,H ′ in A, let A′(H,H ′) be the full subarrangement of A consisting of hyperplanes
of A containing H ∩ H ′. The subarrangement A(H,H ′) has rank two, and is in fact
the unique rank-two full subarrangement containing H and H ′. We say that H cuts
H ′ if H is a basic hyperplane of A(H,H ′) and H ′ is not a basic hyperplane of
A(H,H ′). For each H ∈ A, remove from H all points contained in hyperplanes of A
that cut H . The remaining set of points may be disconnected; the closures of the
connected components are called the shards in H . Thus H is “cut” into shards by
certain hyperplanes in A, just as V is “cut” into regions by all of the hyperplanes
in A. The set of shards of A is the union, over hyperplanes H ∈ A, of the set of
shards in H . (In [27] and [28], shards were defined to be the relatively open connected
components, without taking closures. All results on shards cited from these sources
have been rephrased as necessary.)

Example 3.1 This is a continuation of Example 2.1. The eight shards in the arrange-
ment of five lines in R

2 are illustrated in Fig. 1c. Each is a one-dimensional cone. The
two lines intersecting at the origin are two distinct shards. All of the shards contain
the origin; however, some shards in the picture are offset slightly to indicate that they
do not continue through the origin.
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Fig. 4 Shards in the Coxeter
arrangement A(S4)

Example 3.2 The shards in the Coxeter arrangement A(W), for the case W = S4,
are pictured in Fig. 4. This figure is a stereographic projection as explained in Exam-
ple 2.2. As before, the cone B is the small triangular region which is inside the three
largest circles. The shards are closed two-dimensional cones (which in some cases
are entire planes). Thus they appear as full circles or as circular arcs in the figure.
To clarify the picture, we continue the convention of Fig. 1c: Where shards intersect,
certain shards are offset slightly from the intersection to indicate that they do not con-
tinue through the intersection. Some of the regions are marked with gray dots. The
significance of these regions is explained in Example 3.4.

The unique hyperplane containing a shard Σ is denoted by H(Σ). An upper
region of a shard Σ is a region R ∈ R such that dim(R ∩ Σ) = dim(Σ) and
H(Σ) ∈ S(R). That is, a region of A is an upper region of Σ if it has a facet con-
tained in Σ such that the region adjacent through that facet is lower (necessarily by
a cover) in the poset of regions. Let U(Σ) be the set of upper regions of Σ , partially
ordered as an induced subposet of the poset of regions.

An element j in a finite lattice L is called join-irreducible if it covers exactly one
element, denoted j∗. The following proposition is a concatenation of [28, Proposi-
tion 2.2] and [30, Proposition 3.5].

Proposition 3.3 For any shard Σ , there is a unique minimal element of U(Σ). This
region, denoted by J (Σ), is join-irreducible in (R,≤), and furthermore every join-
irreducible element of (R,≤) is J (Σ) for a unique shard Σ .

Example 3.4 The regions corresponding to join-irreducible elements of the weak or-
der on S4 (the poset of regions of A(S4)) are marked in Fig. 4 by gray dots. Each
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Fig. 5 An illustration of the
proof of Lemma 3.5

dotted triangle has two convex sides and one concave side. The bijection between
join-irreducible regions and shards sends the triangle to the shard containing its con-
cave side.

The notation Σ(J ) denotes the unique shard Σ such that J = J (Σ). We now give
a stronger characterization of J (Σ). If R is an upper region of Σ , then we say that Σ

is a lower shard of R.

Lemma 3.5 Let Σ be a lower shard of R ∈ R. Then J (Σ) is the unique minimal
region in (R,≤) among regions Q ≤ R with H(Σ) ∈ S(Q).

Proof Let J = J (Σ). Since J is an upper region of Σ , in particular H(Σ) ∈ S(J ).
Since R is also an upper region of Σ , Proposition 3.3 says that J ≤ R. If Q is any
region with Q ≤ R and H(Σ) ∈ S(Q), then there exists P ≤ Q such that H(Σ) is
a lower hyperplane of P . (To find such a P , consider an unrefinable chain in (R,≤)

from B to Q. Since H(Σ) ∈ S(Q), there exists a covering pair P ′
� P in the chain

such that H(Σ) ∈ S(P ) but H(Σ) /∈ S(P ′).)
We claim that P is an upper region of Σ . If not, then P ∩ H(Σ) is separated

from Σ by the intersection of H(Σ) with a hyperplane that cuts H(Σ). In fact, there
are two such hyperplanes, H1 and H2 which cut H(Σ) in the same place. Simple
geometric considerations (illustrated schematically in Fig. 5) show that, without loss
of generality, H1 ∈ S(P ) and H1 /∈ S(R). This contradicts the fact that P ≤ Q ≤ R,
thus proving the claim. Since P is an upper region of Σ , we have Q ≥ P ≥ J (Σ) by
Proposition 3.3. �

Any cover relation in (R,≤) uniquely determines a shard: Given Q�R in (R,≤),
the intersection Q ∩ R is a facet of Q and of R. There is a unique shard containing
this facet, denoted by Σ(Q � R).

We now define the canonical join representation of an element of a finite lattice L.
The canonical join representation of x ∈ L, when it exists, is the set Can(x) such that∨

Can(x) is the unique “lowest” non-redundant expression for x as a join, in a sense
which we now make precise. An expression x = ∨

A is redundant if some proper
subset A′

� A has x = ∨
A′. The requirement that

∨
Can(x) be a non-redundant ex-

pression implies in particular that Can(x) is an antichain (a set of pairwise incompa-
rable elements) in L. To define Can(x), we define a partial order ≤≤ on antichains in L

by setting A ≤≤ B if and only if for every a ∈ A there exists b ∈ B with a ≤ b. Then
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Can(x) is the unique minimal antichain, with respect to ≤≤, among antichains join-
ing to x, if this unique minimal antichain exists. The elements of Can(x) are called
canonical joinands of x. It is easily checked that every canonical joinand of x is a
join-irreducible element of L. It is also easily seen than a proper subset A � Can(x)

is the canonical join representation of some element x′ < x. For more information on
canonical join representations, see [17, Sect. II.1].

The following theorem is essentially [38, Theorem 8.1]. However, the latter result
is more special than Theorem 3.6 because it is proven for the weak order on a Coxeter
group, but more general than Theorem 3.6 in that it allows the Coxeter group to be
infinite.

Theorem 3.6 Every R ∈ R has a canonical join representation in (R,≤), namely
the set of regions J (Σ), where Σ ranges over all lower shards of R. Further-
more Lower(R) is the disjoint union, over canonical joinands J , of the singletons
Lower(J ).

Proof Let the lower shards of R be Σ1, . . . ,Σk . Lemma 3.5 (or Proposition 3.3)
implies that R ≥ J (Σi) for i ∈ [k]. On the other hand, any element Q � R is sepa-
rated from R by a hyperplane H(Σi), so H(Σi) /∈ S(Q) and thus Q �≥ J (Σi). Since
(R,≤) is a lattice, R must be J (Σ1) ∨ · · · ∨ J (Σk).

For any i ∈ [k], there is a region Qi covered by R which is separated from R

by H(Σi) and no other hyperplane. For all j ∈ [k] with j �= i, we have H(Σj ) ∈
S(Qi) and Qi ≤ R, so Lemma 3.5 implies that Qi ≥ J (Σj ). We conclude that the
join of any proper subset of {J (Σ1), . . . , J (Σk)} is strictly smaller than R. Thus
R = ∨ {J (Σ1), . . . , J (Σk)} is a non-redundant expression for R and in particular
{J (Σ1), . . . , J (Σk)} is an antichain in (R,≤).

Let A be any other antichain in (R,≤) having
∨

A = R. Let i ∈ [k]. Some el-
ement Pi of A has H(Σi) ∈ S(P ): Otherwise, the region Qi , defined in the pre-
vious paragraph, is an upper bound for A, contradicting

∨
A = R. Thus Pi ≥

J (Σi) by Lemma 3.5. Now {J (Σ1), . . . , J (Σk)} ≤≤ A, and we have proved that
{J (Σ1), . . . , J (Σk)} equals Can(R). �

Example 3.7 We give an example of Theorem 3.6, for the case A = A(S4). Consider
the element 4312 ∈ S4. It is easily verified using Fig. 3 that 4312 = 3124 ∨ 1243, and
that the set {3124,1243} is minimal in the order ≤≤ among antichains joining to 4312.
Additional inspection of Fig. 3 shows that {3124,1243} is the unique ≤≤-minimal
antichain joining to 4312, or in other words, that {3124,1243} is the canonical join
representation of 4312.

Referring to Fig. 2 for the labeling, we can find the lower shards of the region
labeled 4312 in Fig. 4. They are the shards containing the concave side of the triangle.
The minimal upper regions of these two shards are the join-irreducible regions which
(again referring to Fig. 2) are labeled 3124 and 1243.

The next three lemmas detail the interaction between the cutting relation and full
subarrangements. The first is immediate from the definition, the second follows im-
mediately from Lemma 2.5 and the definition, and the third is [30, Lemma 6.8].
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Lemma 3.8 Let A′ be a full subarrangement of A, let B ′ be the A′-region contain-
ing B . Then the cutting relation on A′, defined with respect to B ′, is the restriction of
the cutting relation on A to hyperplanes in A′.

Lemma 3.9 If K ⊆ B and H ∈ A K then H is not cut by any hyperplane of A \ AK . In
particular, if Σ is a shard of A contained in a hyperplane H ∈ AK , then Σ ⊇ (

⋂
K).

Lemma 3.10 If K ⊆ B and Σ is a shard then H(Σ) ∈ A K if and only if J (Σ) ∈ RK .

The following lemma is a slight rephrasing1 of [30, Lemma 3.9].

Lemma 3.11 Let Σ be a shard. Then the following are equivalent:

(i) Σ is an entire hyperplane.
(ii) Σ is a facet hyperplane of B .

(iii) There is no facet of Σ intersecting J (Σ) in dimension dim(V ) − 2.

The following lemma is proved by a straightforward modification2 of the proof of
[34, Lemma 4.6].

Lemma 3.12 Let B be the set of facet hyperplanes of the base region B , and let
H ∈ A. Then the following are equivalent:

(i) H contains exactly two shards.
(ii) H /∈ B but there exists K ⊆ B with |K| = 2 and H ∈ AK .

Proof If (ii) holds then it is immediate from the definition that H is cut by the two
elements of K. Both cuts remove the same subspace from H , and Lemma 3.9 implies
that H is not cut by any other hyperplane. Thus (i) holds.

Conversely, suppose (i) holds. Then by Lemma 3.11, H /∈ B. Let K ⊆ B be the
set of hyperplanes in B which cut H . Suppose that K has exactly two hyperplanes
H ′ and H ′′. Then by (i), these must cut H along the same codimension-2 subspace
of V , namely H ∩ H ′′. In this case, H is in A{H ′,H ′′}, and we have established (ii).
We complete the proof by showing that |K| = 2.

Each hyperplane H ′ in K cuts H along some codimension-2 subspace U of V

with U ⊆ H ′. By (i), this subspace U is the same for each H ′ ∈ K. In particular,
the codimension-2 subspace U is contained in each H ′ ∈ K. Since B is a simplicial
cone, the normal vectors to its facet-defining hyperplanes are linearly independent.
Thus

⋂
K has codimension |K|, and we conclude that |K| ≤ 2.

Now suppose for the sake of contradiction that |K| < 2. If K is a singleton, then let
H ′ be its unique element. In this case H ′ cuts H . Choose Σ to be the shard in H that
is weakly below H ′. Thus the minimal element J (Σ) of U(Σ) is weakly below H ′.

1The equivalence of condition (i) of Lemma 3.11 and condition (i) of [30, Lemma 3.9] is explained in the
first paragraph of the proof of [30, Lemma 3.9].
2Unfortunately, the statement of [34, Lemma 4.6] is different enough that we must prove Lemma 3.12,
rather than simply quoting [34, Lemma 4.6].
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Fig. 6 A figure for the proof of
Lemma 3.13

Let H ′′ ∈ (B \ K). Since H ′′ does not cut H , and since H contains exactly two shards,
there is some element of U(Σ) that is weakly below H ′′. Thus the minimal element
J (Σ) of U(Σ) is weakly below H ′′. But now J (Σ) is a region weakly below every
hyperplane in B, so that J (Σ) must be B . This is a contradiction, since B is not
join-irreducible.

If K is empty, then let Σ be either of the two shards in H . Arguing as in the
previous paragraph, we see that J (Σ) is weakly below every hyperplane in B and
reach the same contradiction. �

For any H ∈ A, the depth of H is the minimum cardinality of the separating set
of a region separated from B by H . Suppose J ∈ R has H ∈ S(J ) and |S(J )| =
depth(H). If J covers two or more other regions, at most one of those regions is
separated from J by H , and thus it is possible to go down in the poset of regions while
remaining separated from B by H . This contradiction proves that any region J with
H ∈ S(J ) and |S(J )| = depth(H) must be join-irreducible in (R,≤). Furthermore,
J is separated from J∗ by H . The following lemma makes possible an argument by
induction on depth in the proof of Lemma 3.14.

Lemma 3.13 If H is not a basic hyperplane of A then there exists a rank-two full
subarrangement A′ containing H such that both basic hyperplanes of A′ have depth
strictly smaller than the depth of H .

