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Abstract We extend properties of the weak order on finite Coxeter groups to Weyl
groupoids admitting a finite root system. In particular, we determine the topological
structure of intervals with respect to weak order, and show that the set of morphisms
with fixed target object forms an ortho-complemented meet semilattice. We define
the Coxeter complex of a Weyl groupoid with finite root system and show that it co-
incides with the triangulation of a sphere cut out by a simplicial hyperplane arrange-
ment. As a consequence, one obtains an algebraic interpretation of many hyperplane
arrangements that are not reflection arrangements.

Keywords Coxeter complex · Simplicial arrangements · Weak order · Weyl
groupoid

1 Introduction

Finite crystallographic Coxeter groups, also known as finite Weyl groups, play a
prominent role in many branches of mathematics like combinatorics, Lie theory, num-
ber theory, and geometry. In the late 1960s, V. Kac and R.V. Moody (see [16]) dis-
covered independently a class of infinite dimensional Lie algebras. In their approach,
the Weyl group is defined in terms of a generalized Cartan matrix. Later in the 1970s,
V. Kac also introduced Lie superalgebras using even more general Cartan matrices
[15], and observed that different Cartan matrices may give rise to isomorphic Lie su-
peralgebras. S. Khoroshkin and V. Tolstoy [17, p. 77] observed that the Weyl group

I.H. was supported by the German Research Foundation via a Heisenberg fellowship.

I. Heckenberger · V. Welker (�)
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 35032 Marburg, Germany
e-mail: welker@mathematik.uni-marburg.de

I. Heckenberger
e-mail: heckenberger@mathematik.uni-marburg.de

mailto:welker@mathematik.uni-marburg.de
mailto:heckenberger@mathematik.uni-marburg.de


116 J Algebr Comb (2011) 34: 115–139

symmetry of simple Lie algebras can be generalized to a Weyl groupoid symmetry
of contragredient Lie superalgebras, without working out the details. Independently,
Weyl groupoids turned out to be the main tool for the study of finiteness properties
of Nichols algebras [1] over groups. We give the definition and examples of Weyl
groupoids in Sect. 2.

Motivated by these developments, an axiomatic study of Weyl groupoids was ini-
tiated by H. Yamane and the first author [13]. The theory was further extended by a
series of papers of M. Cuntz and the first author, and a satisfactory classification result
of finite Weyl groupoids of rank two and three was achieved [7, 8]. Interestingly, not
all finite Weyl groupoids obtained via the classification are related to known Nichols
algebras. A possible explanation could be the existence of an additional axiom which
holds for the Weyl groupoid of any Nichols algebra. However, no such axiom has
been found yet, and a more systematic study is needed to find some clue.

In this paper, we analyze two structures associated to a Weyl groupoid—the weak
order and the Coxeter complex. Both are generalizations from the classical case. Most
of our results are known for Coxeter groups from the work of A. Björner (see [2,
3, 5]). In our work, we find the appropriate definition of the weak order and the
Coxeter complex for Weyl groupoids. From definitions we deduce the generalizations
of classical results. For the proofs, either a careful adaption of the classical proofs is
required or the lack of group structure forces new proofs which in some cases seem
to be simpler than the usual ones.

A first structure prominently associated to a Weyl group is the weak order. The
weak order for Weyl groupoids is defined using the length function. It proved its
relevance for Coxeter groups, and it also has an interpretation for Nichols algebras
in terms of right coideal subalgebras [12]. We work out an example (Example 3.1)
which shows that the weak order on a Weyl groupoid may have significantly differ-
ent properties than the one on a Coxeter group. As a consequence, our results cover
a much wider class of partially ordered sets than the classical ones. We verify the
existence of longest elements of parabolic subgroupoids and investigate their proper-
ties. We show in Proposition 3.7 that the subposet of the weak order consisting of the
longest elements is isomorphic to the poset of subsets of the set of simple reflections
ordered by inclusion. In Theorem 3.10, we prove that the set of morphisms with fixed
target object is a meet semilattice. It is worthwhile to mention that this result is usu-
ally proved using the exchange condition, which is not available for Weyl groupoids
[13]. For our proof, we take advantage of our knowledge on longest elements. In ad-
dition, with Theorem 3.21 we find a formula involving the letters of the meet of two
words in the weak order. With Theorem 3.13 we clarify the topological structure of
intervals in weak order, and in Theorem 3.18 it is shown that the set of morphisms
with fixed target object is ortho-complemented.

Coxeter groups, in particular Weyl groups, are a source of important classes of ex-
amples for simplicial hyperplane arrangements (see, for example, the seminal work
of P. Deligne [10]). Roughly speaking, a simplicial hyperplane arrangement is a fam-
ily of hyperplanes in a Euclidean space that cuts space into simplicial cones. How-
ever, most simplicial arrangements have no interpretation in terms of Coxeter groups.
Therefore, there is no canonical algebraic structure which hints toward a description
of the fundamental group of the complement of the complexification as described
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in [10]. Also, in general, simplicial arrangements lack a relation to Lie algebras. To
each Weyl groupoid there is an associated arrangement of hyperplanes—the set of hy-
perplanes defined by the root system. A priori the geometric structure of this arrange-
ment of hyperplanes is not clear. It was observed in [7] that for Weyl groupoids of
rank three this arrangement is simplicial and therefore can be seen as an arrangement
of lines in the projective plane cutting out triangles. Interestingly, the classification
of such arrangements is not yet completed [11]. It was noted in [7] that most known
exceptional arrangements, in particular the largest one, can be explained via Weyl
groupoids. In Sect. 4, we clarify the geometric structure of the arrangement of a Weyl
groupoid of arbitrary rank. This effort is motivated by the second prominent structure
we analyze in this paper—the Coxeter complex. We give two different definitions of
the Coxeter complex associated to a fixed object of a Weyl groupoid. From the defi-
nition in terms of cosets of parabolic subgroupoids, it is immediate that the Coxeter
complex is a (abstract) simplicial complex. The other definition of the Coxeter com-
plex is geometric and is given by the cell decomposition of the unit sphere cut out
by the arrangement of the Weyl groupoid. We prove in Corollary 4.6 that the two
definitions yield isomorphic complexes, and hence the Coxeter complex is a simpli-
cial complex which can be seen as the complex induced by a simplicial hyperplane
arrangement on the unit sphere. Note that the mathematical reasoning of Sect. 4 is
independent of Sect. 3. Nevertheless, the combinatorics of the weak order and the
Coxeter complex is linked in the same way as in the classical case. Indeed, at the
end of Sect. 4 in Theorem 4.9 we note that any linear extension of any weak order
associated to a Weyl groupoid induces a shelling order on its Coxeter complex.

In classical Coxeter group theory, the Bruhat order on the elements of the group
also plays an important role. It is a refinement of the weak order. But classically
the definition of the Bruhat order uses the conjugation in the group. In general, for
groupoids the notion of conjugation is not well defined. Therefore, we leave the defi-
nition and study of a Bruhat order for Weyl groupoids as an open problem.

2 Basic concepts

2.1 Weyl groupoids

We mainly follow the notation in [8, 9]. The foundations of the general theory have
been developed in [13]. Let us start by recalling the main definitions.

Let I and A be finite sets with A �= ∅. Let {αi | i ∈ I } be the standard basis of
Z

I . For all i ∈ I , let ρi : A → A be a map, and for all a ∈ A let Ca = (ca
jk)j,k∈I

be a generalized Cartan matrix in the sense of [16, Sect. 1.1], where ca
jk ∈ Z for all

j, k ∈ I . More precisely,

• ca
jj = 2 for all j ∈ I ,

• ca
jk < 0 for all j, k ∈ I and j �= k and

• ca
jk = 0 implies ca

kj = 0 for all j, k ∈ I .

The quadruple

C = C
(
I,A, (ρi)i∈I ,

(
Ca

)
a∈A

)
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is called a Cartan scheme if

(C1) ρ2
i = id for all i ∈ I ,

(C2) ca
ij = c

ρi(a)
ij for all a ∈ A and i, j ∈ I .

Let C = C(I,A, (ρi)i∈I , (C
a)a∈A) be a Cartan scheme. For all i ∈ I and a ∈ A,

define σa
i ∈ Aut(ZI ) by

σa
i (αj ) = αj − ca

ijαi for all j ∈ I . (2.1)

Then σa
i is a reflection in the sense of [6, Chap. V, Sect. 2]. The Weyl groupoid of

C is the category W (C) such that Ob(W (C)) = A and the morphisms are compo-
sitions of maps σa

i with i ∈ I and a ∈ A, where σa
i is considered as an element in

Hom(a,ρi(a)). The category W (C) is a groupoid. The set of morphisms of W (C) is
also denoted by W (C), and we use the notation

Hom
(

W (C), a
) =

⋃

b∈A

Hom(b, a) (disjoint union).

