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Abstract Let V be an n-dimensional vector space (4 ≤ n < ∞) and let Gk(V ) be
the Grassmannian formed by all k-dimensional subspaces of V . The corresponding
Grassmann graph will be denoted by Γk(V ). We describe all isometric embeddings
of Johnson graphs J (l,m), 1 < m < l − 1 in Γk(V ), 1 < k < n − 1 (Theorem 4).
As a consequence, we get the following: the image of every isometric embedding of
J (n, k) in Γk(V ) is an apartment of Gk(V ) if and only if n = 2k. Our second result
(Theorem 5) is a classification of rigid isometric embeddings of Johnson graphs in
Γk(V ), 1 < k < n − 1.
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1 Introduction

A building [10] is a simplicial complex Δ together with a family of subcomplexes
called apartments and satisfying a certain collection of axioms. Maximal simplices
of Δ are called chambers. They have the same cardinal number n (the rank of Δ)
and we say that two chambers are adjacent if their intersection consists of n − 1
vertices. Denote by Ch(Δ) the set of all chambers. Consider the graph Γch(Δ) whose
vertex set is Ch(Δ) and whose edges are pairs of adjacent chambers. Let A be the
intersection of Ch(Δ) with an apartment and let Γ (A) be the restriction of the graph
Γch(Δ) to A. There is the following characterization of the intersections of Ch(Δ)

with apartments (see, for example, [2] p. 90).

Theorem 1 A subset of Ch(Δ) is the intersection of Ch(Δ) with an apartment of Δ

if and only if it is the image of an isometric embedding of Γ (A) in Γch(Δ).
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The vertex set of a building can be labeled by the nodes of the associated diagram
(the labeling is unique up to a permutation on the set of nodes). The set of vertices
corresponding to the same node is called a Grassmannian (more general Grassman-
nians defined by parts of the diagram were considered in [9]).

Let Δ be a building and let G be one of its Grassmannians. We say that two dis-
tinct elements a, b ∈ G are adjacent if there exists a simplex P ∈ Δ such that P ∪ {a}
and P ∪ {b} both are chambers; in this case, the set of all c ∈ G such that P ∪ {c} is
a chamber is said to be the line joining a and b. The Grassmannian G together with
the set of all such lines is a partial linear space (each point belongs to a line, each
line contains at least two points, for any two distinct points there is at most one line
containing them). This partial linear space will be called the Grassmann space corre-
sponding to G . The associated collinearity graph is the Grassmann graph ΓG whose
vertex set is G and whose edges are pairs of adjacent elements. The intersections of
G with apartments of Δ are said to be apartments of the Grassmannian G .

In [4–7] apartments of some Grassmannians were characterized in terms of the
associated Grassmann spaces. It is natural to ask whether there are metric characteri-
zations of apartments of Grassmannians similar to Theorem 1.

Every building of type An−1 (n ≥ 4) is the flag complex of a certain n-dimensional
vector space V . The Grassmannians of this building are the usual Grassmannians
Gk(V ), k ∈ {1, . . . , n − 1}, where Gk(V ) is formed by all k-dimensional subspaces
of V . The corresponding Grassmann graph is denoted by Γk(V ). The restriction of
Γk(V ) to every apartment of Gk(V ) is isomorphic to the Johnson graph J (n, k). Re-
call that the vertex set of J (n, k) is formed by all k-element subsets of an n-element
set; two such subsets are adjacent (joined by an edge) if their intersection consists of
k − 1 elements.

Every apartment of Gk(V ) is the image of an isometric embedding of J (n, k) in
Γk(V ). We show that the image of every isometric embedding of J (n, k) in Γk(V )

is an apartment of Gk(V ) if and only if n = 2k. This statement follows from our
classification of isometric embeddings of Johnson graphs J (l,m), 1 < m < l − 1 in
the Grassmann graph Γk(V ), 1 < k < n − 1 (Theorem 4).

If 2k ≤ n then any finite (2k)-independent subset X ⊂ G1(V ) (every (2k)-element
subset of X is independent) defines an isometric embedding of J (n′, k), n′ = |X | in
Γk(V ). The image consists of all S ∈ Gk(V ) such that S is the sum of k elements
from X . All other isometric embeddings of Johnson graphs in Γk(V ) are some mod-
ifications of this construction.

Our second result (Theorem 5) is a classification of rigid isometric embeddings
of Johnson graphs in Γk(V ). The term rigid means that every automorphism of the
restriction of Γk(V ) to the image can be extended to an automorphism of Γk(V ).
In the case when n 	= 2k, apartments of Gk(V ) satisfy this condition; but there exist
other rigid isometric embeddings of J (n, k) in Γk(V ).

2 Grassmannians of type An−1

Let V be an n-dimensional left vector space over a division ring R and let 4 ≤ n < ∞.
Two elements of Gk(V ) are adjacent if their intersection is (k − 1)-dimensional; this
is equivalent to the fact that their sum is (k + 1)-dimensional.
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Let M and N be subspaces of V such that M ⊂ N and

dimM < k < dimN.

