
J Algebr Comb (2011) 33: 543–553
DOI 10.1007/s10801-010-0257-1

Tetravalent half-arc-transitive graphs of order 2pq

Yan-Quan Feng · Jin Ho Kwak · Xiuyun Wang ·
Jin-Xin Zhou

Received: 2 September 2009 / Accepted: 28 September 2010 / Published online: 21 October 2010
© Springer Science+Business Media, LLC 2010

Abstract A graph is half-arc-transitive if its automorphism group acts transitively
on its vertex set, edge set, but not arc set. Let p and q be primes. It is known that
no tetravalent half-arc-transitive graphs of order 2p2 exist and a tetravalent half-arc-
transitive graph of order 4p must be non-Cayley; such a non-Cayley graph exists
if and only if p − 1 is divisible by 8 and it is unique for a given order. Based on
the constructions of tetravalent half-arc-transitive graphs given by Marušič (J. Comb.
Theory B 73:41–76, 1998), in this paper the connected tetravalent half-arc-transitive
graphs of order 2pq are classified for distinct odd primes p and q.

Keywords Cayley graph · Vertex-transitive graph · Half-arc-transitive graph

1 Introduction

All graphs considered in this paper are finite, connected, undirected and simple, but
with an implicit orientation of the edges when appropriate. Given a graph X, denote
by V (X), E(X), A(X) and Aut(X) the vertex set, edge set, arc set and automorphism
group of X, respectively. A graph X is said to be vertex-transitive, edge-transitive and
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arc-transitive if Aut(X) acts transitively on V (X), E(X) and A(X), respectively.
The graph X is said to be half-arc-transitive provided that it is vertex- and edge- but
not arc-transitive. More generally, by a half-arc-transitive action of a subgroup G of
Aut(X) on X we shall mean a vertex- and edge-, but not arc-transitive action of G

on X. In this case we say that the graph X is G-half-arc-transitive.
In 1947, Tutte [31] initiated an investigation of half-arc-transitive graphs by show-

ing that a vertex- and edge-transitive graph with odd valency must be arc-transitive.
A few years later, in order to answer Tutte’s question of the existence of half-arc-
transitive graphs of even valency, Bouwer [5] gave a construction of 2k-valent half-
arc-transitive graph for every k ≥ 2. Following these two classical articles, half-
arc-transitive graphs have been extensively studied from different perspectives over
decades by many authors. See, for example, [2, 9, 15, 16, 18, 32, 33].

One of the standard problems in the study of half-arc-transitive graphs is to classify
such graphs of certain orders. Let p be a prime. It is well-known that there are no
half-arc-transitive graphs of order p or p2 [6], and by Cheng and Oxley [7], there are
no half-arc-transitive graphs of order 2p. Alspach and Xu [2] classified the half-arc-
transitive graphs of order 3p and Wang [33] classified the half-arc-transitive graphs of
order a product of two distinct primes. Despite all of these efforts, however, further
classifications of half-arc-transitive graphs with general valencies seem to be very
difficult. For example, the classification of half-arc-transitive graphs of order 4p has
been considered for many years, but it still has not been achieved.

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive
graph, special attention has rightly been given to the study of tetravalent half-arc-
transitive graphs. In particular, constructing and classifying the tetravalent half-arc-
transitive graphs is currently an active topic in algebraic graph theory (for example,
see [1, 8, 10–13, 17–28] and [30, 34, 35, 37, 38]). For tetravalent half-arc-transitive
graphs of given orders, in 1992 Xu [37] classified the tetravalent half-arc-transitive
graphs of order p3 for each prime p, and recently, it was extended to the case of p4

by Feng et al. [11]. Also, Feng el al. [13] classified the tetravalent half-arc-transitive
graphs of order 4p, and such a graph exists if and only if p − 1 is divisible by 8.
It follows from [34] that no half-arc-transitive graphs of order 2p2 exist for each
prime p. In this paper we classify connected tetravalent half-arc-transitive graphs
of order 2pq for odd primes q < p. There are two infinite families of connected
tetravalent half-arc-transitive graphs of order 2pq with one family Cayley and the
other non-Cayley; the family of Cayley ones exists if and only if (p, q) �= (7,3)

and p ≡ 1 (mod q), and the family of non-Cayley ones exists if and only if p ≡
1 (mod 4q). For each family there are exactly 1

2 (q − 1) non-isomorphic connected
tetravalent half-arc-transitive graphs for a given order.