Proof Suppose H is not a basic hyperplane of A and let J be any region with
H ∈ S(J ) and |S(J )| = depth(H). Then Lemma 3.11 says that there is a facet of
Σ(J ) intersecting J in dimension dim(V ) − 2. This intersection of J with a facet of
Σ(J ) is some codimension-2 face F of F . The set of hyperplanes in A containing F

is a rank-two full subarrangement A′. Figure 6 represents A′ and the set of A-regions
containing F . Since the intersection

⋂
A′ of the hyperplanes in A′ contains a facet

of Σ(J ), in particular H is not basic in A′. We claim that both basic hyperplanes H1

and H2 of A′ have depth strictly less than the depth of H . Since the region J con-
tains F , there is an A-region R whose separating set (as an A-region) is S(J ) \ A′.
The region R is covered by regions R1 and R2, also containing F and having re-
spectively H1 ∈ S(R1) and H2 ∈ S(R2). Since J only covers one other region, and
that cover is through H (not through H1 or H2), we have J /∈ {R1,R2}. In particu-
lar, |S(J )| > |S(R1)|. But depth(H1) ≤ |S(R1)|, so depth(H) = |S(J )| > depth(H1).
Similarly, depth(H) > depth(H2). �
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The following two lemmas are the key technical ingredients in the proof of Propo-
sition 4.4, which is crucial in the proofs in Sect. 4. They are roughly converse to each
other.

Lemma 3.14 Let A′ be a full subarrangement of A and let H ∈ (A \ A′). Let K be
the set of basic hyperplanes of A′ which are not cut by H . Let H ′ ∈ (A′ \ (A′)K).
Then there exists a hyperplane H ′′ ∈ (A \ A′) with H ′′ ∩ (

⋂
A′) = H ∩ (

⋂
A′) such

that H ′′ cuts H ′.

Proof We prove the lemma by reducing it to successively weaker statements. First,
we weaken the conclusion of the lemma by removing the requirement that H ′′ ∩
(
⋂

A′) = H ∩ (
⋂

A′).

Weaker Assertion 1 Let A′ be a full subarrangement of A and let H ∈ (A \ A′). Let
K be the set of basic hyperplanes of A′ which are not cut by H . Let H ′ ∈ (A′ \(A′)K).
Then there exists a hyperplane H ′′ ∈ (A \ A′) that cuts H ′.

Given Weaker Assertion 1, the full lemma can be proved as follows: Let A′′ be the
smallest full subarrangement of A containing A′ and H . This is the set of hyperplanes
in A which contain H ∩ (

⋂
A). By Weaker Assertion 1 (with A′′ replacing A), there

exists a hyperplane H ′′ ∈ (A′′ \ A′) such that H ′′ cuts H ′. Then H ′′ ∩ (
⋂

A′) =
H ∩ (

⋂
A′) = ⋂

A′′.
Next we strengthen the hypotheses by requiring that H ′ is not contained in any

proper standard subarrangement of A′. Assuming this additional hypothesis, the re-
quirement that H ′ /∈ (A′)K is equivalent to the requirement that some basic hyper-
plane of A′ is cut by H .

Weaker Assertion 2 Let A′ be a full subarrangement of A. Let H be a hyperplane
in (A \ A′) which cuts some basic hyperplane of A′. Let H ′ be a hyperplane in A′
that is not contained in any proper standard subarrangement of A′. Then there exists
a hyperplane H ′′ ∈ (A \ A′) which cuts H ′.

Given Weaker Assertion 2, we prove Weaker Assertion 1 as follows. Assuming
the hypotheses of Weaker Assertion 1, let (A′)K′ be the smallest proper standard sub-
arrangement of A′ with H ′ ∈ (A′)K′ . Then H ′ is not contained in any proper standard
parabolic subgroup of (A′)K′ . The assumption that H ′ ∈ (A′ \ (A′)K) implies that
some basic hyperplane of (A′)K′ is cut by H . Thus Weaker Assertion 2 applies, with
A′ replaced by (A′)K′ , and asserts that there exists a hyperplane H ′′ ∈ (A \ (A′)K′)
such that H ′′ cuts H ′. Now Lemma 3.9 says that H ′′ ∈ (A \ A′).

Our final weakening of the statement specializes the hypotheses to a very special
case: the case where the rank of A is three and the rank of A′ is two. When A′ has
rank two, the hyperplane H ′ is in a proper standard subarrangement of A′ if and only
if H ′ is one of the two basic hyperplanes of A′.

Weaker Assertion 3 Let A be an arrangement of rank three and let A′ be a full
rank-two subarrangement of A. Let H be a hyperplane in (A \ A′) which cuts some
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basic hyperplane of A′. Let H ′ be a non-basic hyperplane in A′. Then there exists a
hyperplane H ′′ ∈ (A \ A′) which cuts H ′.

Given Weaker Assertion 3, we now prove Weaker Assertion 2 by induction on the
depth of H ′ in A′. Assume the hypotheses of Weaker Assertion 2 and let d be the
depth of H ′ in A′. If d = 1 then, since H ′ is not contained in any proper standard
parabolic subgroup of A′, the rank of A′ is one and H ′ is the unique basic hyperplane
of A′. Thus since H cuts some basic hyperplane of A′, Weaker Assertion 2 holds with
H ′′ = H .

If d > 1, then by Lemma 3.13, there is a full rank-two subarrangement Ã′ of A′
containing H ′, such that the basic hyperplanes H1 and H2 of Ã′ both have strictly
smaller depth than H ′. Let (A′)K1 be the smallest standard subarrangement contain-
ing H1 and let (A′)K2 be the smallest standard subarrangement containing H2. (Pos-
sibly (A′)K1 = A′ or (A′)K2 = A′ or both.) The union K1 ∪ K2 must be B′, the set of
all basic hyperplanes of A′; otherwise, H1 and H2 are contained in the same proper
standard subarrangement of A′ and then H ′ is also contained in the same proper
standard subarrangement. In particular, without loss of generality, H cuts some ba-
sic hyperplane of (A′)K1 . Also, H1 is not in any proper standard subarrangement of
(A′)K1 , since (A′)K1 is the smallest standard subarrangement of A′ containing H1.

By induction on d , there exists a hyperplane H̃ ∈ (A \ (A′)K1) cutting H1. By
Lemma 3.9, H̃ ∈ (A \ A′), because no hyperplane in A′ \ (A′)K1 cuts H1 ∈ (A′)K1 .
Consider the full subarrangement Ã of A consisting of hyperplanes containing H̃ ∩
(
⋂

Ã′). By Weaker Assertion 3, (with A, A′ and H replaced by Ã, Ã′ and H̃ ), there
exists a hyperplane H ′′ ∈ (Ã \ Ã′) which cuts H ′. If H ′′ ∈ A′, then the entire rank-
three full subarrangement Ã is contained in A′, contradicting the fact that H̃ ∈ A \ A′.
Thus H ′′ ∈ A \ A′.

We have shown that Weaker Assertion 3 implies Weaker Assertion 2. We complete
the proof of the lemma by proving Weaker Assertion 3. First, A′ cannot be a standard
subarrangement of A, because if so, Lemma 3.9 would imply that no hyperplane of
A′ is cut by H , contradicting the hypothesis that some basic hyperplane of A′ is cut
by H . Now Lemma 3.12 implies that H ′ is cut by some hyperplane H ′′ besides the
basic hyperplanes of A′. Necessarily H ′′ ∈ (A \ A′). �

Lemma 3.15 Let A′ be a full subarrangement of A and let H ∈ (A \ A′). Suppose
H cuts some hyperplane H ′ ∈ A′. Then there exists a hyperplane H ′′ ∈ (A \ A′) with
H ′′ ∩ (

⋂
A′) = H ∩ (

⋂
A′) such that H ′′ cuts some basic hyperplane of A′.

Proof Exactly as in the proof of Lemma 3.14, it is enough to prove the weaker asser-
tion where the requirement H ′′ ∩ (

⋂
A′) = H ∩ (

⋂
A′) is removed from the conclu-

sion.
Let B be the set of basic hyperplanes of A and let B′ be the set of basic hyper-

planes of A′. We first claim that B′ �⊆ B. Supposing to the contrary that B′ ⊆ B,
the full subarrangement A′ is the standard subarrangement A B′ . But in this case, by
Lemma 3.9, H ′ is not cut by any hyperplane in A′ \ (A B′). This contradiction proves
the claim.



500 J Algebr Comb (2011) 33: 483–530

The claim can be restated: There exists a basic hyperplane H ′′′ of A′ that is not
basic in A. By Lemma 3.11, H ′′′ is cut by some hyperplane H ′′ in A. But since H ′′′
is basic in A′, Lemma 3.11 implies that H ′′ ∈ (A \ A′). �

4 Intersections of shards

In this section, we consider the set Ψ (A,B) of arbitrary intersections of shards and
the lattice (Ψ (A,B),⊇), consisting of the elements of Ψ (A,B) partially ordered by
reverse containment. The space V is in Ψ (A,B) by convention: it is the intersection
of the empty set of shards. When it does not cause confusion, we write Ψ instead
of Ψ (A,B). The main result of this section is that the set Ψ is in bijection with the
set R of regions of A, so that the lattice (Ψ,⊇) can be thought of as a partial order
on R. (Recall that, throughout, A is assumed to be simplicial.)

Example 4.1 This is a continuation of Example 3.1. When A consists of five lines
through the origin in R

2, the set Ψ consists of ten cones, namely the origin, the eight
shards shown in Fig. 1c, and the whole space R

2.

Example 4.2 This is a continuation of Examples 2.2 and 3.2. When A is the Coxeter
arrangement A(S4) in R

3, the elements of Ψ are the origin, eleven one-dimensional
cones (three of which are entire lines), the eleven shards shown in Fig. 4 and the
whole space R

3. Each cone intersects the unit sphere in one of six ways: an empty
intersection, a single point, a pair of antipodal points, an arc of a great circle, a great
circle, or the entire sphere. Figure 7 depicts these intersections in stereographic pro-
jection. Thus the shards are shown as circles or circular arcs and the one-dimensional
shards are pictured as points or pairs of points. A white dot indicates a point which
is paired with its antipodal point. (To find antipodal points, note that any two of the
circles shown intersect in a pair of antipodal points.)

Since each shard is a convex cone, the elements of Ψ are all convex cones. Each
shard is a union of codimension-1 faces of the fan F = F (A). Thus an intersection
of shards is an intersection of unions of faces. Distributing the intersection over the
union, and keeping in mind that the intersection of shards is a convex cone, we have
the following:

Proposition 4.3 If Γ ∈ Ψ has dimension d then Γ is a union of (closed) d-
dimensional faces of the fan F .

The key fact about shard intersections is the observation that a cone in Ψ can be
recovered from any of the full-dimensional faces it contains. Given a face F ∈ F ,
define a cone Γ (F) ∈ Ψ as follows: Let [Q,R] be the interval in the poset of regions
(R,≤) corresponding to F . Then Γ (F) = ⋂ {Σ(P � R) : Q ≤ P � R}.

Proposition 4.4 If F ∈ F and Γ ∈ Ψ have dim(F ) = dim(Γ ) and F ⊆ Γ then Γ =
Γ (F). Furthermore Γ is the intersection of all shards containing F .
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Fig. 7 Ψ in the example
A = A(S4)

Proof By Proposition 2.6, each shard in {Σ(P � R) : Q ≤ P � R} contains a differ-
ent facet of R, and the number of covers in {(P � R) : Q ≤ P � R} is the codimen-
sion of F . Thus Γ (F) contains F and has the same dimension as F . Furthermore, the
subspace U = ⋂ {H(P � R) : Q ≤ P � R} is the smallest subspace containing F .
Since F is a full-dimensional subset of Γ , U is also the smallest subspace contain-
ing Γ .

Proposition 2.9 states that the hyperplanes {H(P � R) : P � R} are the basic hy-
perplanes of a full subarrangement. The set {H(P � R) : Q ≤ P � R} is weakly
smaller than {H(P � R) : P � R}, so {H(P � R) : Q ≤ P � R} is the set of basic
hyperplanes of a weakly smaller full subarrangement A′ consisting of all hyperplanes
containing U . Let B′ be this set of basic hyperplanes of A′.

Since Γ ∈ Ψ , we can write Γ = ⋂ {Σ1, . . . ,Σk} for some shards Σi . Alternately,
the cone Γ is obtained as follows: We cut U along every hyperplane not contain-
ing U that cuts any hyperplane H(Σi) for the defining shards Σi . Each of the re-
sulting pieces is a union of faces of F . The piece containing F is Γ . Similarly,
Γ (F) = ⋂ {Σ(P � R) : Q ≤ P � R} is obtained from U by cutting U along every
hyperplane not containing U that cuts any of the hyperplanes in B′. Again, the piece
containing F is Γ (F). To prove that Γ (F) = Γ , we show that both of these cutting
schemes cut U in exactly the same way.

