
J Algebr Comb (2011) 34: 67–113
DOI 10.1007/s10801-010-0263-3

Highest weight modules and polarized embeddings
of shadow spaces

Rieuwert J. Blok

Received: 14 October 2009 / Accepted: 26 October 2010 / Published online: 18 November 2010
© Springer Science+Business Media, LLC 2010

Abstract The present paper was inspired by the work on polarized embeddings by
Cardinali et al. (J. Algebr. Comb. 25(1):7–23, 2007) although some of our results in it
date back to 1999. They study polarized embeddings of certain dual polar spaces, and
identify the minimal polarized embeddings for several such geometries. We extend
some of their results to arbitrary shadow spaces of spherical buildings, and make a
connection to work of Burgoyne, Wong, Verma, and Humphreys on highest weight
representations for Chevalley groups.

Let Δ be a spherical Moufang building with diagram M over some index set I ,
whose strongly transitive automorphism group is a Chevalley group G(F) over the
field F. For any non-empty set K ⊂ I let Γ be the K-shadow space of Δ. Extending
the notion in to this situation, we say that an embedding of Γ is polarized if it induces
all singular hyperplanes. Here a singular hyperplane is the collection of points of Γ

not opposite to a point of the dual geometry Γ ∗, which is the shadow geometry of
type oppI (K) opposite to K . We prove a number of results on polarized embeddings,
among others the existence of (relatively) minimal polarized embeddings.

We assume that G(F) is untwisted. In that case, the point-line geometry Γ has an
embedding eK into the Weyl module V (λK)0

F
of highest weight λK = ∑

k∈K λk . We
show that this embedding is polarized in the sense described above. We then prove
that the minimal polarized embedding relative to eK exists and equals the unique ir-
reducible G(F)-module L(λK) of highest weight λK . More precisely we show that
the polar radical of eK (the intersection of all singular hyperplanes) coincides with
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the radical of the contravariant bilinear form considered by Wong to obtain the irre-
ducible (restricted) representations of G(F) in positive characteristic.

This viewpoint allows us to “recognize” the irreducible G(F)-modules of highest
weight λK geometrically as minimal polarized embeddings of the appropriate shadow
space.

Keywords Building · Shadow space · Grassmannian · Polarized embedding ·
Chevalley group · Highest weight module · Representation theory

1 Introduction and preliminaries

1.1 Basic definitions

Vector spaces, group actions and modules Throughout this paper F shall denote a
field. By a field we shall mean a commutative division ring. Unless otherwise spec-
ified, vector spaces will be left vector spaces. Actions of groups, or algebras on a
vector space shall therefore also be left actions, unless otherwise specified.

Point-line geometries, hyperplanes and embeddings We assume the reader is famil-
iar with the concept of a point-line geometry Γ = (P , L) (also called a partial linear
rank two incidence geometry), see e.g. [10, 33]. In a partial linear space we can and
shall often identify each line with the set of points incident to it. By a subspace of Γ

we mean a subset S ⊆ P such that if l ∈ L and l ∩ S contains at least two points, then
l ⊂ S. Clearly the intersection of subspaces is a subspace and consequently it is nat-
ural to define the subspace generated by a subset X of P , 〈X〉Γ , to be the intersection
of all subspaces of Γ that contain X. A hyperplane of Γ is a proper subspace meeting
every line. A set of points is called connected if its collinearity graph is connected.
We recall the following.

Lemma 1.1 If H is a hyperplane such that Γ −H is connected, then H is a maximal
subspace of Γ .

The projective point-line geometry of a vector space V is the point-line geometry
P(V ) = (P (V ), L(V )) whose points and lines are the 1-spaces and 2-spaces of V

with incidence given by symmetrized inclusion.
A full projective embedding (or simply embedding) of Γ is a pair (e,V ), where V

is a vector space and e: P ↪→ P (V ) is an injective map such that

(E1) 〈e(P )〉V = V , and
(E2) e maps every line of Γ onto a line of P(V ).

The dimension of (e,V ) is dim(V ). In the literature, this is sometimes called the
vector dimension of the embedding to distinguish it from its projective dimension.

The collection E (Γ ) of all full projective embeddings of Γ over a division ring (or
field) F, is a category where a morphism between embeddings (e1,V1) and (e2,V2)

is an F-semilinear map τ :V1 → V2 such that e2 = τ◦e1. We sometimes indicate this
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by writing e1 ≥ e2. We have the usual notions of mono-, epi-, and isomorphisms. An
embedding of Γ is called absolutely universal or absolute if it is a source in E (Γ ); if
it exists, we denote it by (̃e, Ṽ ). A source relative to (e,V ) always exists by a result
due to Ronan [36]; it is called the embedding universal relative to (e,V ) and will be
denoted (e,V ).

An embedding (e,V ) of Γ is called minimal if it is a sink in E (Γ ) and minimal
relative to (e,V ) if it is a sink relative to (e,V ); the latter will be denoted (e,V ).

Let (e,V ) be a full projective embedding for Γ . For a point set X ⊆ P , let 〈X〉e =
〈e(X)〉V . The following is well-known and elementary.

Lemma 1.2

(a) If U is a hyperplane of V , then H = e−1(U ∩ e(P )) is a hyperplane of Γ .
(b) If H is a maximal hyperplane of Γ , then 〈H 〉e either equals V or it is a hyper-

plane of V ; in the latter case e(H) = e(P ) ∩ 〈H 〉e.

The hyperplane H in (a) is said to be induced by U in (e,V ).

Buildings and Chevalley groups Every geometry we shall study in this paper is de-
rived from a spherical building Δ. The building Δ has spherical diagram M over
the index set I = {1,2, . . . , n}. We shall label M as in [7]. We shall think of Δ

as a chamber system, also denoted Δ, with a distance function δ:Δ × Δ → W ,
where (W, {ri}i∈I ) is a Coxeter system of type M; we shall use the terminology from
[37, 53]. Thus, for i ∈ I , we say that two chambers c and d are i-adjacent, and write
c ∼i d , if δ(c, d) = ri . For a subset J ⊆ I , the I − J-residue on c is the collection of
chambers {d ∈ Δ | δ(c, d) ∈ WI−J }.

Sometimes it will be convenient to talk about Δ in terms of the associated in-
cidence geometry G = G(Δ). This is a diagram geometry with a set of elements
E = E (Δ), an incidence relation � and a type function typ: E → I ; for G(Δ) we
shall use the terminology from [10, Chap. 1]. Thus, for J ⊆ I , a flag of type J

(or J -flag) in G is a collection F = {fj }j∈J of pairwise incident elements and
ResΔ(F) = {e ∈ E − F | e � fj ∀j ∈ J } is the corresponding residue of type I − J

(or I − J -residue).
For buildings of finite rank these two viewpoints are equivalent (see e.g. [33, 49]);

namely flags of type J ⊆ I in the diagram geometry G correspond to residues of type
I − J in the chamber system Δ and incidence in the diagram geometry corresponds
to non-empty intersection in the chamber system.

Whenever a spherical building Δ is Moufang, it has a strongly transitive automor-
phism group G from which Δ can be recovered via a BN-pair in the manner described
e.g. in [37, Chap. 5] or [53, Chap. 11]. Namely, pick an apartment Σ and chamber
c ∈ Σ , then B = StabG(c) and N = StabG(Σ) form a BN-pair for G. Conversely,
given a BN-pair (B,N), one can construct Δ by setting Δ = G/B and defining the
W -valued distance function using the Bruhat decomposition of G (see Sect. 4). For
the spherical buildings under consideration in the present paper we take G to be a
Chevalley group of rank n ≥ 2. In Sects. 2 and 3, G can be of any twisted or un-
twisted type; in Sects. 4, 5, 6, and 7, we require G to be untwisted. We also assume G

to be the universal Chevalley group with diagram M over F, denoted M(F), although
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Table 1 Diagrams and groups
M G

An SLn+1(F)

Bn Spin2n+1, (F)

Cn Sp2n(F)

Dn Spin+
2n

(F)

M G

E6 E6(F)

E7 E7(F)

F4 F 4(F)

G2 G2(F)

M G

2A2n SU2n+1(F)

2A2n−1 SU2n(F)

2Dn+1 Spin−
2n+2(F)

Untwisted universal Chevalley groups Some twisted Chevalley
groups

this does not affect Δ. In Sect. 9 we also include the twisted types 2A2n, 2A2n+1,
and 2D2n+2. Finally, Sects. 8 and 10 only concern the An case.

The correspondence between their diagrams M, the (commutative) field of defini-
tion F, and concrete universal Chevalley groups G is given in Table 1.

Shadow spaces For any subset L ⊆ I , we denote by SL(Δ) = (PL(Δ), LL(Δ))

the L-shadow space of Δ (The term “L-Grassmannians” is also used, e.g. in [33]).
This is the point-line geometry whose point set PL(Δ) consists of the flags of type
L of G(Δ) and whose line set LL(Δ) consists of the collections of points incident
to a flag of cotype {l} for some l ∈ L (We call l the type of that line). This is a
partial linear space (see e.g. [16, 18]). If L = {l} for some l ∈ I , this is sometimes
called the l-Grassmannian of Δ. In case Δ is a building of type An(F), this is the
usual Grassmannian of the vector space F

n+1. These single-node shadow spaces are
also called Lie incidence geometries, see e.g. [17]. Note that if L = ∅, then PL(Δ)

consists of a single point. At the other extreme, if L = I , then PL(Δ) is the collection
of chambers of Δ, and LL(Δ) is the collection of panels of Δ. Fixing a non-empty
subset K ⊆ I , we shall denote Γ = SK(Δ) = (P , L) (so for this fixed geometry we
drop the subscripts K and Δ).

Keeping L as above, we define the L-shadow of an arbitrary set of chambers
X ⊆ Δ to be

PΔ,L(X) = {
x ∈ PL(Δ)

∣
∣ x ∩ X �= ∅}.

Here we view x and X as sets of chambers. We also set

SΔ,L(X) = (
PΔ,L(X), LΔ,L(X)

)
,

where LΔ,L(X) = {
l ∈ LL(Δ)

∣
∣
∣
∣l ∩ PΔ,L(X)

∣
∣ ≥ 2

}
.

Note that SΔ,L(Δ) = SL(Δ).
We are mostly interested in the case where X is a residue. Fix J ⊆ I . We let MJ

denote the subdiagram of M induced on the nodes indexed by J . Then, (WJ , {rj }j∈J )

is a Coxeter system of type MJ (see e.g. [37, Corollary 2.14]).

Lemma 1.3 (Theorem 3.5 of [37]) Let R be a J -residue of Δ. Then R is a building
of type MJ ; the distance function is given by the restriction δ:R × R → WJ .
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Lemma 1.4 (See also [29, 30]) Let R be a J -residue of Δ.

(a) For any L ⊆ I , we have a natural isomorphism SΔ,L(R) ∼= SΔ,L∩J (R).
(b) If L1,L2 ⊆ I are such that L1 ∩J = L2 ∩J , then we have a natural isomorphism

SΔ,L1(R) ∼= SΔ,L2(R).
(c) If L ⊆ I , then SΔ,L(R) ∼= SL∩J (R).

Proof (a) Viewing the elements of PL(Δ) as sets of chambers, the isomorphism is
induced by the map x �→ x ∩ R, for x ∈ PΔ,L(R). For more details see the refer-
ences [29, 30]. Part (b) is an immediate corollary to part (a). Part (c) follows from
part (b) and the simple observation that SΔ,L∩J (R) ∼= SL∩J (R). �

Note that in part (c) of Lemma 1.4, SL∩J (R) is a shadow space of the building R

as in Lemma 1.3. Thus, part (c) allows us to view the L ∩ J -shadow space of R as a
subspace of the L-shadow space of Δ.

In addition to the references mentioned above, there are a few texts in preparation
that deal extensively with shadow spaces: [11, 42].

1.2 Main definitions

In order to present the main results of this paper, we need some new definitions.

The opposition relation and the dual geometry Let R be a residue of Δ of type
J ⊆ I .

Conjugation by the longest word wJ of the Coxeter system (WJ , {rj }j∈J ) induces
the opposition relation oppJ on the set J : i oppJ j if and only if ri = r

wJ

j . We set

oppJ (L) = {j ∈ J | j oppJ l for some l ∈ L}.
In case J = I , we shall drop it from the notation.

The opposition relation between the chambers of R is given by x oppR y if and
only if δ(x, y) = wJ . We extend the opposition relation to residues S and T of R by
setting S oppR T if every chamber of S is opposite some chamber of T and conversely.

Lemma 1.5 (See [53, Proposition 9.9 and Lemma 9.10]) Let S be an L-residue
of R and let t ∈ R be a chamber opposite some chamber of S. Let T be the
oppJ (L)-residue on t . Then T is the unique residue of R opposite to S and con-
taining t .

Let L ⊆ J and let S be an L-residue of R. Define

oppR(S) = {c ∈ R | c oppR d for some chamber d ∈ S},
nearR(S) = R − oppR(S).

In case R = Δ, we shall drop it from the notation. The following is immediate from
Lemma 1.5.
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Corollary 1.1 Let S be an L-residue of R. Then, oppR(S) and nearR(S) can be
partitioned into residues of type oppJ (L).

Recall that Γ = (P , L) is the K-shadow space of Δ. The geometry dual to Γ in
Δ will be denoted Γ ∗ = (P ∗, L∗); it is equal to Sopp(K)(Δ). The geometry dual to
SL(R) in R will be denoted SL(R)∗; it is equal to SoppJ (L)(R).

We will call the points and lines of Γ ∗ dual points and dual lines. We shall make
use of the fact that Γ ∗∗ = Γ . All statements made about Γ can also be dualized and
so we may and shall freely apply results stated for Γ also to Γ ∗.

Opposite and Far We briefly mention a concept related to the opposition relation.
For residues S and T of R we set

S FarR T if and only if s oppR t for some chambers s ∈ S, t ∈ T .

Using the correspondence R ↔ G(R), this then also defines a relation FarG(R) for
flags of G(R).

Let FarG(R)(S) be the incidence system of all objects of G(R) ‘far’ from S with
incidence inherited from G(R). It is proved in [4] that this is a transversal geometry
with a Buekenhout–Tits diagram whose flag system can be identified with the col-
lection of all residues of R intersecting oppR(S) (as chamber sets) non-trivially. In
particular, the set oppR(S) is exactly the chamber system of FarG(R)(S). This means
that two flags that are far from S are incident exactly if they share a chamber that be-
longs to oppR(S). In particular, for any type set L ⊆ J , the subspace SR,L(oppR(S))

of SL(R) coincides with the L-shadow space defined by FarG(R)(S) in the obvious
way.

Singular hyperplanes and polarized embeddings We continue the notation from
above. There are two important geometric structures associated with oppR(S) and
nearR(S).

PR,L

(
oppR(S)

) = {
x ∈ PL(R)

∣
∣ x ∩ oppR(S) �= ∅},

PR,L

(
nearR(S)

) = {
x ∈ PL(R)

∣
∣ x ∩ nearR(S) �= ∅}.

If L is clear from the context, we shall omit it to unburden the notation. These sets
are not always disjoint. However, we have the following simple observation.

Lemma 1.6 Let R be a J -residue of Δ. Let L,L∗ ⊆ J and let S be a residue of
type J − L∗ in R. Then PR,L(nearR(S)) ∩ PR,L(oppR(S)) = ∅ if and only if
oppJ (L∗) ⊆ L. In particular, the K-shadows of oppΔ(p∗) and nearΔ(p∗) are dis-
joint subsets of P if p∗ ∈ P ∗.

Proof We have PR,L(nearR(S)) ∩ PR,L(oppR(S)) = ∅ if and only if every (J − L)-
residue of R that meets oppR(S) is entirely contained in oppR(S). By Corollary 1.1,
this happens if and only if J − L ⊆ oppJ (J − L∗) = J − oppJ (L∗), that is, if
oppJ (L∗) ⊆ L. �
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Definition 1.1 Given a J -residue R, a subset L ⊆ J and a dual point x∗ in PL(R)∗,
we shall define the following subspace of SL(R):

HR,L

(
x∗) = PR,L

(
nearR

(
x∗)).