Denote by [M,N ]k the set of all S ∈ Gk(V ) satisfying M ⊂ S ⊂ N . If M = 0 or
N = V then this set will be denoted by 〈N ]k or [M〉k , respectively. If

dimM = k − 1 and dimN = k + 1

then [M,N ]k is a line of the Grassmann space corresponding to Gk(V ); we denote
this Grassmann space by Gk(V ). In the case when k = 1, n − 1, this is the projective
space ΠV associated with V or the dual projective space Π∗

V , respectively.
If k = 1, n − 1 then any two distinct vertices of the Grassmann graph Γk(V ) are

adjacent. In the case when 1 < k < n − 1, there are precisely the following two types
of maximal cliques of Γk(V ) (see, for example, Sect. 3.1 [8]):

• the stars [M〉k , M ∈ Gk−1(V );
• the tops 〈N ]k , N ∈ Gk+1(V ).

The set of all maximal cliques of Γk(V ) coincides with the set of all maximal singular
subspaces of Gk(V ) (a subspace of a partial linear space is called singular if any two
distinct points of this subspace are joined by a line), see Sect. 3.1 [8].

Denote by dk the distance in Γk(V ). For all S,U ∈ Gk(V ) we have

dk(S,U) = k − dim(S ∩ U) = dim(S + U) − k.

If X ⊂ Gk(V ) then we write Γ (X ) for the restriction of the Grassmann graph Γk(V )

to X .
Every apartment of Gk(V ) is defined by a base of V ; it consists of all elements of

Gk(V ) spanned by subsets of this base. Let B be a base of V and Ak ⊂ Gk(V ) be the
associated apartment. Clearly, A1 and An−1 are bases of the projective spaces ΠV

and Π∗
V , respectively. Suppose that 1 < k < n − 1. It was noted above that Γ (Ak) is

isomorphic to J (n, k). The maximal cliques of Γ (Ak) are of the following two types:

• the stars Ak ∩ [M〉k , M ∈ Ak−1,
• the tops Ak ∩ 〈N ]k , N ∈ Ak+1.

Every maximal clique of Γ (Ak) is an independent subset of Gk(V ) spanning a max-
imal singular subspace (a subset X of a partial linear space is independent if the
subspace spanned by X is not spanned by a proper subset of X).

For every subspace S ⊂ V the annihilator S0 is the subspace formed by all x∗ ∈
V ∗ that vanish on S. If X ⊂ Gk(V ) then we write X 0 for the set formed by the
annihilators of all S ∈ X . The annihilator mapping of Gk(V ) to Gn−k(V

∗) is the
bijection transferring every S ∈ Gk(V ) to the annihilator S0. The following statement
is well-known.

Fact 1 The annihilator mapping of Gk(V ) to Gn−k(V
∗) is an isomorphism of Γk(V )

to Γn−k(V
∗) sending apartments to apartments, stars to tops and tops to stars.
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Let M and N be subspaces of V such that M ⊂ N and

dimM = m < k < l = dimN.

Then [M,N ]k is a subspace of Gk(V ); subspaces of such type are called parabolic
[5]. Let B be a base of V such that M and N are spanned by subsets of B . The in-
tersection of the associated apartment of Gk(V ) with [M,N ]k is said to be an apart-
ment of the parabolic subspace [M,N ]k . The natural collineation (isomorphism) of
[M,N ]k to the Grassmann space Gk−m(N/M) establishes a one-to-one correspon-
dence between apartments. The restrictions of Γk(V ) to apartments of [M,N ]k are
isomorphic to J (l − m,k − m). It is clear that the annihilator mapping Gk(V ) to
Gn−k(V

∗) transfers [M,N ]k to [N0,M0]n−k ; moreover, it establishes a one-to-one
correspondence between apartments of these parabolic subspaces.

It was noted above that maximal cliques of the restriction of Γk(V ) to an apart-
ment of Gk(V ) are independent subsets of Gk(V ) (the same holds for apartments of
parabolic subspaces). This property characterizes apartments.

Theorem 2 (B.N. Cooperstein, A. Kasikova, E.E. Shult [5]) Let 1 < k < n − 1 and
l,m be natural numbers satisfying k < l ≤ n and 0 ≤ m < k. Let X be a subset of
Gk(V ) such that Γ (X ) is isomorphic to the Johnson graph J (l −m,k −m) and every
maximal clique of Γ (X ) is an independent subset of Gk(V ). Then X is an apartment
in a parabolic subspace of Gk(V ); in the case when k = m and n = l, this is an
apartment of Gk(V ).

Remark 1 Also, in [5] such kind of characterizations were established for apartments
of dual polar spaces and half-spin Grassmannians. More general results can be found
in [6, 7].

Let V ′ be a left vector space over a division ring R′. A mapping u : V → V ′ is
called semi-linear if it is additive, i.e.

u(x + y) = u(x) + u(y)

for all x, y ∈ V , and there exists a homomorphism σ : R → R′ such that

u(ax) = σ(a)u(x)

for all x ∈ V and a ∈ R. A semi-linear bijection u : V → V ′ is called a semi-linear
isomorphism if the associated homomorphism of R to R′ is an isomorphism. Every
semi-linear automorphism of V induces an automorphism of the flag complex Δ(V )

whose restriction to each Gk(V ) is an automorphism of Γk(V ).
Let u be a semi-linear isomorphism of V to V ∗. The mapping transferring every

subspace S ⊂ V to the annihilator of u(S) is an automorphism of Δ(V ). The restric-
tion of this automorphism to Gk(V ) is an isomorphism of Γk(V ) to Γn−k(V ). In the
case when n = 2k, this is an automorphism of Γk(V ).