Example 2.1 Let (W,S) be a Coxeter system for a crystallographic Coxeter
group W . Then (W,S) can be seen as a Weyl groupoid W (C) with a single ob-
ject a and Hom(a, a) = 〈S〉 = W with Cartan scheme C = C({1, . . . , |S|}, {a},
(ρi = id)i=1,...,|S|, (Ca)) where Ca is the usual Cartan matrix of W . Note that the clas-
sical Cartan matrices are positive definite, which is not required for the generalized
Cartan matrices of Weyl groupoids. Conversely, if C = C(I, {a}, (ρi = id)i∈I , (C

a))

is a Cartan scheme with one object a, then (W (C), S) with S = {ρi | i ∈ I } is the
Coxeter system for the crystallographic Coxeter group W (C). In particular, for any
Cartan scheme on one object a the Cartan matrix Ca has to be positive definite.

For notational convenience we will often neglect upper indices referring to ele-
ments of A if they are uniquely determined by the context. For example, the mor-
phism

σ
ρi2 ···ρik

(a)

i1
· · ·σρik

(a)

ik−1
σa

ik
∈ Hom(a, b),

where k ∈ N0, i1, . . . , ik ∈ I , and b = ρi1 · · ·ρik (a),

will be denoted by σi1 · · ·σa
ik

or by idbσi1 · · ·σik . The cardinality of I is termed the
rank of W (C). A Cartan scheme is called connected if its Weyl groupoid is con-
nected, that is, if for all a, b ∈ A there exists w ∈ Hom(a, b). The Cartan scheme is
called simply connected, if for all a, b ∈ A the set Hom(a, b) consists of at most one
element.

Let C be a Cartan scheme. For all a ∈ A, let
(
Rre)a = {

idaσi1 · · ·σik (αj ) |k ∈ N0, i1, . . . , ik, j ∈ I
} ⊆ Z

I .

The elements of the set (Rre)a are called real roots (at a)—this notion is adopted
from [16, Sect. 5.1]. The pair (C, ((Rre)a)a∈A) is denoted by Rre(C). A real root
α ∈ (Rre)a , where a ∈ A, is called positive (resp., negative) if α ∈ N

I
0 (resp., α ∈
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−N
I
0). In contrast to real roots associated to a single generalized Cartan matrix (e.g.,

Example 2.1), (Rre)a may contain elements which are neither positive nor negative.
A good general theory can be obtained if (Rre)a satisfies additional properties.

Let C = C(I,A, (ρi)i∈I , (C
a)a∈A) be a Cartan scheme. For all a ∈ A let Ra ⊆ Z

I ,
and define ma

i,j = |Ra ∩ (N0αi + N0αj )| for all i, j ∈ I and a ∈ A. One says that

R = R
(

C,
(
Ra

)
a∈A

)

is a root system of type C , if it satisfies the following axioms:

(R1) Ra = Ra+ ∪ −Ra+, where Ra+ = Ra ∩ N
I
0, for all a ∈ A.

(R2) Ra ∩ Zαi = {αi,−αi} for all i ∈ I , a ∈ A.
(R3) σa

i (Ra) = Rρi(a) for all i ∈ I , a ∈ A.

(R4) If i, j ∈ I and a ∈ A such that i �= j and ma
i,j is finite, then (ρiρj )

ma
i,j (a) = a.

Example 2.2 Let (W,S) be a Coxeter system for a finite crystallographic Coxeter
group W acting on some real vector space V seen as a Weyl groupoid as in Exam-
ple 2.1. Then by [14, p. 6] a root system of W is a set of vectors R from V such
that:

(R1′) R ∩ Rα = {α,−α} for all α ∈ R.
(R2′) σR = R for all reflections σ from W .

Clearly, (R1′) implies (R2), and from the finiteness and the crystallographic condition
we infer that (R2) implies (R1′). It is obvious that (R2′) implies (R3). Since any
reflection is a product of simple reflections, it follows that (R3) implies (R2′). Since
our groupoid has only one object, Axiom (R4) is vacuous. As a consequence [14, p. 8]
of (R1′) and (R2′) every set of positive roots contains a unique simple system. Then
the definition of a simple system and the crystallographic condition imply (R1). Thus
we have shown that for finite crystallographic Coxeter groups conditions (R1′)–(R2′)
and (R1)–(R3) are equivalent.

Axioms (R2) and (R3) are always fulfilled for Rre. A root system R is called finite
if for all a ∈ A the set Ra is finite. By [9, Proposition 2.12], if R is a finite root system
of type C , then R = Rre, and hence Rre is a root system of type C in that case.

In [9, Definition 4.3], the concept of an irreducible root system of type C was de-
fined. By [9, Proposition 4.6], if C is a connected Cartan scheme and R is a finite root
system of type C , then R is irreducible if and only if for all a ∈ A (or, equivalently,
for some a ∈ A) the generalized Cartan matrix Ca is indecomposable.

Let C = C(I,A, (ρi)i∈I , (C
a)a∈A) be a Cartan scheme. Let Γ be an undirected

graph, such that the vertices of Γ correspond to the elements of A. Assume that for
all i ∈ I and a ∈ A with ρi(a) �= a there is precisely one edge between the vertices a

and ρi(a) with label i, and all edges of Γ are given in this way. The graph Γ is called
the object change diagram of C .

Now we introduce parabolic subgroupoids which will play a crucial role in the
sequel.
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Definition 2.3 Let C = C(I,A, (ρi)i∈I , (C
a)a∈A) be a Cartan scheme and let J ⊆ I .

The parabolic subgroupoid WJ (C) is the smallest subgroupoid of W (C) which con-
tains all objects of W (C) and all morphisms σa

j with j ∈ J and a ∈ A.

Example 2.4 1. Assume that C is a Cartan scheme such that A consists of a single
element. Then the parabolic subgroupoids of W (C) are just the standard parabolic
subgroups of the Coxeter group W (C).

2. Let (W,S) be a crystallographic Coxeter system. Let C be a connected and
simply connected Cartan scheme such that all Cartan matrices Ca with a ∈ A coin-
cide with the Cartan matrix of W . Then the connected components of WJ (C), where
J ⊆ I , can be interpreted as the parabolic subgroups of W conjugate to WJ .

In general, parabolic subgroupoids are not connected, even if C is connected.
In what follows, we will consider only Cartan schemes C which admit a root sys-

tem R(C, (Ra)a∈A).
The most important tools for the study of the weak order in the next section will

be the length functions of the parabolic subgroupoids WJ (C) of W (C), where J ⊆ I .
For all J ⊆ I let �J : WJ (C) → N0 be such that

�J (w) = min
{
k ∈ N0 |w = σi1 · · ·σa

ik
, i1, . . . , ik ∈ J

}
(2.2)

for all a, b ∈ A and w ∈ Hom(a, b). For J = I this is the adaption of the usual length
function from classical Coxeter groups to Weyl groupoids defined in [13]. We write
�(w) instead of �I (w). For w ∈ W (C) we say that w = σi1 · · ·σik is a reduced decom-
position of w if k = �(w).

The length function on Weyl groupoids has similar properties as the usual length
function on Coxeter groups, see [13]. In particular, the following holds.

Lemma 2.5 (Lemma 8(iii) [13]) Let a, b ∈ A and w ∈ Hom(a, b). Then

�(w) = ∣∣{α ∈ Ra+ |w(α) ∈ −Rb+
}∣∣.

Lemma 2.6 (Corollary 3 [13]) Let a, b ∈ A, w ∈ Hom(a, b), and i ∈ I . Then
�(wσi) = �(w) − 1 if and only if w(αi) ∈ −Rb+. Equivalently, �(wσi) = �(w) + 1
if and only if w(αi) ∈ Rb+.

Before we proceed with studying the length function itself, we clarify the structure
of the set of subsets J ⊆ I for which w ∈ Hom(a, b) is also a morphism in WJ (C).

