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Abstract For every composition λ of a positive integer r , we construct a finite chain
complex whose terms are direct sums of permutation modules Mμ for the symmetric
group Sr with Young subgroup stabilizers Sμ. The construction is combinatorial and
can be carried out over every commutative base ring k. We conjecture that for every
partition λ the chain complex has homology concentrated in one degree (at the end of
the complex) and that it is isomorphic to the dual of the Specht module Sλ. We prove
the exactness in special cases.

Keywords Symmetric group · Permutation module · Specht module · Resolution

1 Introduction

In the representation theory of the symmetric group, the Specht modules play a cen-
tral role. They can be defined over any commutative base ring. Over a field of char-
acteristic zero, they are precisely the simple modules, and over a field of positive
characteristic the simple modules can be extracted from them. Quite a few questions
concerning the Specht modules are still unanswered. The Specht modules arise as
submodules of transitive permutation modules. More precisely, for every partition
λ = (λ1, . . . , λl), the corresponding Specht module Sλ arises as a submodule of the
permutation module Mλ whose point stabilizer is the Young subgroup Sλ which is
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isomorphic to Sλ1 × · · · × Sλl
. Over fields of characteristic 0, the multiplicity of Sλ

as a direct summand in Mμ is equal to the number of generalized standard tableaux
of shape λ and content μ (Young’s rule). This is only one instance of the combinator-
ial flavor that pervades the representation theory of the symmetric group. The goal of
this paper is, for every partition λ, the combinatorial construction of a chain complex
that consists of direct sums of permutation modules Mμ and that is a resolution of
the Specht module Sλ. The nature of our construction will actually force us to use
the dual of the Specht module to augment the constructed chain complex. More pre-
cisely, we construct a finite chain complex Cλ∗ which can be extended by one term,
namely the dual of Sλ. We denote this augmented chain complex by C̃λ∗ . One can al-
ways switch to the dual of the chain complex to have Sλ as the initial term, if desired.
The construction of the chain complex works in greater generality, namely for every
composition λ. However, we can see in examples that it does not always have homol-
ogy concentrated in one degree. For partitions, we conjecture that the chain complex
is exact over arbitrary base rings. We prove in general that the complex is exact in
the two final degrees and we prove that the complex is exact for every tame com-
position. Tameness is a technical condition which makes the inductive proof work.
Tame compositions include partitions with at most two parts and partitions of the
form (λ1, λ2,1).

Let us compare our resolution with similar complexes appearing in the literature.
The first related results were independently obtained by Akin [1] and Zelevinskii [14].
Their approach was quite different. They construct resolutions of Weyl modules for
the general linear group. Under the Schur functor, such a resolution yields a resolution
of the corresponding Specht module for the symmetric group, cf. [14, Example 3].
However, the Akin–Zelevinskii resolution is constructed over the complex numbers
and will, in general, not be exact over other commutative rings. There were some
attempts to generalize this result to positive characteristic, and we will compare these
with our resolution in the final section.

The paper is arranged as follows. In Sect. 2, we introduce the notation and ter-
minology that is used throughout the paper, and we motivate the construction of the
chain complex by deriving an alternating sum formula for the Specht module in terms
of permutation modules. The chain complex is constructed in Sect. 3, and exactness
in degrees −1 and 0 is proven in Sect. 4. Section 5 introduces and studies quasi-
partitions and tame compositions. In Sect. 6, we prove that the chain complex C̃λ∗ is
exact if λ is a tame composition. The last section gives an overview on related results.

The authors would like to express their gratefulness to the referee and to Bhama
Srinivasan for making them aware of several related papers that are discussed in
Sect. 7.

2 Notation and motivation

Throughout this paper, we fix a positive integer r and a commutative base ring k. The
symmetric group on the set {1, . . . , r} is denoted by Sr and its group algebra over k

is denoted by kSr . Our convention for the multiplication in Sr is that Sr consists of
functions, and that the composition στ of two elements σ, τ ∈ Sr is defined by first



J Algebr Comb (2011) 34: 141–162 143

applying τ and then σ . Unadorned tensor products or homomorphisms are meant to
be formed over k.