On the one hand, suppose there exists a hyperplane H ∈ A \ A′ cutting some
H(Σi). By Lemma 3.15, there exists a hyperplane H ′ ∈ A \ A′ which cuts a hy-
perplane in B′, with H ∩ U = H ′ ∩ U . On the other hand, suppose a hyperplane
H ∈ A \ A′ cuts some hyperplane in B′. Then the intersection of the basic hyper-
planes of A′ which are not cut by H is strictly larger than U . In particular, since
U = ⋂ {H(Σ1), . . . ,H(Σk)}, there is some hyperplane H(Σi) which does not con-
tain the intersection of the basic hyperplanes of A′ which are not cut by H . By
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Lemma 3.14, with H ′ = H(Σi), there exists a hyperplane H ′′ cutting H(Σi) such
that H ′′ ∩ U = H ∩ U .

We have proved the first assertion of the proposition. Now, let Γ ′ be the intersec-
tion of all shards containing F . Then F ⊆ Γ ′ ⊆ Γ , so F is a full-dimensional face
contained in Γ ′, and by the first statement of the proposition, Γ ′ = Γ (F) = Γ . �

The number of covers in {(P � R) : Q ≤ P � R} is the codimension of F . Thus
if Γ has codimension d then Proposition 4.4 expresses Γ as the intersection of d

distinct shards. Call these shards the canonical shards containing Γ . Note that the
choice of canonical shards containing Γ is well-defined: Any choice of F in Propo-
sition 4.4 yields a set of codim(Γ )-many shards contained in the basic hyperplanes
of full subarrangement A′ = {H ∈ A : Γ ⊆ H }. There is a unique such set of shards
whose intersection is Γ .

Proposition 4.5 If Γ ∈ Ψ then any face of Γ is in Ψ .

Proof We begin by showing that any facet of a shard Σ is in Ψ . The facet C is the
intersection of Σ with some hyperplane H1 that cuts the hyperplane H ′ = H(Σ).
Then H1 is a basic hyperplane of the rank-two full subarrangement A′ containing
H ′ and H1. Let H2 be the other basic hyperplane of A′. Since H1 cuts H ′, we know
that H2 �= H ′.

Let F be a face of F with F ⊆ C and dim(F ) = dim(C). The intersection Γ (F)

of all shards containing F is contained in Σ , because Σ contains F . Since Γ (F) is a
convex polyhedral cone contained in Σ and the linear span of Γ (F) equals the linear
span of the face C of Σ , we conclude that Γ (F) ⊆ C.

Proposition 4.4 implies that the shard intersections contained in C are the pieces
obtained by cutting the subspace

⋂
A′ along all hyperplanes that cut either H1 or H2.

Thus if Γ (F) is properly contained in C then there exists a hyperplane H ∈ (A \ A′)
which cuts either H1 or H2 and intersects the relative interior of C. Then Lemma 3.14
states that there exists a hyperplane H ′′ ∈ (A \ A′) with H ′′ ∩ (

⋂
A′) = H ∩ (

⋂
A′)

such that H ′′ cuts H ′. But then H ′′ intersects the relative interior of C as well and,
since H ′ = H(Σ), H ′′ intersects the relative interior of Σ . This contradicts that fact
that Σ is a single shard. By this contradiction, we conclude that the containment
Γ (F) ⊆ C is in fact equality. In particular C ∈ Ψ .

Next we observe that any facet of a cone Γ ∈ Ψ is in Ψ . Write Γ = ⋂ {Σ1, . . . ,Σk}
where Σ1, . . . ,Σk are the canonical shards containing Γ . Then Γ is the subset of the
subspace

⋂ {HΣ1, . . . ,HΣk
} defined by all of the facet-defining inequalities of all the

shards Σi . In particular, a facet C of Γ is defined by some facet-defining inequality
for a facet of some Σi . Thus, by the special case already proved, C is the intersection
of Γ with some shard intersection, so that F ∈ Ψ .

Finally, if F is a lower-dimensional face of Γ , it is the intersection of a set of
facets of Γ , and thus F ∈ Ψ as well. �

Proposition 4.6 Let Γ ∈ Ψ . Then there is a unique minimal subset K of B such that
Γ is an intersection of shards contained in hyperplanes in A K . The minimal face of
Γ is

⋂
K.
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Proof If Γ can be expressed as an intersection of shards contained in hyperplanes in
A K , then Lemma 3.9 says that

⋂
K ⊆ Γ . Since Γ is a convex cone, there is a unique

minimal K ⊆ B such that
⋂

K ⊆ Γ . Then every shard containing Γ also contains⋂
K, so H(Σ) contains

⋂
K, or in other words, H(Σ) ∈ A K . Thus the minimal K

with
⋂

K ⊆ Γ is the desired subset.
To show that

⋂
K is the minimal face of Γ , it is enough to consider the spe-

cial case where Σ is a shard. Indeed, given the special case, an intersection Γ =
Σ1 ∩ · · · ∩ Σk of shards has as its minimal face some intersection of subspaces
(
⋂

A K1) ∩ · · · (⋂ A Kk
) where A Ki

is the minimal subset of B such that Σ is
contained in a hyperplane in AKi

. Then (
⋂

A K1) ∩ · · · (⋂ A Kk
) = ⋂

A K , where
K = K1 ∪ · · · ∪ Kk is the minimal subset of B such Γ is an intersection of shards
contained in hyperplanes in AK .

We now reduce the special case to an even more special case. Let Σ and K be as
in the special case. Lemma 3.9 says that Σ ⊇ (

⋂
K). Lemma 3.9 says, furthermore,

that Σ is obtained by cutting a hyperplane containing
⋂

K along its intersections
with other hyperplanes containing

⋂
K. By Lemma 3.8, we can ignore the rest of

A, or in other words, reduce to the case where AK = A, or equivalently K = B.
Thus we need only show that, when H(Σ) is not contained in any proper standard
subarrangement,

⋂
A is a face of Σ .

Suppose for the sake of contradiction that
⋂

A is not a face of Σ . The minimal
face of any polyhedral cone is a subspace. Let U be the minimal face of Σ and let
A′ be the full subarrangement consisting of hyperplanes in A containing U . Since
U � (

⋂
A), we have A′

� A. Since U is the minimal face, both H(Σ) and every
hyperplane cutting H(Σ) is in A′. Because H(Σ) is not contained in any proper
standard subarrangement, at least one basic hyperplane of A′ is not basic in A. Thus
by Lemma 3.11, there is a hyperplane H in A \ A′ that cuts some basic hyperplane
of A′. Now Lemma 3.14 (or, more conveniently, Weaker Assertion 2 in the proof
of Lemma 3.14) implies that some hyperplane in A \ A′ cuts H(Σ). In particular,
U �⊆ Σ , and this contradiction shows that

⋂
A is a face of Σ . �

The lattice of shard intersections is the set Ψ partially ordered by reverse contain-
ment. The unique minimal element of (Ψ,⊇) is the empty intersection, interpreted as
the entire space V . The unique maximal element is the intersection of the set of all
shards. This maximal element coincides with

⋂
A. The poset (Ψ,⊇) is a lattice. The

join operation is intersection, and since the poset also has a unique minimal element,
meets can be defined in the usual way in terms of joins: Γ1 ∧ Γ2 is the intersection of
all shards Σ such that Γ1 ⊆ Σ and Γ2 ⊆ Σ .

We now show that (Ψ,⊇) is in fact a partial order on the set R of regions of A, by
giving an explicit bijection between R and Ψ . Define a map ψ : R → Ψ sending R

to the intersection of the lower shards of R. In light of Theorem 3.6, ψ(R) is the
intersection of all shards Σ(J ) such that J is a canonical joinand of R in (R,≤).
Define a map ρ : Ψ → R by setting ρ(Γ ) = ∨

Σ⊇Γ J (Σ), with the join taken in the
poset of regions (R,≤).

Proposition 4.7

(i) ψ is a bijection from R to Ψ with inverse map ρ.
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(ii) ρ is an order-preserving map from (Ψ,⊇) to the poset of regions (R,≤).
(iii) The number of lower hyperplanes of R ∈ R equals the codimension of ψ(R).

Proof We first show that ψ : R → Ψ is surjective. Let Γ be a d-dimensional cone
in Ψ , and let F be a d-dimensional face of F contained in Γ . Then by Proposi-
tion 4.4, Γ = ⋂ {Σ(P � R) : Q ≤ P � R} for some Q and R in R. The canonical
join representation of R is {J (P � R) : P � R} = {J (Σ(P � R)) : P � R}. Thus the
smaller set {J (Σ(P � R)) : Q ≤ P � R} is the canonical join representation of some
element R′. We have Γ = ψ(R′).

We next show that ρ ◦ ψ is the identity map on R. Given R ∈ R, we have R =∨
J∈Can(R) J in (R,≤). Thus since ψ(R) ⊆ Σ(J ) for each J ∈ Can(R), it is enough

to show that for any shard Σ containing ψ(R), we have J (Σ) ≤ R. But for each
J ∈ Can(R), the shard Σ(J ) contains a facet of the region R. Thus ψ(R) contains
the face F of R obtained by intersecting the facets of R separating R from regions Q

having Q�R. By Proposition 2.6, the set {P ∈ R : P ⊇ F } is an interval I in (R,≤),
and R is the maximal element of I . Now, given any shard Σ containing ψ(R), in
particular Σ contains F , so there is a region P ∈ U(Σ) such that P contains F . Thus
P ∈ I so that in particular P ≤ R. But since J (Σ) is the unique minimal element of
U(Σ), we conclude that J (Σ) ≤ R.

Since ψ is surjective and ρ ◦ ψ is the identity map on R, the map ψ is a bijection
from R to Ψ with inverse map ρ. This is (i).

Next we establish (ii). If Γ1 ⊇ Γ2 then in particular, the set of shards Σ such
that Σ ⊇ Γ1 is contained in the set of shards Σ such that Σ ⊇ Γ2 and therefore
ρ(Γ1) ≤ ρ(Γ2).

The codimension of ψ(R) is the size of the canonical join representation of R,
which equals the number of lower hyperplanes of R by Theorem 3.6. This is (iii). �

Example 4.8 This is a continuation of Examples 2.2, 3.2, and 4.2. In Fig. 7, each
region R appears as a curvilinear triangle. The cone ψ(R) is the intersection of the
shards containing the concave edges of the triangle.

The lattice induced on R, via the bijection of Proposition 4.7, from (Ψ (A,B),⊇)

is denoted by (R,�) or (R(A),�B). We call (R,�) the shard intersection order
on R. The unique minimal element of (R,�) is B , and the unique maximal element
is −B . We emphasize that � corresponds to ⊇, not to ⊆. We also emphasize that
the partial orders (R,≤) and (R,�) are distinct. By Proposition 4.7(ii), the shard
intersection order (R,�) is a weaker order than the poset of regions (R,≤).

Example 4.9 This is a continuation of Examples 3.1 and 4.1. (See Fig. 1c.) When A
consists of five lines in R

2, the poset (Ψ,⊇) has R
2 as its unique minimal element and

the origin as its unique maximal element. The 8 (1-dimensional) shards are pairwise
incomparable under containment, and occur at rank 1 (i.e. codimension 1). Thus the
poset (R(A),�) has B as its unique minimal element and −B as its unique maximal
element. The other 8 regions R are pairwise incomparable and occur at rank 1.
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Fig. 8 (S4,�)

Example 4.10 Continuing Examples 2.2, 3.2, 4.2 and 4.8, the lattice (R,�) is shown
in Fig. 8 for the Coxeter arrangement A(S4). The elements of (R,�) are labeled by
the corresponding permutations, as shown in Fig. 2.

5 Properties of the shard intersection order

In this section, we establish some basic properties of the shard intersection order for
a simplicial hyperplane arrangement. It will be convenient to pass freely between
(R,�) and (Ψ,⊇).

Proposition 5.1 The lattice (R,�) is graded, with the rank of R ∈ R equal to the
number of lower hyperplanes of R. Alternately, the rank of Γ ∈ Ψ is the codimension
of Γ .

Proof The minimal element V of (Ψ,⊇) has codimension zero. Suppose Γ ⊇ Γ ′
in (Ψ,⊇). Let F ′ be some full-dimensional face in Γ ′. By Lemma 2.10, there
is a face F of F which is full-dimensional in Γ , such that F ′ is a face of F .
If dim(Γ ) = dim(Γ ′), then F = F ′, so Γ = Γ (F ′) = Γ ′ by Proposition 4.4. If
dim(Γ ) > dim(Γ ′) + 1 then dim(F ) > dim(F ′) + 1, so there is a face G of F with
F ′

� G � F , and Γ (G) is an element of Ψ with Γ ′
� Γ (G) � Γ . This proves the

first assertion, and the second assertion follows by Proposition 4.7(iii). �

Proposition 5.2 The lattice (R,�) is atomic and coatomic.

Proof It is immediate that an element of (Ψ,⊇) is join-irreducible if and only if it is
a shard. Since all of the shards are atoms, (Ψ,⊇) ∼= (R,�) is an atomic lattice.

Let k = dim(
⋂

A). We will show that every element Γ of (Ψ,⊇) of dimen-
sion at least k + 2 contains at least two distinct elements of Ψ whose dimension is
dim(Γ ) − 1. By Proposition 5.1, this implies that the only meet-irreducible elements
of (Ψ,⊇) are the coatoms.