Proposition 2.7 Let w ∈ Hom(a, b). If w = σi1 · · ·σa
ik

is a reduced decompo-
sition of w and w = σj1 · · ·σa

jl
is another decomposition, where k, l ∈ N0 and

i1, . . . , ik, j1, . . . , jl ∈ I , then as sets

{i1, . . . , ik} ⊆ {j1, . . . , jl}.
In particular, if k = l then {i1, . . . , ik} = {j1, . . . , jk}.
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Proof Set J := {i1, . . . , ik} and J ′ = {j1, . . . , jl}. Assume that J �⊆ J ′. Let m ∈
{1, . . . , k} be such that im /∈ J ′ and im′ ∈ J ′ for all m′ < m. Let α = idaσikσik−1· · ·σim+1(αim). Then α ∈ Ra+ by the fact that w = σi1 · · ·σa

ik
is a reduced decompo-

sition and by Lemma 2.6. Moreover,

w(α) = σi1 · · ·σim−1σim(αim) = −σi1 · · ·σim−1(αim) ∈ −αim + spanZ{αj | j ∈ J ′}.
(2.3)

Let α = α′ + α′′ with α′ ∈ spanN0
{αj | j /∈ J ′} and α′′ ∈ spanN0

{αj | j ∈ J ′}. Since
w ∈ WJ ′(C), we conclude that w(α) ∈ α′ + spanZ{αj | j ∈ J ′}. This is a contradiction
to (2.3) since im /∈ J ′. Hence J ⊆ J ′. �

For all a, b ∈ A, w ∈ Hom(a, b) and reduced decompositions w = σi1 · · ·σa
ik

we
set J (w) := {i1, . . . , ik}. By Proposition 2.7, this definition is independent of the cho-
sen reduced decomposition. Moreover, for any subset J ⊆ I and any w ∈ WJ (C)

the reduced decompositions of w are also contained in WJ (C). Observe also that
J (w) = J (w−1) for all w ∈ W (C) and that J (uv) = J (u) ∪ J (v) for all u,v ∈ W (C)

with �(uv) = �(u) + �(v).

Corollary 2.8 Let J ⊆ I . Then �J (w) = �(w) for all w ∈ WJ (C).

Proof If there is a decomposition of w having only factors σi with i ∈ J then by
Proposition 2.7 all reduced decompositions have this property. The assertion fol-
lows. �

One can characterize J (w) for any w ∈ W (C) in terms of roots.

Lemma 2.9 Let a, b ∈ A, J ⊆ I , and let w ∈ Hom(b, a). Then J (w) ⊆ J if and only
if w(Rb+) ⊆ Ra+ ∪ ∑

j∈J Zαj .

Proof The implication ⇒ follows from the definition of simple reflections and from
Axioms (R1), (R3). Assume now that w(Rb+) ⊆ Ra+ ∪∑

j∈J Zαj and that J (w) �⊆ J .

Then J (σiw) �⊆ J and σiw(Rb+) ⊆ R
ρi(a)
+ ∪ ∑

j∈J Zαj for all i ∈ J , and hence by
multiplying w from the left by an appropriate element of WJ (C) we may assume
that �(σjw) = �(w) + 1 for all j ∈ J . It follows that w−1(αj ) ∈ Rb+ for all j ∈ J by
Lemma 2.6. Hence w(Rb+) ⊆ Ra+, and therefore w = ida by Lemma 2.5. This is a
contradiction to J (w) �⊆ J . �

Let J ⊆ I and for all a ∈ A let C′a = (c′a
jk)j,k∈J . Then C′ = C′(J,A, (ρj )j∈J ,

(C′a)a∈A) is a Cartan scheme. It is denoted by C|J and is called the restriction of C
to J . As noted in [9, Sect. 4], if Rre(C) is a root system of type C , then Rre(C|J ) is a
root system of type C|J , and finiteness of Rre(C) implies finiteness of Rre(C|J ). We
compare restrictions with parabolic subgroupoids.

Lemma 2.10 Let J ⊆ I , a ∈ A, k ∈ N0, and i1, . . . , ik ∈ J such that σi1 · · ·σa
ik
|ZJ =

ida|ZJ . Then σi1 · · ·σa
ik

= ida .



122 J Algebr Comb (2011) 34: 115–139

Proof By assumption σi1 · · ·σa
ik
(αj ) = αj for all j ∈ J . Since i1, . . . , ik ∈ J , the

definition of σb
j for j ∈ J , b ∈ A implies that σi1 · · ·σa

ik
(αi) ∈ αi + Z

J for all

i ∈ I \ J . Hence σi1 · · ·σa
ik
(αi) ∈ N

I
0 for all i ∈ I \ J by Axioms (R1) and (R3).

Then �(σi1 · · ·σa
ik
) = 0 by Lemma 2.5 and hence σi1 · · ·σa

ik
= ida . �

Proposition 2.11 For all J ⊆ I there is a unique functor EJ : W (C|J ) → W (C)

with EJ (a) = a and EJ (σa
j ) = σa

j for all a ∈ A and j ∈ J . This functor induces an
isomorphism of groupoids between W (C|J ) and WJ (C).

Proof The uniqueness of EJ follows from the definition of W (C|J ), and EJ (w) ∈
WJ (C) for all w ∈ W (C|J ). The functor EJ is well-defined by Lemma 2.10. It is
clear that EJ (w) = ida for some a ∈ A and w ∈ W (C|J ) implies that w = ida , and
hence EJ is an isomorphism. �

Finally, we state an analogue of a well-known decomposition theorem for Coxeter
groups. Following [5, Definition 2.4.2], let

W J (C) = {
w ∈ W (C) |�(wσj ) = �(w) + 1 for all j ∈ J

}
. (2.4)

Proposition 2.12 Let J ⊆ I and w ∈ W (C). Then the following hold:

(i) There exist unique elements u ∈ W J (C) and v ∈ WJ (C) such that w = uv.
(ii) Let u,v be as in (i). Then �(w) = �(u) + �(v).

Proof The existence in (i) and the claim in (ii) can be shown inductively on the
length of w; see, for example, [5, Proposition 2.4.4]. If w ∈ W J (C), then w = wid
is a desired decomposition. Otherwise, let j ∈ J be such that �(wσj ) = �(w) − 1.
By induction hypothesis, there exist u ∈ W J (C) and v1 ∈ WJ (C) such that wσj =
uv1 and �(wσj ) = �(u) + �(v1). We obtain that w = uv, where v = v1σj ∈ WJ (C).
Moreover,

�(u) + �(v) ≤ �(u) + �(v1) + 1 = �(uv1) + 1

= �(wσj ) + 1 = �(w) = �(uv) ≤ �(u) + �(v),

and hence (ii) holds.
Let now u1, u2 ∈ W J (C) and v1, v2 ∈ WJ (C) be such that w = u1v1 = u2v2. Then

u1 = u2v2(v1)
−1. (2.5)

Assume that v2 �= v1. Then there exists j ∈ J such that �(v2v
−1
1 σj ) = �(v2v

−1
1 ) − 1,

and hence v2v
−1
1 (αj ) ∈ −∑

k∈J N0αk by Lemma 2.6. Since u2 ∈ W J (C), it follows
again by Lemma 2.6 that u2v2v

−1
1 (αj ) ∈ −N

I
0. On the other hand, u1(αj ) ∈ N

I
0 by

Lemma 2.6 since u1 ∈ W J (C). This is a contradiction to (2.5), and hence v1 = v2 and
u1 = u2. �

An immediate consequence of Proposition 2.12 is the following.
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Corollary 2.13 Let J ⊆ I . Then every left coset wWJ (C), where w ∈ W (C),
has a unique representative of minimal length. The system of such representatives
is W J (C).

2.2 Geometric combinatorics

Let P be a partially ordered set with order relation �. A chain of length i in P is
a linearly ordered subset p0 ≺ · · · ≺ pi of i + 1 elements of P . A chain is called
maximal if it is an inclusionwise maximal linearly ordered subset of P . The or-
der complex Δ(P ) of P is the abstract simplicial complex on ground set P whose
i-simplices are the chains of length i. If p � q are two elements of P then we denote
by [p,q] the closed interval {r ∈ P | p � r � q}. Analogously, one defines the open
interval (p, q) := [p,q] \ {p,q}. We write Δ(p,q) to denote the order complex of
(p, q). For p ∈ P we write P≺p for the subposet of all q ∈ P with q ≺ p.

Via the geometric realization |Δ(P )| of P , one can speak of topological proper-
ties of partially ordered sets P . In particular, we can speak of P being homotopy
equivalent or homeomorphic to another partially ordered set or topological space. If
P is a partially ordered set with unique maximal element 1̂ or unique minimal el-
ement 0̂ then Δ(P ) is a cone over 1̂ (resp., 0̂) and therefore contractible. Hence in
order to be able to capture non-trivial topology, one considers for partially ordered
sets P with unique minimal element 0̂ and unique maximal element 1̂ the proper part
P̂ := P \ {0̂, 1̂} of P . For example, [̂p,q] = (p, q). The following simple example
will be useful in the subsequent sections.