2 Preliminary results

We start by some notational conventions used throughout this paper. Let X be a graph.
For u,v ∈ V (X), denote by {u,v} the edge incident to u and v in X. Let B be a
subset of V (X). The subgraph of X induced by B will be denoted by X[B]. Let n be
a non-negative integer. By Cn and Kn, we denote the cycle and the complete graph
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of order n, respectively. Let D2n represent the dihedral group of order 2n, and Zn the
cyclic group of order n as well as the ring of integers modulo n. Denote by Z

∗
n the

multiplicative group of the ring Zn consisting of integers coprime to n.
Let X be a tetravalent G-half-arc-transitive graph for a subgroup G of Aut(X).

Then under the natural G-action on V (X) × V (X), the arc set A(X) is parti-
tioned into two G-orbits, say A1 and A2, which are paired with each other, that is,
A2 = {(v,u) | (u, v) ∈ A1}. Each of two corresponding oriented graphs (V (X),A1)

and (V (X),A2) has out-valency and in-valency which are equal to 2, and admits G

as a vertex- and arc-transitive group of automorphisms. Moreover, each of them has
X as its underlying graph. Let DG(X) be one of these two oriented graphs, fixed from
now on. For an arc (u, v) in DG(X), we say that u and v are the tail and the head of the
arc (u, v), respectively. An even length cycle C in X is called a G-alternating cycle if
the vertices of C are alternatively the tail or the head in DG(X) of their two incident
edges in C. It was shown in [21, Proposition 2.4(i)] that, first, all G-alternating cy-
cles in X have the same length—half of this length is called the G-radius of X—and
second, that any two adjacent G-alternating cycles in X intersect in the same number
of vertices, called the G-attachment number of X. The intersection of two adjacent
G-alternating cycles is called a G-attachment set. We say that X is tightly G-attached
if its G-attachment number coincides with G-radius. If X is half-arc-transitive, the
terms Aut(X)-alternating cycle, Aut(X)-radius, and Aut(X)-attachment number are
referred to as an alternating cycle of X, radius of X and attachment number of X,
respectively. Similarly, if X is tightly Aut(X)-attached, we say that X is tightly at-
tached. Tightly attached tetravalent graphs with odd radius and even radius have been
completely classified by Marušič [21] and Šparl [30], respectively. For the purpose
of this paper, we introduce a result due to Marušič.

Let m ≥ 3 be an integer, n ≥ 3 an odd integer and let r ∈ Z
∗
n satisfy rm = ±1. The

graph X(r;m,n) is defined to have vertex set V = {uj
i | i ∈ Zm, j ∈ Zn} and edge set

E = {{uj
i , u

j±ri

i+1 } | i ∈ Zm, j ∈ Zn}.

Proposition 2.1 [21, Theorem 3.4] A connected tetravalent graph X is a tightly at-
tached half-arc-transitive graph of odd radius n if and only if X ∼= X(r;m,n), where
m ≥ 3, and r ∈ Z

∗
n satisfying rm = ±1, and moreover none of the following condi-

tions is fulfilled:

(1) r2 = ±1;
(2) (r;m,n) = (2;3,7);
(3) (r;m,n) = (r;6,7k), where k ≥ 1 is odd, (7, k) = 1, r6 = 1, and there exists a

unique solution q ∈ {r,−r, r−1,−r−1} of the equation x2 + x − 2 = 0 such that
7(q − 1) = 0 and q ≡ 5 (mod 7).

The following proposition is due to Marušič and Praeger [25].

Proposition 2.2 [25, Lemma 3.5] Let X be a connected tetravalent G-half-arc-
transitive graph for some G ≤ Aut(X), and let A be a G-attachment set of X. If
|A| ≥ 3, then the vertex-stabilizer of v ∈ V (X) in G is of order 2.
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Given a finite group G, an inverse closed subset S ⊆ G \ {1} is called a Cayley
subset of G. The Cayley graph Cay(G,S) on G with respect to a Cayley subset S is
defined to have vertex set G and edge set {{g, sg} |g ∈ G,s ∈ S}. The automorphism
group Aut(X) of X contains the right regular representation R(G) of G, the acting
group of G by right multiplication, as a subgroup. Thus, Cayley graphs are vertex-
transitive. In general, we have the following result.