2.1

Recall that a composition of r is a sequence λ = (λ1, λ2, . . .) of non-negative integers
λi with the property that only finitely many of them are non-zero and that their sum
is equal to r . If λl is the last non-zero element in the sequence λ then l(λ) := l is
called the length of λ. We also write λ = (λ1, . . . , λn) for any n ≥ l(λ). If λ1 ≥
λ2 ≥ λ3 ≥ · · · then λ is called a partition of r . We denote the set of compositions
(resp., partitions) of r by Γr (resp., Λr ). Thus, Λr is a finite subset of the infinite set
Γr . The dominance partial order on Γr is defined by

λ � μ : ⇐⇒
e∑

i=1

λi ≤
e∑

i=1

μi for all e ≥ 1.

Note that although Γr is infinite, for any given λ ∈ Γr , the set Γ
�λ
r of all elements

μ ∈ Γr with μ � λ is finite.
For λ ∈ Γr , the corresponding Young subgroup Sλ of Sr is defined as the set of all

permutations in Sr which stabilize the intervals {1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2},
. . . of {1, . . . , r}. The Young diagram of λ = (λ1, λ2, . . .) is the left aligned array of a
row of λ1 square boxes, followed by a row of λ2 square boxes, etc. For instance, the
Young diagram of λ = (1,0,2) is

.

We often identify compositions with their Young diagrams and call λ the shape of
its corresponding Young diagram. We also number the r boxes of the Young diagram
of shape λ by going from left to right in the first row, then from left to right in the
second row, and so on.

2.2

Let λ,μ ∈ Γr . A generalized tableau of shape λ and content μ is a filling of the r

boxes of the Young diagram of shape λ with positive integers such that for every
positive integer i there are precisely μi entries that are equal to i. More formally, for
fixed shape λ, one can define a generalized tableau of shape λ and content μ as a
function T : {1, . . . , r} → N such that |T −1(i)| = μi for all i ∈ N. We visualize T as
the Young diagram of shape λ with entry T (p) in its pth box. The set of generalized
tableaux of shape λ and content μ is denoted by T (λ,μ). The set T (λ,μ) has a total
(lexicographic) order given by T < T ′ if and only if, for the smallest p ∈ {1, . . . , r}
with T (p) 
= T ′(p), we have T (p) < T ′(p). The smallest element in T (λ,μ) is
denoted by T λ

μ . For instance,

T
(1,0,2)
(2,1) = 1

1 2 .
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A generalized tableau T ∈ T (λ,μ) is called row-semistandard if in each row of T

the entries are weakly increasing from left to right. It is called standard if additionally
λ is a partition and the entries in the columns of T are strictly increasing from top
to bottom. The set of row-semistandard (resp., standard) λ-tableaux of content μ is
denoted by T rs(λ,μ) (resp., T st(λ,μ)). Thus, T st(λ,μ) ⊆ T rs(λ,μ) ⊆ T (λ,μ) and
T st(λ,μ) = ∅ if λ /∈ Λr .

The group Sr acts transitively from the right on T (λ,μ) by place permutations:
For T ∈ T (λ,μ) and σ ∈ Sr , we define T σ by (T σ )(p) = T (σ (p)), where p ∈
{1, . . . , r}. In other words, T σ arises from T by shifting the entry in box q of T to
box σ−1(q), for all q ∈ {1, . . . , r}. The stabilizer of T λ

μ is equal to Sμ, and we have
an isomorphism

Sμ\Sr
∼−→ T (λ,μ), Sμσ �→ T λ

μσ, (2.1)

of right Sr -sets.
We call two elements T ,T ′ ∈ T (λ,μ) row-equivalent if T ′ arises from T by re-

arranging the entries of T within each row (in other words, if T ′ = T σ for some
σ ∈ Sλ). We write {T } for the row-equivalence class of T and we denote the set of
row-equivalence classes of T (λ,μ) by T (λ,μ). The bijection in (2.1) induces the
bijection

Sμ\Sr/Sλ
∼−→ T (λ,μ), SμσSλ �→ {

T λ
μσ

}
. (2.2)

Since every row-equivalence class of T (λ,μ) contains a unique row-semistandard
tableau, we also have a bijection

T rs(λ,μ)
∼−→ T (λ,μ), T �→ {T }, (2.3)

so that we obtain a resulting bijection

T rs(λ,μ) ∼= Sμ\Sr/Sλ. (2.4)

In the case that μ = (1, . . . ,1), we will denote generalized λ-tableaux with content
μ by lower case letters, e.g., t instead of T , and just call them λ-tableaux without
reference to their content. We also write tλ, T (λ), T rs(λ), T st(λ), T (λ) instead of
T λ