Example 2.14 Let Ω be a finite set and 2Ω be the Boolean lattice of all subsets of
Ω ordered by inclusion. Then 2Ω has the unique minimal element 0̂ = ∅ and the
unique maximal element 1̂ = Ω . Then Δ(2̂Ω) is the barycentric subdivision (see,
for example, [18, Sect. 15]) of the boundary of the (|Ω| − 1)-simplex and hence
homeomorphic to an (|Ω| − 2)-sphere.

For our purposes, the following well known result on the topology of partially
ordered sets will be crucial.

Theorem 2.15 (Corollary 10.12 [4]) Let P be a partially ordered set and let f :
P → P be a map such that:

(i) p � q implies f (p) � f (q);
(ii) f (p) � p.

Then P and f (P ) are homotopy equivalent.

In order to set up the next tool, it is most convenient to work in the context of
(abstract) simplicial complexes. For a simplicial complex Δ, we call A ∈ Δ a face of
Δ and denote by dimA = #A − 1 its dimension. We call Δ pure if all inclusionwise
maximal faces have the same dimension. The order complex Δ(P ) of a partially
ordered set P is pure if and only if all maximal chains in P have the same length.
A pure simplicial complex Δ is called shellable if there is a numbering F1, . . . ,Fr of
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the set of its maximal faces such that for all 1 ≤ i < j ≤ r there is an � < j and an
ω ∈ Fj such that Fi ∩ Fj ⊆ F� ∩ Fj = Fj \ {ω}.

It is well known (see, e.g., [4]) that if Δ is a shellable simplicial complex of dimen-
sion d then the geometric realization is homotopy equivalent to a wedge of spheres of
dimension d . For the subsequent applications, we are interested in situations when Δ

is homeomorphic to a sphere. This can also be verified using shellability when Δ is a
pseudomanifold. A pure d-dimensional simplicial complex Δ is called a pseudoman-
ifold if for all faces F ∈ Δ of dimension d − 1 there are at most 2 faces of dimension
d containing F .

Theorem 2.16 (Theorem 11.4 [4]) Let Δ be a shellable d-dimensional pseudoman-
ifold. If every face of dimension d − 1 is contained in exactly 2 faces of dimension d

then Δ is homeomorphic to a d-sphere, otherwise Δ is homeomorphic to a d-ball.

3 Weak order

In this section, we define and study the weak order on a Weyl groupoid. We are
interested in combinatorial and geometric properties of this partial order. We show in
Theorems 3.10 and 3.18 that this order is indeed an ortho-complemented lattice. In
Theorem 3.13, we identify the homotopy types of order complexes of intervals in the
weak order as spheres or points.

Throughout this section, let C = C(I,A, (ρi)i∈I , (C
a)a∈A) be a Cartan scheme and

assume that Rre(C) is a finite root system.
The (right) weak order or Duflo order ≤R on Weyl groupoids is the natural gen-

eralization of the (right) weak order on Coxeter groups, see [5, Chap. 3]: for any
a, b, c ∈ A and u ∈ Hom(b, a), v ∈ Hom(c, b) we define

u ≤R uv : ⇔ �(u) + �(v) = �(uv).

For all a ∈ A, the weak order is a partial ordering on Hom(W (C), a). As shown in
[12], the weak order has an algebraic interpretation in terms of right coideal subalge-
bras of Nichols algebras.

Example 3.1 Let I = {1,2,3} and A = {a, b, c, d, e}. There is a unique Cartan
scheme C with

Ca =
⎛

⎝
2 −1 0

−1 2 −2
0 −1 2

⎞

⎠ , Cb =
⎛

⎝
2 −1 0

−1 2 −1
0 −1 2

⎞

⎠ ,

Cc =
⎛

⎝
2 −1 −1

−1 2 −1
−1 −1 2

⎞

⎠ , Cd =
⎛

⎝
2 0 −1
0 2 −1

−1 −1 2

⎞

⎠ ,

Ce =
⎛

⎝
2 0 −1
0 2 −1

−1 −2 2

⎞

⎠ ,
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Fig. 1 The object change
diagram for Example 3.1

Fig. 2 The weak order for Example 3.1 in object a

where the object change diagram is as in Fig. 1.
The rank of the Cartan scheme is 3 and the length of the longest element in

Hom(W (C), a) (see below) is 8, and hence none of the posets Hom(W (C), a),
Hom(W (C), b) and Hom(W (C), c) with the weak order depicted in Figs. 2, 3 and 4
can be obtained from a Coxeter group. In this respect, a particularly interesting case
is Fig. 4. Note that for Coxeter groups W the polynomial

∑
w∈W t�(w) is a product

of factors of the form 1 + t + · · · + te. In particular, it follows that the coefficient
sequence of

∑
w∈W t�(w) is unimodal, i.e., weakly increases and weakly decreases

along increasing t powers. Now despite the fact that they cannot arise from Coxeter
groups for Figs. 2 and 3, the analogously defined polynomial still has the nice fac-
torization. But in the example Fig. 4 this fails, and moreover the coefficient sequence
1,3,6,7,6,7,6,3,1 is not unimodal.
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Fig. 3 The weak order for Example 3.1 in object b

In what follows, for all a ∈ A we consider Hom(W (C), a) as a poset with respect
to the weak order.

Lemma 3.2 Let a ∈ A. Then all maximal chains in Hom(W (C), a) have the same
length. This number is independent of a in the connected component of C contain-
ing a. Hence, Δ(Hom(W (C), a)) is a pure simplicial complex.

Proof A chain u0 <R u1 <R · · · <R uk in Hom(W (C), a), where k ∈ N0, is maximal
if and only if �(uj ) = j for all j ∈ {0,1, . . . , k} and

�(ukσi) ≤ �(uk) for all i ∈ I . (3.1)

Lemma 2.6 and (3.1) imply that uk(αi) ∈ −Ra+ for all i ∈ I . Hence uk(α) ∈ −Ra+ for
all α ∈ Rb+, where b ∈ A such that uk ∈ Hom(b, a). Then k = �(uk) = |Rb+| = |Ra+| =
|Ra|/2 by Lemma 2.5. In the connected component of C containing a, the number of
roots per object is constant by Axiom (R3). �
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Fig. 4 The weak order for Example 3.1 in object c

Corollary 3.3 Let a ∈ A and J ⊆ I . There is a unique minimal and a unique maximal
element in Hom(WJ (C), a).

Proof By Proposition 2.11, the groupoid WJ (C) is isomorphic to the Weyl groupoid
of a Cartan scheme. The length function on WJ (C) is �J , which itself coincides
with the restriction of the length function of W (C) by Proposition 2.8. Thus we may
assume that J = I .

The unique minimal element in Hom(W (C), a) is ida . In view of the proof of
Lemma 3.2, maximal elements have length |Ra+|. By [13, Corollary 5], there is a
unique element in Hom(W (C), a) of maximal length, which implies the claim. �

Definition 3.4 For all a ∈ A and J ⊆ I we write wJ for the unique maximal element
of Hom(WJ (C), a) with respect to weak order. We say that wJ is the longest word
over J .
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The element wJ in Definition 3.4 depends on the object a. Nevertheless, for
brevity we omit a in the notation, since usually it is clear from the context what
it is.

Lemma 3.5 Let a ∈ A, J ⊆ I and let wJ be the unique maximal element of
Hom(WJ (C), a) with respect to weak order. Then J (wJ ) = J .

Proof This follows from Lemma 2.6. �

In [5, p. 17], left descent sets and left descents of elements of Coxeter groups
have been defined. We generalize the definition to our setting, and introduce a related
notion.

For all a ∈ A and w ∈ Hom(W (C), a), let

DL(w) = {
s ∈ Hom

(
W (C), a

) |�(s) = 1, s ≤R w
}
, (3.2)

IL(w) = {
i ∈ I | idaσi ∈ DL(w)

}
. (3.3)

The set DL(w) is called the left descent set of w and its elements are called the left
descents of w. Clearly, every element w �= ida has left descents. Similarly, let

D̄L(w) = {
wJ ∈ Hom

(
W (C), a

) |J ⊆ I, wJ ≤R w
}
. (3.4)

Since w{j} = idaσj for all j ∈ I , we have a natural inclusion DL(w) ⊆ D̄L(w). In
the sequel, we will consider D̄L(w) as a subposet of Hom(W (C), a) ordered by the
weak order.

Lemma 3.6 Let a ∈ A, w ∈ Hom(W (C), a) and J = IL(w). Then wJ ≤R w.