Let Γ ∈ Ψ have dimension at least k + 2. If Γ has two or more facets, then we are
done by Propositions 4.5 and 5.1. If Γ has no facets, then Γ has no proper faces, so by
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Proposition 4.6, Γ is the subspace
⋂

K for some K ⊆ B. Furthermore |K| ≤ |B| − 2,
because Γ ∈ Ψ has dimension at least k + 2. Let H1 and H2 be distinct hyperplanes
in B \ K. Both H1 and H2 are shards by Lemma 3.11. Thus Γ ∩ H1 and Γ ∩ H2
are distinct shard intersections of dimension dim(Γ ) − 1. If Γ has one facet, then Γ

has exactly one proper face F . By Proposition 4.6, F is the subspace
⋂

K for some
K ⊆ B with |K| ≤ |B| − 1. Let H be a hyperplane in B \ K. Then F and Γ ∩ H are
distinct shard intersections of dimension dim(Γ ) − 1. �

We omit the easy proof of the following proposition.

Proposition 5.3 If A is the direct sum of A1 and A2 then (R(A),�B) is isomorphic
to (R(A1),�B1) × (R(A2),�B2), where Bi is the Ai -region containing B , for i =
1,2.

As a special case of Proposition 5.3, if W is a reducible finite Coxeter group with
W ∼= W1 × W2, then the shard intersection order on W is isomorphic to the product
of the shard intersection orders on W1 and W2.

For each R ∈ R, define L(R) = ∧ {P : P � R}. This is the maximal element in
(R,≤) which is below R but which does not contain any lower hyperplane of R in
its separating set.

Proposition 5.4 The map Γ �→ −Γ is an automorphism of (Ψ,⊇).

Proof The operation of cutting a hyperplane into shards has antipodal symmetry, so
that Σ �→ −Σ is an involution on the set of shards. Thus Γ �→ −Γ is an involution
on Ψ . The map is also containment-preserving, so it is an automorphism. �

We now explain the relationship between the shard intersection poset (Ψ,⊇)

and two other geometrically defined lattices associated to A: the intersection lattice
(Int(A),⊇) of A and the face lattice (F (A),⊆) of the fan F (A) associated to A. For
convenience, we think of the whole space V as a face of the fan F . (Alternately, we
may work with the zonotope that is dual to F and take the usual convention that the
empty set is a face of any polytope.)

Any order-preserving map η : P → Q defines a relation on the set P̄ =
{η−1(q) : q ∈ Q} of fibers of η as follows: Set F1 ≤P̄ F2 if there exist a ∈ F1 and
b ∈ F2 such that a ≤P b. If ≤P̄ is a partial order on P̄ , then (P̄ ,≤P̄ ) is called the
fiber poset3 of the map η : P → Q.

Given a face F ∈ F , recall that Γ (F) is the intersection of all shards containing F .
Given a set X ⊆ V , let U(X) be the subspace obtained as the intersection of all
hyperplanes in A containing X.

Proposition 5.5 The intersection lattice (Int(A),⊇) is isomorphic to the fiber poset
of U : Ψ → Int(A). The lattice (Ψ,⊇) is anti-isomorphic to the fiber poset of Γ :
F → Ψ .

3Often this poset is called the quotient of P with respect to η. However, because lattice-theoretic quotients
play a prominent role in what follows, we prefer the term fiber poset.
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The proof of Proposition 5.5 is simple. We borrow some terminology from [29].
An order projection is an order-preserving map η : P → Q, with the following prop-
erty: For all x ≤ y in Q, there exist a ≤ b ∈ P with η(a) = x and η(b) = y. In
particular, an order projection is surjective.

When an order-preserving map η : P → Q has the property that ≤P̄ is a par-
tial order, there is a surjective order-preserving map ν : P → P̄ given by ν : a �→
η−1(η(a)), and an injective order-preserving map η̄ : P̄ → Q such that η = η̄ ◦ ν.
The following easy fact about order projections appears as [29, Proposition 1.1].

Proposition 5.6 Let η : P → Q be an order projection. Then

(i) The relation ≤P̄ is a partial order, and
(ii) η̄ is an isomorphism of posets

Proof of Proposition 5.5 The map U is order-preserving and we show that it is an
order projection. Given U1 ⊇ U2 in Int(A), choose a face G of F contained in U2

having full dimension in U2. By Lemma 2.10, there is a face F with G ⊆ F ⊆ U1

such that F is full-dimensional in U1. Then Γ (F) ⊇ Γ (G), U(Γ (F )) = U1 and
U(Γ (G)) = U2. Thus U is an order projection, so we apply Proposition 5.6 to obtain
the first assertion.

The proof of the second assertion is very similar, except that the map Γ is order-
reversing. Let Γ1 ⊇ Γ2 in Ψ , choose a face G of F contained in Γ2 having full
dimension in Γ2. Since Γ1 ⊇ Γ2, Lemma 2.10 says that there is a face F with G ⊆
F ⊆ Γ1 such that F is full-dimensional in Γ1. Then by Proposition 4.4, Γ (F) = Γ1

and Γ (G) = Γ2. Thus Γ is an order projection from F to the dual of (Ψ,⊇), so
we apply Proposition 5.6 to see that the fiber poset of Γ : F → Ψ is isomorphic to
(Ψ,⊆), the dual of (Ψ,⊇). �

For any Q,R ∈ R with Q ≤ R, let I (Q,R) = {J (P � P ′) : Q ≤ P � P ′ ≤ R}.

Proposition 5.7 Let Q,R ∈ R. Then Q � R if and only if I (L(Q),Q) ⊆
I (L(R),R).

Proof For any R ∈ R, the interval [L(R),R] coincides with {P ∈ R : P ⊇ F },
where F is the intersection of R with all regions R′ such that R′

� R. The cone
ψ(R) contains F and dim(F ) = dim(ψ(R)). Thus by Proposition 4.4, a shard Σ

contains ψ(R) if and only if it contains F . But Σ contains F if and only if it sepa-
rates two adjacent cones P and P ′ with P,P ′ ∈ [L(R),R]. Thus the sets I (L(R),R)

and {J (Σ) : ψ(R) ⊆ Σ} coincide.
By definition, Q � R if and only if ψ(Q) ⊇ ψ(R). This holds if and only if the

set of shards {Σ : ψ(Q) ⊆ Σ} is contained in the set of shards {Σ : ψ(R) ⊆ Σ}. The
latter occurs if and only if I (L(Q),Q) ⊆ I (L(R),R). �

Proposition 5.8 If R ∈ R, then the lower interval [1,R] in (R(A),�B) is isomor-
phic to (R(A′),�B ′), where A′ is the full subarrangement of A consisting of hyper-
planes containing

⋂
Lower(R), and B ′ is the A′-region containing B .
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Proof The lower interval [1,R] corresponds to the lower interval [V,ψ(R)] in
(Ψ,⊇). The face G = R ∩ ⋂

Lower(R) of F is contained in ψ(R) and is full-
dimensional in ψ(R). By Proposition 4.4, ψ(R) is the intersection of all shards con-
taining G, so a cone Γ ∈ Ψ is in [V,ψ(R)] if any only if it contains G. In light of
Lemma 3.8, taking x to be a point in the relative interior of G, the shards of (A′,B ′)
coincide, in a small neighborhood of x, with the shards of (A,B) containing G. This
coincidence defines a bijection Γ �→ Γ ′ from the interval [V,ψ(w)] in (Ψ (A,B),⊇)

to the poset (Ψ (A′,B ′),⊇). We show that this bijection is an isomorphism of posets.
Let Γ1,Γ2 ∈ Ψ (A,B) have Γ1 ⊇ G and Γ2 ⊇ G.

Suppose Γ1 ⊇ Γ2. We use Proposition 4.3 and Lemma 2.10 to find faces
F1,F2 ∈ F with F1 ⊇ F2 ⊇ G such that F1 is contained full-dimensionally in Γ1
and F2 is contained full-dimensionally in Γ2. Furthermore, Γ1 is the intersection of
all shards containing F1 and Γ2 is the intersection of all shards containing F2. Let F ′

1
be the face of F (A′) such that F1 ⊆ F ′

1 and dim(F ′
1) = dim(F1). Define F ′

2 similarly.
By Proposition 4.4, Γ ′

1 is the intersection of all shards of A′ containing F ′
1 and Γ ′

2 is
the intersection of all shards of A′ containing F ′

2. Since F ′
1 ⊇ F ′

2, we have Γ ′
1 ⊇ Γ ′

2.
Conversely, suppose Γ ′

1 ⊇ Γ ′
2. We find faces F ′

1,F
′
2 ∈ F ′ with F ′

1 ⊇ F ′
2 such

that F ′
1 is contained full-dimensionally in Γ ′

1 and F ′
2 is contained full-dimensionally

in Γ ′
2. By Proposition 4.4, Γ ′

1 is the intersection of all shards of (A′,B ′) containing F ′
1

and Γ ′
2 is the intersection of all shards of (A′,B ′) containing F ′

2. Let F1 be the face
of F (A) such that G ⊆ F1 ⊆ F ′

1 and dim(F1) = dim(F ′
1). Define F2 similarly. By

Proposition 4.4, Γ1 is the intersection of all shards of A containing F1 and Γ2 is the
intersection of all shards of A containing F2. All the shards containing F1 or F2 also
contain G. Since F1 ⊇ F2, we have Γ1 ⊇ Γ2. �

Proposition 1.2 is a more detailed version of Proposition 5.8 in the Coxeter case.

Proof of Proposition 1.2 For any w ∈ W , let W ′ be the parabolic subgroup generated
by the set S′ = cov(w). Proposition 5.8 says that [1,w]� is isomorphic to the lattice
(W ′,�) defined with respect to the Coxeter system (W ′, S′). The Coxeter system
(W ′, S′) is isomorphic to (WJ ,J ) and Proposition 1.2 follows. �

Recall from Sect. 2 that the parabolic subset RK is the set of regions whose sepa-
rating sets are contained in AK .

Theorem 5.9 The Möbius number of (R,�) is (−1)rank(A) times the number of re-
gions in R that are not contained in any proper parabolic subset of R. Equivalently,
by inclusion–exclusion,

μ�(B,−B) =
∑

K⊆B
(−1)|K||RK|.

Proof Let ν(B,−B) be the proposed Möbius number. By Lemma 2.8, we rewrite

ν(B,−B) =
∑

K⊆B
(−1)|K|

∣∣∣∣∣

{
Q ∈ R : Q ⊇

(
(−B) ∩

⋂
K

)}∣∣∣∣∣.
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For each R ∈ R, let G(R) be the intersection of all facets of R separating R from
regions covered by R. Let A′(R) be the full subarrangement of A consisting of hy-
perplanes H ∈ A with H ⊇ G(R). By Proposition 2.9, A′(R) has basic hyperplanes
Lower(R). By Proposition 2.6, the A′(R)-regions are in one-to-one correspondence
with A-regions containing G(R). Thus by Proposition 5.8, we have

ν(B,R) =
∑

K⊆Lower(R)

(−1)|K|
∣∣∣∣∣

{
Q ∈ R : Q ⊇

(
R ∩

⋂
K

)}∣∣∣∣∣.

The map K �→ (R ∩⋂
K) is a bijection between subsets of Lower(R) and faces of R

containing G(R). Thus ν(B,R) is

∑

F∈F
R⊇F⊇G(R)

(−1)codim(F )
∣∣{Q ∈ R : Q ⊇ F }∣∣ =

∑

F∈F
R⊇F⊇G(R)

(−1)codim(F )
∑

Q∈R
Q⊇F

1.

By Theorem 2.7, any linear extension of the dual (R,≥) of the poset of regions is
a shelling order on the simplicial fan F . A standard result uses this shelling order to
obtain a partition of the faces of F into intervals in the face poset of F . The intervals
obtained are exactly the intervals [G(R),R], so for any face F of F , there exists
a unique region R such that R ⊇ F ⊇ G(R). Thus, to show that

∑
R∈R ν(B,R)

vanishes, we reverse the order of summation and obtain
∑

Q∈R

∑

F∈F
F⊆Q

(−1)codim(F )
∑

R∈R
R⊇F⊇G(R)

1 =
∑

Q∈R

∑

F∈F
F⊆Q

(−1)codim(F ).

The inner sum is zero because the face lattice of the cone Q is Eulerian, with rank
function given by dimension. �

Theorem 1.3 is a special case of Theorem 5.9. However, there is an alternate proof
of Theorem 1.3 which is interesting in comparison to the proof of Theorem 5.9: While
the proof of Theorem 5.9 relies on the fact that face lattices of polytopes are Eulerian
posets, the proof below rests on inclusion/exclusion. In other words, it rests on the
fact that the Boolean lattice is Eulerian.

Alternate Proof of Theorem 1.3 In light of Proposition 1.2, we must verify that the
following sum vanishes:

∑

w∈W

∑

J⊆Des(w)

(−1)|J ||WJ | =
∑

J⊆S

(−1)|J ||WJ |
∑

w∈W
J⊆Des(w)

1.