Proposition 2.3 [4, Lemma 16.3] A graph X is isomorphic to a Cayley graph on G if
and only if its automorphism group Aut(X) has a subgroup isomorphic to G, acting
regularly on vertices.

Let S be a Cayley subset of a finite group G. We call S a CI-subset, if for any
Cayley subset T of G, Cay(G,S) ∼= Cay(G,T ) implies that there is α ∈ Aut(G)

such that Sα = T . The following result is a well-known criterion for CI-subset due to
Babai [3].

Proposition 2.4 Let X = Cay(G,S) be a Cayley graph on a finite group G with re-
spect to S. Then S is a CI-subset of G if and only if for any σ ∈ SG with σ−1R(G)σ ≤
Aut(X), there exists an α ∈ Aut(X) such that σ−1R(G)σ = α−1R(G)α, where SG

denotes the symmetric group on G.

Now we state two simple observations about half-arc-transitive graphs.

Proposition 2.5 [35, Proposition 2.6] Let X be a connected half-arc-transitive graph
of valency 2n. Let A = Aut(X) and let Au be the stabilizer of u ∈ V (X) in A. Then
each prime divisor of |Au| is a divisor of n!.
Proposition 2.6 [13, Propositions 2.1 and 2.2] Let X = Cay(G,S) be half-arc-
transitive. Then S contains no involutions, and there is no α ∈ Aut(G,S) such that
sα = s−1 for some s ∈ S.

Finally, we give two group-theoretic propositions. Let H be a subgroup of a finite
group G. Denote by CG(H) the centralizer of H in G and by NG(H) the normalizer
of H in G. Then CG(H) is normal in NG(H).

Proposition 2.7 [29, Theorem 1.6.3] The quotient group NG(H)/CG(H) is isomor-
phic to a subgroup of the automorphism group Aut(H) of H .

As a result of the well-known classification of finite simple groups, we have the
following proposition.

Proposition 2.8 [14, pp. 12–14] A non-abelian simple group whose order has at
most three prime divisors is isomorphic to one of the following groups:

A5,A6,PSL(2,7),PSL(2,8),PSL(2,17),PSL(3,3),PSU(3,3),PSU(4,2),

whose orders are 22 · 3 · 5, 23 · 32 · 5, 23 · 3 · 7, 23 · 32 · 7, 24 · 32 · 17, 24 · 33 · 13,
25 · 33 · 7, 26 · 34 · 5, respectively.
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3 Constructions

In this section, we introduce two infinite families of tetravalent half-arc-transitive
graphs of order 2pq , where p > q are odd primes.

Construction of a Cayley model Let p,q be odd primes such that (p, q) �= (7,3)

and q | (p − 1). It is well-known that there is a unique non-abelian group of order pq ,
which is the Frobenius group Fpq = 〈a, b | ap = bq = 1, b−1ab = ar〉, where r is
an element of order q in Z

∗
p . Let G = 〈a, b, c | ap = bq = c2 = 1, b−1ab = ar , ac =

ca, cb = bc〉 ∼= Fpq ×Z2. Then G is independent of the choice of r and a non-abelian
group of order 2pq . For k ∈ Z

∗
q , define

Ck
2pq := Cay

(
G,

{
cbk, cb−k, cbka,

(
cbka

)−1})
.

Lemma 3.1 Let p, q and r be given as above. Then for each k ∈ Z
∗
q , Ck

2pq
∼=

X(rk;2q,p). Thus, Ck
2pq is a connected tetravalent half-arc-transitive graph of order

2pq , and there are exactly 1
2 (q − 1) non-isomorphic such graphs, that are Ck

2pq for

k = 1,2, . . . , 1
2 (q − 1).

Proof For each k ∈ Z
∗
q , set Tk = {cbk, cb−k, cbka, (cbka)−1}. Recall that X(rk;

2q,p) has vertex set V = {uj
i | i ∈ Z2q, j ∈ Zp} and edge set E = {{uj

i , u
j±rki

i+1 } |
i ∈ Z2q, j ∈ Zp}. It is easy to see that asbt = btasrt

for all integers s and t . Also,

one may easily check that the map φ : u
j
i �→ (cbk)iaj (i ∈ Z2q, j ∈ Zp) is an

isomorphism from X(rk;2q,p) to Cay(G,T ), where T = {cbka−1, (cbka−1)−1,

cbka, (cbka)−1}.
For any � ∈ Z

∗
q , the map a �→ a�, b �→ b, c �→ c induces an automorphism of G.