Note that by Lemma 1.6, we have HR,L(x∗) = PL(R) − PR,L(oppR(x∗)). In case
R = Δ or L = K , we shall drop that subscript from the notation. As we shall see
in Proposition 1.1, H(x∗) is often a (maximal) hyperplane of Γ . Hyperplanes of the
form H(x∗) are called singular or attenuated.

Definition 1.2 We call a full projective embedding (e,V ) of Γ polarized if every
singular hyperplane is induced by (e,V ). In that case the polar radical of e is the
subspace

Re =
⋂

p∗∈Γ ∗

〈
H

(
p∗)〉

e
.

Remark 1.1 Our notion of “polarized” specializes to the notion of “polarized” defined
in [13, 48] if we let K = {k} refer to an end-node of a diagram M of type Bn, Cn,
or 2An. Since in those cases the map oppI is equal to the identity it happens that
Γ ∗ = Γ in loc. cit. In the present paper we do not restrict ourselves to that situation.
In particular, when M = An, Dn (n odd), or E6 it may happen that Γ ∗ and Γ are
different, if isomorphic, geometries.

1.3 Main results and organization of the paper

In Sects. 2 and 3 we consider a shadow space Γ of a spherical Moufang building Δ

associated with a twisted or untwisted Chevalley group G. The opposition relation
gives us the right perspective on polarized embeddings of shadow spaces as we shall
see; many fundamental properties of spherical buildings translate transparently into
properties of polarized embeddings. In particular, the following is proved in Sect. 2.
The case where |K| = 1 was proved in [3, 5].

Proposition 1.1 For any dual point p∗ of Γ ∗,

(a) H(p∗) is a hyperplane of Γ , and
(b) SΔ,K(oppΔ(p∗)) is a connected subgeometry of Γ , except if Mn,K(F) is one of

the following:
(i) G2,{1}(F2) (1 denoting the short root), G2,{1,2}(F2), G2,{1,2}(F3),2F 4,{1}(F2),

2F 4,{1,2}(F2),
(ii) Cn,K(F2), or F4,K(F2), where n ≥ 2 and K contains both nodes of the dou-

ble bond in the diagram.
As a consequence, except in cases (i) and (ii), H(p∗) is a maximal subspace
of Γ .

Thus, apart from a few exceptions, the geometry Γ contains a maximal singular
hyperplane for each point of the dual geometry Γ ∗. As a step up to the major results of
the paper, Theorem 1.1 says that singular hyperplanes of Γ are “residually singular”.
As a consequence, polarized embeddings of Γ are “residually polarized”.
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Theorem 1.1 Let Δ be a spherical building with type set I and let Γ be its K-shadow
space for a non-empty set K ⊆ I . Let R be a J -residue of Δ.

(a) For any dual point p∗R of PK∩J (R)∗, there is some dual point p∗ of Γ ∗ such
that HR,K∩J (p∗R ) corresponds to PΔ,K(R) ∩ H(p∗) under the isomorphism
SK∩J (R) ∼= SΔ,K(R).

(b) If (e,V ) is a polarized embedding of Γ , then the isomorphism SK∩J (R) ∼=
SΔ,K(R) composed with e yields a full polarized embedding of SK∩J (R) into
P(VR); here VR = 〈e(x) | x ∈ PΔ,K(R)〉.

Theorem 1.1 is proved in Sect. 2.2. In short, part (b) follows directly from part (a).
Part (a) follows from a fundamental relation between the opposition and projection
maps of spherical buildings. This relation is conveyed in Theorem 2.1, which was
proven in [4] to show that in a “Far away” geometry obtained from Γ by removing
the hyperplane H(p∗), the residues are themselves “Far away” geometries and that,
as a consequence, this Far away geometry has a Buekenhout–Tits diagram.

We also prove the following general property of polarized embeddings.

Proposition 1.2 If a point-line geometry Θ possesses a polarized embedding e and
an absolute embedding ẽ, then Θ possesses a unique minimal polarized embedding ě.
Namely we have ě = ẽ/Rẽ .

We note that many shadow spaces of spherical buildings do have an absolute em-
bedding [6, 31].

In Sects. 4 and 5 we consider the following setup. Let Δ be obtained from an
untwisted Chevalley group G over a field F (see Table 1). Fix a non-empty subset
K ⊆ I and let Γ be the K-shadow space of Δ. Let V (λK)F be the weak Weyl mod-
ule for G with maximal vector v+ of highest weight λK , as defined in Sect. 4.2,
and let V 0 = FGv+. Let p be the point of Γ corresponding to the parabolic group
stabilizing v+. Then, the map

eK :Γ → P
(
V 0),

gp �→ 〈
gv+〉

defines a full projective embedding for Γ .

Theorem 1.2

(a) The embedding eK is polarized.
(b) The codomain V 0/ReK

of the minimal polarized embedding relative to eK is the
unique irreducible G-module L(λK)F of highest weight λK .

The general idea of the proof is the following. In Sect. 5.2, following [27, 52, 54]
we define a τ -contravariant bilinear form β on V (λK)F with the property that
β(v+, v+) = 1. This means that there is an involution τ of G that interchanges two
opposite Borel groups B+ and B−, such that, for g ∈ G and u,v ∈ V (λK)F, we have

β(gv,u) = β
(
v,gτ (u)

)
.



J Algebr Comb (2011) 34: 67–113 75

This form is symmetric and non-degenerate on V 0 and has the property that weight
spaces corresponding to distinct weights are orthogonal with respect to β . Then, in
Sect. 5.3, we show that the subspace ker(β(v+,−)) of V 0 induces a singular hyper-
plane H(p∗) of Γ , for some dual point p∗ opposite to p, and part (a) follows by
contravariance. From the preceding discussion it follows that the polar radical ReK

coincides with the radical of β . It is known, and not hard to prove, that this radical
is the unique largest submodule of V 0. Thus, the quotient V 0/ReK

is an irreducible
G-module of highest weight λK . Proposition 1.2 and Theorem 1.2 directly imply
Theorem 1.3.

Theorem 1.3 Let Δ be a spherical building obtained from an untwisted Chevalley
group and let Γ be its K-shadow space, for some non-empty type set K ⊆ I . If Γ

possesses an absolute embedding, then the unique irreducible G-module L(λK)F of
highest weight λK affords the unique minimal polarized embedding for Γ .

Motivation for this paper The main motivation for the style in which this paper is
written is to exhibit a connection between the geometry of shadow spaces of buildings
and the representation theory of groups of Lie type. This builds on the connection
between a number of results that seem to be known only to a handful of colleagues,
but is, to the best of my knowledge, not written down anywhere. I have made an
attempt to bring these results (on embeddings, buildings, Chevalley groups and their
highest-weight representations) together in the hope that this makes this connection
as well as the new results presented here accessible to a wider audience.

As for the results presented here themselves, let us mention at least two moti-
vations. First of all, Theorem 1.2 allows us to “recognize” the fundamental weight
modules geometrically as the minimal polarized embeddings of Γ . This opens the
door to studying (certain) modular representations of Chevalley groups by geometric
means. A pilot project formulated by Blok, Cardinali and Pasini to study the decom-
position series of the Weyl modules of the symplectic groups from this perspective
and reinterpret the results from [2, 34] is in progress.

Secondly, we would like to show that the notion of a polarized embedding of a
shadow space is rather fundamental, as it relates directly to fundamental properties of
the corresponding spherical buildings. This is for instance evidenced in Theorem 1.1.

Problems

(1) Modify the above results to include twisted Chevalley groups.
(2) Give a geometric proof that if a geometry Γ with sufficiently transitive auto-

morphism group G has a minimal polarized embedding, then that embedding is
irreducible for the automorphism group G, assuming that the automorphisms in
G lift to linear isomorphisms of that embedding.

(3) Use the above connection to find decomposition series of G-modules that afford
embeddings for Γ .

In Sects. 6, 8, 9, and 10 we study polarized embeddings of various shadow spaces
in detail.
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2 Polarized embeddings of shadow spaces

In this section we prove Proposition 1.1 which tells us when the set H(p∗) is a max-
imal hyperplane of Γ . Then we prove Theorem 1.1 which says that a full polarized
embedding of Γ induces full polarized embeddings on each residue of Γ . Both are
closely related to fundamental properties of buildings.

2.1 In which shadow spaces is H(p∗) a maximal hyperplane?

Recall from Lemma 1.6 that, for a dual point p∗ ∈ Γ ∗, the subsets H(p∗) =
PΔ,K(near(p∗)) and PΔ,K(opp(p∗)) are disjoint subsets of Γ . We begin by prov-
ing Proposition 1.1.

Proof of Proposition 1.1 (a) Choose a line l. By definition this is the K-shadow of
a k-panel π for some k ∈ K . Either π ⊆ near(p∗) or π ∩ opp(p∗) �= ∅. In the latter
case projπ (p∗) is the unique chamber of π ∩near(p∗). By Lemma 1.6, a point q of P
meeting π is in H(p∗) if and only if q ∩ π ∈ near(p∗). Thus either one or all points
of l are in H(p∗). This means that H(p∗) is a hyperplane of Γ .

(b) It follows from [1, 3, 4, 9] that under the restrictions (i) and (ii), the collection
opp(p∗) of chambers opposite to p∗ is connected as a chamber system. By Corol-
lary 1.1, PΔ,K(opp(p∗)) is exactly the collection of points all of whose chambers are
opposite to some chamber of p∗. Thus, connectedness of the chamber system implies
connectedness of the subgeometry SΔ,K(opp(p∗)) of Γ . That H(p∗) is a maximal
hyperplane of Γ now follows from the above and Lemma 1.1. �

2.2 Polarized embeddings are residually polarized

We prove Theorem 1.1, which says that singular hyperplanes of Γ are “residually
singular”. That is, given a residue R of Δ, the K-shadow of a singular hyperplane in-
tersected with the K-shadow PK(R) of R, is a singular hyperplane, or all, of PK(R).
As a consequence, polarized embeddings of Γ are “residually polarized”. This re-
sult stems from Theorem 2.1, proved in [4], which describes the interaction of the
opposition and projection maps, two of the most fundamental maps in the theory of
spherical and twin-buildings. For convenience we quote this result here.

Theorem 2.1 (Lemmas 3.5 and 3.6 of [3] and Lemmas 6.2 and 6.4 of [4])

(a) Let W be a Coxeter building of spherical type. Then for any two residues R and
S of W we have oppR(projR(S)) = projR(oppW(S)).

(b) Let R and S be residues containing opposite chambers in the spherical build-
ing Δ. Then the set of residues meeting oppΔ(S) and contained in R equals
the set of residues in oppR(projR(S)). In particular, every object in G(R) meets
oppΔ(S) (as a set of chambers) if and only if projR(S) = R, that is, if and only if
oppI (typS) ⊆ typR.

We shall now prove Theorem 1.1.
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Proof of Theorem 1.1 (a) Let p∗R be a dual point of PK∩J (R)∗. For some apartment
Σ on p∗R , let p∗ be the unique dual point in Γ ∗ meeting oppΣ(oppR∩Σ(p∗R)).
Then, by Theorem 2.1(a) we have p∗R = projR(p∗) and so by Theorem 2.1(b) p∗
satisfies the claim.

(b) Clearly (e,VR) is a full embedding for SK(R). Now consider a dual point
p∗R of PK∩J (R)∗ and let Σ and p∗ be as in (a). Moreover, let p be the point of Γ

meeting oppR∩Σ(p∗R) ⊆ oppΣ(p∗). Then, p �∈ H(p∗) and since H(p∗) is induced
by V , also e(p) �∈ 〈H(p∗)〉e . It follows that also HR = VR ∩ 〈H(p∗)〉e is a proper
hyperplane of VR .

To see that HR induces HR(p∗R), note that, by (a) 〈HR(p∗R)〉e ≤ HR . As both the
former and the latter are hyperplanes of VR , we must have equality. That is, HR(p∗R)

is induced by (e,VR). �

3 Covers and quotients of polarized embeddings

In this section we obtain some general properties of polarized embeddings. In par-
ticular we consider absolute and minimal polarized embeddings. In [13] several of
these results were obtained for dual polar spaces. As it turns out, many of these can
be generalized to arbitrary shadow spaces.

3.1 The polar radical

We first consider an arbitrary point-line geometry Γ and a full projective embed-
ding (e,V ).

Definition 3.1 Call R ≤ V a factoring subspace for (e,V ) if

(QE1) R ∩ e(p) = {0} for every point p of Γ , and
(QE2) for any two distinct points p,q ∈ Γ we have 〈R,e(p)〉V �= 〈R,e(q)〉V .

For any factoring subspace R ≤ V , we define the mapping e/R, called the quotient
of e over R, as follows:

e/R :Γ → P(V/R),

p �→ 〈
R,e(p)

〉
.

The following are immediate (cf. [13]):

Lemma 3.1 Let (e,V ) be a projective embedding of a point-line geometry Γ and
let R be a factoring subspace. If e is a full embedding, then so is e/R and if e/R is
polarized, then so is e.

Corollary 3.1 If Γ has a polarized embedding, then its absolutely universal embed-
ding, if it exists, is also polarized.
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We now return to the standard situation of the paper, where Γ is the K shadow
space of the spherical building Δ. Recall from Definition 1.2 that the polar radical
of a polarized embedding (e,V ) is the subspace

Re =
⋂

p∗∈Γ ∗

〈
H

(
p∗)〉

e
.

Any subspace of Re is called a radical subspace. The significance of radical sub-
spaces is given by the following result.

Proposition 3.1 Let (e,V ) be a polarized embedding of a shadow space Γ and let
R ≤ V .

(a) If R ≤ Re , then R is a factoring subspace and e/R is polarized.
(b) If R is a factoring subspace such that e/R is polarized, then R ≤ Re.
(c) e/Re is the minimal polarized quotient of e.

Proof (a) (QE1) Let p be any point of Γ . Then it is opposite some dual point p∗ ∈
Γ ∗ so that p �∈ H(p∗). Since H(p∗) is induced by e this means that e(p) ∩ R ⊆
e(p) ∩ 〈H(p∗)〉e = {0} and so (QE1) is satisfied.

(QE2) Clearly 〈R,e(p)〉 ≤ 〈Re, e(p)〉 ≤ 〈H(x∗)〉e for any dual point x∗ satisfy-
ing p ∈ H(x∗). Now let p and q be distinct points of Γ . Pick an apartment Σ on p

and q and let p∗ = oppΣ(p) and q∗ = oppΣ(q). Then p∗ is not opposite to q and
q∗ is not opposite to p. Hence, e(q) �∈ ⋂

x∗∈H ∗(p)〈H(x∗)〉e ≥ 〈Re, e(p)〉 ≥ 〈R,e(p)〉
and e(p) �∈ ⋂

y∗∈H ∗(q)〈H(y∗)〉e ≥ 〈Re, e(q)〉 ≥ 〈R,e(q)〉. Here H ∗(x) denotes the
hyperplane of Γ ∗ consisting of dual points not opposite to the point x. This proves
(QE2). By Lemma 3.1 e/R is again a full projective embedding.

Moreover, since R ≤ 〈H(p∗)〉e for every dual point p∗ and 〈H(p∗)〉e is a hyper-
plane of V , 〈H(p∗)〉e/R is again a hyperplane of V/R. That is, e/R is again polarized.

(b) Suppose R �≤ Re. Then there is some dual point p∗ such that R �≤ 〈H(p∗)〉e .
As a consequence, 〈(e/R)(H(p∗))〉 = V/R, contradicting that e/R is polarized.

(c) This follows immediately from (b). �

3.2 Absolutely universal embeddings

Combining Corollary 3.1 with Theorem 1.2 we find the following.

Corollary 3.2 Let Δ be a spherical building obtained from an untwisted Chevalley
group and let Γ be its K-shadow space, for some non-empty type set K ⊆ I . Then,
the absolutely universal embedding of Γ , if it exists, is polarized.