μ , T (λ,μ), T rs(λ,μ), T st(λ,μ), T (λ,μ), respectively.
Besides the right Sr -action introduced above, the set T (λ) has also a transitive

free left action of Sr defined by (σ t)(p) := σ(t (p)) for t ∈ T (λ), σ ∈ Sr and p ∈
{1, . . . , r}. These two actions commute, and the isomorphism of right Sr -sets in (2.1)
becomes an isomorphism

Sr
∼−→ T (λ), σ �→ tλσ,

of left and right Sr -sets. It induces an isomorphism

Sr/Sλ
∼−→ T (λ), σSλ �→ {

tλσ
}
,

of left Sr -sets, cf. (2.2). Finally, using the special case of the bijection (2.3), we
obtain bijections

T rs(λ) ∼= T (λ) ∼= Sr/Sλ. (2.5)
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We will often identify these three sets via these canonical bijections and we will
consider T rs(λ) as a left Sr -set through this identification.

2.3

Let λ ∈ Γr . We denote by Mλ the permutation kSr -module with k-basis T (λ) and
the left Sr -action defined in Sect. 2.2. We use the identification (2.5) and view Mλ

also as the free k-module with basis T rs(λ). Note that the map

IndSr

Sλ
(k) = kSr ⊗kSλ

k → Mλ, σ ⊗ 1 �→ σ tλ, (2.6)

is an isomorphism of left kSr -modules, where k stands for the trivial kSλ-module.
The Specht module Sλ is defined as the k-span of the elements

et := κt · t ∈ Mλ, t ∈ T st(λ),

where κt := ∑
σ∈Ct

sgn(σ )σ ∈ kSr and Ct ≤ Sr denotes the column stabilizer of
the λ-tableau t . It follows from standard arguments (see, for instance, [10, §4 and
§8]) that the elements et ∈ Mλ, t ∈ T st(λ), are k-linearly independent and that their
k-span is a kSr -submodule of Mλ. Note that by definition we have Sλ = 0 if λ is
not a partition. It is easy to see (cf. [10, Lemma 8.3]) that for every t ∈ T st(λ), the
element et ∈ Sλ can be written as

et = t +
∑

t<s∈T rs(λ)

αs · s (2.7)

with elements αs ∈ k.

2.4

For this subsection, we assume that k is a field of characteristic 0. Then the Specht
modules Sλ, λ ∈ Λr , form a set of representatives for the isomorphism classes
of irreducible kSr -modules. In other words, their associated elements [Sλ] in the
Grothendieck group R(kSr ) of finitely generated left kSr -module form the canon-
ical Z-basis of the abelian group R(kSr ), cf. [10, §11]. Young’s rule (cf. [10, §14])
states that, for every λ ∈ Λr , one has the equation

[
Mλ

] =
∑

λ�μ∈Λr

κλ,μ

[
Sμ

]
(2.8)

in R(kSr ), with κλ,μ, the Kostka numbers, defined by

κλ,μ := ∣∣T st(μ,λ)
∣∣. (2.9)

Since κλ,λ = 1, for all λ ∈ Λr , the elements [Mλ], λ ∈ Λr , form also a Z-basis of
R(kSr ). The transformation matrix X = (κλ,μ) between these two bases is upper
triangular with diagonal entries equal to 1 (if one uses a suitable ordering of the
elements in Λr ). Thus, X = I + Y , where I denotes the identity matrix and Y is a
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nilpotent matrix with (λ,μ)-entry equal to κλ,μ if λ �μ and equal to 0 otherwise. An
easy induction argument on n shows that the (λ,μ)-entry of Yn is equal to

∑

λ=λ(0)�λ(1)�···�λ(n)=μ

κλ(0),λ(1)κλ(1),λ(2) · · ·κλ(n−1),λ(n) ,

where the sum runs over all strictly increasing chains of length n in the partially
ordered set Λr that start with λ and end with μ. Since Y is nilpotent, we have (I +
Y)(I − Y + Y 2 − Y 3 + · · · ) = I . This implies X−1 = I − Y + Y 2 − Y 3 + · · · , and
we obtain

[
Sλ

] =
∑

λ=λ(0)�λ(1)�···�λ(n)

(−1)nκλ(0),λ(1)κλ(1),λ(2) · · ·κλ(n−1),λ(n)

[
Mλ(n)]

(2.10)

in R(KSr ), for every λ ∈ Λr . Here, the sum runs over all strictly ascending chains
in Λr that start with λ.