Recall that V ∗ is a left vector space over the opposite division ring R∗ (the division
rings R and R∗ have the same set of elements and the same additive operation, the
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multiplicative operation ∗ on R∗ is defined by a ∗ b := b · a if · is the multiplicative
operation on R). Semi-linear isomorphisms of V to V ∗ exist only in the case when
R and R∗ are isomorphic. Note that R = R∗ if R is commutative.

By the Fundamental Theorem of Projective Geometry [1], every automorphism of
the complex Δ(V ) is induced by a semi-linear automorphism of V or a semi-linear
isomorphism of V to V ∗. Two semi-linear mappings define the same automorphism
of Δ(V ) if and only if one of them is a scalar multiple of the other. Denote by PGL(V )

the group of all automorphisms of Δ(V ) induced by linear automorphisms of V . This
group coincides with the group of all automorphisms of Δ(V ) induced by semi-linear
automorphisms of V only in the case when every automorphism of R is inner (for
example, if R = R or R is the division ring of real quaternion numbers).

Theorem 3 (W.L. Chow [3]) Every automorphism of Γk(V ), 1 < k < n − 1 has
a unique extension to an automorphism of Δ(V ), in other words, it is induced by a
semi-linear automorphism of V or a semi-linear isomorphism of V to V ∗. The second
possibility can be realized only in the case when n = 2k.

Remark 2 Some generalizations of Chow’s theorem can be found in [8].

Let u : V → V ′ be a semi-linear isomorphism. The contragradient ǔ is the semi-
linear isomorphism

(u∗)−1 : V ∗ → V ′∗

(the inverse of the adjoint mapping), see Sect. 1.3.3 [8]. It transfers the annihilator of
every subspace S ⊂ V to the annihilator of u(S). The contragradient ǔ is linear if and
only if u is linear. If u is a semi-linear automorphism of V then the mapping trans-
ferring every subspace S ⊂ V ∗ to u(S0)0 is the automorphism of the flag complex
Δ(V ∗) induced by ǔ.

3 Isometric embeddings of Johnson graphs in Γk(V )

In what follows the images of isometric embeddings of Johnson graphs in Γk(V ) will
be called J -subsets of Gk(V ).

In this section we give several examples of J -subsets and state our first result
(Theorem 4)—a classification of isometric embeddings of J (l,m), 1 < m < l − 1 in
Γk(V ), 1 < k < n − 1. The existence of such embeddings means that min{m, l − m}
(the diameter of J (l,m)) is not greater than min{k,n − k} (the diameter of Γk(V )).

A subset X ⊂ G1(V ) is called m-independent if every m-element subset of X is
independent in the projective space ΠV , in other words, the sum of any m elements
from X belongs to Gm(V ). An n-independent subset of G1(V ) consisting of n ele-
ments is a base of ΠV .

An m-independent subset of G1(V ) consisting of m + 1 elements is called an m-
simplex of ΠV if it is not independent. If P1, . . . ,Pm+1 ∈ G1(V ) form an m-simplex
then there exist linearly independent vectors x1, . . . , xm ∈ V such that

P1 = 〈x1〉, . . . ,Pm = 〈xm〉 and Pm+1 = 〈x1 + · · · + xm〉.
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Proposition 1 If the division ring R is infinite then for every natural number n′ > n

there exists an n-independent subset of ΠV consisting of n′ elements.

Proof The statement can be proved by induction on n′. Suppose that X ⊂ G1(V ) is
an n-independent subset consisting of n′ − 1 elements. Denote by Y the set of all
S ∈ Gn−1(V ) such that S is the sum of n − 1 elements from X . Since R is infinite,
there exists P ∈ G1(V ) satisfying P 	⊂ S for every S ∈ Y . The subset X ∪ {P } is
n-independent. �

Now we generalize Example 1 from [4] (Sect. 9).

Example 1 Suppose that 2k ≤ n and X = {P1, . . . ,Pn′ } is a 2k-independent subset of
G1(V ). We denote Jk(X ) the set of all k-dimensional subspaces of type Pi1 + · · · +
Pik . The mapping

{i1, . . . , ik} → Pi1 + · · · + Pik

is an isometric embedding of J (n′, k) in Γk(V ); indeed, it is easy to see that

dim
[
(Pi1 + · · · + Pik ) ∩ (Pj1 + · · · + Pjk

)
] = ∣∣{i1, . . . , ik} ∩ {j1, . . . , jk}

∣∣.

If n′ = n and X is a base of ΠV then Jk(X ) is an apartment of Gk(V ). If n′ ≤ n + 1
and X is an (n′ − 1)-simplex then Jk(X ) is the set of its (k − 1)-faces.