In [31] and [6] it is shown that for many buildings Δ and type sets K , the shadow
space Γ does possess an absolutely universal embedding. So Corollary 3.2 ensures
that this embedding is polarized whenever that building is obtained from an untwisted
Chevalley group.

For several special single-node shadow spaces Γ even more is known; namely,
that a particular embedding induces all hyperplanes of Γ . Then, since Veldkamp lines



J Algebr Comb (2011) 34: 67–113 79

Table 2 Shadow spaces whose universal embedding affords all hyperplanes

Type of geometry Source

1 Desarguesian projective spaces of finite rank. [51]

2 Embeddable non-degenerate polar spaces of rank at least 3 and embeddable [12, 22, 32, 50]

generalized quadrangles which do not possess ovoids.

3 All embeddable point-line geometries with three points per line. [36]

4 The Grassmannian of projective lines over a field (An,2(F), n > 3, F a field) and low [19, 21]

rank geometries D5,5 and E6,1.

5 All embeddable Grassmannians An,k(F), n > 2, 1 < k < n − 1, F a field. [38]

6 All half-spin geometries Dn,n(F), n > 4. [39]

7 All orthogonal spin geometries Bn,n(F), where F is such that B2,2(F) has no ovoids. [43]

8 The exceptional geometry E7,7(F), F a field. [41]

exist in those cases (see [40]), that particular embedding is the absolutely universal
embedding. Clearly, in those cases the absolute embedding is polarized. Table 2 lists
some of these shadow spaces. The entries 1–6 come from [43]. In this table we find
all embeddable non-degenerate polar spaces, (including those coming from untwisted
Chevalley groups with diagrams Mn,k equal to one of Bn,1, Cn,1, Dn,1). Note that all
minuscule weight geometries of untwisted Chevalley groups are present: they are
the geometries of type An,k (any k), Bn,n (n ≥ 2), Cn,1 (n ≥ 3), Dn,1, Dn,n−1, Dn,n

(n ≥ 4), E6,1 and E6,6, and E7,7 (for a definition of a minuscule weight see Sect. 6).

3.3 Minimal polarized embeddings

We first prove Proposition 1.2.

Proof of Proposition 1.2 Let e be any polarized embedding of the point-line geo-
metry Θ . Let R̃ = Rẽ be the radical of the absolute embedding of Θ and set
ě = ẽ/R̃ and V̌ = Ṽ /R̃. By Corollary 3.1 ẽ is polarized as well. Since ẽ is absolute,
there is some subspace R such that ẽ/R = e. Since e is polarized, it follows from
Proposition 3.1 that R ≤ R̃. The canonical maps corresponding to the inclusions
{0} ≤ R ≤ R̃ yield morphisms ẽ → e → ě. Since ẽ does not depend on e, ě is the
unique minimal polarized embedding of Θ . �

We return to the situation where Γ is the K-shadow space of a spherical building
Δ for some non-empty subset K of I . In Theorem 1.1 it was shown that any full po-
larized embedding e of Γ induces a full polarized embedding on each of the residues
of Γ . The next result shows that the same is true if we replace “full polarized” by
“minimal full polarized”.

Theorem 3.1 A minimal polarized embedding of Γ induces a minimal polarized
embedding on each residue of Γ .
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Proof Let (e,V ) be a minimal polarized embedding for Γ . That is, Re = {0}. Let R

be a J -residue of Δ. Identify SK∩J (R) ∼= SΔ,K(R). Let (e′,V ′) be the embedding
induced by e on SΔ,K(R), that is, e′ is the restriction of e to PΔ,K(R), with codomain
V ′ = 〈PΔ,K(R)〉e . By Theorem 1.1, (e′,V ′) is polarized. It suffices to show that the
polar radical Re′ is trivial.

Instead we prove a slightly stronger claim from which the result immediately fol-
lows. Namely

Re ∩ V ′ = Re′ .

First of all, if x∗ is not opposite to any point of PΔ,K(R), then 〈H(x∗)〉e ≥
e(〈PΔ,K(R)〉) = V ′ and so

Re ∩ V ′ =
⋂

x∗∈P ∗

〈
H

(
x∗)〉

e
∩ V ′ =

⋂

x∗

〈
H

(
x∗)〉

e
∩ V ′,

where x∗ runs over all dual points in P ∗ that are opposite some point of PK(R).
Now suppose that x∗ is opposite some point x of PΔ,K(R). By Theorem 2.1

part (b), we have H(x∗) ∩ PΔ,K(R) = HR,K∩J (x∗R), where x∗R = projR(x∗) and
by part (a) of Theorem 2.1, x∗R ∈ PK∩J (R)∗. Moreover, by Theorem 1.1(a), as x∗
runs over all dual points in P ∗, x∗R runs over all dual points in PK∩J (R)∗. Combin-
ing this with the previous equality, we find

Re ∩ V ′ =
⋂

x∗R∈PK∩J (R)∗

〈
HR,K∩J

(
x∗R

)〉
e′ = Re′ . �

4 The Weyl embedding

Let Γ be the K-shadow space of the spherical building Δ, for some subset K of I . We
prove Theorem 4.2, stated below, which says that if Δ is obtained from an untwisted
Chevalley group G, then Γ can be embedded into a subspace of the Weyl module of
suitably chosen highest weight. We shall call this embedding the Weyl embedding.
A special case, where Γ is a single node shadow space was considered in [3, 5].

4.1 Γ obtained from a BN -pair of G

We shall assume that Δ is obtained from the universal Chevalley group G = M(F)

over the field F with Dynkin diagram M over the set I = {1,2, . . . , n} via its thick
BN -pair in the canonical way (see [37, 50, 53]). That is, we let Δ be the chamber
system whose set of chambers is G/B and in which the distance function is given by

δ:Δ × Δ → W = N/H, where H = B ∩ N,

(gB,hB) �→ w, where Bg−1hB = BwB.
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Let c be the chamber corresponding to B and let Σ be the apartment corresponding
to the collection of B cosets NB . For every J ⊆ I , let PJ be the standard parabolic
subgroup of G of type J . This is the stabilizer of the J -residue and the I − J -flag
on c.

We now construct the K-shadow space Γ = (P , L) of Δ as follows:

P = G/PI−K,

L =
⋃

k∈K

Lk,

where Lk = {{ghPI−K | h ∈ Pk}
∣
∣ g ∈ G

}
for each k ∈ K.

So L is the union of G-orbits of the “fundamental” lines {hPI−K | h ∈ P{k}}. Inci-
dence is symmetrized containment.

Remark 4.1 For the above construction there is no need to restrict to the case where G

is universal. As is proved for instance in [45, §3] if G′ is any other Chevalley group of
type M over F, then G′ is a central quotient of the universal Chevalley group G. Since
the center of G is contained in B ∩ N , replacing G by G′ in the above construction
yields canonically isomorphic Δ and Γ .

4.2 The Weyl module V (λ)0
F

Given a weight λ of the complex semi-simple Lie algebra of type M and a field F,
we construct the Weyl module V = V (λ)0

F
and an associated Chevalley group Gλ(F)

along the lines of [27, Chap. 4]. Another, ultimately equivalent, approach was taken
in [54].

The Kostant Z-form of the universal enveloping algebra Let gC be the semi-
simple Lie algebra with Dynkin diagram M indexed by I = {1,2, . . . , n} over C.
Let U = U(gC) be its universal enveloping algebra. Fix a Cartan subalgebra hC of gC

and a choice of positive roots Φ+ with fundamental roots α1, . . . , αn, along with a
Chevalley basis C in gC consisting of co-roots H1, . . . ,Hn ∈ hC, Hi being the co-root
associated with αi , as well as a positive root vector Xα and a negative root vector Yα

for each α ∈ Φ+. Let gZ be the Z-span of this Chevalley basis C; it is stable un-
der the Kostant Z-form UZ of U, which is generated by 1 along with all products
Hi(Hi − 1) · · · (Hi − a + 1)/a! and all Xa

α/a! and Ya
α /a!. Then we can find a triangu-

lar decomposition U = U−U0U+ relative to a fixed ordering of the set of all positive
roots α1, . . . , αr compatible with UZ. For example, U

+
Z

has as a Z-basis all products
X

a1
α1/(a1!) · · ·Xar

αr /(ar !).

The Verma module M(λ)C and admissible lattices Let E be the real subspace of
the dual space h∗

C
of hC spanned by the root system Φ . The set Λw = {λ ∈ E |

λ(Hj ) ∈ Z ∀j ∈ I } forms a lattice and is called the weight lattice. It has a Z-basis
{λi | i ∈ I }, where λi is the fundamental dominant weight associated with the ith
node of M (labeled as in [8]) and has the property that λi(Hj ) = δij for all i, j ∈ I .
Roots are also weights and, accordingly, the root lattice Λr ≤ Λw is the Z-span of the
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fundamental system Π = {αi | i ∈ I }. There is a natural ordering on weights given by
setting μ ≺ ν, whenever ν − μ is a sum of positive roots (μ,ν ∈ Λw).

Now given any weight λ, there is a gC-module M(λ)C, called the Verma module,
having a unique maximal submodule M ′ and unique simple quotient V (λ)C (also de-
noted L(λ)C) (see e.g. [15, Chap. 10]). It is a well-known result that this simple mod-
ule is finite-dimensional if and only if λ is dominant. That is, λ = ∑

i∈I niλi , where
ni ∈ N are not all zero. Since this is the case we’re interested in, we shall henceforth
assume that λ is dominant. Of particular importance for us are the following weights

λK =
∑

k∈K

λk for some non-empty subset K ⊆ I.

The module V (λ)C is generated, as a gC-module, by a vector v+ of weight λ. We
pause here to insert an important observation on weight spaces of a finite-dimensional
gC-module V . For any μ ∈ h∗

C
, let Vμ = {v ∈ V | H · v = μ(H)v for all H ∈ hC}

be the weight space of V corresponding to μ.The weight-lattice of V is defined by
Λ(V ) = {μ ∈ h∗

C
| Vμ �= 0}. It satisfies Λr ≤ Λ(V ) ≤ Λw [45, §3]. We shall denote

Λ(λ) = Λ(V (λ)C). Now λ is the highest weight of V (λ)C in the sense that it is
maximal in Λ(λ) with respect to the ordering ≺. Accordingly we call v+ a maximal
or highest weight vector.

Following [25, Chap. 27] an admissible lattice in V (λ)C is a finitely generated
Z-submodule of V (λ)C that spans V (λ)C over C, has Z-rank at most dimC(V (λ)C)

and is invariant under UZ. The minimal choice would be Amin = V (λ)Z = UZv+.
There is also a unique maximal admissible lattice, denoted Amax ; it can be obtained
as the dual of a minimal admissible lattice in the dual module (see also Example 5.1).
Any other admissible lattice A for V (λ)C satisfies Amin ≤ A ≤ Amax . For any μ ∈
Λ(λ), we set Aμ = A ∩ (V (λ)C)μ.

In the remainder of this section, unless otherwise specified, we shall work with the
minimal admissible lattice Amin = V (λ)Z.

Proposition 4.1

(a) V (λ)C is an irreducible gC-module generated by a vector v+ of highest weight λ.
(b) V (λ)C is the direct sum of its weight spaces. That is, V (λ)C = ⊕

μ∈Λ(λ) V (λ)C,μ,
where V (λ)C,λ = Cv+.

Let A be any admissible lattice in V (λ)C and let Aμ = A ∩ V (λ)C,μ.

(c) We have A = ⊕
μ∈Λ(λ) Aμ and Aλ = Zv+ for suitable choice of v+.

(d) For each weight μ of V (λ)C, Aμ spans V (λ)C,μ.

Proof Proofs can be found in the following references. (a) [15, Chap. 10],
[25, Chap. 21]; (b) [15, Chap. 2], [25, Chap. 20]; (c) [25, Chap. 27]. In particu-
lar Theorem 27.1 and its proof. (d) Clearly, for each weight μ of V (λ)C, we have
〈Aμ〉 ≤ V (λ)C,μ. Now note that, by definition, A spans V (λ)C. Combining (b) and
(c), we see that A spans V (λ)C if and only if, for each μ, 〈Aμ〉 = V (λ)C,μ. �

As an example the minimal admissible lattices for gC = sl2(C) are described in
Lemma 4.1.
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Lemma 4.1 [25, Chap. 7] Let gC = sl2(C) and let λ = mλ1 for some m ∈ N. Also
write α = α1. Then, we have

(a) Amin = V (λ)Z is a free Z-module with basis {v0, v1, . . . , vm}, where vi =
(Y i

α/i!)v+.
(b) Setting v−1 = vm+1 = 0, we have

Hαvi = (m − 2i)vi, Xαvi = (m − i + 1)vi−1, Yαvi = (i + 1)vi+1.

(c) The maximal lattice Amax corresponding to Amin is a free Z-module with basis
{f0, f1, . . . , fm}, where the action is given by

Hαfi = (m − 2i)fi, Xαfi = ifi−1, Yαfi = (m + 1 − i)fi+1.

Here fm+1 = f−1 = 0. In fact we have vi = (
m
i

)
fi for all i.

Passage to an arbitrary field F We now pass to an arbitrary field F. We follow Chap.
27 from [25]. Let g(λ)Z be the stabilizer in gC of V (λ)Z; it contains the Z-span of
the Chevalley basis C for gC. In fact

g(λ)Z = h(λ)Z ⊕
⊕

α∈Φ+
ZXα ⊕

⊕

α∈Φ+
ZYα,

where h(λ)Z = {H ∈ h | ∀μ ∈ Λ(λ) : μ(H) ∈ Z}. Now we pass to the field F by
setting

V (λ)F = F ⊗Z V (λ)Z,

g(λ)F = F ⊗Z g(λ)Z.

The module V (λ)F shall be called the weak Weyl module of highest weight λ over F.

Remark 4.2 The construction of g(λ)Z, h(λ)Z and V (λ)F can be done using any
admissible lattice A instead of the minimal lattice V (λ)Z. It is shown in loc. cit. that
up to isomorphism, g(λ)Z and h(λ)Z only depend on V (λ)C (or in fact Λ(λ)), not
on the choice of A. However, it does affect the g(λ)F-action on V (λ)F, as one can
deduce from Lemma 4.1.

Remark 4.3 For any weight μ ∈ Λ(λ) and a ∈ Aμ, we have (1 ⊗ Hi) · (1 ⊗ a) =
μ(Hi) ⊗ a, where μ(Hi) ∈ F. Thus, if F has characteristic 0, distinct weights of
V (λ)C induce distinct weights of V (λ)F. On the other hand, if F has positive
characteristic p, then it may occur for distinct weights μ and ν of V (λ)C that
μ(Hi) ≡ ν(Hi)(mod p) for all i = 1,2, . . . , n. In particular F ⊗Z Aμ and F ⊗Z Aν

belong to the same weight space of V (λ)F.

Definition 4.1 For each weight μ ∈ Λ(λ), we shall set V (λ)F,μ = F ⊗Z Aμ and call
this the reduced μ-weight space.

We continue the example from Lemma 4.1 in Lemma 4.2.



84 J Algebr Comb (2011) 34: 67–113

Lemma 4.2 Let g(λ)F = sl2(F) and let λ = mλ1 for some m ∈ N.

(a) Then, V (λ)F is an sl2(F)-module of dimension m + 1.
(b) The module V (λ)F has a basis {v0, v1, . . . , vm} such that the formulas describing

the sl2(F)-action are as in Lemma 4.1(b).
(c) If Char(F) = 0 or Char(F) = p and m is restricted, i.e. 0 ≤ m < p, then V (λ)F

is cyclic as an sl2(F)-module.

Proof Parts (a) and (b) follow immediately from Lemma 4.1. Part (c) follows
from the fact that under these conditions all coefficients in the action formulas of
Lemma 4.1 are non-zero in Z and remain so on reduction modulo p. �

Remark 4.4 If one constructs the module V (λ)F and the sl2(F)-action from the max-
imal lattice Amax, then there is a basis {f0, . . . , fm} such that the formulas describing
the sl2(F)-action are as in Lemma 4.1(c).