The motivation for this paper comes from (2.10). Our goal is to construct a chain
complex, using the modules Mμ, which mimics the right hand side of this equa-
tion in the sense that its degree n term contributes precisely the part of the sum
which comes from chains of length n. Ideally, we want that this chain complex is
a resolution of Sλ. To this end, it is useful to interpret the occurring multiplicities
κλ(0),λ(1)κλ(1),λ(2) · · ·κλ(n−1),λ(n) in terms of dimensions of homomorphism spaces.

2.5

Let k be again an arbitrary commutative ring. Using the explicit isomorphism (2.6),
the Mackey decomposition formula (cf. [5, Theorem 10.13]), and the adjointness
of induction and restriction, we obtain explicit and canonical isomorphisms of k-
modules,

HomkSr

(
Mμ,Mλ

) ∼= HomkSr

(
IndSr

Sμ
(k), IndSr

Sλ
(k)

)

∼= HomkSμ

(
k,ResSr

Sμ
IndSr

Sλ
(k)

)

∼=
⊕

σ∈Sμ\Sr /Sλ

HomkSμ

(
k, Ind

Sμ

Sμ∩σSλσ−1(k)
)
.

Furthermore, for σ ∈ Sr , one has an isomorphism of k-modules

HomkSμ

(
k, Ind

Sμ

Sμ∩σSλσ−1(k)
) ∼= k,

under which 1 ∈ k corresponds to the homomorphism taking 1 to∑
τ∈Sμ/Sμ∩σSλσ−1 τ ⊗ 1. Thus, using the explicit bijection (2.4) we obtain an ex-

plicit k-module isomorphism

HomkSr

(
Mμ,Mλ

) ∼=
⊕

σ∈Sμ\Sr /Sλ

k ∼= k[Sμ\Sr/Sλ] ∼= kT rs(λ,μ), (2.11)
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where k[Sμ\Sr/Sλ] (resp., kT rs(λ,μ)) denotes the free k-module with basis
Sμ\Sr/Sλ (resp., T rs(λ,μ)). We denote the homomorphism in HomkSr

(Mμ,Mλ)

which corresponds to T ∈ T rs(λ,μ) by θT . By construction, the homomorphisms
θT , T ∈ T rs(λ,μ), form a k-basis of HomkSr

(Mμ,Mλ). We leave it to the reader to
verify the following explicit description of θT :

For t ∈ T rs(μ) and T ∈ T rs(λ,μ), the element θT (t) ∈ Mλ is equal to the
sum of all λ-tableaux s ∈ T rs(λ) with the following property for each i =
1, . . . , l(λ): If the ith row of T contains precisely x entries equal to y then
the ith row of s contains precisely x entries from the yth row of t .

(2.12)

So, for instance, one has

θ 2 3
1 2 2

( 4
2 3 5
1

)
= 1 2

3 4 5
+ 1 3

2 4 5
+ 1 5

2 3 4
.

Remark 2.6 Equation (2.10) together with (2.9) and (2.11) suggests constructing, for
λ ∈ Λr , a chain complex whose term in degree n is given by

⊕

λ=λ(0)�λ(1)�···�λ(n)

Homst
kSr

(
Mλ(0)

,Mλ(1)) ⊗ Homst
kSr

(
Mλ(1)

,Mλ(2)) ⊗ · · ·

⊗ Homst
kSr

(
Mλ(n−1)

,Mλ(n)) ⊗ Hom
(
Mλ(n)

, k
)
,

where Homst
kSr

(Mμ,Mλ) denotes the k-span of the elements θT , T ∈ T st(λ,μ), and
using the composition of homomorphisms to define the boundary maps by a standard
simplicial construction. Unfortunately, if ν � μ � λ are in Λr and T ∈ T st(λ,μ),
U ∈ T st(μ, ν) then θT ◦ θU is not necessarily contained in Homst

kSr
(Mν,Mλ). For

instance, if we choose

(3,3,3)�(4,3,2)�(5,4), T = 1 1 1 1 3
2 2 2 3

, U = 1 1 1 3
2 2 2
3 3

then θT ◦ θU = 2θV with

V = 1 1 1 3 3
2 2 2 3

which is not a standard generalized tableau. We will still use the idea of a simplicial
construction, but we will allow more than just the standard generalized tableaux to
define Hom-sets that are closed under composition, and we will also allow chains of
compositions instead of chains of partitions.