The inner sum is the number of maximal-length representatives of cosets of WJ in W .
This number is |W |/|WJ |, so the sum reduces to zero. �

Proposition 1.2 can also be used to give a computationally effective recursive for-
mula for counting maximal chains in (W,�), namely Proposition 1.4.
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Proof of Proposition 1.4 The number of maximal chains in (W,�) is the sum over
all coatoms w of (W,�) of the number of maximal chains in [1,w]. Every coatom w

is a maximal-length coset representative of the subgroup W〈s〉 for some unique s ∈ S.
On the other hand, for each s ∈ S, every coset of W〈s〉 has a unique maximal-length
coset representative. This representative w has rank(W) − 1 descents and thus is a
coatom of (W,�), except if w is w0, which has rank(W) descents. For each s ∈ S,
there are exactly |W |/|W〈s〉| cosets of W〈s〉, and exactly one of these cosets has w0 as
its maximal-length representative. The proposition now follows by Proposition 1.2. �

The fan F (A) defined by a central hyperplane arrangement A is dual to a zono-
tope. In fact, there is an uncountable family of zonotopes dual to F (A). We fix some
particular dual zonotope to call Z(A). We now describe the connection between the
order complex of (R,�) and a certain pulling triangulation of Z(A). This connection
is inspired by [25], in a way that is easier to explain in Sect. 8.

Given a total order of the vertices on some polytope, the pulling triangulation of
the polytope is defined recursively as follows: Let v0 be the first vertex in the total
order. Recursively triangulate each face F not containing the vertex v0, by pulling,
using the restriction of the total order to vertices in F . This triangulated polyhedral
complex is extended to a triangulation of the entire polytope by coning at the vertex
v0. In the pulling triangulation, every face of the polytope, even a face containing F ,
is triangulated by pulling, using the restriction of the total order to vertices in F .
(See [24] for more details.)

More generally, it is enough to partially order the vertices of the polytope, as long
as each face of the polytope has a unique minimal vertex in the partial order. We
define the triangulation �(A) of Z(A) to be the pulling triangulation with respect to
the dual poset of regions (R,≥).

We define a map δ from chains in (R,�) to simplices in �(A). Let χ be a chain
in (R,�). Place the vertex v0 in δ(χ) if and only if −B ∈ χ , and let χ ′ = χ \ {−B}.
If χ ′ = ∅ then δ(χ) is either ∅ or {v0}. Otherwise, let R be the maximal element of
χ ′ and let F be the unique maximal face of Z(A) such that R is dual to the top vertex
of F in (R,≤). By Proposition 5.8, there is a bijection between elements of [B,R]�
and vertices of F . We inductively map the chain χ ′ to a simplex in the triangulation
of F . This process is easily reversible. Thus:

Theorem 5.10 The map δ is a dimension-preserving bijection between the order
complex of (R,�) and the pulling triangulation �(A).

In particular, the two complexes have the same f -vector.

Example 5.11 Figure 9 depicts a stage in the construction of �(A) in the case A =
A(S4), in the same stereographic projection employed in previous figures. The labels
and solid black lines show the 1-skeleton of the polyhedral subcomplex obtained by
removing all faces containing the vertex v0 (labeled by 4321) from Z(A). The dotted
gray lines illustrate the recursive triangulation of the subcomplex. Combinatorially,
�(A) is the cone over the two-dimensional simplicial complex shown. Theorem 5.10
says that the 34 maximal chains of (Ψ,�) correspond to (cones over the) 34 triangles
shown in the figure.
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Fig. 9 A stage in the construction of �(A(S4))

6 Shards and lattice congruences

In this section, we provide background information about congruences of a finite
lattice. In particular, we describe the connection between shards and lattice congru-
ences of the poset of regions (R,≤). (As mentioned in Sect. 2, the poset of regions
is a lattice because of our assumption that A is simplicial.) We emphasize that we are
studying lattice congruences on the poset of regions (R,≤), not on the shard inter-
section order (R,�). Indeed, it appears that in general the shard intersection order
has no interesting lattice congruences.

A congruence on a lattice L is an equivalence relation on L such that x1 ≡ x2 and
y1 ≡ y2 implies that (x1 ∧ y1) ≡ (x2 ∧ y2) and (x1 ∨ y1) ≡ (x2 ∨ y2). We use the
symbol Θ to represent a typical lattice congruence, and write [x]Θ for the Θ-class
of x ∈ L. The poset Con(L) of all congruence relations on a finite lattice L, partially
ordered by refinement, is known (see e.g. [18, Theorem II.3.11]) to be a distributive
lattice.

When L is finite, congruences on L have an order-theoretic characterization which
is easily verified, or which follows from more general results in [12].



512 J Algebr Comb (2011) 33: 483–530

Proposition 6.1 An equivalence relation Θ on a finite lattice L is a congruence if
and only if the following three conditions hold:

(i) Each Θ-class is an interval in L.
(ii) The downward projection map πΘ↓ , sending x ∈ L to the bottom element of [x]Θ ,

is order-preserving.
(iii) The upward projection map π

↑
Θ , sending x ∈ L to the top element of [x]Θ , is

order-preserving.

The lattice quotient L/Θ is the lattice whose elements are the Θ-classes, with
[x]Θ ∨ [y]Θ = [x ∨ y]Θ and [x]Θ ∧ [y]Θ = [x ∧ y]Θ . Equivalently, L/Θ is the par-
tially ordered set whose elements are the Θ-classes, with [x]Θ ≤ [y]Θ if and only if
there exists x′ ∈ [x]Θ and y′ ∈ [y]Θ with x′ ≤ y′.

Three additional facts will be useful. The first and second are known and easily
verified, and the third is [31, Proposition 2.2].

Proposition 6.2 For any congruence Θ on a finite lattice L, the lattice quotient L/Θ

is isomorphic, as a partially ordered set, to the induced subposet πΘ↓ (L) of L.

Proposition 6.3 Let L be a finite lattice and let x ∈ L have a canonical join repre-
sentation. Let Θ be a lattice congruence on L, with associated downward projection
πΘ↓ . Then x is in πΘ↓ (L) if and only if no canonical joinand of x is contracted.

Proposition 6.4 Let L be a finite lattice, let Θ be a congruence on L, and let x ∈ L.
Then the map y �→ [y]Θ restricts to a one-to-one correspondence between elements
of L covered by πΘ↓ (x) and elements of L/Θ covered by [x]Θ .

When an edge x � y in the Hasse diagram of L has x ≡ y, we say that the edge
is contracted. Proposition 6.1 says, in particular, that when L is finite, congruence
classes are intervals. Thus we can completely describe a congruence Θ on a finite
lattice L by listing the edges that are contracted by Θ .

Example 6.5 Figure 10 shows a congruence on the weak order on S4. The congru-
ence relation is depicted by shading all contracted edges. Thus the unshaded vertices
are singleton congruence classes, and the shading groups the remaining vertices into
congruence classes. This is an example of a Cambrian congruence, as we explain in
Example 8.2.

Edges cannot be contracted independently. Rather, contracting one edge may re-
quire other edges to be contracted in order to obtain a congruence. Recall that Propo-
sition 3.3 describes a bijection between shards in A and join-irreducible regions in
(R,≤). For each shard Σ , the corresponding join-irreducible region J (Σ) is the
unique minimal region (in the sense of the poset of regions) among upper regions
of Σ . For each join-irreducible region J , the corresponding shard Σ(J ) is the shard
containing the intersection of J and J∗, where J∗ is the unique region covered by J

in (R,≤). When a congruence Θ contracts J∗ � J , we say that Θ contracts J .
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Fig. 10 A Cambrian
congruence on the weak order
on S4

Proposition 6.6 Let Q � R in (R,≤). Then a lattice congruence Θ on (R,≤)

contracts Q � R if and only if it contracts J (Σ(Q � R)). Thus if Σ(Q′
� R′) =

Σ(Q � R) then Θ contracts Q � R if and only if Θ contracts Q′
� R′.

Proof The key points are the following:

(1) H(Q � R) is in S(J ) and in S(R)

(2) S(J∗) = S(J ) \ {H(Q � R)}
(3) S(Q) = S(R) \ {H(Q � R)}
(4) J ≤ R; and
(5) J∗ ≤ Q

The first three points are immediate from the hypotheses, the fourth point follows by
Proposition 3.3 and the last point follows from the first four.

These five points enable the following simple argument for the first assertion of
the proposition. If Q ≡ R modulo Θ then since Θ is a lattice congruence, we have
J∗ = Q ∧ J ≡ R ∧ J = J . Conversely, if J ≡ J∗ then R = J ∨ Q ≡ J∗ ∨ Q = Q.
The second assertion is immediate from the first. �

Proposition 6.6 says that, given a shard Σ and a congruence Θ on (R,≤) either all
of the edges associated to Σ are contracted or none of the edges associated to Σ are
contracted. When the edges associated to Σ are contracted, we say that Σ is removed
by Θ . (The reason we speak of “removing” shards rather than “contracting” shards
will become clear below, when we make the connection between lattice congruences
and fans.)

Proposition 6.6 also makes it clear that a lattice congruence Θ on (R,≤) is com-
pletely determined by the set of shards Θ removes. Equivalently, Θ is completely
determined by the set of join-irreducible elements it contracts. The latter fact is easily
proved for general finite lattices. (See for example [17, Theorem 2.30].) The key, then,
to characterizing lattice congruences is to determine which sets of join-irreducible el-
ements can be the set of join-irreducible elements contracted by a congruence.

Example 6.7 Consider a rank-two hyperplane arrangement A with k hyperplanes and
choose a base region B . The case k = 5 was considered in Examples 2.1, 3.1, and 4.1.
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Fig. 11 The shard digraph for
A(S4)

Label the regions B , −B , Q1, Q2, . . . , Qk−1, R1, R2, . . . , and Rk−1, as in Fig. 1.
Each of these regions is join-irreducible in (R,≤) except ±B .

One can verify that, for any i from 2 to k − 1, there is a congruence contracting
Qi and no other join-irreducible element. In fact, the congruence contracts no other
edge. The same is true for Ri with i from 2 to k − 1. On the other hand, suppose
some congruence Θ contracts Q1. (That is, it sets Q1 ≡ (Q1)∗ = B .) Then −B =
(Q1 ∨ R1) ≡ (B ∨ R1) = R1, and we conclude that Θ contracts all Ri with i from 2
to k − 1. Furthermore, Qk−1 = (−B ∧ Qk−1) ≡ (R1 ∧ Qk−1) = B , and we conclude
that Θ contracts all Qi with i from 2 to k − 1. Thus contracting Q1 forces all Qi

and Ri with i from 2 to k − 1 to be contracted, and one can verify that R1 is not
forced to be contracted. Similarly, contracting R1 forces the same set of additional
join-irreducibles to be contracted.

We verify Proposition 6.6 in this example. One of the two nontrivial assertions
of the proposition in this example is that a congruence sets B ≡ Q1 if and only if
it sets Rk−1 ≡ −B . The “only if” direction was already verified above, and the “if”
direction is verified by a dual argument. The other nontrivial assertion, that B ≡ R1

if and only if it sets Qk−1 ≡ −B , is proved similarly.

For congruences on (R,≤), at least some of the forcing relations among shards
have a nice geometric description. Given two shards Σ and Σ ′, say Σ → Σ ′ if H(Σ)

cuts H(Σ ′) and Σ ∩ Σ ′ has codimension 2. The digraph thus defined on shards
is called the shard digraph. The following theorem is a restatement of part of [27,
Theorem 25]. We remind the reader that throughout the paper, the arrangement A is
assumed to be simplicial.

Theorem 6.8 Suppose the shard digraph defined by (A,B) is acyclic and let X be a
set of shards. Then there exists a lattice congruence of (R,≤) contracting the shards
in X and no other shards if and only if X is an order ideal in the transitive closure of
the shard digraph.

Example 6.9 Continuing Examples 3.2 and 3.4, the transitive closure of the shard
digraph of the Coxeter arrangement A(S4) is shown in Fig. 11. (Cf. [30, Fig. 4].)
Each cover relation shown in Fig. 11 is, of course, an arrow in the shard digraph (with
arrows pointing down). In addition, the shard digraph has an arrow from Σ(2134) to
each of the four shards at the bottom rank of the poset, and an arrow from Σ(1243)

to each of the same four shards.
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The shard digraph of (A,B) can have directed cycles (see [27, Fig. 5]), so The-
orem 6.8 does not apply in general. In the motivating case of Coxeter arrangements,
the shard digraph is always acyclic [27, Proposition 28], so Theorem 6.8 applies.
When the shard digraph has cycles, the usual construction produces a poset on a set
of equivalence classes of vertices in the digraph. One naturally wonders whether,
in general, congruences of (R,≤) correspond to order ideals in the latter poset. At
present, we do not have a complete answer to this question. However, the following
fact suffices for the purposes of this paper.

Proposition 6.10 Let Θ be a congruence on (R,≤) and let X be the set of shards
removed by Θ . If Σ and Σ ′ are shards with Σ ∈ X and Σ → Σ ′, then Σ ′ ∈ X.