Proof Set x := w−1wJ . Then w = wJ x−1. To prove that wJ ∈ D̄L(w), we have
to show that �(x) = �(w) − �(wJ ). By definition of IL(w) and Lemma 2.6 we
conclude that w−1(αj ) ∈ −N

I
0 and wJ (αj ) ∈ −spanN0

{αm |m ∈ J } for all j ∈ J .
Hence x(αj ) ∈ N

I
0 for all j ∈ J . Therefore, x ∈ W J (C) by Lemma 2.6, and hence

�(xw−1
J ) = �(x) + �(w−1

J ) by Proposition 2.12(ii). This yields the claim. �

Proposition 3.7 Let a ∈ A and w ∈ Hom(W (C), a). The map 2IL(w) → D̄L(w),
J �→ wJ , is an isomorphism of posets.

Proof Well-defined: By Lemma 3.6, the map 2IL(w) → D̄L(w) is well defined.
Injectivity: This follows immediately from Lemma 3.5.
Surjectivity: Let J ⊆ I be such that wJ ≤R w. The definition of wJ implies that

idaσj ≤R wJ for all j ∈ J , and hence J ⊆ IL(wJ ) ⊆ IL(w). Thus the map 2IL(w) →
D̄L(w) is surjective.

Poset-Isomorphism: Definition 3.4 implies that wJ ≤R wJ ′ whenever J ⊆ J ′ ⊆ I .
Conversely, let J,J ′ ⊆ I with wJ ≤R wJ ′ . By Corollary 3.5, it follows that J =
J (wJ ) and J ′ = J (wJ ′). Hence from wJ ≤R wJ ′ we infer J ⊆ J ′. �
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Proposition 3.8 Let a, b ∈ A, u ∈ Hom(b, a) and v ∈ Hom(W (C), a) be such that
u <R v.

(i) The map w �→ u−1w is an isomorphism of posets from the interval [u,v] to the
interval [idb, u−1v].

(ii) The map w �→ u−1w is an isomorphism of posets from the interval (u, v) to the
interval (idb, u−1v).

Proof Follow the proof of [5, Proposition 3.1.6]. This uses only basic properties of
the length function which hold also for the length function of W (C). The arguments
are the same for both (i) and (ii), and work also if one considers intervals which are
open on one side and closed on the other. �

Let (P,≤) be a poset and U ⊆ P a subset. An element z ∈ P is called the meet of
U if

• z ≤ u for all u ∈ U , and
• y ≤ z for all y ∈ P with y ≤ u for all u ∈ U .

If it exists, the meet of U is unique and is denoted by
∧

U . The meet of two elements
x, y ∈ P is denoted by x ∧ y. Similarly, an element z ∈ P is called the join of U if

• u ≤ z for all u ∈ U , and
• z ≤ y for all y ∈ P with u ≤ y for all u ∈ U .

If it exists, the join of U is unique and is denoted by
∨

U . The join of two elements
x, y ∈ P is denoted by x ∨y. In the sequel, we write ∨ for the join and ∧ for the meet
in Hom(W (C), a) with respect to the weak order.

A poset is called a meet semilattice, if every finite non-empty subset has a meet.
Finite Coxeter groups with weak order form a meet semilattice by [5, Theorem 3.2.1],
but the proof uses the exchange condition which is not available in our setting (see
Remark 3.11 for the case of infinite Coxeter groups and Weyl groupoids). We present
for Weyl groupoids of Cartan schemes a proof which is based on Proposition 3.7. The
following lemma is one step in our proof.

Lemma 3.9 Let a ∈ A and u,v,w ∈ Hom(W (C), a) be such that w ≤R u and
w ≤R v. If IL(w) � IL(u) ∩ IL(v) then there exists w′ ∈ Hom(W (C), a) such that
w <R w′ and w′ ≤R u, w′ ≤R v.

Proof We proceed by induction on the length of w. If �(w) = 0 then w = ida and the
claim holds with w′ = wIL(u)∩IL(v) by Lemma 3.6.

Assume now that �(w) > 0. Let J = IL(u) ∩ IL(v), and let w0 ∈ Hom(WJ (C), a)

be maximal with respect to weak order such that w0 ≤R w. Then �(w0) > 0 since
�(w) > 0 and IL(w) ⊆ J . Further, w0 �= idawJ since IL(w) �= J . Let b ∈ A and
u1, v1,w1 ∈ Hom(W (C), b) be such that w = w0w1, u = w0u1, and v = w0v1.
Then w0 ≤R u and w0 ≤R v by transitivity of ≤R , and hence w1 ≤R u1, w1 ≤R

v1 by Proposition 3.8. Moreover, IL(w1) ∩ J = ∅ by the maximality of w0, and
IL(u1) ∩ IL(v1) ∩ J �= ∅ since w0 �= idawJ . Since �(w1) < �(w), induction hy-
pothesis provides us with w′′ ∈ Hom(W (C), b) such that w1 <R w′′ and w′′ ≤R u1,
w′′ ≤R v1. Then the lemma holds with w′ = w0w

′′ by Proposition 3.8. �
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Theorem 3.10 Let a ∈ A. Then Hom(W (C), a) is a meet semilattice.

Proof For all v ∈ Hom(W (C), a), the set {w ∈ Hom(W (C), a) |w ≤R v} is finite.
Hence it suffices to show that any pair of elements of Hom(W (C), a) has a meet.

Let u,v ∈ Hom(W (C), a). We prove by induction on the length of u that the set
{u,v} has a meet.

For all w ∈ Hom(W (C), a) with w ≤R u and w ≤R v, it follows that IL(w) ⊆
IL(u) ∩ IL(v). Thus if IL(u) ∩ IL(v) = ∅, then w = ida , and hence u ∧ v = ida . This
happens in particular if �(u) = 0.

Assume now that J := IL(u) ∩ IL(v) �= ∅, and let w1,w2 ∈ Hom(W (C), a) be
maximal with respect to weak order such that wi ≤R u and wi ≤R v for all i ∈ {1,2}.
We show that w1 = w2. The maximality assumption and Lemma 3.9 imply that
IL(w1) = IL(w2) = J . Hence idawJ ≤R wi for all i ∈ {1,2} by Lemma 3.6. There-
fore, there exist unique b ∈ A, u′, v′,w′

1,w
′
2 ∈ Hom(W (C), b) such that idawJ ∈

Hom(b, a), wi = idawJ w′
i , u = idawJ u′, v = idawJ v′. Proposition 3.8 implies that

w′
1,w

′
2 are maximal. Since �(u′) < �(u), induction hypothesis implies that w′

1 = w′
2,

and hence w1 = w2. Thus the theorem is proven. �

Remark 3.11 The proof of Theorem 3.10 does not use the assumption that
Hom(W (C), a) is finite. Thus analogously to the case of Coxeter groups (see
[5, Theorem 3.2.1]) in the weak order of Weyl groupoids the meet of an arbitrary
subset exists, and therefore the weak order forms a complete meet semilattice.

Recall that a poset P is called a lattice if every (finite) subset of P has a join and
a meet. Since Hom(W (C), a) is a finite meet-semilattice by Theorem 3.10 and has a
unique maximal element by Corollary 3.3, the following corollary holds by standard
arguments from lattice theory.

Corollary 3.12 Let a ∈ A. Then Hom(W (C), a) is a lattice.

The following result is the extension to Weyl groupoids of Theorem 3.2.7 from [5].

Theorem 3.13 Let a ∈ A and u,v ∈ Hom(W (C), a) be such that u ≤R v. Let
J = IL(u−1v). If u−1v �= wJ then (u, v) is contractible. If u−1v = wJ then (u, v)

is homotopy equivalent to a sphere of dimension |J | − 2.

Proof By Proposition 3.8, it follows that we only need to consider the case u = ida .
Consider the map f : (ida, v) → (ida, v) sending w ∈ (ida, v) to wIL(w).

Let w,w′ ∈ Hom(W (C), a) with w ≤R w′. Then IL(w) ⊆ IL(w′) and hence
f (w) ≤R f (w′) ≤R w′. Hence, by Theorem 2.15, it follows that (ida, v) and its im-
age under f are homotopy equivalent. From Proposition 3.7, we infer that the image
of [ida, v] under f is as a poset isomorphic to 2IL(v) ordered by inclusion.

If v = wIL(v) then Proposition 3.7 implies that the image of the open interval
(ida, v) under f is isomorphic to the open interval (∅, IL(v)), and hence by Ex-
ample 2.14 homeomorphic to a |IL(v)| − 2 sphere. If v �= wIL(v) then wIL(v) is the
unique maximal element of the image of (ida, v) under f . In particular, the image is
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isomorphic to the half open interval (∅, IL(v)]. Since a poset with unique maximal
element is contractible the rest of the assertion follows. �

Remark 3.14 For all a ∈ A let τ(a) ∈ A be such that wI ∈ Hom(τ (a), a). Since wI

maps positive roots to negative roots, Lemma 2.6 implies that w−1
I is a maximal

element in Hom(a, τ (a)). Hence τ 2(a) = a by Corollary 3.3 and the definition of τ .
Thus τ : A → A, a �→ τ(a), is an involution of A.