Remark 4.5 Irreducible modules with non-restricted weights can be constructed from
those with restricted weights as described in [44, 46].

The Chevalley groups For any α ∈ Φ+, and n ∈ N, the elements xα,a = Xa
α/a! and

yα,a = Ya
α /a! belong to UZ and hence leave V (λ)Z invariant under their action on the

module V (λ)C. Hence they also induce endomorphisms of V (λ)F = F⊗Z V (λ)Z, via
a representation that we shall call ρ. Note that for large a, these elements represent
the null operator on V (λ)C. Therefore, for any constant t ∈ F, the element

xα(t) =
∞∑

a=0

taρ(xα,a)

is an endomorphism of V (λ)F. It is a purely formal fact that xα(t)−1 = xα(−t).
We now let

MΛ(λ)(F) = 〈
xα(t), yα(t)

∣
∣ α ∈ Φ+, t ∈ F

〉 ≤ SL
(
V (λ)F

) ≤ End
(
V (λ)F

)
.

The group operation is the multiplication of End(V (λ)F), i.e. composition of endo-
morphisms. This group is a Chevalley group of type M over F. Up to isomorphism
it only depends on Λ(λ), but not on the choice of A. We shall also use the notation
Mλ(F) = MΛ(λ)(F).

The group MΛr (F) is called the adjoint group and denoted Mad(F). It can be ob-
tained from the adjoint representation of gC, whose highest weight is the “highest
root”, denoted α∗ (see column 3 in Table 3). The group MΛw(F) is called the uni-
versal group and denoted M(F). Given λ we have Λr ≤ Λ(λ) ≤ Λw and central sur-
jective homomorphisms M(F) → MΛ(λ)(F) and MΛ(λ)(F) → Mad(F). We also have
Z(M(F)) ∼= Hom(Λw/Λr,F

∗) [45, §3]. In particular, we can always view V (λ)F as
a M(F)-module, regardless of the choice of λ.

For types E8, F4 and G2 we have Λr = Λw so that Mad(F) = M(F). Table 3 lists
the possible Chevalley groups for the other spherical types, along with some weights
giving rise to these groups. Most of Table 3 comes from [45, §3]. In columns 3, 4,
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and 5, we list the group along with some weights λ for which MΛ(λ) is the desired
group. Dynkin diagram labelings are as in [8]. The first weight in column 3 is α∗.
The remaining weights can be found from Chaps. 8 and 13 in [15] with an easy
calculation.

Remark 4.6 Steinberg’s table [45, §3] also points out that PSO2n+1 ∼= SO2n+1.
From Ree [35], we also have Bn,ad = PΩ2n+1, Bn = Ω2n+1, Dn,ad = PΩ+

2n, and
Dn = Ω+

2n.
There does not seem to be a standard notation distinguishing the adjoint and uni-

versal Chevalley groups of types E6 and E7. We shall write En(F) = En,ad(F) (and
En(F) = En(F)).

From now on we shall write Gad = Mad(F), G = M(F), and Gλ(F) = MΛ(λ)(F).
The module V (λ)F is in general not cyclic. In some cases it may depend on the

choice of A. However, when for instance ∞ > dim(V (λ)C) > |Gλ(F)|, so that V (λ)F

has F-dimension strictly greater than the size of the group algebra, the module cannot
be cyclic.

Definition 4.2 We shall denote the Gλ(F)-module generated by v+ by V = V (λ)0
F

and call this the Weyl module of highest weight λ.
For V (λ)F itself we reserve the name weak Weyl module. Note that in some cases,

such as when Char(F) = 0, these modules coincide.

We illustrate what may happen using the example from Lemma 4.2.

Lemma 4.3 Let M = A1. Write α = α1 and let λ = mλ1 for some m ∈ N. Let V =
V (λ)F be obtained from V (λ)Z. Then all of the following hold.

(a) The Gλ(F)-module V has dimension m + 1 and F-basis {v0, v1, . . . , vm}, where
vi = (Y i

α/i!)v+.
(b) If F has sufficiently many elements, then V is cyclic and generated by v+ as a

Gλ(F)-module. This is the case if F is infinite or if F is finite, but |F| ≥ m + 1.
(c) If Char(F) = 0, or Char(F) = p > 0 and m is restricted, then V is irreducible as

a Gλ(F)-module.

Proof (a) Follows immediately from Lemma 4.2.

(b) Consider the element yα(t) = ∑m
i=0(

Y i
α

i! )t i . We have yα(t)v+ = ∑m
i=0 t ivi .

Therefore, if F contains distinct elements t0, . . . , tm, then (t ij )
m
i,j=0 is a Vandermonde

matrix. Hence the elements yα(t0)v
+, . . . , yα(tm)v+ are linearly independent over F.

(c) If V ′ is any submodule then it has a highest weight vector. Thus this highest
weight vector is (a scalar multiple of) vi for some i. Note that, due to the fact that m

is restricted, all of the coefficients appearing in part (b) of Lemma 4.1 are non-zero
over F. Hence an argument similar to that of part (b) shows that V ′ also contains
vi+1, . . . , vm. Applying the argument of (b) to xα(t)vm, we see that V ′ also contains
v0, . . . , vi−1 and so V ′ = V . �
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Remark 4.7 Suppose that we pick some finite field Fp , p prime and a weight λ = mλ1
with m > |SL2(Fp)|. Then, from Lemma 4.3 we see that while V (λ)C is irreducible
for SL2(C), the module V (λ)Fp

is not cyclic since its dimension exceeds that of
the group algebra Fp SL2(Fp). So in this case V = V (λ)0

Fp
is a proper submodule

of V (λ)Fp
.

The BN -pair of Gλ(F) To finish this subsection we identify some relevant sub-
groups of Gλ(F), following [14].

The group

Gα = 〈
xα(t), yα(t)

∣
∣ t ∈ F

〉

is a Chevalley group over F with diagram A1. By the above discussion therefore,
Gλ(F) is a quotient of SL2(F), the universal group of type A1, and it has the ad-
joint group PSL2(F) as a quotient. More precisely, for each α we have a surjective
homomorphism

φα: SL2(F) → Gα,
(

1 t

0 1

)

�→ xα(t),

(
1 0
t 1

)

�→ yα(t).

The Steinberg presentation theorem [45] says that in case Gλ(F) is universal, Gλ(F)

can be viewed as being generated abstractly by elements of the form xα(t) and
yα(t), (α ∈ Φ+, t ∈ F) subject to the Chevalley commutator relations (see e.g.
[14, Chap. 5]), and such that the above homomorphisms are in fact isomorphisms.

For each α ∈ Φ+ and t ∈ F, let

hα(t) = φα

(
t 0
0 t−1

)

, nα(t) = φα

(
0 t

−t−1 0

)

.

For each α ∈ Φ+, let

Uα = 〈
xα(t)

∣
∣ t ∈ F

〉
, Hα = 〈

hα(t)
∣
∣ t ∈ F

〉
,

U−α = 〈
yα(t)

∣
∣ t ∈ F

〉
, Nα = 〈

nα(t)
∣
∣ t ∈ F

〉
.

We now have the following distinguished subgroups of Gλ(F):

U+ = 〈
Uα

∣
∣ α ∈ Φ+〉

, H = 〈
Hα

∣
∣ α ∈ Φ+〉

, B+ = U+H,

U− = 〈
Uα

∣
∣ α ∈ Φ−〉

, N = 〈
Nα

∣
∣ α ∈ Φ+〉

, B− = U−H.

We also set ni = nαi
(1), for all i ∈ I .

Theorem 4.1 (See [14]) Let B = B+. Then, the pair (B,N) is a BN-pair of type
M for Gλ(F). More precisely, setting W = N/H and ri = niH , for i ∈ I , the pair
(W, {ri}i∈I ) is a Coxeter system of type M.
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4.3 The Weyl embedding

Continuing the notation from this section we now let

λ = λK, V = V (λ)0
F
, G = M(F).

Let U = U+, U−, B = B+, B−, N and H be defined as in Sect. 4.2, starting with
the universal Chevalley group G. We assume that Δ is obtained from the BN -pair
(B,N) of G. We also assume that Γ is the K-shadow space obtained from Δ as in
Sect. 4.1

Theorem 4.2 The shadow space Γ = (P , L) has a full projective embedding into the
Weyl module V for G as follows

eW : P → P(V),

gp �→ 〈
gv+〉

,

for any choice of a point p of Γ .

Proof The proof is the same as the proof of Lemma 3.1 in [5], after noting that the
weight λ = λK is restricted for any characteristic, and V is cyclic by definition. �

Definition 4.3 We shall call the map eW from Theorem 4.2 the Weyl embedding.

Remark 4.8 Clearly if we consider an arbitrary weight λ = ∑
i∈I miλi , where

mi ∈ N, and we define the support of λ to be the set supp(λ) = {i ∈ I | mi > 0}, then
V = V (λ)0

F
affords some kind of embedding of the shadow space of type I −supp(λ).

The arguments used in the proof of Theorem 4.2 show that the point-set is mapped
into the set of 1-spaces of V. The standard line of type k is now mapped to an arc in
the (mk + 1)-dimensional subspaces Vk = 〈gv+ | g ∈ Pi〉V. Such modules are well-
known, so studying such embeddings is within reach and some of them might be
interesting.

5 The minimal polarized embedding obtained from the Weyl embedding

In this section we show that the Weyl embedding is polarized and that its minimal
polarized quotient is the unique irreducible module L(λK)F of highest weight λK .

5.1 Opposite structures, actions and representations

The reader familiar with opposite structures can skip this subsection. In general, if K
is a category, then the opposite category Kopp is the category with the same objects as
K, but with arrows reversed. Thus the identity map id: K → Kopp is a contravariant
functor. For example, if G is a group with operation ∗, then the opposite group Gopp

is the set G equipped with the opposite operation ∗opp given by x ∗opp y = y ∗ x for
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all x, y ∈ G. Note that if G is commutative, then id:G → Gopp is an isomorphism.
Similarly, if R is a ring with multiplication ∗, then the opposite ring Ropp is the
additive group of R equipped with the opposite multiplication ∗opp.

Now let R be a commutative ring with 1. The definition of the opposite of an
associative R-algebra A now follows from the definitions above. If L is a Lie algebra
over R with bracket [·, ·], then the opposite Lie algebra Lopp is the R-module L

equipped with the opposite bracket given by [x, y]opp = [y, x]. For an associative
R-algebra A with multiplication ∗, let L(A) denote the Lie algebra on the R-module
A equipped with the bracket [x, y] = x∗y−y∗x. Then, we have L(Aopp) = L(A)opp.

An isomorphism between a group, ring, algebra, or Lie algebra X, and its opposite
Xopp is called an anti-automorphism of X.

5.2 The contravariant form on V (λ)F and the irreducible quotient L(λ)F

In this section we follow the approach sketched in [27, Sect. 3.8] and [52, 54]. We
first define an automorphism τ of the vector space underlying gC by setting, for each
α ∈ Φ , (see e.g. [26]):

Xτ
α = Yα, Hτ

α = Hα, Y τ
α = Xα

and extending C-linearly. It follows from the isomorphism theorem for semi-simple
complex Lie algebras [28, Chap. IV] that τ induces an anti-automorphism of gC.
Naturally this extends to an isomorphism, also denoted τ , between U = U(gC) and
U(g

opp
C

). We can view U(g
opp
C

) as Uopp as follows.
First note that, as vector spaces, gC = g

opp
C

and that the tensor algebra T (gC)

and its opposite T opp(g
opp
C

) are isomorphic via the map r , given on pure vectors by
x1 ⊗· · ·⊗ xn �→ xn ⊗· · ·⊗ x1 (n ∈ N, xi ∈ gC). Thus we can construct U = T (gC)/I

and U(g
opp
C

) = T opp(g
opp
C

)/Iopp (see e.g. [15]), where I = 〈x ⊗ y − y ⊗ x − [x, y] |
x, y ∈ gC〉 and Iopp = 〈x ⊗opp y − y ⊗opp x − [x, y]opp | x, y ∈ g

opp
C

〉 are two-sided
ideals of the associative algebras. Now note that I = Iopp as subspaces of the vec-
tor space T (gC) = T opp(g

opp
C

), so that as vector spaces U = U(g
opp
C

). Hence U(g
opp
C

)

can alternatively be constructed by taking the opposite associative algebra of U

and taking its Lie algebra, or, equivalently, by taking the opposite Lie algebra struc-
ture of U. Thus, τ extends to a proper anti-automorphism of the universal envelop-
ing algebra U and its underlying associative algebra structure inherited from T (gC).
Since τ preserves C, it restricts to a proper anti-automorphism of the Kostant Z-
form UZ.

From τ one creates a symmetric bilinear form βZ on V (λ)Z. Namely, one first
defines a twisted gC-module τV (λ)C. The module τ V (λ)C is the dual vector space
V (λ)∗

C
with a twisted action defined as follows:

(g · f )(v) = f
(
gτ (v)

)
for all g ∈ gC, f ∈ V (λ)∗

C
, v ∈ V (λ)C.

One verifies that τV (λ)C has highest weight vector f + of weight λ, defined by

f +(v) = cif v ∈ cv+ +
⊕

μ �=λ

V (λ)C,μ.
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The map φ:V (λ)C → τV (λ)C given by uv+ �→ uf + (u ∈ U) induces a unique
U-module isomorphism. Clearly it restricts to a UZ-module isomorphism
φ:UZv+ → UZf +. We now define a bilinear form β on V (λ)C by setting

β(v1, v2) = φ(v1)(v2) for all v1, v2 ∈ V (λ)C.

The form β has the following properties (see §3.8 and §2.4 of [27]).

Lemma 5.1

(a) The bilinear form β is contravariant. That is,

β(gu, v) = β
(
u,gτ v

)
for all g ∈ U,and all u,v ∈ V (λ)C.

(b) The form β is symmetric and non-degenerate on V (λ)C.
(c) Weight spaces corresponding to distinct weights of V (λ)C are orthogonal with

respect to β .
(d) We have β(v+, v+) = 1. Hence, it restricts to β:Amin × Amin → Z. Mutatis

mutandis, (a), (b), and (c) also hold for this restriction.

We note that in Lemma 5.1 part (c) is a consequence of (a).
Tensoring β over Z with F, we obtain a symmetric F-bilinear contravariant form

β on V (λ)F.

Corollary 5.1

(a) The form β induced on V (λ)F is a symmetric F-bilinear contravariant form such
that β(v+, v+) = 1.

(b) Reduced weight spaces of V (λ)F corresponding to distinct weights of V (λ)C are
orthogonal with respect to β . Hence, weight spaces corresponding to distinct
weights of V (λ)F are orthogonal with respect to β .

Statements (a) and (b) also hold when V (λ)F is replaced with the submodule V (λ)0
F

generated by v+.

Example 5.1 Let gC = sl2(C) and λ = mλ1, for some m ∈ N. The minimal ad-
missible lattice Amin = V (λ)Z is the Z-span of the basis V = {v0, . . . , vm} from
Lemma 4.1 part (b). We now construct τV (λ)C. Let {f0, f1, . . . , fm} be the basis
of V (λ)∗

C
dual to V , i.e. such that fi(vj ) = δi,j for 0 ≤ i, j ≤ m. Using the for-

mulas from Lemma 4.1 part (b), together with the fact that τ fixes Hα1 and in-
terchanges Xα1 and Yα1 we find that the action of sl2(C) on τV (λ)C is given by
the formulas in part (c) of that lemma. The isomorphism φ:V (λ)C → τ V (λ)C is
given by vi �→ (

m
i

)
fi for all i = 0,1, . . . ,m. Hence, with respect to the basis V ,

β is given by the diagonal matrix with entry
(
m
i

)
in the ith row and column. We

have Λ(λ) = {(m − 2i)λ1 | i = 0,1, . . . ,m} with Amin,(m−2i)λ1 = Zvi , for each i.
Lemma 5.1 and Corollary 5.1 are easily verified in this case. Also, the maximal lat-
tice in V (λ)C corresponding to Amin is Amax = {f ∈ V (λ)C | β(f, a) ∈ Z ∀a ∈ Amin},
which is the Z-span of {vi/

(
m
i

) | i = 0, . . . ,m}.
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We now extend the preceding results to the Chevalley groups.