This implies that Aut(G) is 2-transitive on the set {biaj | j ∈ Zp} for a given i ∈ Z
∗
q

because the Sylow q-subgroups of G are conjugate. It follows that G has an auto-
morphism ϕ such that (bka)ϕ = bka and (bka−1)ϕ = bk . Since the automorphism
group Aut(G) of G fixes c (G has the center 〈c〉), one has T ϕ = Tk , and hence ϕ

is an isomorphism from Cay(G,T ) to Ck
2pq . Consequently, Ck

2pq
∼= X(rk;2q,p). By

hypothesis, we have p ≥ 11 and q ≥ 3, and since Tk generates G, Ck
2pq is a connected

tetravalent tightly attached half-arc-transitive graph of order 2pq by Proposition 2.1.
Let k ∈ Z

∗
q . Note that a−1bk = bka−rk

. The automorphism of G induced by a �→
a−rk

, b �→ b and c �→ c, maps Tk to {cbq−k, (cbq−k)−1, cbq−ka, (cbq−ka)−1}. This
implies that Ck

2pq
∼= Cq−k

2pq . To complete the proof, it suffices to show that Ck
2pq , 1 ≤

k ≤ 1
2 (q − 1), are pair-wise non-isomorphic.

Set A = Aut(Ck
2pq). By Proposition 2.2, |A| = 4pq and Au

∼= Z2 for u ∈ V (Ck
2pq).

It follows that R(G) � A. Note that G = 〈a, b〉 × 〈c〉. Then the subgroup H of R(G)

of order pq is also the unique subgroup of A of order pq , and R(c) ∈ CA(H), the
centralizer of H in A. Clearly, CA(H) is a 2-group. Suppose CA(H) has order 4.
Then CA(H) is a Sylow 4-subgroup of A. This implies that Au ≤ CA(H) and hence
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Au ≤ CA(R(G)), which forces that Au = 1, a contradiction. Thus, CA(H) = 〈R(c)〉
and R(G) = H × CA(H). Take σ ∈ SG such that σ−1R(G)σ ≤ A. Then R(G)σ =
Hσ ×CA(Hσ ). By the uniqueness of H in A, one has R(G)σ = R(G), and by Propo-
sition 2.4, Tk is a CI-subset of G.

Let 1 ≤ k1, k2 ≤ 1
2 (q − 1) with k1 �= k2. Suppose that Ck1

2pq
∼= Ck2

2pq . Since Tki
=

{cbki , (cbki )−1, cabki , (cabki )−1} (i = 1,2) are CI-subsets of G, Ck1
2pq

∼= Ck2
2pq im-

plies that there is a β ∈ Aut(G) such that T
β
k1

= Tk2 . Note that β must map c to c

and b to amb for some m ∈ Zp . Thus, (cbk1)β = ca�bk1 ∈ Tk2 for some � ∈ Zp . This
means that ca�bk1 = cbk2 , (cbk2)−1, cabk2 or (cabk2)−1, each of which is impossible
because 1 ≤ k1, k2 ≤ 1

2 (q − 1). Thus, Ck1
2pq � Ck2

2pq . �

Construction of a non-Cayley model Let p,q be odd primes such that 4q | (p − 1),
and let r be an element of order 4q in Z

∗
p . Let K = {k | k is an odd integer and 1 ≤

k ≤ q − 1}. For any k ∈ K , define

N Crk

2pq := X
(
rk;2q,p

)
.

Lemma 3.2 Let p, q , r and K be given as above. Then N Crk

2pq , k ∈ K , are pair-wise
non-isomorphic connected tetravalent tightly attached half-arc-transitive non-Cayley
graphs of order 2pq .

Proof Since r is assumed to have order 4q in Z
∗
p , rk has order 4q in Z

∗
p for any

k ∈ K . It follows that (rk)2q = −1 and (rk)2 �= ±1 in Z
∗
p . By Proposition 2.1, N Crk

2pq

is a connected tetravalent tightly attached half-arc-transitive graph of order 2pq . Let

ρ : u
j
i �→ u

j+1
i (i ∈ Z2q, j ∈ Zp) and σ : u

j
i �→ u

rkj

i+1 (i ∈ Z2q, j ∈ Zp) be defined as

permutations on V (N Crk

2pq). It is easy to see that ρ,σ are automorphisms of N Crk

2pq ,

and that σ−1ρσ = ρrk
. Moreover, 〈ρ,σ 〉 ∼= Zp �Z4q is half-arc-transitive on N Crk

2pq .