3 Definition of the chain complex C̃λ∗

Throughout this section, we fix a composition λ ∈ Γr .
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3.1

Let μ and ν be compositions of r . We define T ∧(μ, ν) ⊆ T rs(μ, ν) as the set of those
generalized row-semistandard tableaux T of shape μ and content ν with the property
that the ith row of T contains no entry that is smaller than i, for i = 1, . . . , l(μ).
Obviously, we have

T st(μ, ν) ⊆ T ∧(μ, ν) ⊆ T rs(μ, ν)

and

T ∧(μ, ν) 
= ∅ ⇐⇒ T μ
ν ∈ T ∧(μ, ν) ⇐⇒ ν � μ.

We set

Hom∧
kSr

(
Mν,Mμ

) :=
⊕

T ∈T ∧(μ,ν)

kθT ⊆ HomkSr

(
Mν,Mμ

)
.

By the explicit rule (2.12) describing how θT applies to a basis element t ∈ T rs(ν)

of Mν , we see that T ∈ T ∧(μ, ν) if and only if the constituents s ∈ T rs(μ) of θT (t)

arise from t by moving boxes of t together with their entries upwards. From this
interpretation it is obvious that, for π,μ,ν ∈ Γr and T ∈ T ∧(μ, ν), S ∈ T ∧(π,μ),
one has

θS ◦ θT ∈ Hom∧
kSr

(
Mν,Mπ

)
.

We set

κ∧
ν,μ := ∣∣T ∧(μ, ν)

∣∣

and note that

κ∧
μ,μ = 1 and that κ∧

ν,μ = 0 unless ν � μ.

3.2

For any strictly increasing chain

γ = (
λ(0) � · · · � λ(n)

)
(3.1)

of length n in Γr , we set

Mγ := Hom∧
kSr

(
Mλ(0)

,Mλ(1)) ⊗ Hom∧
kSr

(
Mλ(1)

,Mλ(2)) ⊗ · · ·
⊗ Hom∧

kSr

(
Mλ(n−1)

,Mλ(n)) ⊗ Hom
(
Mλ(n)

, k
)

and view Mγ as a kSr -module by

σ · (θ1 ⊗ · · · ⊗ θn ⊗ ε) := θ1 ⊗ · · · ⊗ θn ⊗ σε

where

(σε)(m) := ε
(
σ−1m

)
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for σ ∈ Sr , θi ∈ Hom∧
kSr

(Mλ(i−1)
,Mλ(i)

), i ∈ {1, . . . , n}, ε ∈ Hom(Mλ(n)
, k) and m ∈

Mλ(n)
. Thus, Mγ is isomorphic to the κ∧

λ(0),λ(1) · · ·κ∧
λ(n−1),λ(n) -fold direct sum of copies

of the k-dual of Mλ(n)
(which is again isomorphic to Mλ(n)

).
For an integer n ≥ 0, we denote by �λ

n the set of chains γ in Γr as in (3.1) of
length n with λ(0) = λ. Moreover, we set

Cλ
n :=

⊕

γ∈�λ
n

Mγ .

For n ≥ 1, γ ∈ �λ
n and i ∈ {1, . . . , n}, we denote by γi ∈ �λ

n−1 the chain arising from
γ by omitting λ(i). We define the homomorphism

dλ
n,i : Mγ → Mγi

, θ1 ⊗ · · · ⊗ θn ⊗ ε �→ θ1 ⊗ · · · ⊗ θi+1 ◦ θi ⊗ · · · ⊗ ε,

of kSr -modules, where we interpret θi+1 as ε if i = n. The direct sum of these
homomorphisms defines a homomorphism dλ

n,i : Cλ
n → Cλ

n−1 and we set

dλ
n :=

n∑

i=1

(−1)i−1dn,i : Cλ
n → Cλ

n−1

for n ≥ 1. By the definition of the maps dλ
n,i , they satisfy the usual simplicial relations.