Proposition 5.1 The map τ induces an anti-automorphism of Gλ(F) that satisfies

xα(t)τ = x−α(t) for all α ∈ Φ, t ∈ F.

Before we prove Proposition 5.1, we introduce some notation connecting the var-
ious module structures involved with the corresponding representations.

Let ρ:gC → gl(V (λ)C) denote the representation corresponding to the left-
module structure: ρ(x)(v) = x � v. Let 〈·, ·〉:V (λ)∗

C
× V (λ)C → C be the stan-

dard pairing given by 〈f, v〉 = f (v). One verifies that the C-linear map ρ†:gopp
C

→
gl(V (λ)∗

C
) denoted ρ†(x)(f ) = x �† f and given by 〈x �† f, v〉 = 〈f,x � v〉, for all

x ∈ g
opp
C

, f ∈ V (λ)∗
C

, and v ∈ V (λ)C is a homomorphism. The composition ρτ =
ρ†◦τ is the representation ρτ :gC → gl(V (λ)∗

C
) that turns V (λ)∗

C
into the gC-module

τV (λ)C. We denote the action x �τ f = ρτ (x)(f ). It satisfies x �τ f = xτ �† f .
We then have natural extensions to the universal enveloping algebras U, Uopp that

we denote ρ, ρτ , and ρ† as well. The isomorphism φ sends x � v+ �→ x �τ f +, for all
x ∈ U. Setting V (λ)Z = UZ � v+ and V (λ)∗

Z
= U

opp
Z

�† f + = UZ �τ f +, we see that φ

restricts to φ:V (λ)Z → V (λ)∗
Z

. Since we also have 〈f +, v+〉 = 1, the pairing restricts
to 〈·, ·〉:V (λ)∗

Z
× V (λ)Z → Z. Therefore we have restrictions ρ:UZ → gl(V (λ)Z),

ρ†:Uopp
Z

→ gl(V (λ)∗
Z
), and ρτ :UZ → gl(V (λ)∗

Z
), such that φ induces an isomor-

phism between ρ and ρτ , and, for every f ∈ V (λ)∗
Z

, x ∈ UZ, and v ∈ V (λ)Z, we
have 〈x �† f, v〉 = 〈f,x � v〉. Combining all this we find that, for v1, v2 ∈ V (λ)Z,
we have β(x � v1, v2) = 〈φ(x � v1), v2〉 = 〈x �τ φ(v1), v2〉 = 〈xτ �† φ(v1), v2〉 =
〈φ(v1), x

τ � v2〉 = β(v1, x
τ � v2), i.e. β is τ -contravariant.

As stated in Corollary 5.1, when we pass to the field F, these properties are
preserved. First tensor τ to get an isomorphism τF:UF → U

opp
F

. Next, we tensor
the representations ρ, ρ† and ρτ . For example, we define ρF:UF → gl(V (λ)F) by
c ⊗ x �→ c ⊗ ρ(x) and with corresponding action (c ⊗ x) � (d ⊗ v) = cd ⊗ x � v.
The others are defined similarly. Note that ρF also defines a homomorphism be-
tween the underlying associative algebras. One verifies that ρτ

F
= ρ

†
F
◦τF. Ten-

soring the UZ-module isomorphism φ gives an isomorphism of F-vector spaces
φF:V (λ)F → V (λ)∗

F
. Conjugation by φ−1

F
gives an isomorphism of associative alge-

bras φ∗
F

: End(V (λ)F) → End(V (λ)∗
F
), which also induces an isomorphism between

the corresponding Lie algebras φ∗:gl(V (λ)F) → gl(V (λ)∗
F
). Thus we have the fol-

lowing commutative diagram of associative algebra morphisms.

UF

ρF

τF ∼=
ρτ

F

End(V (λ)F)

φ∗
F

∼=

U
opp
F

ρ
†
F

End(V (λ)∗
F
)

(1)



92 J Algebr Comb (2011) 34: 67–113

Proof of Proposition 5.1 We shall construct the Chevalley group Gλ(F) as well as
the group G∗

λ(F) for g
opp
C

. We then show that G∗
λ(F) is naturally isomorphic to the

opposite group Gλ(F)opp and that τ induces an isomorphism Gλ(F)∗ ∼= Gλ(F)opp.
The group Gλ(F) is generated as a subgroup of the multiplicative group of

End(V (λ)F)) by images under ρF of elements of the form xα(t) = ∑∞
a=0 ta ⊗ xα,a .

Thus we have ρF(xα(t)) = ∑∞
a=0 ta ⊗ ρ(xα,a) and the action on V (λ)F = F ⊗Z

V (λ)Z is therefore given by xα(t) � (1 ⊗ v) = ∑∞
a=0 ta ⊗ (xα,a � v), for any α ∈ Φ ,

t ∈ F, and v ∈ V (λ)Z.
If V is the category of finite dimensional F-vector spaces and linear transforma-

tions and D: V → V denotes the duality functor, sending each V ∈ V to its dual V ∗ ∈
V and each linear transformation E to E∗:f �→ f ◦E, then D is contravariant and
Dopp: V → V

opp is covariant. Now view End(V (λ)F) as the subcategory with single
object V (λ)F in which the morphisms are those of V having V (λ)F as starting point
and end point. Since V (λ)F is finite dimensional, we have V (λ)∗∗

F
= V (λ)F and it fol-

lows that Dopp restricts to an isomorphism between End(V (λ)F) and End(V (λ)∗
F
)opp.

Composing Dopp with ρF:UF → End(V (λ)F) we get a dual representation ρ
∗opp
F

=
Dopp◦ρF:UF → End(V (λ)∗

F
)opp. Taking opposites in the domain and codomain of

ρ
∗opp
F

, one verifies that we recover the representation ρ
†
F

:Uopp
F

→ End(V (λ)∗
F
) intro-

duced above. Thus all triangles in Diagram (2), which includes Diagram (1), com-
mute.

UF

ρ

τ ∼=
ρτ

End(V (λ)F)

φ∗∼=

U
opp
F

ρ†

ρ

End(V (λ)∗
F
)

End(V (λ)F)opp

Dopp∼=

(2)

Let G∗
λ(F) be the Chevalley group for g

opp
F

obtained using ρ
†
F

. Clearly D: End(V (λ)F)

→ End(V (λ)∗
F
) satisfies ρF(xα(t)) �→ ρ

†
F
(xα(t)), for all α ∈ Φ and t ∈ F, and, be-

ing bijective and contravariant, it restricts to an anti-isomorphism between Gλ(F)

and G∗
λ(F).

From the commutativity of Diagram (2), we deduce that τ induces an isomor-
phism φ∗:Gλ(F) → Gλ(F)∗ satisfying ρ(xα(t)) �→ ρ†(x−α(t)) as well as an anti-
automorphism: Dopp◦φ∗:Gλ(F) → Gλ(F)opp which satisfies ρ(xα(t)) �→ ρ(x−α(t)).
This is the sought anti-automorphism. �

We shall denote the anti-automorphism of Gλ(F) induced by τ also by τ .
It is now straightforward to verify the following.

Lemma 5.2 For any g ∈ Gλ(F) and u,v ∈ V (λ)F we have

β(gu, v) = β
(
u,gτ v

)
.
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Recall from Sect. 4.2 that ni = nαi
(1), for i ∈ I .

Lemma 5.3 The subgroup N0 = 〈ni | i ∈ I 〉 ≤ N of the universal Chevalley group G

is an isometry group for the form β .

Proof First we note that for each α ∈ Φ and t ∈ F we have xα(t)τ = x−α(t) and it
follows that nα(t)τ = (xα(t)x−α(−t−1)xα(t))τ = nα(−t−1). In particular, nα(1)τ =
nα(1)−1. Recall also that τ is an anti-automorphism, meaning that (gh)τ = hτgτ

for any g,h ∈ Gλ(F). It follows that if n = ni1 · · ·nil , then nτ = n−1. Hence, for
u,v ∈ V (λ)F, we have β(nu,nv) = β(u,nτnv) = β(u, v). �

It follows from Lemma 5.3 that weight vectors in one N0-orbit have the same
length with respect to β . It should be pointed out that in Lemma 5.3 N0 cannot be
replaced by N in general.

Our motivation for introducing the contravariant form β is that it gives a connec-
tion between the Weyl module V = V (λ)0

F
and the unique irreducible module L(λ)F

of highest weight λ (see [27]).

Proposition 5.2 (cf. [27, §3.8]) The Weyl module V = V (λ)0
F

has a unique maxi-
mal Gλ(F)-submodule and this submodule equals the radical of β in V. As a conse-
quence, β induces a non-degenerate contravariant form on the simple quotient L(λ)F.

Proof The proof is the same as that of Proposition 3.8 of [27] after noting that V =
V (λ)0

F
is cyclic. �

5.3 The Weyl embedding is polarized

Recall that Gλ(F) is a central quotient of the universal Chevalley group G. Hence
any Gλ(F)-module is automatically a G-module.

Proposition 5.3 The Weyl embedding eW of Γ into P(V) is polarized. More pre-
cisely, for each point p of Γ there is a dual point p∗ of Γ such that

eW (p)⊥ = 〈
H

(
p∗)〉

eW
.

Proof Let Σ be the apartment of Δ corresponding to N and let c+ be the chamber
corresponding to B . Let p be the point of Γ on c+.

Recall that V = V (λ)0
F

. For any weight μ ∈ Λ(λ), let Vμ denote its reduced weight
space as defined in Definition 4.1. Recall that eW (p) is the subspace Vλ of V spanned
by 1 ⊗ v+, where v+ is the highest weight vector. Also note that for any point q of Σ

we have q = wp for some w ∈ W − {1} so that eW (q) = wVλ = Vμ. Now if p �= q ,
then since dim(Vλ) = 1, we must have μ = wλ �= λ. Thus, β(eW (p), eW (q)) = 0 for
all points q on Σ different from p.

Note that the chamber c− opposite to c+ in Σ corresponds to B− = w0B
+w0,

where w0 is the longest word in the Coxeter system (W, {ri}i∈I ). Now let p∗ be the
dual point of Γ ∗ on c− and let H(p∗) be the hyperplane of Γ consisting of points
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not opposite to p∗ in Δ. Then for every point q ′ ∈ H(p∗) there is an apartment Σ ′
on q ′ and c−. The group B− stabilizes p∗ while being regular on such apartments.
So there is some b ∈ B− with bΣ = Σ ′ and there is some point q on Σ such that
bq = q ′. Since q ′ was not opposite to p∗, q �= p.

Turning back to the embedding we note that by contravariance and since bτ ∈
B+ = B , we have β(eW (p), eW (q ′)) = β(eW (p), beW (q)) = β(bτ eW (p), eW (q)) =
β(eW (p), eW (q)) = 0. Thus the hyperplane eW (p)⊥ = ker(β(v+,−)) contains
〈H(p∗)〉eW

. Since H(p∗) is a maximal subspace of Γ and using Lemma 1.2, we
find

eW (p)⊥ = 〈
H

(
p∗)〉

eW
.

Part (b) of Lemma 1.2 moreover tells us that the hyperplane H(p∗) is induced by V.
Since G and hence also Gλ(F) are transitive on dual points, and since β is contravari-
ant, the same holds for all other dual points of Γ ∗. Thus V is polarized. �

Corollary 5.2 Let eW be the Weyl embedding of Γ into the Weyl module V and let R
be the polar radical of eW . Then the codomain of the minimal polarized embedding
with respect to eW is the unique irreducible Gλ(F)-module L(λ)F of highest weight λ.

Proof From Proposition 5.3 it follows that

R =
⋂

p∗∈Γ ∗

〈
H

(
p∗)〉

eW
=

⋂

p∈Γ

eW (p)⊥ = Rad(β).

Therefore the codomain of the minimal polarized embedding with respect to eW is
V/R = V (λ)0

F
/Rad(β), which by Proposition 5.2 is the unique irreducible Gλ(F)-

module of highest weight λ. �

Theorem 1.2 now follows from Proposition 5.3 and Corollary 5.2.

6 Minuscule weight geometries

Let λ = λk be a fundamental dominant weight that is minuscule. This means by de-
finition that the weight lattice of V (λ)C equals the orbit of λ under the action of the
Weyl group W . In particular, all weight spaces have dimension 1. Recall that λk is a
minuscule weight for the diagram M if Mk is one of the following: An,k (any k), Bn,n

(n ≥ 2), Cn,1 (n ≥ 3), Dn,1, Dn,n−1, Dn,n (n ≥ 4), E6,1 and E6,6, or E7,7. For names
and dimensions of these embeddings see Table 4.

Call e = eW the embedding of Γ = Δk into V = V (λ)0
F

. The weight spaces of V

are precisely the images of the point set of the apartment Σ = WPI−{k} of Γ cor-
responding to W , and in almost all cases these points generate Γ (see [5, 20] for a
precise statement). By Theorem 1.2 the embedding e into V is polarized. Moreover,
V (λ)F = V = L(λ)F since if V (λ)F had any proper submodule, it would be the di-
rect sum of its weight spaces. But the weight spaces of V (λ)F are all of dimension
1 and form a single orbit under W . Hence, no proper submodule exists. In view of
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Table 4 Minuscule weight
embeddings M G k V dim(V)

An SLn+1(F) k Grassmann
(n+1

k

)

Bn Spin2n+1(F) n Spin 2n

Cn Sp2n(F) 1 Natural 2n

Dn Spin+
2n

(F) 1 Natural 2n

n,n − 1 Half-spin 2n−1

E6 E6(F) 1, 6 L(λk) 27

E7 E7(F) 7 L(λ7) 56

Lemma 5.3 it also implies that V has a basis of weight-vectors that is orthonormal
with respect to β . Therefore, β has trivial radical, which by Theorem 1.2 again im-
plies that V (λ)F = V is irreducible.

We finish this section with a brief remark on generating singular hyperplanes. Let
p be a point of Σ opposite some dual point p∗ also on Σ . We now see that the
hyperplane 〈H(p∗)〉e is exactly the hyperplane of V spanned by the set {e(q) | p �=
q a point of Σ}. It is proved in Blok [3] that often the hyperplane H(p∗) itself is
generated, as a subspace of Γ by the set of points of Σ different from p; this is the
case for instance if the diagram M is one of An, Dn, E6 or E7.

In Table 4 we list the Weyl embeddings of the minuscule weight geometries.
Here Γ is the k-shadow space of a building associated with the universal Cheval-
ley group G = M(F) and V = V (λk)F = V = L(λk)F.

7 Grassmannians

As a preliminary to Sects. 8, 9 and 10, we collect some information on tensor prod-
ucts and exterior powers of modules for the Lie algebra g = g(λ)F and its associated
Chevalley group Gλ(F). In particular, we shall study the form β and the automor-
phism τ .

It is well known (see e.g. [15]) and easy to check that, whenever V1, . . . , Vl are
g-modules, then so is V1 ⊗ · · · ⊗ Vl under the action given on pure vectors by

g ·
l⊗

i=1

vi =
l∑

i=1

v1 ⊗ · · · ⊗ vi−1 ⊗ gvi ⊗ vi+1 ⊗ · · · ⊗ vl, (3)

for all g ∈ g and vi ∈ Vi for all i = 1, . . . , l. Similarly, if V is a g-module, then so is∧k
V under the action given on pure vectors by

g ·
k∧

i=1

vi =
k∑

i=1

v1 ∧ · · · ∧ vi−1 ∧ gvi ∧ vi+1 ∧ · · · ∧ vk, (4)

for all g ∈ g and vi ∈ V for all i = 1, . . . , k. As for the action of Gλ(F), it is well
known and it follows easily from (3) and the definition of Gλ(F), that whenever
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V1, . . . , Vl are Gλ(F)-modules, then so is V1 ⊗ · · · ⊗ Vl under the action given on
pure vectors by

g ·
l⊗

i=1

vi = gv1 ⊗ · · · ⊗ gvi ⊗ · · · ⊗ gvl, (5)

for all g ∈ Gλ(F) and vi ∈ Vi for all i = 1, . . . , l. Similarly, if V is a Gλ(F)-module,
then so is

∧k
V under the action given on pure vectors by

g ·
k∧

i=1

vi = gv1 ∧ · · · ∧ gvi ∧ · · · ∧ gvk, (6)

for all g ∈ Gλ(F) and vi ∈ V for all i = 1, . . . , k.
Next, we describe how a covariant or contravariant form on a collection of modules

for g or Gλ(F) induces a similar form on their tensor product or exterior powers.