The longest element of a Weyl group induces an automorphism of the correspond-
ing Dynkin diagram. This automorphism can be generalized to Weyl groupoids as
follows. Let a ∈ A. Since wI ∈ Hom(a, τ (a)) maps positive roots to negative roots,
Axiom (R1) implies that there exists a permutation τa

I ∈ SI such that wI ida(αj ) =
−ατa

I (j).

Lemma 3.15 (i) For all a ∈ A, the permutation τa
I is an involution and τb

I = τa
I for

all b ∈ A in the connected component of a in C .
(ii) For all a ∈ A and i ∈ I, we have wIσ

a
i wI = σ

τ(a)

τa
I (i)

.

Proof The definition of τa
I and the formula wIwI ida = ida imply that τ

τ(a)
I τ a

I = id
for all a ∈ A.

(ii) Let a ∈ A and i, j ∈ I . Then wIσiwIσ
ρj (τ(a))

j ∈ Hom(ρj (τ (a)), τ (ρi(a))). As-

sume that τ
τ(a)
I (j) = i, that is, j = τa

I (i). Then

wIσiwIσ
ρj (τ(a))

j (αj ) = −wIσiwI idτ(a)(αj ) = wIσ
a
i (αi) = −wI idρi(a)(αi)

= α
τ

ρi (a)

I (i)
. (3.5)

Moreover, wIσiwIσ
ρj (τ(a))

j maps any positive root different from αj to a pos-
itive root since wI maps positive roots to negative roots and for all l ∈ I ,
b ∈ A the map σb

l sends positive roots different from αl to positive roots,

see [13, Lemma 1]. Thus �(wIσiwIσ
ρj (τ(a))

j ) = 0 by Lemma 2.5, and hence

wIσ
a
i wI = σ

τ(a)
j .

(i) Since for all a ∈ A the object τ(a) is in the same connected component as a, it
suffices to show that for all a ∈ A and i ∈ I the permutations τa

I and τ
ρi(a)
I are

equal. Let a ∈ A and i ∈ I . By (ii), we obtain that

στa
I (i)wIσ

a
i = wI ida, (3.6)

and (3.5) gives that τ
ρi(a)
I (i) = j = τa

I (i). Applying (3.6) to all αk with k ∈ I

implies that τa
I = τ

ρi(a)
I . �

For all a ∈ A define the map ta : Hom(W (C), a) → Hom(W (C), τ (a)) by

ta
(
idaσi1 · · ·σik

) = idτ(a)στa
I (i1) · · ·στa

I (ik) for all k ∈ N0, i1, . . . , ik ∈ I .
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By the following proposition, for different objects a the sets Hom(W (C), a) may
be isomorphic as posets with the weak order.

Proposition 3.16 Let a ∈ A. Then ta(w) = wIwwI and �(ta(w)) = �(w) for all
w ∈ Hom(W (C), a). The map ta is an isomorphism of posets with respect to weak
order.

Proof Lemma 3.15(i) and (ii) imply that

idτ(a)wIσi1 · · ·σikwI = idτ(a)(wIσi1wI )(wIσi2wI ) · · · (wIσikwI )

= idτ(a)στa
I (i1)στa

I (i2) · · ·στa
I (ik)

for all a ∈ A, k ∈ N0, and i1, . . . , ik ∈ I . Hence ta is well-defined and the first
claim holds. Since wIwI ida = ida , we conclude that tτ (a)ta(w) = w for all w ∈
Hom(W (C), a) and tatτ (a)(w) = w for all w ∈ Hom(W (C), τ (a)), and hence ta is
bijective. It is clear from the definition and bijectivity of ta that ta preserves length,
and therefore it preserves and reflects weak order. �

A lattice P with unique minimal element 0̂ and unique maximal element 1̂ is
called ortho-complemented if there is a map ⊥: P → P such that (O1) p ∧ p⊥ = 0̂,
(O2) p ∨ p⊥ = 1̂, (O3) For all p ∈ P we have (p⊥)⊥ = p, and (O4) for all p � q in
P we have q⊥ � p⊥.

Lemma 3.17 Let a ∈ A and w ∈ Hom(W (C), a). Then the following hold:

(i) �(w) + �(wwI ) = �(wI ).
(ii) IL(w) ∩ IL(wwI ) = ∅.

(iii) For i ∈ I we have i ∈ IL(w) if and only if i �∈ IL(wwI ).

Proof (i) For any b ∈ A and v ∈ Hom(b, a) we have �(v) = #{α ∈ Rb+ |v(α) ∈ −Ra+}.
Now wI (α) ∈ −Rb+ for all α ∈ R

τ(b)
+ . Thus for α ∈ Rb+ we have

w(α) ∈ −Ra+ ⇔ wwI

(−wI (α)
) ∈ Ra+.

This implies that �(w) + �(wwI ) = �(wI ).
(ii) Let i ∈ IL(w) ∩ IL(wwI ). Then �(σiw) = �(w) − 1 and �(σiwwI ) =

�(wwI ) − 1. Hence

�(σiw) + �(σiwwI ) = �(w) − 1 + �(wwI ) − 1 = �(wI ) − 2.

This contradicts (i), and hence IL(w) ∩ IL(wwI ) = ∅.
(iii) By (ii), it suffices to show that IL(w) ∪ IL(wwI ) = I . Assume there is an

i ∈ I \ (IL(w) ∪ IL(wwI )). Then �(σiw) = �(w) + 1 and �(σiwwI ) = �(wwI ) + 1.
Analogously to (ii), we obtain that
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�(σiw) + �(σiwwI ) = �(w) + 1 + �(wwI ) + 1 = �(wI ) + 2,

which is a contradiction to (i), and we are done. �

Theorem 3.18 Let a ∈ A. Then the map ⊥: Hom(W (C), a) → Hom(W (C), a) de-
fined by w⊥ := wwI satisfies (O1)–(O4). Thus Hom(W (C), a) with the weak order
is an ortho-complemented lattice.

Proof (O1) This follows immediately from Lemma 3.17(ii).
(O2) By Lemma 3.17(iii), we know that IL(w) ∪ IL(wwI ) = I . Thus any v ∈

Hom(W (C), a) with w ≤R v, wwI ≤R v satisfies wI ≤R v by Lemma 3.6. Hence
w ∨ wwI = wI .

(O3) This follows from the definition of ⊥ and Remark 3.14.
(O4) Let u,v ∈ Hom(W (C), a) with u ≤R v. If �(u) = 0 then clearly v⊥ ≤R u⊥ =

wI . Now proceed by induction on �(u). Assume that �(u) ≥ 1 and let i ∈ IL(u).
Then i ∈ IL(v) and we find ū and v̄ in Hom(W (C), ρi(a)) such that u = σiū and
v = σi v̄. Then ū ≤R v̄. By the induction hypothesis, we obtain that v̄⊥ ≤R ū⊥. Since
i �∈ IL(v̄) and i �∈ IL(ū), it follows from Lemma 3.17(iii) and the definition of ⊥
that i ∈ IL(v̄⊥) and i ∈ IL(ū⊥). Hence σi v̄

⊥ ≤R σiū
⊥. By the definition of ⊥, this

implies that vwI = σi v̄wI ≤R σiūwI = uwI . Hence v⊥ ≤R u⊥. �

The following proposition strengthens Proposition 3.7 by showing that the embed-
ding is indeed an embedding of lattices.

Proposition 3.19 Let a ∈ A and J,J ′ ⊆ I . Then wJ ∧wJ ′ = wJ∩J ′ and wJ ∨wJ ′ =
wJ∪J ′ . In particular, the map 2I → Hom(W (C), a), J �→ wJ is an embedding of
lattices.