A subset Y ⊂ Gn−1(V ) is called m-independent if every m-element subset of X is
independent in the projective space Π∗

V , this means that the intersection of any m ele-
ments from X belongs to Gn−m(V ). An n-independent subset of Gn−1(V ) consisting
of n elements is a base of Π∗

V . An m-independent subset of Gn−1(V ) consisting of
m + 1 elements is said to be an m-simplex of Π∗

V if it is not independent. The anni-
hilator mapping of Gi (V ), i = 1, n − 1 to Gn−i (V

∗) transfers m-independent subsets
to m-independent subsets, in particular, simplices go to simplices.

Example 2 Suppose that 2k ≥ n and Y = {S1, . . . , Sn′ } is a (2n − 2k)-independent
subset of Gn−1(V ). The intersection of any n − k elements from Y belongs to Gk(V )

and we denote by J ∗
k (Y ) the set of all such intersections. This is a J -subset. In-

deed, Y 0 is a (2n − 2k)-independent subset of G1(V
∗) and the annihilator mapping

of Gn−k(V
∗) to Gk(V ) transfers Jn−k(Y 0) (see Example 1) to J ∗

k (Y ). If n′ = n and
Y is a base of Π∗

V then J ∗
k (Y ) is an apartment of Gk(V ). If n′ ≤ n + 1 and Y is an

(n′ − 1)-simplex then J ∗
k (Y ) is the set of its (n − k − 1)-faces.

We will need the following modifications of Examples 1 and 2.

Example 3 Let M be a (k − m)-dimensional subspace of V such that m > 1 and
m + k ≤ n. Then

2m ≤ n − k + m.

Consider the (n − k + m − 1)-dimensional projective space [M〉k−m+1 (it can be
identified with ΠV/M ). Let X be a finite (2m)-independent subset of [M〉k−m+1. By
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Example 1, Jm(X ) is a J -subset contained in the parabolic subspace [M〉k ; it is the
image of an isometric embedding of J (l,m), l = |X | in Γk(V ). In the case when
M = 0, we get the J -subset constructed in Example 1. Let N be the sum of all ele-
ments from X (possible N = V ). If X is a base of the projective space [M,N ]k−m+1
then Jm(X ) is an apartment of the parabolic subspace [M,N ]k . If

l ≤ n − k + m + 1

and X is an (l − 1)-simplex of [M〉k−m+1 then Jm(X ) is the set of its (m − 1)-faces.

Example 4 Let N be a (k+m)-dimensional subspace of V such that 1 < m ≤ k. Then
2m ≤ k+m. Consider the (k+m−1)-dimensional projective space 〈N ]k+m−1. Let Y
be a finite (2m)-independent subset of 〈N ]k+m−1. As in Example 2, the intersection
of any m elements from Y is k-dimensional and we define J ∗

k (Y ). This is the image
of an isometric embedding of J (l,m), l = |Y | in Γk(V ). If N = V then we get the
J -subset constructed in Example 2. Let M be the intersection of all elements from Y
(possibly M = 0). If Y is a base of the projective space [M,N ]k+m−1 then J ∗

k (Y ) is
an apartment of the parabolic subspace [M,N ]k . If

l ≤ k + m + 1

and Y is an (l − 1)-simplex of 〈N ]k+m−1 then J ∗
k (Y ) is the set of its (m − 1)-faces.

By Proposition 1 and Examples 1–4, isometric embeddings of J (l,m) in Γk(V )

exist for all pairs l,m satisfying

min{m, l − m} ≤ min{k,n − k}
if the division ring R is infinite.

Theorem 4 Let n, k, l,m be natural numbers satisfying n, l ≥ 4, 1 < k < n − 1,
1 < m < l − 1 and

m′ := min{m, l − m} ≤ min{k,n − k}.
If J is the image of an isometric embedding of J (l,m) in Γk(V ) then one of the
following possibilities is realized:

• there exists M ∈ Gk−m′(V ) such that J is defined by a (2m′)-independent subset
of [M〉k−m′+1 consisting of l elements (Example 3),

• there exists N ∈ Gk+m′(V ) such that J is defined by a (2m′)-independent subset
of 〈N ]k+m′−1 consisting of l elements (Example 4).

The image of every isometric embedding of J (2m,m) in Γk(V ) is an apartment in a
parabolic subspace of type

[M,N ]k, M ∈ Gk−m(V ), N ∈ Gk+m(V ).

We assume that G0(V ) = {0} and Gn = {V }.
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Corollary 1 Let J be the image of an isometric embedding of J (n, k) in Γk(V ),
1 < k < n − 1. Then the following assertions are fulfilled:

(1) if 2k < n then J is defined by a (2k)-independent subset of ΠV consisting of
n elements (Example 1) or there exists N ∈ G2k(V ) such that J is defined by a
(2k)-independent subset of 〈N ]2k−1 consisting of n elements (Example 4),

(2) if 2k > n then J is defined by a (2n − 2k)-independent subset of Π∗
V consisting

of n elements (Example 2) or there exists M ∈ G2k−n(V ) such that J is defined
by a (2n − 2k)-independent subset of [M〉2k−n+1 consisting of n elements (Ex-
ample 3),

(3) if n = 2k then J is an apartment of Gk(V ).