Set A = Aut(N Crk

2pq). By Proposition 2.2, |A| = 4pq and hence A = 〈ρ,σ 〉. Clearly,

every Sylow 2-subgroup of A is cyclic. If N Crk

2pq is a Cayley graph, then A has

a subgroup, say G, acting regularly on V (N Crk

2pq). Then necessarily |G| = 2pq and

G�A. Moreover, A = GAv for some v ∈ V (N Crk

2pq). Since Av
∼= Z2, A has a Sylow

2-subgroup P such that Av ≤ P . Then P = P ∩ A = (P ∩ G) × Av
∼= Z2 × Z2,

contrary to the fact that every Sylow 2-subgroup of A is cyclic. Thus, N Crk

2pq is a
non-Cayley graph.

To complete the proof, it suffices to show that N Crk

2pq (k ∈ K) are pair-wise non-

isomorphic. Suppose on the contrary that N Crm

2pq
∼= N Crn

2pq , where m,n ∈ K are
distinct. Then |m−n|, 2q +m−n, m+n and 2q +m+n are integers between 1 and
4q − 1. Since r is an element of order 4q in Z

∗
p , we have rm−n �= 1, r2q+m−n �= 1,

rm+n �= 1 and r2q+m+n �= 1 in Z
∗
p .

Let Vi = {vj
i | j ∈ Zp} for each i ∈ Z2q . Then V (N Crm

2pq) = V (N Crn

2pq) =
⋃

i∈Z2q
Vi . Note that N Crn

2pq has an automorphism which fixes v0
0 and interchanges
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v1
1 and v−1

1 , and vr−n

2q−1 and v−r−n

2q−1 . Thus, N Crm

2pq
∼= N Crn

2pq implies that there is an

isomorphism α from N Crm

2pq to N Crn

2pq such that (v0
0)α = v0

0 and either (v1
1)α = v1

1

or (v1
1)α = vr−n

2q−1. Note that Vi (i ∈ Z2q ) are orbits of the unique normal Sylow p-

subgroup of Aut(N Crm

2pq) and Aut(N Crn

2pq), respectively. This implies that α maps

each Vi to some Vj . Thus, V α
0 = V0 and V α

1 = V1 or V2q−1.
Let V α

1 = V1. Then (v1
1)α = v1

1 and V α
� = V� for any � ∈ Z2q . Since the sub-

graphs induced by V0 ∪V1 in N Crm

2pq and also in N Crn

2pq are cycles of length 2p, it is

easy to see that (v�
0)

α = v�
0 and (v�

1)
α = v�

1 for any � ∈ Zp . Similarly, since the sub-
graphs induced by V1 ∪ V2 in N Crm

2pq and in N Crn

2pq are cycles of length 2p, one has

(vrm

2 )α = vrn

2 or v−rn

2 because (v0
1)α = v0

1 . If (vrm

2 )α = vrn

2 then (v2rm

1 )α = v2rn

1 . Note
that (v2rm

1 )α = v2rm

1 . Thus, 2rm = 2rn in Z
∗
p , that is rm−n = 1 in Z

∗
p , a contradiction.

Similarly, if (vrm

2 )α = v−rn

2 then (v2rm

1 )α = v−2rn

1 . Thus, 2rm = −2rn in Z
∗
p , that is

r2q+m−n = 1 in Z
∗
p , also a contradiction.

Now let V α
1 = V2q−1. Then (v1

1)α = vr−n

2q−1 and V α
� = V2q−� for any � ∈ Z2q .

Since the subgraphs induced by V0 ∪ V2q−1 in N Crm

2pq and in N Crn

2pq are cycles

of length 2p, one has (v
j

0 )α = v
jr−n

0 and (v
j

1 )α = v
jr−n

2q−1 for any j ∈ Zp . In par-

ticular, (v0
1)α = v0

2q−1 and (v2rm

1 )α = v2rm−n

2q−1 . It follows that (vrm

2 )α = vr−2n

2q−2 or

v−r−2n

2q−2 . If (vrm

2 )α = vr−2n

2q−2 then (v2rm

1 )α = v2r−2n

2q−1 ; thus v2rm−n

2q−1 = v2r−2n

2q−1 , implying

rm+n = 1 in Z
∗
p , a contradiction. One may assume that (vrm

2 )α = v−r−2n

2q−2 and hence

(v2rm

1 )α = v−2r−2n

2q−1 ; thus v2rm−n

2q−1 = v−2r−2n

2q−1 , implying r2q+m+n = 1 in Z
∗
p , a contradic-

tion. It follows that all cases are impossible. �

4 A classification

Now, we classify the tetravalent half-arc-transitive graphs of order 2pq for q < p