Proof Suppose Σ ∈ X and Σ → Σ ′, and let F be a codimension-2 face of F con-
tained in Σ ∩ Σ ′. Then Proposition 2.6 says that the set of all regions in R contain-
ing F is some interval [P,P ′] in (R,≤). By definition of the shard digraph, H(Σ)

is a lower hyperplane of P ′ and H(Σ ′) is not. The interval [P,P ′] is isomorphic to a
poset of regions of rank two. Then P and P ′ correspond to B and −B in Example 6.7.
Let the additional regions in [P,P ′] be labeled Qi and Ri as in Example 6.7. Then
one of the regions Qi or Ri with i between 2 and k − 1 is an upper region of Σ ′,
separated by Σ ′ from Qi−1 or Ri−1. Since Σ ∈ X, the restriction of Θ to [P,P ′]
contracts (without loss of generality) P ′

�Q1. As explained in Example 6.7, Θ must
contract all edges of the form Qi−1 � Qi and Ri−1 � Ri with i between 2 and k − 1.
Thus by Proposition 6.6, Θ removes Σ ′. �

For each H ∈ B, let R(H) stand for the region whose separating set is {H }. The
regions R(H) are the atoms of the poset of regions (R,≤).

Theorem 6.11 Let B be the set of basic hyperplanes of A. Let K ⊆ B and let B ′
be the A K -region containing B . Then the map R �→ RK is a lattice homomorphism
from (R(A),≤B) to (R(A K),≤B ′). The fibers of this homomorphism constitute the
finest lattice congruence of (R(A),≤B) with B ≡ R(H) for every H ∈ (B − K). This
congruence contracts exactly those shards which lie in hyperplanes not in A K .

The first assertion of Theorem 6.11 is [30, Proposition 6.3]. (Cf. [22, Lem-
mas 4.3, 4.5].) The second assertion is [30, Theorem 6.9]. The third assertion follows
immediately from the definition of RK .

Each lattice congruence Θ on (R,≤) defines a complete fan F /Θ , refined
by F . The definition of F /Θ , and all of the properties listed, are quoted from
[31, Sects. 4–5]. By definition, two maximal cones of F are in the same maximal
cone of F /Θ if and only if they are congruent mod Θ . In particular, (R,≤)/Θ is
a partial order on the maximal cones of F /Θ . For any face F ∈ (F /Θ), the set of
maximal faces of F /Θ containing F is an interval [X,Y ] in (R,≤)/Θ . Any linear
extension of (R,≤)/Θ (or of its dual) is a shelling order on the maximal cones of
F /Θ . There exists a regular CW-sphere S(F /Θ) which is dual to F /Θ , in the sense
that the two face posets are anti-isomorphic. The Hasse diagram of the lattice quotient
(R,≤)/Θ is an orientation of the 1-skeleton of S(F /Θ).
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Fig. 12 Ψ/Θ for the Cambrian
congruence Θ of Fig. 10

Let R ∈ R and let C be the maximal cone of F /Θ containing R. Then the facet-
defining hyperplanes of C consist of the lower hyperplanes of πΘ↓ (R), which sepa-
rate C from maximal cones covered by C in (R,≤)/Θ , and the upper hyperplanes
of π

↑
Θ(R), which separate C from maximal cones covering C in (R,≤)/Θ .

Shards are not mentioned in [31], but the definition of F /Θ has a straightforward
rephrasing in terms of shards: The maximal cones of F /Θ are the closures of the
connected components of V \ ⋂ {Σ : Σ is not removed by Θ}.

7 Lattice congruences and shard intersections

In this section, we define a shard intersection poset (πΘ↓ (R),�) for each lattice con-
gruence Θ on (R,≤). Furthermore, we show that the properties of (R,�) are inher-
ited by (πΘ↓ (R),�). The motivating example, where A is a Coxeter arrangement, Θ

is a Cambrian congruence, and (πΘ↓ (R),�) is the noncrossing partition lattice, is

discussed in Sect. 8. The poset (πΘ↓ (R),�) is the restriction of (R,�) to πΘ↓ (R),

the set of bottom elements of Θ-classes. We approach (πΘ↓ (R),�) via a geometri-
cally defined partial order, as we approached (R,�). Define Ψ/Θ to be the set of
intersections of shards not removed by Θ .

Example 7.1 Figure 12 depicts Ψ/Θ , where A is the Coxeter arrangement A(S4)

and Θ is the congruence of the weak order on S4 pictured in Fig. 10. The removed
shards are faded but not completely gone, to allow easy comparison with Fig. 7.
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We now show that the key properties of shard intersections (discussed in Sect. 4),
carry over to intersections of unremoved shards. We also show that (πΘ↓ (R),�) ∼=
(Ψ/Θ,⊇). Results about (πΘ↓ (R),�) then follow by simple modifications of the
proofs in Sect. 5.

Proposition 7.2 If Γ ∈ Ψ/Θ has dimension d then Γ is a union of (closed) d-
dimensional faces of the fan F /Θ .

Proof It is enough to show that each unremoved shard Σ is a union of closed codi-
mension 1 faces of F /Θ . The general statement then follows just as argued for Propo-
sition 4.3.

Suppose for the sake of contradiction that some shard Σ and some codimension-1
face F of F /Θ have an intersection that is full-dimensional in Σ and in F , but
F �⊆ Σ . Then some facet C of Σ intersects the relative interior of F , and thus there
is a hyperplane H ′ cutting H(Σ) such that H ′ intersects the relative interior of F .
Now F is a union of faces of F , since F refines F /Θ , and C is a union of faces
of F by Propositions 4.5 and 4.3. Thus their intersection is a union of faces of F , so
we can choose a face G of F (not of F /Θ) of codimension 2 contained in C and F .
This face G is also contained in H ′. Because H ′ is not cut along its intersection with
H(Σ) and since each shard in H ′ is a union of faces of F , there is a unique shard Σ ′
in H ′ containing G. We have Σ ′ → Σ in the shard digraph, so by Proposition 6.10,
Σ ′ is not removed by Θ . There is some codimension-1 face of F containing G and
contained in H ′, and since F is refined by F /Θ , there is some codimension-1 face of
F /Θ containing G and contained in H ′. But this face intersects the relative interior
of F , contradicting the fact that F /Θ is a fan. �

Consider a cover relation X � Y in (R,≤)/Θ . Since the Hasse diagram of
(R,≤)/Θ is an orientation of the dual sphere to F /Θ , X and Y are adjacent maximal
cones of F /Θ . Their intersection is a codimension-1 face of F /Θ , so Proposition 7.2
implies that X ∩ Y is contained in some shard, which we represent by the symbol
ΣΘ(X � Y).

Lemma 7.3 Let Γ ∈ Ψ/Θ and let F be a face in F /Θ with F ⊆ Γ and dim(F ) =
dim(Γ ). Let [X,Z] be the interval in (R,≤)/Θ corresponding to F . Then the set of
canonical shards of Γ is {ΣΘ(Y � Z) : X ≤ Y � Z}.

Proof Let R be the minimal region of the Θ-class represented by Z. By Proposi-
tion 6.4, the map η taking a region Q covered by R to the maximal cone of F /Θ

containing Q is a bijection between elements covered by R in (R,≤) and max-
imal cones of F /Θ covered by Z in (R,≤)/Θ . The intersection of R and Q is
contained in the intersection of Z and η(Q). Thus {ΣΘ(Y � Z) : X ≤ Y � Z} =
{Σ(P � R) : Q ≤ P � R}. �

For F ∈ F /Θ , define ΓΘ(F) = ⋂ {ΣΘ(Y � Z) : X ≤ Y � Z}, where [X,Z] is
the interval in (R,≤)/Θ corresponding to F .
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Proposition 7.4 If F ∈ F /Θ and Γ ∈ Ψ/Θ have dim(F ) = dim(Γ ) and F ⊆ Γ

then Γ = ΓΘ(F). Furthermore Γ is the intersection of all unremoved shards con-
taining F .

Proof Since F refines F /Θ , there is a face G of F with G ⊆ F and dim(G) =
dim(F ). Then by Proposition 4.4, Γ = Γ (G), the intersection of the canonical shards
of Γ . By Lemma 7.3, Γ = ΓΘ(F). The second assertion follows exactly as in the
proof of Proposition 4.4. �

Proposition 7.5 Let Γ ∈ Ψ and let Θ be a lattice congruence on (R,≤). Then Γ is
in Ψ/Θ if and only if none of its canonical shards is removed by Θ .

Proof The “if” direction follows from the definition of Ψ/Θ and the assertion of
Proposition 4.4 that Γ is the intersection of its canonical shards. The “only if”
direction follows from Lemma 7.3 and the observation that no shard of the form
ΣΘ(Y � Z), for X ≤ Y � Z, is removed by Θ , because ΣΘ(Y � Z) separates two
maximal cones of F /Θ . �

Proposition 7.6 If Γ ∈ Ψ/Θ then any face of Γ is in Ψ/Θ .

Proof The cone Γ ∈ Ψ/Θ is in particular a cone in Ψ . In the proof of Proposition 4.5,
we first showed that any facet C of any shard Σ is Γ (F) for some codimension 2
face F ∈ F . Thus C can be written as Σ1 ∩ Σ2, with each Σi contained in the ba-
sic hyperplane Hi of the rank-two full subarrangement consisting of hyperplanes
containing C. Therefore Σ1 → Σ and Σ2 → Σ in the shard digraph, and thus by
Proposition 6.10, if Θ removes Σ1 or Σ2 then Θ must remove Σ . Thus any facet C

of any unremoved shard Σ ∈ Ψ/Θ is an intersection of unremoved shards.
In the proof of Proposition 4.5, we next showed that any facet F of a cone Γ ∈ Ψ

is the intersection of the canonical shards of Γ with one additional shard Σ ′. This
additional shard Σ ′ defined a facet of one of the canonical shards of Γ , so as in the
previous paragraph, if Σ ′ is removed by Θ then some canonical shard of Γ is also
removed. Thus by Proposition 7.5, if Γ ∈ Ψ/Θ then Σ ′ is not removed by Θ so
that F is the intersection of unremoved shards, i.e. F ∈ Ψ/Θ .

The result for arbitrary faces follows just as in the proof of Proposition 4.5. �

Proposition 7.7 The map ψ restricts to a bijection from πΘ↓ (R) to Ψ/Θ . The inverse
map is the restriction of ρ to Ψ/Θ and is an order-preserving map from Ψ/Θ to the
restriction of the poset of regions to πΘ↓ (R).

Recall from Proposition 6.2 that the restriction of the poset of regions to πΘ↓ (R)

is isomorphic to the lattice quotient (R,≤)/Θ .

Proof In light of Proposition 4.7, it is enough to show that ψ maps πΘ↓ (R) into Ψ/Θ

and that ρ maps Ψ/Θ into πΘ↓ (R). Suppose R ∈ πΘ↓ (R). Then by Proposition 6.3,
none of the canonical generators of R is contracted by Θ , or equivalently none of the
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Fig. 13 (πΘ↓ (R),�) for the
Cambrian congruence Θ of
Fig. 10

shards associated to the canonical generators is removed. Thus ψ(R) is an intersec-
tion of unremoved shards.

On the other hand, let Γ be an element of Ψ/Θ , that is, an intersection of unre-
moved shards. Then by Proposition 7.5, no canonical shard of Γ is removed by Θ .
By Theorem 3.6, none of the canonical joinands of ρ(Γ ) is contracted. Thus by
Proposition 6.3, ρ(Γ ) ∈ πΘ↓ (R). �

By Proposition 7.7 and the definition of the partial order �, the map ψ is an
isomorphism between the restriction (πΘ↓ (R),�) of (R,�) and the poset (Ψ/Θ,⊇).
Since the join in (Ψ,⊇) is intersection, it is immediate from the definitions that the
induced subposet (Ψ/Θ,⊇) of (Ψ,⊇) is a join-sublattice of (Ψ,⊇). Furthermore,
(Ψ/Θ,⊇) is a lattice, since the bottom element V of (Ψ,⊇) is in (Ψ/Θ,⊇). Thus

Proposition 7.8 The poset (πΘ↓ (R),�) is a lattice and a join-sublattice of (R,�).

Example 7.9 Figure 13 shows the lattice (πΘ↓ (R),�) in the case where A = A(S4)

and Θ is the congruence of Example 6.5. See also Figs. 8, 10, and 12. For easy
comparison, (πΘ↓ (R),�) is pictured superimposed on a faded view of the full lattice
(R,�).

We now generalize the properties of (R,≤) to (πΘ↓ (R),≤).

Proposition 7.10 The lattice (πΘ↓ (R),�) is graded, with rank function equal to the

number of lower hyperplanes of R ∈ πΘ↓ (R). Alternately, the rank of a cone Γ ∈
Ψ/Θ is the codimension of Γ .

Proof Argue as in the proof of Proposition 5.1, with Proposition 7.4 replacing Propo-
sition 4.4. �

Proposition 7.11 The lattice (πΘ↓ (R),�) is atomic and coatomic.

Proof Argue as in Proposition 5.2, replacing Propositions 4.5 and 5.1 by Proposi-
tions 7.6 and 7.10. In the argument that (πΘ↓ (R),�) is coatomic, we can assume
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that Θ does not remove any of the shards which are basic hyperplanes in A. If Θ

does remove a basic hyperplane H of A, then by Theorem 6.11, we can realize
(πΘ↓ (R),�) as a subposet of (R(AB\{H }),�). �

We do not generalize the first assertion of Proposition 5.5, since there seems to be
no reasonable generalization of the intersection lattice associated to F /Θ . However,
the second assertion does generalize, by the identical proof, replacing Proposition 4.4
by Proposition 7.4.