Lemma 7.1 Let V1, . . . , Vl be finite dimensional F-vector spaces, let σ be an auto-
morphism of F of order at most 2 and let ζi be a σ -sesquilinear form on Vi . Then

(a) there is a unique σ -sesquilinear form ζ⊗ on V1 ⊗ · · · ⊗ Vl given by
ζ⊗(u1 ⊗ · · · ⊗ ul, v1 ⊗ · · · ⊗ vl) = ∏l

i=1 ζi(ui, vi);
(b) if each ζi is non-degenerate, so is ζ⊗;
(c) if each ζi is symmetric bilinear, so is ζ⊗;
(d) if each ζi is skew-symmetric, then ζ⊗ is skew symmetric if l is odd and symmetric

otherwise;
(e) if each Vi is a module for g and ζi is τ -contravariant, then so is ζ⊗;
(f) if each Vi is a module for Gλ(F) and ζi is τ -contravariant, then so is ζ⊗;
(g) if each Vi is a module for Gλ(F) and Gλ(F) preserves ζi , then Gλ(F) pre-

serves ζ⊗.

Proof (a) For each i we have a σ -semilinear map φi :Vi → V ∗
i so that ζi(u, v) =

〈φi(u), v〉, where 〈f, v〉 = f (v) is the standard pairing V ∗
i ×Vi → F. Note that φ⊗ =

φ1 ⊗ · · · ⊗ φl :V1 ⊗ · · · ⊗ Vl → V ∗
1 ⊗ · · · ⊗ V ∗

l is again a σ -semilinear map. We can
compose this map with the standard pairing V ∗

1 ⊗ · · · ⊗ V ∗
l × V1 ⊗ · · · ⊗ Vl → F

given by 〈f1 ⊗ · · · ⊗ fl, v1 ⊗ · · · ⊗ vl〉 = ∏l
i=1 fi(vi) to get the form ζ⊗. It is im-

mediate from this construction that ζ⊗ is σ -sesquilinear. (b) The standard pairing is
non-degenerate and in this case φi and φ⊗ are isomorphisms. (c) and (d) are trivial
observations. (e), (f), and (g) are easily seen to follow from (3) and (5). �

Lemma 7.2 Let V be a finite dimensional F-vector space, let σ be an automorphism
of F of order at most 2 and let ζ be a σ -sesquilinear form on V . Let k ∈ N with
1 ≤ k ≤ dim(V ). Then

(a) there is a unique σ -sesquilinear form ζ∧ on
∧k

V given by
ζ∧(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det(ζ(ui, vj ));

(b) if ζ is non-degenerate, so is ζ∧;
(c) if ζ is symmetric bilinear, so is ζ∧;
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(d) if ζ is skew-symmetric, then ζ∧ is skew symmetric if k is odd and symmetric
otherwise;

(e) if V is a module for g and ζ is τ -contravariant, then so is ζ∧;
(f) if V is a module for Gλ(F) and ζ is τ -contravariant, then so is ζ∧;
(g) if V is a module for Gλ(F) and Gλ(F) preserves ζ , then Gλ(F) preserves ζ∧.

Proof (a) There is a σ -semilinear map φ:V → V ∗ so that ζ(u, v) = 〈φ(u), v〉,
where 〈f, v〉 = f (v) is the standard pairing V ∗ × V → F. Note that φ∧ = φ ∧
· · · ∧ φ:

∧k
V → ∧k

V ∗ is again a σ -semilinear map. We can compose this σ -semi-
linear map with the standard pairing

∧k
V ∗ × ∧k

V → F given by 〈f1 ∧ · · · ∧
fl, v1 ∧ · · · ∧ vl〉 = det(fi(vj )) to get the form ζ∧. Noting that det(ζ(ui, vj )) =
∑

ρ∈Sym(k) sign(ρ)
∏k

i=1 ζ(ui, vρ(i)) we see that ζ∧ is σ -sesquilinear because ζ⊗ as
defined in Lemma 7.1, is σ -sesquilinear. (b) The standard pairing is non-degenerate
and in this case φ and φ∧ are isomorphisms. (c) This is because det(fi(vj )) =
det(fj (vi)). (d) Same as in Lemma 7.1(e), (f) and (g). These follow from (4) and
(6) together with the definition of the determinant as in (a). �

Thus, we see that β∧ and β⊗ are symmetric bilinear τ -contravariant forms. Or-
thogonality of distinct weight spaces follows from contravariance as in Lemma 5.1.

8 The projective Grassmannians

Let Δ be the building of type An over the field F. The universal Chevalley group
is G = SL(V ), where V is a vector space of dimension n + 1 over F. Picking an
ordered basis A = {a1, . . . , an+1} for V , we identify G with SLn+1(F). A BN-pair
for G is given by letting B be the upper triangular matrix group and N the monomial
matrix group. Then H = B ∩ N is the diagonal matrix group and the Weyl group
W = N/H ∼= Sym(n + 1) in its action on the 1-spaces spanned by the standard basis
elements.

For each integer k with 1 ≤ k ≤ n+1, the exterior power
∧k

V is clearly a module
for G under the action g(v1 ∧ · · · ∧ vk) = gv1 ∧ · · · ∧ gvk . For any non-empty subset
J ⊆ I , let aJ = ∧

j∈J aj , where the aj appear with increasing subscripts. Recall

that Ak = {aJ | J ⊆ {1,2, . . . , n + 1}, |J | = k} is a basis for
∧k

V . One verifies that
v+ = a{1,2,...,k} is a vector of weight λk that is stabilized by the subgroup U+ of
unipotent upper triangular matrices (see e.g. [15, Chap. 13]). Thus v+ is a vector of
highest weight λk . It is easy to see that λk is minuscule: the collection of 1-spaces
spanned by elements from Ak forms a single orbit under W = Sym(n + 1). Thus,∧k

V is the irreducible Weyl module V (λk)F = V = L(λk)F.
The standard parabolic subgroup PI−{k} is precisely the stabilizer of the k-space

p = 〈a1, . . . , ak〉V , which is a k-object of Δ. The k-shadow space Γ of Δ is the
geometry whose points are the k-objects and where each line is the collection of
points incident to some {k − 1, k + 1}-flag.
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In accordance with Theorem 4.2, the Weyl embedding of Γ into
∧k

V is given by

P → P

( k∧
V

)

p �→
k∧

p

where
∧k

p = 〈p1 ∧ · · · ∧ pk〉 for some basis p1, . . . , pk of p. It is often called the
Grassmann embedding. This is well-defined since if g ∈ SL(V ) induces a change of
basis for p we have g(p1 ∧ · · · ∧ pk) = dp1 ∧ · · · ∧ pk , where d is the determinant of
the restriction of g to p.

Next, we identify the form β on the module V. Since λk is minuscule, Sect. 6 tells
us that Ak forms an orthonormal basis for

∧k
V with respect to β . Thus, if β1 is the

form on V (λ1)F, then β = β∧
1 , as described in Lemma 7.2.

Let us also identify τ . The anti-involution τ of G as described in Sect. 5 satisfies
xα(t)τ = x−α(t) for any t ∈ F and α ∈ Φ . In the present An case, the root system
is Φ = {αi,j | i, j ∈ I, i �= j} where αi,j = −αj,i with respect to the fundamental
system Π = {αi,i+1 | i = 1, . . . , n}. With respect to the BN-pair chosen above we
have xαi,j

(t) = In+1 + tEi,j , where Ei,j is the elementary matrix whose entries ek,l

satisfy ek,l = δikδjl . Thus, τ is simply the transposition map.

9 Polar Grassmannians

In this subsection Γ is a polar k-Grassmannian of a building Δ of type Mn over F,
where Mn,k(F) is as listed in Table 5. The building Δ is constructed from a non-
degenerate reflexive sesquilinear or quadratic form ζ of Witt index n on a vector
space V of dimension m over the field F. The type of ζ is given in the table and m

is the subscript of the group, which is the full linear isometry group of ζ . In case ζ

is σ -hermitian, we restrict to the case where σ ∈ Aut(F) has order 2, F is a quadratic
extension over the fixed field F

σ = {x ∈ F | xσ = x}, and the norm Nσ : F → F
σ is

surjective.
We first present a way to see that the Grassmann embeddings for these polar Grass-

mannians are polarized. Then we shall analyze β and τ for the untwisted cases (Bn,
Cn, and Dn).

The points and lines of Γ are also points and lines of the projective k-
Grassmannian Γ of type Am−1,k(F) associated with V (see Sect. 8). The Grass-
mann embedding egr of Γ restricts to a full projective embedding egr of Γ into some
subspace Vgr of the exterior power

∧k
V . This is called the Grassmann embedding

of Γ .

Proposition 9.1 Let Γ be a polar k-Grassmannian as in Table 5. Then the Grass-
mann embedding of Γ is polarized.

Proof Let H be a singular hyperplane of Γ . Since oppI is the identity on I , we have
Γ = Γ ∗ and so H = H(p∗) consists of all points q of Γ not opposite to some point
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Table 5 Polar Grassmannians

Mn,k(F) ζ Group n k

Bn,k(F) Parabolic orthogonal Spin2n+1(F) ≥2 1 ≤ k < n

Cn,k(F) Symplectic Sp2n(F) ≥2 1 ≤ k ≤ n

Dn,k(F) Hyperbolic orthogonal Ω+
2n

(F) ≥3 1 ≤ k ≤ n − 2
2A2n,k(F) σ -hermitian U2n+1(F) ≥2 1 ≤ k < n

2A2n−1,k(F) σ -hermitian U2n(F) ≥2 1 ≤ k < n

2Dn+1,k(F) Elliptic orthogonal SO−
2n+2(F) ≥2 1 ≤ k < n

p∗, which also belongs to Γ . Viewing points of Γ as k-spaces in V , this means that H

consists of all points q of Γ such that q ∩ (p∗)⊥ �= 0. Here ⊥ denotes orthogonality
with respect to ζ .

Keeping in mind that ζ is non-degenerate we find that p∗ = (p∗)⊥ is an (m − k)-
space of V , that is a dual point in (Γ )∗. Let H = H(p∗) be the singular hyperplane
of Γ defined by p∗. Then H consists of all k-spaces q of V with q ∩ p∗ �= 0. Thus,
〈H 〉egr ≤ 〈H 〉egr . We claim that in fact

〈H 〉egr = Vgr ∩ 〈H 〉egr .

Since the Grassmann embedding egr of Γ is polarized, 〈H 〉egr is a hyperplane of
∧k

V that induces H . Since ζ is non-degenerate, there is a point p in Γ opposite
to p∗, that is, not contained in (p∗)⊥ = p∗. Thus we find that the codomain Vgr

of Γ under egr is not entirely contained in the hyperplane 〈H 〉egr . Hence 〈H 〉egr is

contained in the hyperplane Vgr ∩ 〈H 〉egr of Vgr. By Proposition 1.1 and Lemma 1.2,
H , is induced by Vgr. That is, egr is polarized. �

Recall from Lemma 7.2 that ζ induces a form ζ∧ on
∧k

V and hence on Vgr as
follows. Namely, for u1, . . . , uk, v1, . . . , vk ∈ V , let

ζ∧(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det
(
ζ(ui, vj )

)
.

Let ⊥∧ denote the orthogonality relation on
∧k

V with respect to ζ∧. For any sub-
space U ≤ ∧k

V , let Rad(U, ζ∧) = U⊥∧ ∩ U . By Lemma 7.2, since G preserves ζ ,
it also preserves ζ∧ and hence also its radical Rad(Vgr, ζ

∧).

Lemma 9.1 Let Γ be a polar k-Grassmannian as in Table 5.

(a) For any (dual) point p∗ ∈ Γ ∗ = Γ we have 〈H(p∗)〉egr = egr(p
∗)⊥∧

;
(b) as a consequence Regr = Rad(Vgr, ζ

∧).

Proof (a) First note that, by Lemma 7.2, ζ∧ is non-degenerate sesquilinear on
∧k

V ,
so that egr(p

∗)⊥∧
is a proper hyperplane of

∧k
V . On the other hand, by Proposi-

tion 9.1, we know that 〈H(p∗)〉egr is a proper hyperplane of Vgr. Thus, it suffices to

prove that 〈H(p∗)〉egr ⊆ egr(p
∗)⊥∧

.
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Let u = u1 ∧ · · · ∧ uk represent p∗ and let v = v1 ∧ · · · ∧ vk represent some point
q of Γ . Now ζ∧(u, v) = 0 if and only if the columns of the matrix (ζ(ui, vj )) are
linearly dependent, which happens if and only if q ∩ (p∗)⊥ �= 0 in V and the latter is
equivalent to saying that q ∈ H(p∗). In particular, 〈H(p∗)〉egr ⊆ egr(p

∗)⊥∧
. �

For the untwisted cases, we choose ζ and the basis A for V in the following way.

Mn: Bn, Cn, Dn,

ζ :

⎛

⎜
⎝

2 0 0

0 On In

0 In On

⎞

⎟
⎠ ,

(
On In

−In On

)

,

(
On In

In On

)

,

A: {a0, . . . , a2n}, {a1, . . . , a2n}, {a1, . . . , a2n}.

Lemma 9.2 Let Γ be a polar k-Grassmannian as in Table 5, where Mn is untwisted,
that is, it is one of Bn, Cn or Dn. Then, the Grassmann embedding is the Weyl em-
bedding.

Proof The Grassmann embedding is the restriction of the Grassmann embedding for
the projective k-Grassmannian into

∧k
V . The codomain Vgr is by definition the

subspace of
∧k

V spanned by the images of the points of Γ . Since we have G ≤
SL(V ), the space Vgr is naturally a G-module. Transitivity of G on the point set of Γ

shows that Vgr is the G-submodule of
∧k

V generated by egr(p) for any given point
p of Γ .

More precisely, under the Grassmann embedding the point p = 〈a1, . . . , ak〉 of Γ

is sent to the 1-space of
∧k

V spanned by a1,...,k . Since G ≤ SL(V ) in all cases, we
see that the Grassmann embedding is given by

egr: P → P

( k∧
V

)

,

gp �→ 〈ga1,...,k〉, for any g ∈ G.

We now consider the Weyl embedding. First let F = C. From [15] we see that v+ =
a1,...,k ∈ ∧k

V is a vector of highest weight λk . Now V (λ)C = V (λ)0
C

is the GC-
module generated by v+.

Passing to an arbitrary field F, we see that V (λ)F is also a GF-submodule of
∧k

V

(where V is now an F-vector space) that contains the 1-dimensional highest weight
space V (λ)F,λ = Fv+. The Weyl module V is by definition the GF-submodule of
V (λ)F generated by v+. �

Remark 9.1 Note that we now have two proofs of the fact that the Grassmann embed-
ding of a polar k-Grassmannian associated with a polar space of type Bn, Cn, or Dn
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is polarized. Namely, Proposition 9.1 gives a direct geometric proof, whereas another
proof comes from combining Lemma 9.2 and Proposition 5.3.