odd primes. We first introduce two concepts which will be used later. Let X and Y be
two graphs. The lexicographic product X[Y ] is defined as the graph with vertex set
V (X[Y ]) = V (X)×V (Y ) such that for any two vertices u = (x1, y1) and v = (x2, y2)

in V (X[Y ]), u is adjacent to v in X[Y ] whenever either {x1, x2} ∈ E(X) or x1 = x2
and {y1, y2} ∈ E(Y). It is easy so see that if X and Y are symmetric graphs then
so is X[Y ]. Let N be a normal subgroup of Aut(X). The quotient graph XN of X

relative to N is defined as the graph whose vertices are the orbits of N in V (X) and
two orbits are adjacent if there is an edge in X between vertices lying in these two
orbits.

The following theorem is the main result of this paper.

Theorem 4.1 Let q < p be odd primes and let X be a connected tetravalent graph
of order 2pq . Then, X is half-arc-transitive if and only if either (p, q) �= (7,3),
q | (p −1) and X ∼= C�

2pq for 1 ≤ � ≤ 1
2 (q −1) or 4q | (p −1) and X ∼= N Crk

2pq where
r is an element of order 4q in Z

∗
p and k is an odd integer satisfying 1 ≤ k ≤ q − 1.
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Furthermore, the number of non-isomorphic connected tetravalent half-arc-
transitive graphs of order 2pq is equal to

⎧
⎨

⎩

0 if q � (p − 1) or (p, q) = (7,3),

q − 1 if q | (p − 1) and 4 | (p − 1),
1
2 (q − 1) if q | (p − 1), 4 � (p − 1) and (p, q) �= (7,3).

Proof By Lemmas 3.1 and 3.2, we only need to show the necessity of the first part.
Let X be a connected tetravalent half-arc-transitive graph of order 2pq . By Wilson
and Potoňik [36], no tetravalent half-arc-transitive graphs of order 30 or 42 exist. In
what follows, assume that (p, q) �= (5,3) or (7,3). Let A = Aut(X) and u ∈ V (X).
By Proposition 2.5, the stabilizer Au of u in A is a 2-group. Thus, |A| = 2�+1pq for
some positive integer �. In particular, 4pq | |A|. Let B be a normal subgroup of A.
First we prove three claims.

Claim 1: B � Zpq .

Suppose to the contrary that B ∼= Zpq . Clearly, B acts semiregularly on V (X) with
two orbits, say 	 and 	′. Let us write 	 = {	(b) |b ∈ B} and 	′ = {	′(b) |b ∈ B}.
One may assume that the actions of B on 	 and 	′ are just by right multiplica-
tion, that is, 	(b)g = 	(bg) and 	′(b)g = 	′(bg) for any b,g ∈ B . By half-arc-
transitivity of X, the blocks 	 and 	′ have no edge, implying that X is bipartite.
Let the neighbors of 	(1) be 	′(b1), 	′(b2), 	′(b3) and 	′(b4), where b1, b2, b3,

b4 ∈ B . Note that B is abelian. For any b ∈ B , the neighbors of 	(b) are 	′(bb1),
	′(bb2), 	′(bb3) and 	′(bb4), and furthermore, the neighbors of 	′(b) are 	(bb−1

1 ),
	(bb−1

2 ), 	(bb−1
3 ) and 	(bb−1

4 ). The map α defined by 	(b) �→ 	′(b−1), 	′(b) �→
	(b−1) for any b ∈ B , is an automorphism of X of order 2. For any b′, b ∈ B , one has
	(b′)αbα = 	(b′b−1) = 	(b′)b−1

and 	′(b′)αbα = 	′(b′b−1) = 	′(b′)b−1
, implying

that bα = b−1. Set G = 〈B,α〉. Since B ∼= Zpq , one has G ∼= D2pq and hence G acts
regularly on V (X). It follows that X is a Cayley graph on G, say X = Cay(G,S).
Since X is connected, S generates G. This forces S to contain an involution, contrary
to Proposition 2.6.