Proposition 7.12 The lattice (Ψ/Θ,⊇) is anti-isomorphic to the fiber poset of ΓΘ :
(F /Θ) → (Ψ/Θ).

The combinatorial description of (R,�) generalizes as well. For any Q,R ∈
πΘ↓ (R) with Q ≤ R, let

IΘ(Q,R) = {
J
(
P � P ′) : Q ≤ P � P ′ ≤ R, P ′ ∈ πΘ↓ (R)

}
.

The order and cover relations Q ≤ P � P ′ ≤ R refer to the poset of regions (R,≤).
Recall that L(R) = ∧ {P : P � R}. The proof of Proposition 5.7, with Proposi-
tion 7.4 replacing Proposition 4.4, proves the following:

Proposition 7.13 If Q,R ∈ πΘ↓ (R) then Q � R if and only if IΘ(πΘ↓ (L(Q)),Q) ⊆
IΘ(πΘ↓ (L(R)),R).

The interval [L(R),R] in (R(A),≤B) is isomorphic to (R(A′),≤B ′), where
A′ is the full subarrangement of A consisting of hyperplanes H ∈ A with H ⊇⋂

Lower(R), and B ′ is the A′-region containing B . The interval [L(R),R] is also the
set of A-regions containing R ∩ ⋂

Lower(R), and the restriction of Θ to [L(R),R]
is a lattice congruence on [L(R),R]. This lattice congruence induces a congruence
on (R(A′),≤B ′) which we will call ΘR . The following is an immediate consequence
of Propositions 5.8 and 7.7.

Proposition 7.14 If R ∈ πΘ↓ (R), then the lower interval [1,R] in (πΘ↓ (R(A)),�B)

is isomorphic to (π
ΘR↓ (R(A′)),�B ′), where A′, B ′ and ΘR are as above.

In geometric terms, Proposition 7.14 says that the lower interval below ψ(R) in
(Ψ (A,B)/Θ,⊇) is isomorphic to (Ψ (A′,B ′)/ΘR,⊇).

Theorem 7.15 Let Θ be a congruence on (R,≤) and let BΘ be the set of basic
hyperplanes of A that are not removed by Θ . Then the Möbius number of (πΘ↓ (R),�)

is (−1)|BΘ | times the number of regions in πΘ↓ (R) that are not contained in any
proper parabolic subset of RBΘ

. Equivalently, by inclusion–exclusion,

μ�
(
B,πΘ↓ (−B)

) =
∑

K⊆BΘ

(−1)|K|∣∣πΘ↓ (RK)
∣∣.
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Proof Let K ⊆ B and let F = B∩⋂
K. By Proposition 2.6, the set of regions contain-

ing F is an interval [P,Q] in (R,≤). Since B is in the interval, we have P = B . By
Lemma 2.8, [B,Q] = R K . Thus since πΘ↓ (R) ≤ R for all R, the quantity |πΘ↓ (RK)|
is the number of congruence classes of the restriction of Θ to [B,Q]. We claim that
the latter is in turn equal to the number of congruence classes of the restriction of Θ

to the interval [−Q,−B] consisting of regions containing −F = (−B) ∩ ⋂
K.

To prove the claim, we first observe that [B,Q] ∼= [−Q,−B]. The isomorphism
maps P ∈ [B,Q] to the region whose separating set is [A \S(Q)]∪S(P ). The inverse
maps P ∈ [−Q,−B] to S(Q) \ [A \ S(P )]. Equivalently, the map and its inverse are
P �→ [(−Q) ∨ P ] and P �→ (P ∧ Q). The definition of congruence now allows us to
easily conclude that the restriction of Θ to [B,Q] coincides with the restriction of Θ

to [−Q,−B]. The claim follows.
For each R ∈ πΘ↓ (R), let A′(R) be as in the proof of Theorem 5.9, let R′ be

the A′(R)-region containing R, and let ΘR be as in Proposition 7.14. Then for any
K ⊆ Lower(R), the quantity |πΘR↓ (R(A′(R))K)| is the number of congruence classes
of the restriction of ΘR to the interval I ′ in (R(A′(R)),≤) consisting of A′(R)-
regions containing the face R′ ∩ ⋂

K.
As in the proof of Theorem 5.9, let G(R) be the intersection of all facets of R

separating R from regions covered by R in (R,≤). Recall that ΘR is defined as the
congruence on (R(A′(R)),≤) corresponding to the restriction of Θ to the interval
of A-regions containing G(R). The interval I consisting of A-regions containing
R ∩⋂

K is a weakly smaller interval, so the number of classes of the restriction of Θ

to I equals the number of classes of the restriction of ΘR to I ′.
Let ΘR,K be the restriction of Θ to I . Then by Proposition 7.14 and the pre-

vious paragraphs, the proposed Möbius function value on the interval [B,R] in
(πΘ↓ (W),�) is

∑

K⊆Lower(R)(ΘR)

(−1)|K|(# classes of ΘR,K),

where Lower(R)(ΘR) is the set of lower hyperplanes of R (i.e. basic hyperplanes of
A′(R)) not removed by ΘR . These correspond to lower shards of R not removed
by Θ , but since R ∈ πΘ↓ (R), none of its lower shards is removed. Thus the sum can
be rewritten further as

∑

K⊆Lower(R)

(−1)|K|(# classes of ΘR,K).

Let C be the maximal cone of F /Θ containing R and let G(C) be the intersection
of all facets of C separating C from maximal cones covered by C in (R,≤)/Θ .
Recall from the end of Sect. 6 that the lower hyperplanes of R are the hyperplanes
which separate C from maximal cones covered by C in (R,≤)/Θ . Thus G(C) is the
unique face in F /Θ with G(C) ⊇ G(R) and dim(G(C)) = dim(G(R)). Furthermore,
the subsets K ⊆ Lower(R) are in bijection with faces of C containing G(C).

Recall also that F /Θ is a coarsening of F , such that two A-regions are in the
same maximal cone of F /Θ if and only if they are congruent modulo Θ . Thus the
classes in the restriction ΘR,K of Θ to regions containing R ∩ ⋂

K are in bijection
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Fig. 14 A stage in the
construction of �(F /Θ)

with the maximal cones in F /Θ containing C ∩ ⋂
K. Now the proposed Möbius

number for [B,R] is
∑

F∈F /Θ
C⊇F⊇G(C)

(−1)codim(F )(# maximal faces C′ ∈ F /Θ with C′ ⊇ F).

We replace the sum over πΘ↓ (R) by a sum over maximal cones C of F /Θ and com-
plete the proof just as the proof of Theorem 5.9, replacing Theorem 2.7 by the anal-
ogous fact for F /Θ . �

Let Θ be some congruence on (R,≤) and let S(F /Θ) be the dual sphere to
F /Θ . Let S(F /Θ) be the regular CW-ball obtained by gluing onto S(F /Θ) a cell
of dimension one higher than the dimension of S(F /Θ). Let �(F /Θ) be the pulling
triangulation of S(F /Θ) obtained by ordering the vertices of S(F /Θ) according
to the lattice quotient (R,≤)/Θ . In the case where F /Θ is the normal fan of some
polytope P , �(F /Θ) is a triangulation of P . Now Theorem 5.10 and Proposition 7.7
imply the following theorem.

Theorem 7.16 The map δ restricts to a dimension-preserving bijection between the
order complex of (πΘ↓ (R),�) and the triangulation �(F /Θ), with inverse map γ .

Example 7.17 Figure 14 depicts a stage in the construction of �(F /Θ) in the case
where A = A(S4) and Θ is the congruence pictured in Fig. 10, with drawing conven-
tions similar to Fig. 9. Theorem 7.16 says that the 16 maximal chains of (Ψ/Θ,�)

correspond to (cones over the) 16 triangles shown in the figure.

Remark 7.18 For the congruence Θ of Example 7.17, we see that �(F /Θ) is an
induced subcomplex of �(A). This property does not hold in general. For example,
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there is a lattice congruence Θ ′ on the weak order on S4 that contracts the edge
2143 � 2413 and no other edges. Aided by Fig. 9, it is easy to see that �(F /Θ ′) is
not a subcomplex of �(A). We do not know how general this subcomplex property
is, but it is natural to wonder whether it holds for all of the Cambrian congruences,
defined in the next section.

8 Noncrossing partition lattices

In this section, we return to the case where A is the Coxeter arrangement associated
to a finite Coxeter group W and we consider the lattices (πΘ↓ (W),�) in the special
case where Θ is a Cambrian congruence.

A Coxeter element c of W is the product, in any order, of the simple generators
S of W . We fix some particular Coxeter element c = s1s2 · · · sn, for S = {s1, . . . , sn}.
For si �= sj ∈ S, let m(si, sj ) be the order of sisj in W . We define the Cambrian
congruence Θc by specifying a set of join-irreducible elements that Θc is required
to contract. For every pair si , sj ∈ S with i < j , we require that Θc contracts all
join-irreducible elements having a reduced word alternating sj sisj si · · · of length at
least two and at most m(si, sj ) − 1. The c-Cambrian congruence Θc is the finest
congruence contracting those join-irreducible elements. The c-Cambrian lattice is
the quotient of the weak order on W modulo the c-Cambrian congruence.

Example 8.1 Let W be the Coxeter group (of type H4) with S = {q, r, s, t}, m(q, r) =
5, m(r, s) = m(s, t) = 3 and m(q, s) = m(q, t) = m(s, t) = 2. Choose the Coxeter
element c = rqts. The Cambrian congruence Θc is then the finest lattice congruence
that contracts qr , qrq , qrqr , sr and st .

Example 8.2 When W is S4 with S = {(1 2), (2 3), (3 4)} and c = (1 2)(3 4)(2 3),
the Cambrian congruence Θc is the congruence pictured in Fig. 10. That is, the con-
gruence pictured in Fig. 10 is the finest congruence on the weak order on S4 contract-
ing (2 3)(1 2) = 3124 and (2 3)(3 4) = 1342, or in other words, the finest congruence
with 1324 ≡ 3124 and 1324 ≡ 1342.

We relate this example to several previous examples. One verifies in Fig. 10
that Θc contracts the join-irreducible elements 3124, 1342, 2341, 4123, 3412 and
no other join-irreducible elements. This is in keeping with Fig. 11, where we see that
the smallest order ideal containing {Σ(3124),Σ(1342)} in the transitive closure of
the shard digraph is indeed {Σ(3124),Σ(1342),Σ(2341),Σ(4123),Σ(3412)}.

For each c, write πc↓ for π
Θc↓ and π

↑
c for π

↑
Θc

. The elements of the set πc↓(W)

are called c-sortable elements. As a special case of Proposition 6.2, the c-Cambrian
lattice is (isomorphic to) the weak order on c-sortable elements. In [33], c-sortable
elements are defined in terms of the combinatorics of reduced words, and in [34],
the c-sortable elements are shown to be the bottom elements of congruence classes
of Θc. Here, we do not need the definition of c-sortable elements in terms of reduced
words.



524 J Algebr Comb (2011) 33: 483–530

Example 8.3 When W is S4 and c = (1 2)(3 4)(2 3), the c-sortable elements of W

are the permutations appearing in Figs. 12 and 13. As a special case of a character-
ization of the inversion sets of c-sortable elements (see [33, Theorem 4.1] or [38,
Theorem 4.3]), these are the permutations in S4 not containing 312, 412, 342 or 341
as a subsequence.

Let T be the set of reflections of W . A reduced T -word for w ∈ W is a shortest
possible word for w in the alphabet T . (This contrasts with the usual notion of a
reduced word for W, a shortest possible word for w in the alphabet S.) The absolute
order on W is the prefix order on reduced T -words: we set u ≤ v if and only if
every reduced T -word for u occurs as a prefix of some reduced T -word for v. The
W -noncrossing partition lattice NCc(W) is the interval [1, c]T in the absolute order,
where c is a Coxeter element of W . It is straightforward to show that the isomorphism
type of NCc does not depend on the choice of c. The elements of [1, c]T are called
c-noncrossing partitions.

For the present purposes, the most important result about c-sortable elements and
c-noncrossing partitions is the following theorem, which is [33, Theorem 6.1]. (Cf.
[38, Theorem 8.9].) Recall that the descents of w are the simple generators s ∈ S such
that �(ws) < �(w).

Theorem 8.4 For any Coxeter element c, there is a bijection w �→ ncc(w) from the
set of c-sortable elements to the set of c-noncrossing partitions. Furthermore ncc

maps c-sortable elements with k descents to c-noncrossing partitions of rank k.

The lattice (πc↓(W),�) is the restriction of (W,�) to the c-sortable elements
of W . The main results of this section are the following theorem and corollary.

Theorem 8.5 The map ncc is an isomorphism from (πc↓(W),�) to NCc(W).

Corollary 8.6 The poset NCc(W) is a lattice.

Corollary 8.6 follows immediately from Theorem 8.5 and Proposition 7.8, which
states that (πΘ↓ (W),�) is a lattice and a join-sublattice of (W,�) for any congru-
ence Θ . In fact, more is true in the case Θ = Θc. Recall that given a cone Γ ∈ Ψ , the
notation U(Γ ) represents the intersection of all hyperplanes in A containing Γ .

Proposition 8.7 The lattice (πc↓(W),�) is a sublattice of (W,�).

Proposition 8.8 The map U embeds (Ψ/Θc,⊇) as a meet-sublattice of Int(A).