We now describe τ in terms of the description, given in [15], of the Lie algebra gC

and G in its action on the natural module. From the description of the root spaces in
the Lie algebras of type Cn, and Dn in loc. cit., we see that τ is given by the transpose
map on gC, and hence also on G. In the Bn case τ is given by g �→ h−1gth, where t

denotes transpose and h is the diagonal matrix diag{2,1, . . . ,1}. This formula, which
is initially computed for Char(F) = 0, remains valid when Char(F) �= 2.

Remark 9.2 The forms ζ∧ and β are not equal, but it follows from Lemmas 9.1 and
9.2 that for each p ∈ Γ there is a p∗ ∈ Γ ∗ = Γ such that egr(p

∗)⊥∧ = egr(p)⊥β
,

where ⊥β denotes orthogonality with respect to the contravariant form β . In particu-
lar this means that Rad(Vgr, β) = Rad(Vgr, ζ

∧).

10 Projective flag-Grassmannians

We continue the setup from Sect. 8 except that now Γ is a K-shadow space of Δ, for
some arbitrary non-empty subset K ⊆ I = {1,2, . . . , n}. By Theorem 4.2, Γ embeds
into the Weyl module V = V (λK)0

F
for gF = sln+1(F), which is the submodule of

V (λK)F generated by the highest weight vector v+. In this section, we construct the
Weyl module from the natural sln+1(F)-module V , of highest weight λ1. We give
two constructions and study the form β .

Write λ = λK . Our construction of V (λ)F follows [23]. Starting from a D-module
V , where D is some integral domain, we shall give two descriptions of a space V λ

D
,

with the property that V λ
F

= V (λ)F, when F is a field (see Theorem 10.1). To unbur-
den our notation we shall drop the D unless strictly needed. The condition that D be
an integral domain is not necessary in all that follows (see loc. cit.), but it is all we
need.

These constructions are valid for any weight λ = ∑
k∈K lkλk , where λk is the kth

fundamental dominant weight. To this end we identify λ with the Young diagram that
has lk columns of length k. That is, the partition corresponding to the (rows of the)
transpose of the diagram λ is μ = (klk )k∈K , where k runs through K in decreasing or-
der; we sometimes write μ = (μ1, . . . ,μl), where l = ∑

k∈K lk . In the constructions
below we shall in fact assume K ⊆ [n + 1] = {1,2, . . . , n + 1} so as to also include
those modules V λ involving determinantal representations.

A universal description of V λ Assume that λ has d boxes. Let V ×λ be a cartesian
product of d copies of V indexed by the boxes of λ. Consider maps φ:V ×λ → W ,
where W is some D-module, with the following properties:

(i) φ is D-linear in each argument;
(ii) φ is alternating in each column of λ;

(iii) for any x ∈ V ×λ, φ(x) = ∑
φ(y), where y runs through all vectors obtained

from x by an exchange between two given columns of λ with a given set of
boxes in the right chosen column.
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Fig. 1 An exchange between two sets of two boxes in columns 1 and 2

If x and y are vectors indexed by the boxes of the same Young diagram λ, then an
exchange between x and y is determined by choosing, in λ, two distinct columns
i and j along with a set of s ≥ 1 boxes in both columns; y is now obtained from
x by interchanging the coordinates of x corresponding to the s boxes in columns
i and j of λ, while preserving their relative order within those columns. For an
illustration, see Fig. 1. For example, taking λ = λ3 + λ2 and using rules (i), (ii),
and (iii) with i = 1, j = 2, and s = 2, for v1, . . . , v5 ∈ V and α ∈ D, we re-
quire that φ(αv1, v2, v3, v4, v5) = αφ(v1, v4, v5, v2, v3) − αφ(v2, v4, v5, v1, v3) +
αφ(v3, v4, v5, v1, v2).

We shall denote the universal target of such maps φ by V λ. That is, there is a map
i:V ×λ ↪→ V λ satisfying (i)–(iii) such that, given any map φ:V ×λ → W satisfying
(i)–(iii), there is a D-linear map φ̂:V λ → W with φ = φ̂◦i. This is called the Schur
module of shape λ. In the next paragraph we shall show the existence of V λ. More-
over, in Theorem 10.1 we shall see that, for a field F, we have V (λ)F = V λ

F
if λ has

at most n + 1 rows. In our situation this is satisfied always since K ⊆ [n + 1].

A concrete construction of V λ All tensor and exterior products taken over boxes in
λ will be taken in order of the column word associated with λ; this word is obtained
by concatenating the columns from left to right and by ordering the boxes in each
column from bottom to top.1

We shall refer to this construction as the quotient construction of V λ since it re-
alizes V λ as a quotient of V ⊗λ = V ⊗d as follows. To enforce rules (i) and (ii), let
V ∧λ = ⊗

k∈K(
∧k

V )⊗lk and consider the canonical map π×∧ :V ×λ → V ∧λ (which
is the composition of a D-d-linear map π×⊗ :V ×λ → V ⊗λ and a D-linear map
π⊗∧ :V ⊗λ → V ∧λ). To enforce rule (iii), let Qλ(V ) be the subspace of V ∧λ gener-
ated by all vectors π×∧ (x) − ∑

π×∧ (y), where y runs through all vectors obtained
from x by an exchange between two given columns of λ with a given set of boxes in
the right chosen column. Then Qλ(V ) is the kernel of the surjective D-linear map

π∧
λ :V ∧λ → V λ.

We shall denote by π⊗
λ :V ⊗λ → V λ the canonical map π∧

λ ◦π⊗∧ .

Properties of V λ A filling of λ from [m] = {1,2, . . . ,m} is a function T :λ → [m].
Given any ordered set of vectors B = {b1, . . . , bn+1}, and a filling T of λ from [n+1],

1In [23] the columns of λ are numbered top to bottom.
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we get an element b×
T of V ×λ by setting, for each box z of λ, its entry indexed by box

z equal to bT (z). Let

b⊗
T = π×⊗

(
b×
T

) ∈ V ⊗λ, b∧
T = π⊗∧

(
b⊗
T

) ∈ V ∧λ, bT = π∧
λ

(
b∧
T

) ∈ V λ.

We shall employ Lemma 10.1 in the case where V is the natural module for
sln+1(D) and D is Z or a field F.

Lemma 10.1 Suppose V is a module for some Lie algebra gD over D. Then, the
D-modules V ⊗λ, V ∧λ, and V λ are gD-modules as well.

Proof By equations (3) and (4) of Sect. 7 it follows that V ⊗λ and V ∧λ are gD-
modules. Now we show that Qλ(V ) is a gD-submodule of V ∧λ.

Let g ∈ gD and fix a subset A = {a1, . . . , an+1, an+2 = ga1, . . . , a2n+2 = gan+1}
of V . Given a filling T :λ → [n + 1], and a box z ∈ λ, let T z be obtained from T by
setting, for all boxes y of λ:

T z(y) =
{

T (y) if y �= z;
T (z) + n + 1 if y = z.

Thus, a∧
T z is obtained from a∧

T by replacing the contents of box z by its g-image, so
we have ga∧

T = ∑
z∈λ a∧

T z . Now let ξ be an exchange of λ, viewed as a permutation
of the boxes in λ and let T ′ be the filling obtained by composing ξ and T , that is
T ′ = T ◦ξ :λ → [n + 1]. Given a filling F :λ → [n + 1] we let ξ · aF = aF◦ξ . Then,

ξg · a∧
T = ξ

∑

z∈λ

a∧
T z =

∑

z∈λ

a∧
T z◦ξ ,

gξ · a∧
T = ga∧

T ◦ξ =
∑

z′∈λ

a∧
(T ◦ξ)z

′ .

It is straightforward to verify that T z◦ξ = (T ◦ξ)ξ
−1(d). Since ξ is a permutation of

λ we can replace the last sum by
∑

ξ−1(z) a
∧
(T ◦ξ)ξ

−1(z)
and conclude that ξg · a∧

T =
gξ · a∧

T . Thus,

g

(

aT −
∑

ξ

ξaT

)

= gaT −
∑

ξ

gξaT = gaT −
∑

ξ

ξgaT ,

where the sum is taken over all exchanges between two given columns of λ with
a given set of boxes in the right chosen column. Hence, Qλ(V ) is a gD-module. It
follows that V λ = V ∧λ/Qλ(V ) is a gD-module as well. �

From now on we shall assume that V is free over D.
We shall now discuss bases. Given a basis B for V , it is clear that V ×λ and V ⊗λ are

free over D. In fact, B⊗λ = {b⊗
T | T }, where T :λ → [n + 1] ranges over all possible

fillings, is a D-basis for V ⊗λ. Moreover, it is clear that V ∧λ is free over D with basis
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B∧λ = {b∧
T | T }, where T :λ → [n + 1] ranges over all fillings that are increasing

down each column. Next, we identify certain bases of V λ. A Young tableau of shape λ

is a filling T of λ that is weakly increasing along each row of λ and strictly increasing
down each column of λ. Let Bλ be the collection of all bT , where T ranges over all
Young tableaux of shape λ with entries from [n + 1].

Lemma 10.2 [23, §8.1, Theorem 1] Suppose V is free over D with basis B =
{b1, . . . , bn+1}, then V λ is free over D with basis Bλ.

Lemma 10.3 Let V be a module for a Lie algebra gD over D. Suppose that B =
{b1, . . . , bn+1} is a set of vectors such that bi has weight θi for each i ∈ [n + 1].
Then, for any filling T :λ → [n + 1], the vector bT ∈ V λ has weight

∑m
i=1 tiθi , where

ti is the number of occurrences of bi in bT and m is the number of boxes in λ.

Proof This is a straightforward calculation. �

The constructions of V λ as well as Lemmas 10.1, 10.2, and 10.3, show that if V is
a module for a (simple) Lie algebra gC over C and A is an admissible lattice, then we
can construct A×λ, A⊗λ, A∧λ, Qλ(A) and Aλ replacing V by A, taking D = Z and
viewing A as a module for the Lie algebra gD = UZ or gD = g(λ)Z. We summarize
this and a little more in the following result.

Lemma 10.4 Let V be a module for a simple Lie algebra gC over C and suppose
VF = F ⊗Z A for some admissible lattice A.

(a) The Z-modules A×λ, A⊗λ, A∧λ, and Aλ are admissible lattices in V ×λ, V ⊗λ,
V ∧λ, and V λ, respectively.

(b) For any field F we have (F ⊗Z A)λ = F ⊗Z Aλ. In particular, if we construct
V (λ)F = F ⊗Z Aλ, then V (λ)F

∼= V λ
F

.
(c) If A = {a1, . . . , an+1} is a Z-basis of weight vectors for A, then Aλ is a Z-basis

of weight vectors for Aλ, where the weights are as described in Lemma 10.3.

Proof The admissible lattice A is a free Z-module as well as a module for the univer-
sal enveloping algebra UZ. The modules A×λ, A⊗λ, A∧λ and Aλ can be constructed
by replacing V by A and taking D = Z in the construction of V λ above. Moreover,
taking gD = UZ, it follows from Lemma 10.1 that these are UZ-modules.

Let A be the basis in (c). As we saw in the discussion preceding Lemma 10.2,
A canonically gives rise to bases A⊗λ and A∧λ for A⊗λ, and A∧λ, respectively. By
Lemma 10.2 since A is a basis for V , Aλ is a basis for V λ so in particular, Aλ is
independent over Z and of appropriate cardinality. The fact that Aλ spans Aλ over
Z follows from the fact that A⊗λ spans A⊗λ and Aλ is a quotient of A⊗λ. Thus (a)
follows. Part (b) is a special case of the remark preceding Lemma 1 in [23, §8.1]. Part
(c) follows from Lemma 10.3. �

Remark 10.1 If in Lemma 10.4 we have gC = sln+1(C), then the natural module V

has a basis A = {a1, . . . , an+1} whose weights satisfy θ1 � θ2 � · · · � θn+1 in the
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natural ordering on weights. Namely, θi − θi+1 = αi , the ith fundamental root, for
i = 1, . . . , n. It then follows that the highest weight vector of V λ is aT , where T

is the tableau whose ith row is filled with i’s only. In view of the relation between
weights and Young diagrams, and using that θ1 +· · ·+ θk = λk for any 1 ≤ k ≤ n, we
find that aT has weight λ.

Theorem 10.1 (Theorem 8.2 of [23]) If λ has at most n + 1 rows and F = C, then
V λ is an irreducible representation of highest weight λ for GLn+1(F). These are all
irreducible polynomial representations of GLn+1(F).

Corollary 10.1 For any field F, the sln+1(F)-modules V (λ)F and V λ
F

are isomorphic.

Proof Since λ was constructed from the subset K ⊆ [n+1], all V λ
C

constructed in this
section are irreducible GLn+1(C)-modules. Since GLn+1(C) is a central extension of
SLn+1(C) it follows that V λ

C
is also irreducible as an SLn+1(C)-module. Hence V λ

C

is naturally an irreducible sln+1(C)-module.
The well-known classification of finite dimensional irreducible modules for simple

complex Lie algebras (see e.g. [15, Chap. 10]) in particular ensures that, for each λ

(which in our case is integral and dominant), there is a unique irreducible sln+1(C)-
module of highest weight λ. Since V λ

C
is an irreducible sln+1(C)-module of highest

weight λ, L(λ)C = V (λ)C = V λ
C

.
By Lemma 10.4 if A is an admissible lattice in V , then Aλ is an admissible lattice

in V λ. The result follows, since by part (b) of that lemma, V (λ)F = F ⊗Z Aλ =
(F ⊗Z A)λ = V λ

F
, for any field F. �

Note that by Lemma 10.2 (and 10.4) the dimension of V λ is independent of the
field F. This is a special case of Proposition 4.1 parts (b) and (c).

As already noted in Remark 4.7, V λ is in general not cyclic.

The Weyl embedding Now let λ = λK be as in Sect. 4.2, and F some field. Con-
sider the following point of Γ : p = (Ak)k∈K , where Ak = 〈a1, . . . , ak〉V . Then by
Theorem 4.2 the Weyl embedding satisfies

eW : P → P
((

V λ
)0)

,

p �→ aT

where T is the Young tableau whose ith row is filled with i’s only. That is aT =
π∧

λ (
⊗

k∈K

∧k
i=1 ai). For any subset K ⊆ I , let eK be the Weyl embedding of the

K-shadow space of Δ. Then we have

eK(p) = π∧
λ

(⊗

k∈K

ek(Ak)

)

. (7)

Now note that π∧
λ is a G-module homomorphism and that G is transitive on the points

of Γ . Therefore we have equality (7) for any point p = (Ak)k∈K of Γ .
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The form β and a second construction of V λ We first show that the contravariant
form β on V ∧λ and V λ can be obtained from the contravariant form on V . Recall
that β is constructed initially on the module V (λ)C, then restricted to an admissible
lattice, and then tensored with F to get its equivalent on V (λ)F. Thus in order to
describe β , we can and shall work over C. Our aim is to find a result similar to part
(a) of Lemmas 7.1 and 7.2. To this end it is convenient to use the Schur functor (see
e.g. [23, §8.3] and [24]).

We first use the Schur functor (and its dual) to describe V λ and (V ∗)λ. We shall
consider (V ∗)λ to be constructed from V ∗ in the same way as V λ is constructed from
V and denote the maps corresponding to π×

λ , π∧
λ , π⊗

λ by putting a bar over them, so
that we get π×

λ , π∧
λ , and π⊗

λ . Fix λ and let it have d boxes. Let C = C[Sd ], where
Sd is the symmetric group on the set [d]. In the sequel, for any right C-module A

and left C-module B , the tensor product A ⊗C B is the quotient of the usual tensor
product A ⊗C B over C by the subspace generated by all expressions

(a · σ) ⊗ b − a ⊗ (σ · b) where a ∈ A,σ ∈ Sd, b ∈ B.

We view V ⊗d (resp. (V ∗)⊗d ) as a left (resp. right) C-vector space and a right
(resp. left) C-module, where Sd naturally (resp. reverse) permutes the components
of V ⊗d (resp. (V ∗)⊗d ).