Thus, dλ
n ◦ dλ

n+1 = 0 for n ≥ 1, and we have constructed a chain complex

Cλ∗ : 0 → Cλ
d(λ)

dλ
d(λ)−→Cλ

d(λ)−1

dλ
d(λ)−1−→ · · · dλ

1−→ Cλ
0 −→ 0

of kSr -modules, where d(λ) denotes the depth of λ in Γr , i.e., the maximal number
n such that there exists a chain λ = λ(0) � · · · � λ(n) in Γr . It is not difficult to see that
d(λ) = λ2 + 2λ3 + 3λ4 + · · · + (l − 1)λl if λ = (λ1, . . . , λl). But we will not use this
fact. Often we will just write dn instead of dλ

n .
We will denote by εt ∈ Hom(Mλ, k), t ∈ T rs(λ), the dual k-basis of the basis ele-

ments t ∈ T rs(λ) of Mλ. Thus, εt (s) = δs,t for s, t ∈ T rs(λ). We leave it to the reader
to verify the following explicit formula for the map d1 : Cλ

1 → Cλ
0 which follows

immediately from (2.12):

For λ � μ in Γr , T ∈ T rs(μ,λ) and s ∈ T rs(μ) one has εs ◦ θT = ∑
t εt ,

where t runs through all elements in T rs(λ) with the following property for
i ∈ {1, . . . , l(μ)}: If the ith row of T contains precisely x entries equal to y

then the yth row of t contains precisely x entries from the ith row of s.

(3.2)

Finally, we extend the chain complex Cλ∗ by the map

dλ
0 : Cλ

0 = Hom
(
Mλ,k

) → Hom
(
Sλ, k

) =: Cλ−1, ε �→ ε|Sλ .

In Proposition 3.3, we will show that d0 ◦ d1 = 0. Therefore, we obtain a chain com-
plex

C̃λ∗ : 0 → Cλ
a

da−→ Cλ
a−1

da−1−→ · · · d1−→ Cλ
0

d0−→ Cλ−1 −→ 0,
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in the category of finitely generated left kSr -modules.

Proposition 3.3 With the notation from Sect. 3.2 one has d0 ◦ d1 = 0.

Proof We may assume that λ is a partition, since otherwise Sλ = 0 and d0 = 0. Let
γ = (λ(0) � λ(1)) ∈ �λ

1 (so λ(0) = λ), let T ∈ T ∧(λ,λ(1)) and let ε ∈ Hom(Sλ(1)
, k).

We need to show that (ε ◦ θT )(Sλ) = 0. So let t ∈ T st(λ). It suffices to show that
ε(θT (et )) = 0. We can write θT (et ) = θT (κt t) = κt θT (t) and θT (t) = s1 + · · · + sa
with elements s1, . . . , sa ∈ T rs(λ(1)) according to the explicit rule in (2.12). Thus, it
suffices to show that κt · s = 0 for all s ∈ {s1, . . . , sa}.

Let i be the smallest positive integer such that the ith row of T does not have all
entries equal to i. Then, since T ∈ T ∧(λ,λ(1)), the ith row of T contains an entry
j with j > i. By the explicit description of θT (t) in (2.12) we see that s has the
following property: The ith row of s consists of all the entries of the ith row of t and
some additional entries, one of them being an entry x from the j th row of t . Since λ

is a partition, there exists an entry y in the ith row of t which lies in the same column
of t as the entry x in the j th row of t . It follows that the transposition τ := (x, y) is
contained in Ct . Note that τ · s = s, since x and y are in the same row of s. If R ⊂ Ct

denotes a set of representatives for Ct/{1, τ } then we obtain

κt · s =
∑

σ∈R
sgn(σ )σ (1 − τ) · s = 0,

since (1 − τ) · s = 0, and the proof is complete. �

The chain complex C̃λ∗ is not exact, in general. For example, if λ = (1,3) its Euler
characteristic is equal to 6. But extensive computations in cases where λ is a partition
lead us to the following:

Conjecture 3.4 If λ is a partition then C̃λ∗ is exact.

Remark 3.5 (a) Using computer calculations, we verified that Conjecture 3.4 holds
for all partitions λ when r ≤ 5.