Therefore, the image of every isometric embedding of J (n, k) in Γk(V ) is an apart-
ment of Gk(V ) if and only if n = 2k.

4 Proof of Theorem 4

Let W be an l-dimensional vector space and let B be a base of W . For each number
i ∈ {1, . . . , l − 1} we denote by Ai the associated apartment of Gi (W). Let f : Am →
Gk(V ) be an isometric embedding of Γ (Am) in Γk(V ). Since J (l,m) and J (l, l −m)

are isomorphic, we can assume that m ≤ l − m (in other words, m′ = m). Then the
diameter of Γ (Am) is equal to m and we have

m ≤ min{k,n − k}.
The image of this embedding will be denoted by J . Then f is an isomorphism of
Γ (Am) to Γ (J ); moreover, for any S,U ∈ Am we have

dm(S,U) = dk

(
f (S), f (U)

)
.

The proof of Theorem 4 will be given in several steps.
1. Our first step is the following lemma.

Lemma 1 Every maximal clique of Γ (J ) is contained in precisely one maximal
clique of Γk(V ).

Proof Let Y be a maximal clique of Γ (J ). Suppose that it is contained in at least
two distinct maximal cliques of Γk(V ). The intersection of two distinct maximal
cliques of Γk(V ) is the empty set, a point, or a line. Thus Y is contained in a line
[M,N ]k . Clearly, f −1(Y ) is a maximal clique of Γ (Am) and there is a maximal
clique Z 	= f −1(Y ) of Γ (Am) intersecting f −1(Y ) in two vertices. Then f (Z) is
a maximal clique of Γ (J ) intersecting Y in two vertices. Every maximal clique of
Γk(V ) contains a line or intersects this line at most in a point. Therefore, every max-
imal clique of Γk(V ) containing f (Z) contains the line [M,N ]k ; hence it coincides
with the star [M〉k or the top 〈N ]k . The latter means that all vertices of f (Z) are
adjacent with all vertices of Y which is impossible. �
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A maximal clique Y of Γ (J ) is said to be a star of J or a top of J if the maximal
clique of Γk(V ) containing Y is a star or a top, respectively.

If the intersection of two distinct maximal cliques of Γ (Am) consists of two ver-
tices then these maximal cliques are of different types (one of them is a star and the
other is a top). The same holds for maximal cliques of Γ (J ). For any distinct maxi-
mal cliques S and S ′ of Γ (Am) there is a sequence of maximal cliques of Γ (Am)

S = S0, S1, . . . , Si = S ′

such that |Sj−1 ∩ Sj | = 2 for every j ∈ {1, . . . , i}. This implies that for the mapping
f one of the following possibilities is realized:

(A) stars go to stars and tops go to tops,
(B) stars go to tops and tops go to stars.

In the next two steps we assume that the mapping f satisfies (A).
2. Denote by Jk−1 the set of all (k−1)-dimensional subspaces of V corresponding

to the stars of J . The mapping f induces a bijection

fm−1 : Am−1 → Jk−1

satisfying

f
(

Am ∩ [S〉m
) = J ∩ [

fm−1(S)
〉
k

for all S ∈ Am−1. Then

fm−1
(

Am−1 ∩ 〈U ]m−1
) = Jk−1 ∩ 〈

f (U)
]
k−1

for all U ∈ Am. The latter implies that fm−1 sends adjacent elements of Am−1 to
adjacent elements of Jk−1.

Now we show that for all S,U ∈ Am−1

dm−1(S,U) = dk−1
(
fm−1(S), fm−1(U)

)
.

Since fm−1 sends adjacent elements of Am−1 to adjacent elements of Jk−1,

dm−1(S,U) ≥ dk−1
(
fm−1(S), fm−1(U)

)
.

The condition 2m ≤ l guarantees the existence of S′,U ′ ∈ Am such that S ⊂ S′,
U ⊂ U ′ and

S ∩ U = S′ ∩ U ′.

Then

dm−1(S,U) = dm(S′,U ′) − 1 (1)

(indeed dm−1(S,U) = m − 1 − dim(S ∩ U) = m − 1 − dim(S′ ∩ U ′) =
dm(S′,U ′) − 1). The mapping f is an isometric embedding and

dm(S′,U ′) = dk

(
f (S′), f (U ′)

)
. (2)
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Since fm−1 is induced by f , we have

fm−1(S) ⊂ f (S′) and fm−1(U) ⊂ f (U ′)

which implies that

dim
(
fm−1(S) ∩ fm−1(U)

) ≤ dim
(
f (S′) ∩ f (U ′)

)
. (3)

By (1)–(3),

dm−1(S,U) = dm(S′,U ′) − 1 = dk

(
f (S′), f (U ′)

) − 1

= k − 1 − dim
(
f (S′) ∩ f (U ′)

)

≤ k − 1 − dim
(
fm−1(S) ∩ fm−1(U)

) = dk−1
(
fm−1(S), fm−1(U)

)
.