Proof (∧) By Proposition 3.7, it follows that wJ∩J ′ ≤R wJ ,wJ ′ . By Theorem 3.10,
there is a meet w := wJ ∧ wJ ′ and hence wJ∩J ′ ≤R w. Let b ∈ A be such
that w ∈ Hom(b, a). From w ≤R wJ and w ≤R wJ ′ , we deduce that there are
u,u′ ∈ Hom(W (C), b) such that wJ = wu, wJ ′ = wu′ and �(wJ ) = �(w) + �(u),
�(wJ ′) = �(w) + �(u′). From wJ∩J ′ ≤R w, we deduce that there is v ∈ W (C)

such that w = wJ∩J ′v and �(w) = �(wJ∩J ′) + �(v). Since wJ∩J ′vu = wJ and
wJ∩J ′vu′ = wJ ′ , it follows that IL(v) ⊆ J ∩ J ′. However, by the fact that wJ∩J ′ is
the longest word in J ∩ J ′ and �(wJ∩J ′) + �(v) = �(wJ∩J ′v), it follows that v = ida

and hence w = wJ∩J ′ .
(∨) By Proposition 3.7, it follows that wJ ,wJ ′ ≤R wJ∪J ′ . Let now w ∈

Hom(W (C), a) be such that wJ ,wJ ′ ≤R w. We have to show that wJ∪J ′ ≤R w.
By Proposition 3.7, with w = wJ we conclude that IL(wJ ) = J , and similarly
IL(wJ ′) = J ′. Thus J ∪ J ′ = IL(wJ ) ∪ IL(wJ ′) ⊆ IL(w). Lemma 3.6 and Propo-
sition 3.7 imply that wJ∪J ′ ≤R wIL(w) ≤R w, and we are done. �

The following is an immediate consequence of Proposition 3.19.
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Corollary 3.20 Let a ∈ A. Then for all J ⊆ I we have

∨

i∈J

idaσi = idawJ .

In particular, for all w ∈ W (C) we have

∨

i∈IL(w)

idaσi = idawIL(w).

Next we present a formula about the factors appearing in a reduced decomposition
of the meet of two morphisms.

Theorem 3.21 Let a ∈ A and u,v ∈ Hom(W (C), a). Then

J (u) ∪ J (v) = J (u ∧ v) ∪ J (u−1v).

Proof Since u ∧ v ≤R u and u ∧ v ≤R v, it follows that J (u ∧ v) ⊆ J (u) ∩ J (v).
Moreover, J (u−1v) ⊆ J (u) ∪ J (v), and hence the inclusion ⊇ in the theorem holds.

Now we prove the inclusion ⊆ by induction on �(u) + �(v). If �(u) = �(v) = 0
then the claim clearly holds. Assume now that �(u) + �(v) > 0.

Case 1. u ∧ v �= ida . Then there exists i ∈ IL(u) ∩ IL(v). Let u0, v0 ∈
Hom(W (C), ρi(a)) be such that u = σiu0, v = σiv0. Then

J (u) = J (u0) ∪ {i}, J (v) = J (v0) ∪ {i},
J (u ∧ v) = J

(
σi(u0 ∧ v0)

) = J (u0 ∧ v0) ∪ {i},

and u−1v = u−1
0 v0. Thus the claim follows from the induction hypothesis.

Case 2. u∧v = ida , J (u) �⊆ J (v). By Proposition 2.12, there exist unique elements
uJ ∈ W J (v)(C), uJ ∈ WJ (v)(C) such that u−1 = uJ uJ . Then u = u−1

J (uJ )−1 and
�(uJ )+�(uJ ) = �(u) and hence J (uJ )∪J (uJ ) = J (u). We have �(uJ ) < �(u) since
u /∈ WJ (v)(C). Further,

u−1
J ∧ v = ida (3.7)

since u ∧ v = ida . Thus

J (u) ∪ J (v) = J
(
uJ

) ∪ J
(
u−1

J

) ∪ J (v) = J
(
uJ

) ∪ (
J
(
u−1

J ∧ v
) ∪ J (uJ v)

)

= J
(
uJ

) ∪ J (uJ v) = J
(
uJ uJ v

) = J
(
u−1v

)
.

Here the second equation holds by induction hypothesis and the third by (3.7).
The fourth equation follows from uJ v ∈ WJ (v)(C), uJ ∈ W J (v)(C) and Proposi-
tion 2.12(ii).

Case 3. u ∧ v = ida , J (v) �⊆ J (u). Replace u and v and apply Case 2.
Case 4. u ∧ v = ida , J (u) = J (v). Let J = J (u−1v). We have to show that

J (u) ⊆ J . By Corollary 2.13, there exists a unique minimal element w ∈ uWJ (C).
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Since v = u(u−1v) and u−1v ∈ WJ (C), there exist u1, v1 ∈ WJ (C) such that

u = wu1, v = wv1, �(u) = �(w) + �(u1), �(v) = �(w) + �(v1).

Therefore, w ≤ u ∧ v = ida , and hence u ∈ wWJ (C) = WJ (C). Thus J (u) ⊆ J . �

4 Coxeter complex

In this section, we study the cell decomposition of the unit sphere induced by the
set of hyperplanes associated to a Weyl groupoid. It is shown that this decomposi-
tion is indeed a triangulation and that the underlying abstract simplicial complex can
be defined purely algebraically in terms of cosets of parabolic subgroupoids. This
complex is called Coxeter complex. Finally, we note in Theorem 4.9 that any linear
extension of any of the weak orders of the Weyl groupoid induces a shelling order on
the simplicial complex.

Throughout this section, let C = C(I,A, (ρi)i∈I , (C
a)a∈A) be a Cartan scheme and

let a ∈ A. Assume that Rre(C) is a finite root system of type C .

Definition 4.1 Let

Ωa
C := {

wWJ (C) |w ∈ Hom
(

W (C), a
)
, J ⊆ I, |J | = |I | − 1

}
.

We call the subset Δa
C of the powerset 2Ωa

C whose elements are the non-empty subsets
F ⊆ Ωa

C such that

⋂

wWJ (C)∈F

wWJ (C) �= ∅

the Coxeter complex of C at a.

By definition, the Coxeter complex Δa
C is a simplicial complex. If C is a Cartan

scheme with only one object a, then Δa
C is just the Coxeter complex of the crystal-

lographic Coxeter group W (C) as defined in [14, Sect. 1.15]. Note that for technical
reasons our simplicial complexes do not contain the empty set. Our goal in this sec-
tion will be to give a second construction of the Coxeter complex. This way we obtain
additional information on the structure of faces.

Lemma 4.2 Let J,K ⊆ I and u,v ∈ Hom(W (C), a) be such that uWJ (C) ∩
vWK(C) �= ∅. Then

uWJ (C) ∩ vWK(C) = wWJ∩K(C) (4.1)

for some w ∈ Hom(W (C), a). In particular, if J ⊆ K then wWJ (C) = uWJ (C) and
if J = K then wWJ (C) = uWJ (C) = vWJ (C).
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Proof Assume first that v = ida . By Proposition 2.12, there exist u0 ∈ W J (C) and
u1 ∈ WJ (C) such that u = u0u1. Then

uWJ (C) = u0 WJ (C)

and J (u0) ⊆ J (w) for all w ∈ uWJ (C) by Corollary 2.13. Hence J (u0) ⊆ J (w) ⊆ K

for all w ∈ uWJ (C) ∩ vWK(C) which is non-empty by assumption. Thus

uWJ (C) ∩ vWK(C) = u0
(

WJ (C) ∩ u−1
0 WK(C)

) = u0
(

WJ (C) ∩ WK(C)
)

= u0 WJ∩K(C).

Let now v ∈ Hom(W (C), a) be an arbitrary element. Then

uWJ (C) ∩ vWK(C) = v
(
v−1uWJ (C) ∩ WK(C)

) = vw0 WJ∩K(C)

for some w0 ∈ Hom(W (C), b), where b ∈ A with v ∈ Hom(b, a), by the first part of
the proof. This implies the claim. �

In [14, Sect. 1.15], the Coxeter complex of a reflection group was defined by
means of hyperplanes in a Euclidean space. We introduce an analogous complex
for the pair (C, a). We show that the complex defined this way is isomorphic to the
Coxeter complex Δa

C .
Let (·, ·) be a scalar product on R

I . For any subset J ⊆ I and any w ∈
Hom(W (C), a), let

Fw
J = {

λ ∈ R
I | (λ,w(αj )

) = 0 for all j ∈ J ,
(
λ,w(αi)

)
> 0 for all i ∈ I \ J

}
.

The subsets Fw
J are intersections of hyperplanes and of open half-spaces, and are

called faces. For brevity, we will omit their dependence on the scalar product. By
construction, the faces do not depend on connected components of C not containing a.
Also, up to the choice of a scalar product the set of faces Fw

J does not change when
passing from an object a to an object a′ from a covering Cartan scheme once a′ lies
in the connected component covering the connected component of a.

The next lemma is the analog of [14, Lemma 1.12].

Lemma 4.3 Let (·, ·) be a scalar product on R
I .

(i) For all λ ∈ R
I there exist w ∈ Hom(W (C), a) and J ⊆ I such that λ ∈ Fw

J .
(ii) Let w1,w2 ∈ Hom(W (C), a) and let J1, J2 ⊆ I . If w1 WJ1(C) = w2 WJ2(C) then

F
w1
J1

= F
w2
J2

. If w1 WJ1(C) �= w2 WJ2(C) then F
w1
J1

∩ F
w2
J2

= ∅.