(b) If we emphasize the base ring k over which the chain complex C̃λ∗ is con-
structed then we write kC̃

λ∗ . If φ : k → k′ is a homomorphism of commutative rings
then it is easy to see from the construction of kC̃

λ∗ that

k′ ⊗ kC̃
λ∗ ∼= k′C̃λ∗ (3.3)

as chain complexes of k′Sr -modules. Therefore, in order to prove Conjecture 3.4
it suffices to show that ZC̃λ∗ is exact. In fact, if ZC̃λ∗ is exact then it splits as chain
complex of Z-modules, since all involved modules are free Z-modules. Now, the
isomorphism (3.3) applied to the canonical ring homomorphism φ : Z → k implies
that kC̃

λ∗ is exact.
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3.6

For n ≥ 0 we denote by Bλ
n the set of symbols

(
λ(0) �

T1
λ(1) �

T2
· · · �

Tn

λ(n), t
)

(3.4)

with γ = (λ = λ(0) � · · · � λ(n)) ∈ �λ
n and Ti ∈ T ∧(λ(i), λ(i−1)) for i = 1, . . . , n, and

t ∈ T rs(λ(n)). To each symbol as above we associate the element

θT1 ⊗ · · · ⊗ θTn ⊗ εt ∈ Mγ ⊆ Cλ
n. (3.5)

This way, the elements in Bn
n parametrize a k-basis of Cλ

n . If n = 0 we have Bλ
0 =

T rs(λ).
By the definition of dλ

n , we have for n ≥ 2 and any symbol (3.4) in Bλ(0)

n the
recursion formula

dλ(0)

n (θT1 ⊗ · · · ⊗ θTn ⊗ εt )

= (θT2 ◦ θT1) ⊗ · · · ⊗ θTn ⊗ εt − θT1 ⊗ dλ(1)

n−1(θT2 ⊗ · · · ⊗ θTn ⊗ εt ). (3.6)

Finally, by φt ∈ Hom(Sλ, k), t ∈ T st(λ), we denote the dual k-basis of the basis et ,
t ∈ T st(λ), of Sλ. For completeness, we set Bλ−1 := T st(λ) and associate to t ∈ Bλ−1

the element φt ∈ C̃λ−1.

4 Exactness in degrees −1 and 0

In this section, we prove that the chain complex C̃λ∗ is exact in degrees −1 and 0 for
all compositions λ ∈ Γr , cf. Theorem 4.2 and Theorem 4.3.

4.1

We will use the following strategy to prove exactness. Assume that for fixed λ ∈ Γr

and n ≥ −1 we can find a subset Kλ
n of Bλ

n such that

im
(
dλ
n+1

) + Kλ
n = Cλ

n (Aλ
n)

and

ker
(
dλ
n

) ∩ Kλ
n = 0 (Bλ

n )

hold, where Kλ
n denotes the k-span of the basis elements of Cλ

n parametrized by Kλ
n .

Then, we claim, the chain complex C̃λ∗ is exact in degree n. In fact, let cn ∈ ker(dλ
n ).

Then, by (Aλ
n), there exists cn+1 ∈ Cλ

n+1 and xn ∈ Kλ
n such that cn = dλ

n+1(cn+1)+xn.
Applying dλ

n we obtain dλ
n (xn) = dλ

n (cn) = 0, and, by (Bλ
n ), we have xn = 0. Thus,

cn = dλ
n+1(cn+1) ∈ im(dλ

n+1), and we have exactness. Note that if (Aλ
n) and (Bλ

n ) are
satisfied then Kλ

n is a complement of ker(dλ
n ) = im(dλ

n+1) in Cλ
n .



152 J Algebr Comb (2011) 34: 141–162

Theorem 4.2 For every λ ∈ Γr , the empty subset Kλ−1 := ∅ of Bλ−1 satisfies (Aλ−1)

and (Bλ−1). In particular, C̃λ∗ is exact in degree −1 for every composition λ of r .

Proof Since Kλ−1 = 0, Condition (Bλ−1) is trivially satisfied, and Condition (Aλ−1)
is equivalent to showing that the restriction map dλ

0 : Hom(Mλ, k) → Hom(Sλ, k) is
surjective. If λ is not a partition then Sλ = 0 and this clearly holds. If λ is a partition
then Sλ has a complement as k-submodule of Mλ. In fact, by (2.7), the element et

involves t with coefficient 1, and every other t ′ ∈ T st(λ) occurring with non-zero
coefficient in et is strictly larger than t in the lexicographic order. This implies that
the k-span of the elements t ∈ T rs(λ) � T st(λ) forms a complement of Sλ in Mλ.
Therefore, every k-module homomorphism from Sλ to k can be extended to Mλ. �

Theorem 4.3 Let λ ∈ Γr and set

Kλ
0 := {

(λ, t) ∈ Bλ
0 | t ∈ T st(λ)

}
.