Then, we have natural isomorphisms V ⊗d ∼= V ⊗d ⊗C C and (V ∗)⊗d ∼= C ⊗C
(V ∗)⊗d . Note that the natural pairing p:V × V ∗ → C given by 〈v,f 〉 = f (v)

gives rise to the pairing p⊗:V ⊗d × (V ∗)⊗d → C by setting 〈v1 ⊗ · · · ⊗ vd, f1 ⊗
· · ·⊗fd〉 = ∏d

i=1 fi(vi), thus identifying (V ∗)⊗d and (V ⊗d)∗. Note here that we use
the conventional notation f (v) even though V ∗ is a right vector space. It follows
from the above definitions that we now have

〈v ⊗ cσ,1 ⊗ f 〉 = 〈v ⊗ 1, cσ ⊗ f 〉 (8)

for any f ∈ (V ∗)⊗d , v ∈ V ⊗d , c ∈ C, and σ ∈ Sd . Here the pairing 〈·, ·〉 is induced
by p⊗ via the natural isomorphisms V ⊗d ∼= V ⊗d ⊗C C and (V ∗)⊗d ∼= C⊗C (V ∗)⊗d .

A numbering U of λ is a filling from [d] without repeated entries. Let U be the
numbering of λ that agrees with the natural ordering of boxes of λ taken in the quo-
tient construction of V λ, that is, so that the column word of U is 1,2, . . . , d . Let R(U)

and C(U) be the row group and column group of U ; that is, R(U) (resp. C(U)) is the
subgroup of Sd that simultaneously preserves the subsets of numbers in U associated
with the rows (resp. columns) of λ. Let

ρU =
∑

ρ∈R(U)

ρ, γU =
∑

γ∈C(U)

sign(γ )γ, σU = γUρU , σU = ρUγU .

The Specht module Sλ with diagram λ can be identified with the right C-module
σU C as well as the left C-module CσU (see e.g. [24, Chap. 4]). Using the Schur
functor, i.e. tensoring with the Specht module, we have isomorphisms

V λ ∼= V ⊗d ⊗C CσU ,

π⊗
λ (v1 ⊗ · · · ⊗ vd) �→ v1 ⊗ · · · ⊗ vd ⊗C σU , and
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(
V ∗)λ ∼= σU C ⊗C

(
V ∗)⊗d

,

π⊗
λ (f1 ⊗ · · · ⊗ fd) �→ 1

kλ

σU ⊗C f1 ⊗ · · · ⊗ fd,

where kλ is the integer such that σ 2
U = kλσU . The quotient construction of V λ cor-

responds exactly to applying the Schur functor as above since by choice of U , we
have

V ⊗λ = V ⊗d ⊗C C
π⊗∧→ V ∧λ = V ⊗d ⊗C CγU

π∧
λ→ V λ = V ⊗d ⊗C CσU ,

v1 ⊗ · · · ⊗ vd ⊗C 1 �→ v1 ⊗ · · · ⊗ vd ⊗C γU �→ v1 ⊗ · · · ⊗ vd ⊗C γUρU

and π⊗
λ = π∧

λ ◦π⊗∧ (cf. [23, §8.3]). In the construction of (V ∗)λ one could use σU in-
stead of 1

kλ
σU . Our choice is more natural, as we will see in the proof of the following

general lemma.

Lemma 10.5 We have an isomorphism (V λ)∗ ∼= (V ∗)λ induced by the pairing:
pλ:V λ × (V ∗)λ → C given by

〈
π⊗

λ (v1 ⊗ · · · ⊗ vd),π⊗
λ (f1 ⊗ · · · ⊗ fd)

〉 =
∑

ρ∈R(U)

∑

γ∈C(U)

sign(γ )

d∏

i=1

fi(v(γρ)(i)),

where U is as above.

Proof Consider the isomorphisms

V λ ∼= V ⊗d ⊗C CσU ,

(
V ∗)λ ∼= σU C ⊗C

(
V ∗)⊗d

.

It can be shown that σ 2
U = kλσU , for some non-zero kλ ∈ Z, so that, for v ∈ V ⊗d and

f ∈ (V ∗)⊗d , we have

〈v ⊗C σU ,1 ⊗C f 〉 =
〈

v ⊗C
1

kλ

σ 2
U ,1 ⊗C f

〉

. (9)

It follows from (8) that the pairing p⊗ has the property that,
〈

v ⊗C
1

kλ

σ 2
U ,1 ⊗C f

〉

=
〈

v ⊗C σU ,
1

kλ

σU ⊗C f

〉

. (10)

We have maps:

V ⊗d ⊗C CσU
i

↪→ V ⊗d ⊗C C
π
� V ⊗d ⊗C CσU

where i is the identity and π is right multiplication by σU . The surjective map π

induces an injection π∗: (V ⊗d ⊗C CσU)∗ ↪→ (V ⊗d ⊗C C)∗. Since σ 2
U = kλσU , we
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have π◦i = kλ id so that for every g ∈ (V ⊗d ⊗C CσU)∗ we have g = 1
kλ

i∗◦π∗(g).

Thus i∗: (V ⊗d ⊗C C)∗ → (V ⊗d ⊗C CσU)∗, given by f �→ f ◦i, induces the inverse
to 1

kλ
π∗ on the image of π∗. To see what this means, we identify V ⊗d ⊗C CσU with

its image under i. Then g = 1
kλ

i∗◦π∗(g) says that g ∈ (V ⊗d ⊗C CσU)∗ is simply

the restriction of some element of (V ⊗d ⊗C C)∗ (namely 1
kλ

π∗(g)). Now use the

pairing p⊗ to view C ⊗C (V ∗)⊗d ∼= (V ⊗d ⊗C C)∗. Namely define a map b⊗ by
setting c ⊗C f �→ 〈·, c ⊗C f 〉, for all c ∈ C and f ∈ (V ∗)⊗d . Then, from (9) and (10)
we can see that if this element g is represented by some f ∈ C ⊗C (V ∗)⊗d , then it is
also represented by 1

kλ
σU ⊗ f ∈ σU C ⊗C (V ∗)⊗d . Hence, i∗◦b⊗ is an isomorphism

between σU C ⊗C (V ∗)⊗d and (V ⊗d ⊗C CσU)∗. The definition of π⊗
λ , π⊗

λ and b⊗
imply that, for v ∈ V ⊗d and f ∈ (V ∗)⊗d we have 〈π⊗

λ (v),π⊗
λ (f )〉 = 〈v⊗σU ,1⊗f 〉.

The conclusion of the lemma now follows from the meaning of v1 ⊗ · · · ⊗ vd ⊗ σU

and the standard pairing p⊗. �

If V is a module for a simple Lie algebra gC over C, and β is a τ -contravariant
form on V , we shall denote the forms on V ⊗λ and V ∧λ defined using Lemmas 7.1
and 7.2 by β⊗λ and β∧λ. It follows that β∧λ is τ -contravariant. We now extend this
to a form on V λ.

Lemma 10.6 Let V be a finite dimensional F-vector space, let σ be an automor-
phism of F of order at most 2 and let ζ be a σ -sesquilinear form on V . Let k ∈ N≥1.
Moreover, let C = F[Sd ] and let U and σU be as above. Then

(a) there is a unique σ -sesquilinear form ζ λ on V ⊗d ⊗C CσU given by

ζ λ(v1 ⊗ · · · ⊗ vd ⊗C σU ,u1 ⊗ · · · ⊗ ud ⊗C σU)

=
∑

γ∈C(U)

∑

ρ∈R(U)

sign(γ )
∑

γ̃∈C(U)

sign(γ̃ )

d∏

i=1

ζ(v(γργ̃ )(i), ui);

(b) if ζ is symmetric bilinear, so is ζ λ;
(c) if V is a finite dimensional module for a simple Lie algebra gF and ζ is τ -

contravariant, then so is ζ λ.

Proof (a) The form ζ can be obtained by composing the standard pairing V ×V ∗ → F

given by 〈v,f 〉 = f (v) with a σ -semilinear homomorphism φ:V → V ∗ so that
ζ(v,u) = 〈v,φ(u)〉. Now the following composition that we shall call φλ is again
a σ -semilinear homomorphism; note that if φ is an isomorphism, then so is φλ.

V ⊗d ⊗C CσU → V ⊗d ⊗C CσU → σU C ⊗C
(
V ∗)⊗d

,

u1 ⊗ · · · ⊗ ud ⊗C σU → u1 ⊗ · · · ⊗ ud ⊗C
1

kλ

γUσU

→ 1

kλ

σUγU ⊗C φ(u1) ⊗ · · · ⊗C φ(ud).
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Namely, the first map is the isomorphism given by right multiplication by 1
kλ

γU ,
whose inverse is given by multiplication on the right by ρU . The second map com-
bines φ⊗d with the isomorphism

∑
x∈Sd

axx �→ ∑
x∈Sd

axx
−1 between the left and

right regular representation of C. Note that C(U) and R(U) are closed under taking
inverses so that γUρUγU is invariant under taking inverses. Note here that

φλ(u1 ⊗ · · · ⊗ ud ⊗C σU) =
∑

γ̃∈C(U)

sign(γ̃ )πλ
(
φ(uγ̃ −1(1)) ⊗ · · · ⊗ φ(uγ̃ −1(d))

)
.

We then set ζ λ = pλ(·, φλ(·)). It is immediate from this construction that ζ λ is σ -
sesquilinear. In order to obtain the formula we use that

∏d
i=1 ζ(v(γρ)(i), φ(uγ̃ −1(i))) =

∏d
j=1 ζ(v(γργ̃ )(j), φ(uj )).
(b) Note that if ζ is symmetric, then ζ(v(γργ̃ )(i), ui) = ζ(u(γ̃ −1ρ−1γ −1)(j), vj ) for

j = γργ̃ (i). Since the sums are taken over all γ, γ̃ ∈ C(U) and ρ ∈ R(U) and these
are closed under taking inverses, we find that ζ λ is symmetric as well. (c) This follows
from part (e) of Lemma 7.1. �

Lemma 10.7 Suppose A = {a1, . . . , an} is an orthonormal basis for V with respect
to ζ and T is the Young tableau of shape λ whose ith row is filled with i’s only.
Then, ζ λ(aT , aT ) = kλ. Moreover, ζ λ(aT , aT ′) = 0 for any Young tableau T ′ �= T of
shape λ.

Proof In view of Lemma 10.6 we have

ζ λ(aT , aT ) =
∑

γ∈C(U)

∑

ρ∈R(U)

∑

γ̃∈C(U)

sign(γ ) sign(γ̃ )

d∏

i=1

ζ(a(γργ̃ )(i), ai)

=
∑

γ∈C(U)

∑

ρ∈R(U)

∑

γ̃∈C(U)

sign(γ ) sign(γ̃ ),

where the sum is taken over those γ,ρ, γ̃ such that γργ̃ ρ̃ = 1 for some ρ̃ ∈ R(U).
This is because ζ(a(γργ̃ )(i), ai) = 1 if and only if a(γργ̃ )(i) and ai are in the same row
and 0 otherwise. Now consider the equation γUρUγUρU = kλγUρU . The coefficient
of 1 ∈ C on the right hand side is exactly the sum above and it clearly equals kλ.

Now if T ′ �= T is a Young tableau with the same Young diagram as λ then for any
permutation σ ∈ Sd , the fillings σT and T ′ differ in some box. Since A is orthonor-
mal, this means that

∏d
i=1 ζ(aσ(i), ai) = 0. It follows that ζ λ(aT , aT ′) = 0. �

Corollary 10.2 Let β be the symmetric bilinear τ -contravariant form on V as de-
fined in Sect. 5.2. Then 1

kλ
βλ is the symmetric bilinear τ -contravariant form on V λ.

Proof This follows from Remark 10.1, Lemmas 10.6 and 10.7. �
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10.1 An illustration

We illustrate what happens in this section with a well-known example [47]. Let Δ be
the building of type A2 and let Γ be the {1,2}-shadow space of Δ over a field F.

We have gC = sl3(C), which acts on its natural module V by matrix-vector mul-
tiplication from the left, where vectors are coordinate vectors with respect to a basis
A = {a1, a2, a3}. Writing Xi,j for the elementary matrix whose non-zero entry is a
1 in the (i, j) position, and setting Hi,j = Xi,i − Xj,j and Yi,j = Xj,i for i < j , we
have a Chevalley basis

C = {Xi,j | i < j} ∪ {H1,2,H2,3} ∪ {Yi,j | i < j}.
The multiplication is given by [Xi,j ,Xk,l] = δj,kXi,l − δl,iXk,j for all i, j, k, l. Now,
in terms of Young diagrams, we have λ = (2,1) and V λ

C
is the adjoint representation,

i.e. it is sl3(C) itself under the action adx(y) = xy − yx. The highest weight vector
is v+ = X1,3 and the minimal admissible lattice Amin is the Z-span of the Chevalley
basis C. Writing ai,j,k = ai ⊗ aj ⊗ ak ⊗ σU , and comparing the sl3(C) action on
itself with that on V λ

C
, we find that the Chevalley basis elements are identified with

elements of V ⊗3 ⊗C CσU as follows:

X1,3 = a2,1,1, H1,2 = a2,1,3 − 2a3,1,2, Y1,3 = a3,2,3,

X1,2 = −a3,1,1, H2,3 = a2,1,3 + a3,1,2, Y1,2 = a3,2,2,

X2,3 = a2,1,2, Y2,3 = −a3,1,3.

We also have H1,3 = 2a2,1,3 − a3,1,2. If A is orthonormal with respect to β , then by
direct calculation from Lemma 10.6 one verifies that βλ is given with respect to the
Chevalley basis C by the following matrix

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

1
2 −1

−1 2
1

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that B has full rank in all characteristics except 3, where it has rank 7. In that
case H1,2 − H2,3 spans the radical of βλ. Note also that this form can be given as
βλ(x, y) = trace(xyτ ), for all x, y ∈ sl3(C) where yτ denotes the transpose of y.

Now consider the geometric picture. Let F be an arbitrary field. The shadow space
Γ is the geometry of point-line flags (p, l) of PG(VF). Identifying V λ

F
with the adjoint

module sl3(F), the Weyl embedding is given by

P ↪→ PG
(
V λ

F

)
,

(p, l) �→ 〈
wp,l = vpnτ

l

〉
,
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where vp is some (column) vector spanning p and nl is some (column) vector that is
orthogonal to l with respect to the inner product β and τ denotes transposition. Note
that trace(wp,l) = 0 since p lies on l. Considering the apartment Σ of Δ given by the
basis A, we find that (〈ai〉, 〈ai, ak〉) �→ 〈ak ⊗ai ⊗ai ⊗σU 〉 = 〈ak,i,i〉 = 〈Xi,j 〉, where
{i, j, k} = {1,2,3}. In particular (〈a1〉, 〈a1, a2〉) is sent to the space 〈a2,1,1〉 = 〈v+〉
of highest weight λ = λ1 + λ2.

We now look at singular hyperplanes. Two point-line flags (p1, l1) and (p2, l2)

are opposite if and only if p1 �∈ l2 and p2 �∈ l1. Considering the matrices wp1,l1 =
vp1n

τ
l1

and wp2,l2 = vp2n
τ
l2

we find that (p1, l1) and (p2, l2) are opposite if and only if
trace(wp1,l1wp2,l2) �= 0. The singular hyperplane H(p, l) of Γ of points not opposite
to (p, l) ∈ Γ ∗ = Γ is therefore induced by the hyperplane ker(trace(wp,l ∗ ·)) of
PG(V λ

F
). It follows therefore that the polar radical of PG(V λ

F
) is the radical of the

symmetric bilinear form ζ(x, y) = trace(xy). Since the transpose map τ simply sends
the image of Γ ∗ = Γ to that of Γ , we see once again that Rad(ζ ) = Rad(βλ).

As for minimal polarized embeddings for Γ , we note that in characteristic 3, the
identity matrix I3 = H1,2 − H2,3 satisfies trace(I3wq,m) = 0 for all (q,m) ∈ Γ . It
follows that in this case the minimal polarized embedding is PG(6,F). In all other
characteristics there is no radical and the minimal polarized embedding is PG(7,F).
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