Thus

dm−1(S,U) ≤ dk−1
(
fm−1(S), fm−1(U)

)

and we get the required equality.
3. So, fm−1 is an isometric embedding of Γ (Am−1) in Γk−1(V ). Step by step, we

construct a sequence of isometric embeddings

fi : Ai → Gk−m+i (V ), i = m, . . . ,1,

of Γ (Ai ) in Γk−m+i (V ) such that fm = f . Denote by Jk−m+i the image of fi for
each i. If i > 1 then

fi

(
Ai ∩ [S〉i

) = Jk−m+i ∩ [
fi−1(S)

〉
k−m+i

∀S ∈ Ai−1 (4)

and

fi−1
(

Ai−1 ∩ 〈U ]i−1
) = Jk−m+i−1 ∩ 〈

f (U)
]
k−m+i−1 ∀U ∈ Ai . (5)

This means that every element of Jj , j > k − m + 1 is the sum of two adjacent
elements from Jj−1. Thus every element of J = Jk is the sum of some elements
from Jk−m+1.

Denote by P1, . . . ,Pl the elements of A1. Then

T1 := f1(P1), . . . , Tl := f1(Pl)

form Jk−m+1. Using (4) and (5) we establish that

f
(

Am ∩ [Pj 〉m
) = J ∩ [Tj 〉k. (6)

Lemma 2 A subspace of V belongs to J if and only if it is the sum of m elements
from Jk−m+1.

Proof Suppose that i1, . . . , im ∈ {1, . . . , l} are distinct. Then

S := Pi1 + · · · + Pim ∈ Am
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belongs to Am ∩ [Pj 〉m if and only if j ∈ {i1, . . . , im}. Thus, by (6), Tj is contained
in f (S) only in the case when j ∈ {i1, . . . , im}. It was noted above that f (S) is the
sum of some elements from Jk−m+1; hence

f (Pi1 + · · · + Pim) = Ti1 + · · · + Tim

and we get the claim. �

Lemma 3 The sum of any 2m elements from Jk−m+1 is (k + m)-dimensional.

Proof Suppose that i1, . . . , i2m ∈ {1, . . . , l} are distinct and consider

S := Ti1 + · · · + Tim and U := Tim+1 + · · · + Ti2m
.

The intersection of the subspaces

f −1(S) = Pi1 + · · · + Pim and f −1(U) := Pim+1 + · · · + Pi2m

is zero. Hence dm(f −1(S), f −1(U)) = m and, by our hypothesis, dk(S,U) = m. The
latter means that S + U is (k + m)-dimensional. �

The set Jk−m+1 is formed by l mutually adjacent elements of Gk−m+1(V ). It is
not contained in a top (if Jk−m+1 is a subset of a top then the sum of all elements
from Jk−m+1 is (k − m + 2)-dimensional which contradicts Lemma 3). Thus

Jk−m+1 ⊂ [M〉k−m+1, M ∈ Gk−m(V ).

Let N be the sum of all elements from Jk−m+1. Then

k + m ≤ dimN ≤ k − m + l (7)

(this follows from Lemma 3 and the fact that |Jk−m+1| = l). It is clear that M ⊂ N

and J is contained in [M,N ]k .
By Lemmas 2 and 3, X = Jk−m+1 is a (2m)-independent subset of [M〉k−m+1

and J coincides with Jm(X ), see Example 3.
If l = 2m then, by (7), the subspace N is (k + m)-dimensional and Jk−m+1 is a

base of the projective space [M,N ]k−m+1. This implies that J is an apartment of the
parabolic subspace [M,N ]k .

4. Suppose that f satisfies (B) and consider the mapping g : Am → J 0 which
transfers every S ∈ Am to the annihilator of f (S). This is an isometric embedding of
J (l,m) in Γn−k(V

∗) satisfying (A), see Fact 1.
As in the previous step, we establish the existence of M ∈ Gn−k−m(V ∗) and a

(2m)-independent subset X ⊂ [M〉n−k−m+1 such that J 0 coincides with Jm(X ).
Then M0 ∈ Gk+m(V ) and X 0 is a (2m)-independent subset of 〈M0]k+m−1. It is clear
that J coincides with J ∗

k (X 0), see Example 4.
If l = 2m then J 0 is an apartment of the parabolic subspace [M,N ]n−k , where

N ∈ Gn−k+m(V ∗). Thus J is an apartment of the parabolic subspace [N0,M0]k and
N0 ∈ Gk−m(V ).
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5 Permutations on finite subsets of projective spaces induced by semi-linear
automorphisms

Every permutation on an independent subset of ΠV can be extended to an element of
PGL(V ), such an extension is not unique even if our subset is a base of ΠV . Indeed,
we take a base 〈x1〉, . . . , 〈xn〉 of ΠV and consider any linear automorphism u : V →
V which transfers every xi to aixi ; if at least two ai are distinct then u induces a
non-identity element of PGL(V ) whose restriction to the base is the identity.

Proposition 2 Every permutation on an n-simplex of ΠV can be extended to an
element of PGL(V ); it can be uniquely extended if and only if the division ring R is
commutative.

Proof See Propositions 1 and 2 in Sect. III.3 [1]. �

By Proposition 2, every permutation on an m-simplex, m < n can be extended to
an element of PGL(V ); such an extension is not unique, since our simplex spans a
proper subspace of ΠV .