Proof (i) Let k = |{β ∈ Ra+ | (λ,β) < 0}|. We proceed by induction on k. If k = 0
then the claim holds with w = ida .

Assume that k > 0. Then there exists i ∈ I such that (λ,αi) < 0. Let λ′ =
σa

i (λ) and define a scalar product (·, ·)′ on R
I by (μ, ν)′ = (σ

ρi(a)
i (μ), σ

ρi(a)
i (ν))
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for all μ,ν ∈ R
I . Then for all β ∈ R

ρi(a)
+ we have (λ′, β)′ < 0 if and only if

(λ,σ
ρi(a)
i (β)) < 0. Moreover,

(λ′, αi)
′ = (

σ
ρi(a)
i σ a

i (λ), σ
ρi(a)
i (αi)

) = −(λ,αi) > 0,

and σ
ρi(a)
i is a bijection between R

ρi(a)
+ \ {αi} and Ra+ \ {αi} by (R1)–(R3). Hence

∣∣{β ∈ R
ρi(a)
+ | (λ′, β)′ < 0

}∣∣ = k − 1.

By induction hypothesis, there exist J ⊆ I and w′ ∈ Hom(W (C), ρi(a)) such that
λ′ ∈ Fw′

J . Then λ ∈ σ
ρi(a)
i Fw′

J = Fw
J , where w = σ

ρi(a)
i w′.

(ii) Suppose that w1 WJ1(C) = w2 WJ2(C). Then J1 = J2 and w2 = w1x for some
x ∈ WJ1(C). Therefore,

(
λ,w2(αi)

) = (
λ,w1x(αi)

) =
(

λ,w1

(
αi +

∑

j∈J1

ajiαj

))
= (

λ,w1(αi)
)

for all λ ∈ F
w1
J1

and all i ∈ I , where x(αi) = αi + ∑
j∈J1

ajiαj for some aji ∈ Z for
all j ∈ J1. We conclude that F

w1
J1

⊆ F
w2
J2

, and similarly F
w2
J2

⊆ F
w1
J1

. This proves the
first claim.

The converse will be proven indirectly. Assume that w1 WJ1(C) �= w2 WJ2(C) and
that there exists λ ∈ F

w1
J1

∩ F
w2
J2

. Let b1, b2 ∈ A be such that w1 ∈ Hom(b1, a) and

w2 ∈ Hom(b2, a). Let x = w−1
1 w2 ∈ Hom(b2, b1). By the choice of λ and the defi-

nition of x, we have (λ,w1(αj )) ≥ 0 and (λ,w1x(αj )) ≥ 0 for all j ∈ I . Moreover,

equality holds if and only if j ∈ J1, respectively j ∈ J2. Since x(αj ) ∈ R
b1+ ∪ −R

b1+
for all j ∈ I , we conclude that x(αj ) ∈ ∑

k∈J1
Zαk for all j ∈ J2 and that x(αj ) ∈

R
b1+ \ ∑

k∈J1
Zαk for all j ∈ I \ J2. Hence J (x) ⊆ J1 by Lemma 2.9. It follows that

w2 ∈ w1 WJ1(C). (4.2)

By the first part of the proof, we obtain that F
w2
J2

= F
w′

2
J2

for all w′
2 ∈ w2 WJ2(C).

Hence J (xx′) ⊆ J1 for all x′ ∈ WJ2(C), and therefore J2 ⊆ J1. Symmetry yields
that J1 = J2. Thus w1 WJ1(C) = w2 WJ2(C) by (4.2), a contradiction. Hence F

w1
J1

∩
F

w2
J2

= ∅. �

By definition, for any w ∈ Hom(W (C), a) and J ⊆ I the face Fw
J is a relative

open polyhedral cone in R
I . In particular, it is a relative open cell. By Lemma 4.3,

the set of all Fw
J stratifies R

I . Clearly, this stratification depends on the choice of C ,
a, and the scalar product on R

I . In order to show that the stratification indeed gives a
regular CW-decomposition of R

I , we have to clarify the structure of the closures of
the cells.

Theorem 4.4 Let K ⊆ I and let w ∈ Hom(W (C), a). Then Fw
K is the disjoint union

of the faces Fw
J for J ⊇ K . Moreover, for v ∈ Hom(W (C), a) and J ⊆ I we have

Fv
J ⊆ Fw

K if and only if vWJ (C) ⊇ wWK(C).
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Proof The first assertion follows from the definition of Fw
K .

By Lemma 4.3, the space R
I is the disjoint union of faces, and hence Fv

J ⊆ Fw
K

if and only if Fv
J = Fw

L for some L ⊇ K . Lemma 4.3(ii) implies that the latter is
equivalent to vWJ (C) = wWL(C). Clearly, if vWJ (C) = wWL(C) for some L ⊇ K

then vWJ (C) ⊇ wWK(C). Conversely, if vWJ (C) ⊇ wWK(C) then v−1wWK(C) ⊆
WJ (C), and hence v−1w ∈ WJ (C) and K ⊆ J . Thus vWJ (C) = wWJ (C) and the
theorem is proven. �

Corollary 4.5 The cells Fw
K for w ∈ Hom(W (C), a) and K ⊆ I define a regular

CW-decomposition of R
I .

Proof From the fact that any root system contains a basis, it follows that Fw
I = {0}.

Hence it follows from Theorem 4.4 and the fact that all Fw
J are relative open poly-

hedral cones in R
I that dimFw

J = #I − #J . Since by Lemma 4.3 the cells Fw
J are a

stratification of R
I , they actually define a regular CW-decomposition of R

I . �

Now we define the regular CW-complex Ka
C as the regular CW-complex whose

cells are the intersections Fw
J ∩ S#I−1 of the relative open cones Fw

J with the unit
sphere in R

I for J ⊆ I , J �= I . From Corollary 4.5 and the fact that all Fw
J are relative

open cones with apex in the origin, it follows that Ka
C is a regular CW-decomposition

of S#I−1.

Corollary 4.6 The Coxeter complex Δa
C at a ∈ A is isomorphic to the complex Ka

C .

Proof Since by Corollary 4.6 the complex Ka
C is a regular CW-complex and Δa

C is
by definition a regular CW-complex, it suffices to show that there is an inclusion
preserving bijection between the faces of Ka

C and Δa
C .

Definition 4.1 and Lemma 4.2 imply that the faces of the Coxeter complex are
in bijection with the left cosets wWJ (C), where w ∈ Hom(W (C), a) and J � I . By
Lemma 4.3(ii), the faces of Ka

C are also in bijection with these left cosets. Hence it
remains to show that in both complexes the inclusion of closures of faces corresponds
to the inclusion of left cosets. For the Coxeter complex, this holds by definition. For
the complex Ka

C , the claim follows from Theorem 4.4. �

Let Aa
C be the set of hyperplanes Hα = {λ ∈ R

I | (λ,α) = 0} for α ∈ (Rre)a+.
Then the complement R

I \ ⋃
H∈Aa

C
H of the arrangement of hyperplanes Aa

C is the
disjoint union of connected components which are in bijection with the maximal
faces of Ka

C . It follows by Corollary 4.6 that Ka
C and Δa

C are isomorphic. Since Δa
C is

a simplicial complex, it follows that all connected components of R
I \⋃

H∈Aa
C

H are
open simplicial cones. In general, an arrangement satisfying this property is called
simplicial arrangement.

Corollary 4.7 The arrangement of hyperplanes Aa
C is a simplicial arrangement.

From the fact that by Corollary 4.6 the Coxeter complex Δa
C is a triangulation of

a sphere, the next corollary follows immediately.
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Corollary 4.8 The simplicial complex Δa
C is pure of dimension |I | − 1 and each

codimension 1 face of Δa
C is contained in exactly two faces of maximal dimension. In

particular, Δa
C is a pseudomanifold.

Using Theorem 4.4, one can identify the maximal simplices of Δa
C with the

elements of Hom(W (C), a). Hence any linear extension of the weak order on
Hom(W (C), a) defines a linear order on the maximal simplices of Δa

C . Indeed, it
can be shown by the same proof as for the analogous statement for Coxeter groups
[3, Theorem 2.1] that any linear extension of the weak order defines a shelling order
for Δa

C . The crucial facts about Coxeter groups used by Björner are verified for Weyl
groupoids in Lemma 4.2 and Theorem 4.4.

Theorem 4.9 Let � be any linear extension of the weak order ≤R on Hom(W (C), a).
Then � is a shelling order for Δa

C .

We omit the detailed verification of Theorem 4.9 here since the main topological
consequence Corollary 4.6 is already known. Indeed, Corollary 4.8 together with
Theorems 4.9 and 2.16 imply that Δa

C is a triangulation of a PL-sphere.
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