Claim 2: If B is a 2-subgroup, then B ∼= Z2.

Consider the quotient graph XB of X relative to B , and let K be the kernel of
A acting on V (XB). Then each orbit of B in V (X) has length 2 and |V (XB)| =
pq > 2. By half-arc-transitivity of X, the subgraph of X induced by each orbit of B

has no edges. It follows that XB has valency 2 or 4. If XB has valency 2, then X is
isomorphic to Cn[2K1] which is symmetric, a contradiction. Thus, XB has valency
4, and consequently, Ku = 1. Therefore, K = BKu = B ∼= Z2.

Claim 3: A is solvable with a normal Sylow p-subgroup.
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Suppose that A is non-solvable. Then A has a non-abelian simple composite factor
T1/T2 whose order divides 2n+1pq . Since p > q are odd primes, by Proposition 2.8,
T1/T2 ∼= A5 or PSL(2,7), forcing (p, q) = (5,3) or (7,3), a contradiction. Thus, A

is solvable.
Let T be a minimal normal subgroup of A. By solvability of A, T must be an

elementary abelian group, and by Claim 2, T ∼= Z2, Zp or Zq . If T ∼= Z2 then, by
Claim 2 again, T is a maximal normal 2-subgroup of A. Let L/T be a minimal
normal subgroup of A/T . Then L/T ∼= Zp or Zq . Thus, L has normal Sylow p- and
q-subgroups, which are characteristic in L. By normality of L in A, A has a normal
subgroup of order p or q . Thus, A always has a normal subgroup of order p or q ,
say N .

Suppose that |N | = q . Set C = CA(N). Clearly, N ≤ C and by Proposition 2.7,
A/C ≤ Aut(N) ∼= Zq−1. Since p > q , one has p | |C| and hence N �= C. Let M/N

be a minimal normal subgroup of A/N contained in C/N . Then M � A and M/N

is an elementary abelian r-group for r = 2 or p. Furthermore, M = N × R, where R

is a Sylow r-subgroup of M . Clearly, R is characteristic in M and so normal in A.
If r = p then M ∼= Zpq , contrary to Claim 1. Thus, r = 2. By Claim 2, R ∼= Z2,
and hence M ∼= Z2q . Then M ≤ CA(M) and again by Proposition 2.7, A/CA(M) ≤
Aut(M) ∼= Zq−1. Also, since p > q , one has p | |CA(M)|, and consequently, M �=
CA(M). Let H/M be a minimal normal subgroup of A/M contained in CA(M)/M .
Then H � A and H/M is an elementary abelian 2- or p-group. For the former case,
the Sylow 2-subgroup of H would be a normal subgroup of A of order at least 4,
contrary to Claim 2. For the latter case, H ∼= Z2pq . In this case, the subgroup of H of
order pq is a normal cyclic subgroup of A, contrary to Claim 1. Thus, |N | = p, and
hence N is a normal Sylow p-subgroup of A, as claimed.

Now we are ready to complete the proof. Let P be the Sylow p-subgroup of A.
Then P ∼= Zp and by Claim 3, P � A. Consider the quotient graph XP , and let K

be the kernel of A acting on V (XP ). Then XP has order 2q . Since X is half-arc-
transitive, the subgraph of X induced by each orbit of P has no edges, and further,
XP has valency 4 or 2.

Suppose that XP has valency 4. Then Ku = 1 and P = K . This implies that XP is
A/P -half-arc-transitive and hence A/P is non-abelian. Let C = CA(P ). Then P ≤
C and by Proposition 2.7, A/C ≤ Aut(P ) ∼= Zp−1. Thus, P �= C. Take a minimal
normal subgroup, say M/P , of A/P contained in C/P . Then M �A and M/P is an
elementary abelian r-subgroup with r = q or 2. If r = q , then M ∼= Zpq , contrary to
Claim 1. Thus, r = 2, and by Claim 2, one has M = P ×R with R ∼= Z2, that is M ∼=
Z2p . Again by Proposition 2.7, A/CA(M) ≤ Aut(M) ∼= Zp−1. Clearly, M ≤ CA(M).
If M = CA(M), then (A/P )/(M/P ) ∼= A/M is cyclic. Since M/P ∼= Z2 is normal
in A/P , M/P is contained in the center of A/P . It follows that A/P is abelian, a
contradiction. Thus, M �= CA(M). Take a minimal normal subgroup, say H/M , of
A/M in CA(M). Then H �A and by Claim 2, H/M ∼= Zq . It follows that H ∼= Z2pq

and the subgroup of H of order pq is a normal cyclic subgroup of A, contrary to
Claim 1.