Proposition 3 Let X ⊂ G1(V ) be a finite subset such that every permutation on X is
induced by a semi-linear automorphism of V . Then X is an independent subset or a
simplex.

Corollary 2 Let X ⊂ G1(V ) be a finite subset. In the case when R is commutative,
the following conditions are equivalent:

• every permutation on X can be uniquely extended to an element of PGL(V ),
• X is an n-simplex.

Proof Let P1, . . . ,Pn′ be the elements of X . For each i ∈ {1, . . . , n′} we take a non-
zero vector xi ∈ Pi . Suppose that {P1, . . . ,Pm} is a maximal independent subset of X .
If m < n′ then the subset X is not independent. In this case, each xj , j > m is a
linear combination of x1, . . . , xm. If this linear combination contains xp and does not
contain xq for some p,q ≤ m then every semi-linear automorphism of V inducing
the transposition (Pp,Pq) does not leave fixed Pj which is impossible. Therefore,
for every j > m we have

xj = aj1x1 + · · · + ajmxm,

where each aji is non-zero. Then P1, . . . ,Pm+1 form an m-simplex and we can as-
sume that

xm+1 = x1 + · · · + xm;
in particular, X is an m-simplex if n′ = m+1. So, we need to show that the inequality
n′ ≥ m + 2 is impossible.

Suppose that n′ ≥ m + 2 and

xm+2 = a1x1 + · · · + amxm.
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Consider any semi-linear automorphism u : V → V which induces the transposition
(Pm+1,Pm+2). Then u(xm+1) = axm+2 for a non-zero scalar a ∈ R and s := a−1u

is a semi-linear automorphism of V transferring xm+1 to xm+2. Since s(Pi) = Pi if
i ≤ m, we have

s(xi) = aixi, i ≤ m and s(xm+2) = a2
1x1 + · · · + a2

mxm ∈ Pm+1.

This implies the existence of a non-zero scalar b ∈ R such that

a2
1 = · · · = a2

m = b.

Thus for any i, j ≤ m we get ai = ±aj . Since xm+1 and xm+2 are linearly indepen-
dent, the equality ai = aj does not hold for all pairs i, j . Therefore, up to a permuta-
tion on {1, . . . ,m}, we have

xm+2 = a′(x1 + · · · + xp − xp+1 − · · · − xm) (8)

with 1 ≤ p < m and non-zero a′ ∈ R.
Now suppose that u is a semi-linear automorphism of V which induces the trans-

position (P1,Pm+1). Then

u(x1) = c(x1 + · · · + xm)

and

u(x1 + · · · + xm) = c(x1 + · · · + xm) + c2x2 + · · · + cmxm ∈ P1.

This implies that ci = −c and u(xi) = −cxi for all i ∈ {2, . . . ,m}. By (8),

u(xm+2) = a′′u(x1 + · · · + xp − xp+1 − · · · − xm)

= a′′(c(x1 + · · · + xm) − cx2 − · · · − cxp + cxp+1 + · · · + cxm

)

= a′′c
(
x1 + 2(xp+1 + · · · + xm)

)

does not belong to Pm+2, a contradiction. �

Every bijective transformation f of a subset X ⊂ Gk(V ) defines a bijective trans-
formation of X 0 which maps every S ∈ X 0 to f (S0)0. The following statement is
trivial.

Lemma 4 A bijective transformation of X ⊂ Gk(V ) is induced by a semi-linear au-
tomorphism u : V → V if and only if the corresponding transformation of X 0 is
induced by the contragradient of u.

This lemma implies that the direct analogs of Propositions 2 and 3 hold for the
dual projective space Π∗

V .
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6 Rigid embeddings

A J -subset J ⊂ Gk(V ) is called rigid if every automorphism of Γ (J ) can be ex-
tended to an automorphism of Γk(V ), in other words, J is the image of a rigid iso-
metric embedding of a Johnson graph in Γk(V ). In this section all rigid J -subsets
will be classified.

The following observation is trivial.

Fact 2 Let J (l,m) be the Johnson graph whose vertices are the m-element subsets
of an l-element set I . If l 	= 2m then every automorphism of J (l,m) is induced by a
permutation on the set I . In the case when l = 2m, the group of all automorphisms
of J (l,m) is spanned by the automorphisms induced by permutations on I and the
automorphism transferring each m-element subset of I to its complement.

Let us consider several examples.