Before proving Theorem 8.5 and Propositions 8.7 and 8.8, we discuss the conse-
quences that follow from Theorem 8.5 and the results of Sect. 7. Corollary 8.10 is the
concatenation of [4, Corollary 7.4.ii] and [3, Corollary 4.4].

Theorem 8.9 The Möbius function of (π
Θc↓ (W),�) is (−1)rank(W) times the num-

ber of elements of πc↓(W) that are not contained in any proper standard parabolic
subgroup of W .
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Corollary 8.10 The Möbius number μ≤T
(1, c) of NCc(W) is (−1)rank(W) times the

number of elements of [1, c]T not contained in any proper standard parabolic sub-
group of W .

Proposition 8.11 The inverse of ncc is an order-preserving map from NCc(W) to the
c-Cambrian lattice.

Proposition 8.11 says that NCc(W) is a weaker partial order than the c-Cambrian
lattice. This fact has never been published, but has been observed independently by
several researchers in the brief time since the results of [32] were disseminated.

When Θ is a Cambrian congruence Θc , the fan F /Θc is the normal fan of a
W -associahedron [19, Theorem 3.4], so S(F /Θc) is a W -associahedron. Extending
ncc in the natural way to a bijection on chains, we have the following immediate
consequence of Theorem 7.16.

Theorem 8.12 The map δ ◦ nc−1
c is a dimension-preserving bijection between the

order complex of the noncrossing partition lattice NCc(W) = [1, c]T and the pulling
triangulation �(F /Θc) of the W -associahedron.

The pulling triangulation �(F /Θc) is obtained by pulling the vertices of the W -
associahedron in the dual order to the Cambrian lattice π

Θc↓ (W).

Example 8.13 In Example 7.17 and Fig. 14, the congruence Θ is the Cambrian con-
gruence of Example 8.2.

Remark 8.14 We explain the relationship between Theorems 5.10, 7.16, and 8.12 and
the construction given in [25]. In the latter reference, Loday constructed the pulling
triangulation of the classical associahedron with vertices ordered by the Tamari lat-
tice. He gave a bijection between parking functions and maximal simplices of this
pulling triangulation. He also considered the weak-order pulling triangulation of the
classical permutohedron and asked whether the maximal simplices are in bijection
with some object analogous to parking functions.

Since parking functions are in bijection with maximal chains in the usual non-
crossing partition lattice NCc(Sn), one might expect, for any W , the maximal sim-
plices in the pulling triangulation of the W -associahedron to be in bijection with
maximal chains in NCc(W). Theorem 8.12 says that much more is true. Furthermore,
Theorem 5.10 shows that the analogous relationship holds between (W,�) and the
pulling triangulation of the W -permutohedron, and, more generally, between (R,�)

and the zonotope associated to A. Theorem 7.16 generalizes Theorem 5.10 to a broad
level of generality that includes Theorem 8.12.

We now prepare to prove Theorem 8.5. Descents of w are in bijection with cover
reflections of w: For each descent s of w, the reflection wsw−1 is a cover reflection.
Let cov(w) denote the cover reflections of w. Recall that Ht is the reflecting hyper-
plane for the reflection t . The lower hyperplanes of the A(W)-region associated to w

are {Ht : t ∈ cov(w)}.
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An immediate corollary [37, Corollary 3.9] to Theorem 8.4 is that for each re-
flection t of W , there exists a unique c-sortable join-irreducible element of the weak
order whose unique cover reflection is t . Combining this with Proposition 3.3, we
have the following proposition:

Proposition 8.15 Each hyperplane of A(W) contains exactly one shard that is not
removed by Θc .

We write Fc for the fan F /Θc and call Fc the c-Cambrian fan. For any cone
F ∈ V and any x ∈ F , the linearization Linx(F ) of F at x is the set of vectors x′ ∈ V

such that x + εx′ is in F for any sufficiently small nonnegative ε. If F is a fan and x

is any point in the relative interior of some cone of F then the star of x in F is the
fan Starx(F ) = {Linx(F ) : x ∈ F ∈ F }. For any cone F of F , the star of F in F is
the fan StarF (F ) = Starx(F ) for any x in the relative interior of F . The following is
part of [37, Proposition 8.12].

Proposition 8.16 For any face F ∈ Fc, the star of F in Fc is isomorphic to a Cam-
brian fan associated to the parabolic subgroup W ′ generated by reflections fixing F

pointwise.

Recall that we fixed a representation of W as a group of orthogonal transforma-
tions of the Euclidean vector space V . Let Fix : W → Int(A(W)) be the map taking
w ∈ W to the subspace of V consisting of points fixed by w. The following facts
are proved in [8] and [11, Sect. 2]: The restriction of the map Fix to [1, c]T is in-
jective; we call the subspaces in the image Fix([1, c]T ) the c-noncrossing subspaces.
The map Fix is an isomorphism from [1, c]T to the poset of c-noncrossing subspaces
under reverse containment.

Proof of Theorem 8.5 The map Fix◦ncc takes w ∈ πc↓(W) to the intersection of
the hyperplanes associated to cov(w). This map coincides with the restriction of
U ◦ ψ , where ψ is the map from Proposition 4.7 and U is the map from Propo-
sition 5.5. Now ncc is a bijection from πc↓(W) to [1, c]T , the map Fix restricts to
an isomorphism between [1, c]T and the c-noncrossing subspaces under reverse con-
tainment, and ψ restricts to an isomorphism from (πc↓(W),�) to (Ψ/Θc,⊇). Thus U

restricts to a bijection from Ψ/Θc to the c-noncrossing subspaces. This restriction is
containment-preserving, and we can complete the proof by showing that its inverse
is also containment-preserving.

Suppose U1 and U2 are noncrossing subspaces with U1 ⊇ U2. Let Γ1 and Γ2 be
the preimages of U1 and U2 in Ψ/Θc . To show that Γ1 ⊇ Γ2, we show that every
shard containing Γ1 also contains Γ2. Let Σ be a shard containing Γ1. By Proposi-
tion 8.15, Σ is the only shard contained in H(Σ) that is not removed by Θc. Since the
map U is order-preserving and Σ ⊇ Γ1 ⊇ Γ2, we have H(Σ) = U(Σ) ⊇ U(Γ2) =
U2. Let F be a face in Fc such that F ⊆ Γ2 and dim(F ) = dim(Γ2). By Proposi-
tion 8.16, the star of F in Fc is isomorphic to a Cambrian fan associated to a par-
abolic subgroup of W . Thus Proposition 8.15 implies that, for each hyperplane H

in A containing F , there is a shard in H containing F and not removed by Θc.
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Fig. 15 Ψ̃ /Θc for W = S4 and
c = (1 2)(3 4)(2 3)

But H(Σ) ⊇ U2 ⊇ F2 and Σ is the only unremoved shard in H(Σ), so Σ ⊇ F . By
Proposition 4.4, Γ2 is the intersection of all shards containing F , so Σ ⊇ Γ2. �

Proof of Proposition 8.8 Suppose U1 and U2 are c-noncrossing subspaces and let U3
be their meet in Int(A) (not a priori the meet in the lattice of c-noncrossing sub-
spaces). Thus U3 is the intersection of all hyperplanes in A containing both U1 and
U2. Let Γ1 and Γ2 be the preimages of U1 and U2 in Ψ/Θc. The meet of Γ1 and Γ2
in (Ψ/Θc,⊇) is the intersection of all unremoved shards containing both Γ1 and Γ2.
Thus to prove the proposition, it is enough to show that for each hyperplane H con-
taining U1 and U2, the unique unremoved shard Σ contained in H has Σ ⊇ Γ1 and
Σ ⊇ Γ2. Arguing exactly as in the proof of Theorem 8.5, we conclude that Σ ⊇ Γ2,
and repeating the argument, we conclude that Σ ⊇ Γ1. �

Proof of Proposition 8.7 Let Γ1 and Γ2 be cones in Ψ/Θc . Then by Proposition 8.8,
the rank of the meet of Γ1 and Γ2 in (Ψ/Θc,⊇) equals the rank of the meet of U(Γ1)

and U(Γ2) in Int(A). But since U is a rank-preserving and order-preserving map from
(Ψ,⊇) to (Int(A),⊇), the rank of the meet of U(Γ1) and U(Γ2) in Int(A) is weakly
greater than the rank of the meet of Γ1 and Γ2 in (Ψ,⊇). Thus, since (Ψ/Θc,⊇) is an
induced subposet of (Ψ,⊇), the meet of Γ1 and Γ2 must be the same in (Ψ/Θc,⊇)

as in (Ψ,⊇). �

Remark 8.17 We now compare the proof of the lattice property (Corollary 8.6) to
the previously known proof from [10]. A generator in S is initial in a Coxeter ele-
ment c if there is some reduced word for c whose first letter is s. Similarly, s is final
in c if s is the last letter of some reduced word for c. Let C be the cone consisting
of points weakly above all hyperplanes Hs for s initial in c and weakly below all
hyperplanes Hs for s final in c. Let Ψ̃ /Θc = {Γ ∩ C : Γ ∈ Ψ/Θc}. Using results of
[37, 38], one can show that (Ψ̃ /Θc,⊇) is isomorphic to (Ψ/Θc,⊇). For any W , it is
possible to choose a bipartite Coxeter element c, meaning that every s ∈ S is either
initial or final in c. In this case Ψ̃ /Θc is contained in a simplicial cone whose facets
are defined by the hyperplanes Hs for s ∈ S.

Example 8.18 The Coxeter element c = (1 2)(3 4)(2 3) in S4 is bipartite. The collec-
tion Ψ̃ /Θc is shown in Fig. 15. The cones illustrated in the figure are the intersections
of the cones in Fig. 7 with the closed cone consisting of all points (weakly) above
H(1 2) and H(3 4) and below H(2 3).

The collection Ψ̃ /Θc is closely related to the complex X(γ ) defined in [10].
(The symbol γ denotes the Coxeter element called c here.) The proof in [10] that
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NCc(W) is a lattice proceeds as follows: one identifies coatoms of NCc(W) with
certain codimension-1 cones in X(γ ) and then shows that NCc(W) is the poset of
intersections of these codimension-1 cones. In particular, meets exist in NCc(W) as
intersections, so that NCc(W) is a lattice. In the present paper, we have identified the
atoms of NCc(W) with (codimension-one) cones (pieces Σ̃ of shards), and shown
that NCc(W) is the poset of intersections of shards under reverse containment. In
particular, joins exist in NCc(W) as intersections, so that NCc(W) is a lattice. There
is a complete fan AX(γ ) (see [10, Theorem 8.3]) related to X(γ ) as the Cambrian
fan Fc is related to the collection of shards unremoved by Θc . The two fans are
linearly isomorphic. (See [37, Theorem 9.1] or [9, Theorem 5.5]. The paper [9] ex-
plains in detail the relationship between AX(γ ) and the Cambrian fan.) This linear
isomorphism, together with the self-duality of NCc(W), suggests a duality between
the broadest outlines (but not the details) of the two approaches to proving the lattice
property.

Remark 8.19 Choosing a Coxeter element c of a finite Coxeter group W is equivalent
to choosing an orientation of the Coxeter diagram of W , and this orientation is a
Dynkin quiver Q when W is of type A, D, or E. There is a connection between the set
Ψ/Θc and the domains of virtual semi-invariants considered in [20]. The connection
relies on known results which would require a substantial quiver-theoretic digression
to explain. Here we merely mention the connection, with the hope of making an
exposition of the details in a future paper.

For a Dynkin quiver, the maximal domains of virtual semi-invariants are certain
codimension-1 cones. There is an invertible linear map which takes the set of maxi-
mal domains of virtual semi-invariants to the set of shards not removed by Θc. One
can show further that this linear map induces an isomorphism between (Ψ/Θc,⊇)

and the reverse inclusion order on domains of virtual semi-invariants. Thus the re-
verse inclusion order on domains of virtual semi-invariants is isomorphic to NCc(W).
For finite (crystallographic) Coxeter groups of other types, a similar statement holds
via a standard folding argument.

In light of such a fundamental quiver-theoretic interpretation of the shards not re-
moved by Θc , it is natural to ask whether there is a quiver-theoretic interpretation of
the full set of shards in the Coxeter arrangement. Furthermore, results of [14] extend
the consideration of virtual semi-invariants beyond quivers of finite type, raising the
possibility of defining some generalization of “shards not removed by Θc” to infi-
nite Coxeter groups. The generalization of unremoved shards would reproduce, and
perhaps extend, some of the results obtained in [38] on Cambrian fans for infinite
Coxeter groups.

Remark 8.20 The degree of a join-irreducible region J is the smallest positive inte-
ger d such that J is contained in some standard parabolic subset RK with |K| = d .
A congruence Θ has degree at most d if it is generated by contracting a collection
of join-irreducible regions, each of which has degree at most d . Using Lemmas 3.11
and 3.12 and Proposition 4.5, one can fairly easily prove the following proposition,
which shows in particular to what extent Proposition 8.7 is special.
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Proposition 8.21 Suppose the shard digraph associated to (A,B) is acyclic. Let Θ

be a lattice congruence on (R,≤). If (πΘ↓ (R),�) is a sublattice of (R,�) then Θ is
of degree at most two.
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