As the remaining case, let XP have valency 2, namely, XP
∼= C2q . Suppose

Ku = 1. Then P = K , and so A/P ≤ Aut(XP ) ∼= D4q . Recall that 4pq | |A|, one
has A/P = Aut(XP ) ∼= D4q . Then QP/P � A/P , where Q is a Sylow q-subgroup
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of A. Since A/CA(P ) ≤ Aut(P ) ∼= Zp−1, one has P �= CA(P ). If q | |CA(P )|, then
PQ ∼= Zpq , contrary to Claim 1. Thus, q � |CA(P )| and CA(P )/P is a 2-group. It
follows that CA(P ) = P × R, where R ∼= Z2 by Claim 2. Then CA(P )/P is con-
tained in the center of A/P , and since (A/P )/(CA(P )/P ) ∼= A/CA(P ) is cyclic,
A/P is abelian, contrary to the fact that A/P ∼= D4q . Consequently, Ku �= 1. Let
V (XP ) = {Bi | i ∈ Z2q} such that Bi ∼ Bi+1. Then X[Bi ∪ Bi+1] ∼= C2p for each
i ∈ Z2q . Let DA(X) be one of the two oriented graphs associated with the action of
A on X. Since P is transitive on each Bi and Ku �= 1, all edges in X[Bi ∪ Bi+1]
have the same direction either from Bi to Bi+1 or from Bi+1 to Bi in the ori-
ented graph DA(X). This implies that for each i ∈ Z2q , X[Bi ∪ Bi+1] is an alter-
nating cycle of X with radius p. Clearly, X[Bi ∪ Bi+1] and X[Bi+1 ∪ Bi+2] inter-
sect in p vertices. It follows that the attachment number of X is also p. Thus, X

is a tetravalent tightly attached half-arc-transitive graph of odd radius p. By Propo-
sition 2.1, X ∼= X(r;2q,p), where r ∈ Z

∗
p such that r2q = ±1, and r2 �= ±1 and

(2q,p) �= (6,7). In particular, (p, q) �= (7,3). Recall that X(r;2q,p) has vertex set

V = {uj
i | i ∈ Z2q, j ∈ Zp} and edge set E = {{uj

i , u
j±ri

i+1 } | i ∈ Z2q, j ∈ Zp}.
Let r2q = 1. Then r is an element of Z

∗
p of order q or 2q because r2 �= 1. If

r has order 2q , then rq+1 has order q , and it is easy to see that X(r;2q,p) =
X(rq+1;2q,p). Thus, we can always assume that r is of order q . By Lemma 3.1,
X is isomorphic to one of C�

2pq for some 1 ≤ � ≤ 1
2 (q − 1).

Let r2q = −1. Then r is an element of Z
∗
p of order 4q . There are exactly 2(q − 1)

elements of order 4q in Z
∗
p , that is rk , where k ∈ Z

∗
4q . The graph X(rk;2q,p)

has edge set {{uj
i , u

j±rki

i+1 } | i ∈ Z2q, j ∈ Zp}, and vertex set {uj
i | i ∈ Z2q, j ∈ Zp}

for each k ∈ Z
∗
4q . It is easy to see that X(rk;2q,p) = X(rk+2q;2q,p). Note that

(rk)i = (r2q−k)2q−i or −(r2q−k)2q−i for each i ∈ Zp . One may easily show that the

permutation u
j
i �→ u

j

2q−i+1, (j ∈ Zp and i ∈ Z2q ) on {uj
i | i ∈ Z2q, j ∈ Zp} is a graph

isomorphism from X(rk;2q,p) to X(r2q−k;2q,p). It follows that X ∼= X(rk;2q,p)

for some odd integer k satisfying 1 ≤ k ≤ q − 1. Thus, X ∼= N Crk

2pq for some odd in-
teger k between 1 and q − 1. �
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23. Marušič, D., Nedela, R.: Partial line graph operator and half-arc-transitive group actions. Math. Slo-

vaca 51, 241–257 (2001)
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