Example 5 Let A be the apartment of Gk(V ) defined by a base B = {xi}ni=1 of V . If
n 	= 2k then every automorphism of Γ (A) is induced by a permutation on the set

{
P1 := 〈x1〉, . . . ,Pn := 〈xn〉

};
thus it can be extended (not uniquely) to an element of PGL(V ). Suppose that n =
2k. In this case, the automorphism of Γ (A) transferring every element of A to its
complement can not be extended to the automorphism of Γk(V ) induced by a semi-
linear automorphism of V . Assume that R and R∗ are isomorphic; this guarantees
that semi-linear isomorphisms of V to V ∗ exist. Let {x∗

i }ni=1 be the base of V ∗ dual to
B; i.e. x∗

i xj = δij (δij is Kronecker symbol). Consider any semi-linear isomorphism
s : V → V ∗ which sends every xi to x∗

i and denote by g the associated automorphism
of Γk(V ) (it maps every S ∈ Gk(V ) to the annihilator of s(S)). Then

g(Pi1 + · · · + Pik ) = Pj1 + · · · + Pjk
, {j1, . . . , jk} = {1, . . . , n} \ {i1, . . . , ik};

in other words, the restriction of g to A is the automorphism of Γ (A) sending every
element of A to its complement. Therefore, apartments of Gk(V ) are rigid (under
assumption that R and R∗ are isomorphic if n = 2k).

Example 6 Let A be an apartment of a parabolic subspace

[M,N ]k, M ∈ Gk−m(V ), N ∈ Gl+k−m(V ).

If l 	= 2m then every automorphism of Γ (A) can be extended (not uniquely) to an
element of PGL(V ). Suppose that l = 2m. If n 	= 2k then the automorphism of Γ (A)

transferring every element of A to its complement can not be extended to an auto-
morphism of Γk(V ). In the case when n = 2k, the codimension of N is equal to the
dimension of M and such an extension is possible if R and R∗ are isomorphic.

Now consider a J -subset J ⊂ Gk(V ) distinct from an apartment of Gk(V ) and an
apartment of a parabolic subspace of Gk(V ). Then Γ (J ) is isomorphic to J (l,m)
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with l 	= 2m. We assume that m < l − m. By Theorem 4, one of the following possi-
bilities is realized:

• J = Jm(X ), where X is a finite (2m)-independent subset of [M〉k−m+1 and M ∈
Gk−m(V ),

• J = J ∗
k (X ), where X is a finite (2m)-independent subset of 〈N ]k+m−1 and N ∈

Gk+m(V ).

By our hypothesis, X is not independent. Since Γ (J ) is isomorphic to J (l,m) and
l 	= 2m, every automorphism of Γ (J ) is induced by a permutation on X . It follows
from the results of the previous section that every automorphism of Γ (J ) can be
extended to an automorphism of Γk(V ) if and only if X is a simplex. Also, every
automorphism of Γ (J ) can be uniquely extended to an element of PGL(V ) only in
the case when R is commutative and X is an n-simplex of ΠV (then 2k ≤ n) or an
n-simplex of Π∗

V (then 2k ≥ n).
So, we get the following.

Theorem 5 Let n, k, l,m and m′ be as in Theorem 4. Let also J be the image of a
rigid isometric embedding of J (l,m) in Γk(V ).

If l 	= 2m then one of the following possibilities is realized:

• l ≤ n−k+m′+1 and there exists M ∈ Gk−m′(V ) such that J is the set of all (m′−
1)-faces of an (l − 1)-simplex in the projective space [M〉k−m′+1 (Example 3),

• l ≤ k+m′ +1 and there exists N ∈ Gk+m′(V ) such that J is the set of all (m′ −1)-
faces of an (l − 1)-simplex in the projective space 〈N ]k+m′−1 (Example 4),

• l ≤ n − k + m′ and there exist M ∈ Gk−m′(V ) and N ∈ Gl+k−m′(V ) such that J
is an apartment of the parabolic subspace [M,N ]k ,

• l ≤ k + m′ and there exist M ∈ Gk+m′−l (V ) and N ∈ Gk+m′(V ) such that J is an
apartment of the parabolic subspace [M,N ]k .

Therefore, if l > max{k,n−k}+m′ +1 then there are no rigid isometric embeddings
of J (l,m) in Γk(V ).

If l = 2m then J is an apartment of a parabolic subspace

[M,N ]k, M ∈ Gk−m(V ), N ∈ Gk+m(V ),

n = 2k and R is isomorphic to R∗.
If every automorphism of the graph Γ (J ) can be uniquely extended to an element

of PGL(V ) then R is commutative and one of the following possibilities is realized:

• l = n + 1, m′ = k, 2k ≤ n and J is the set of all (k − 1)-faces of an n-simplex in
ΠV (Example 1),

• l = n + 1, m′ = n − k, 2k ≥ n and J is the set of all (n − k − 1)-faces of an
n-simplex in Π∗

V (Example 2).

Corollary 3 Let J be the image of a rigid isometric embedding of J (n, k) in Γk(V )

distinct from an apartment of Gk(V ). If 2k < n then one of the following possibilities
is realized:

• J is the set of all (k − 1)-faces of an (n − 1)-simplex in ΠV (Example 1),
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• n = 2k + 1 and there exists N ∈ Gn−1(V ) such that J is the set of all (k − 1)-faces
of an (n − 1)-simplex in the projective space 〈N ]n−2 (Example 4).

In the case when 2k > n, we have the following two possibilities:

• J is the set of all (n − k − 1)-faces of an (n − 1)-simplex in Π∗
V (Example 2),

• n = 2k − 1 and there exists M ∈ G1(V ) such that J is the set of all (k − 2)-faces
of an (n − 1)-simplex in the projective space [M〉2 (Example 3).
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