Then (Aλ
0) and (Bλ

0 ) are satisfied. In particular, C̃λ∗ is exact in degree 0 for every
composition λ of r .

For the proof of property (Aλ
0) in Theorem 4.3 we will need the following lemma.

For λ ∈ Γr and for any t ∈ T rs(λ) we denote by Cλ
0,<t the k-span of the basis elements

εs ∈ Hom(Mλ, k) with s ∈ T rs(λ) satisfying s < t , cf. Sects. 3.2 and 2.2 for the
definition of εs and for the lexicographic order < on T (λ).

Lemma 4.4 Let t ∈ T rs(λ) � T st(λ). Then εt ∈ im(dλ
1 ) + Cλ

0,<t .

Proof Since t /∈ T st(λ), there exist two consecutive rows in t , say row q and row
q + 1, whose lengths m := λq and n := λq+1 and entries

a1 a2 · · · am

b1 b2 · · · bn

satisfy

a1 < b1 and a2 < b2 and · · · and

ai < bi and (ai+1 > bi+1 or m = i)

for some i ∈ {0,1, . . . ,min{m,n−1}}. In other words, i +1 is the first position where
either ai+1 > bi+1 or the (q + 1)th row has an entry while the qth row doesn’t have
an entry.

For any subset X ⊆ {a1, . . . , am, b1, . . . , bn} with at most n elements, we denote
by tX the tableau with the following property. The row lengths and entries of tX are
the same as the row lengths and entries of t , except for rows q and q+1. The (q+1)th
row of tX has the entries from X in increasing order and the qth row of tX has the
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entries from {a1, . . . , am, b1, . . . , bn} \ X in increasing order. Thus, tX has shape μX

with (μX)j = λj for all j /∈ {q, q + 1}, (μX)q = m + n − |X| and (μX)q+1 = |X|. If
|X| < n then we have λ � μX and tX ∈ T rs(μX). If |X| = n then μX = λ. Moreover,
for X as above, we denote by TX ∈ T ∧(μX,λ) the generalized tableau of shape μX

and content λ with all its λj entries equal to j in rows j /∈ {q, q + 1}, and with rows
q and q + 1 of the form

q · · · q q + 1 · · · q + 1

q + 1 · · · q + 1

with λq entries equal to q . With this notation, we set

v :=
∑

Y⊆{a1,...,ai }
(−1)|Y |θTY∪{bi+2,...,bn} ⊗ εtY∪{bi+2,...,bn} ∈ Cλ

1 .

Then we have

dλ
1 (v) =

∑

Y⊆{a1,...,ai }
(−1)|Y | ∑

Y∪{bi+2,...,bn}⊆X⊆{a1,...,am,b1,...,bn}
|X|=n

εtX

=
∑

{bi+2,...,bn}⊆X⊆{a1,...,am,b1,...,bn}
|X|=n

( ∑

Y⊆{a1,...,ai }∩X

(−1)|Y |
)

εtX .

The first of the above equations follows from (3.2). We analyze the inner sum and
distinguish three cases for the set X.

If X = {b1, . . . , bn} then tX = t, and the inner sum (over Y ) is equal to 1, since
only Y = ∅ occurs. This case contributes the summand εt to the whole sum.

If {a1, . . . , ai} ∩X 
= ∅ then the inner sum (over Y ) vanishes, by an easy induction
argument. This case contributes 0 to the whole sum.

If {a1, . . . , ai} ∩ X = ∅ but X 
= {b1, . . . , bn} then tX < t . In fact, note that in this
case m ≥ i + 1, and let j ∈ {1, . . . , i + 1} be minimal with bj /∈ X. Then the qth row
of tX contains a1, . . . , ai and bj , but not b1, . . . , bj−1. Since

aj−1 < bj−1 < bj ≤ bi+1 < ai+1,

the qth row of tX must start with

a1 . . . ap bj . . . ,

where p ∈ {j − 1, . . . , i} is maximal with ap < bj . Since bj < ap+1, we have tX < t .
Therefore, this case contributes an element of Cλ

0,<t to the whole sum.

Altogether we obtain εt ∈ dλ
1 (v) + Cλ

0,<t . �

Proof of Theorem 4.3 We number the elements of T rs(λ) in increasing order: t1 <

t2 < · · · < tm. First, we show that (Aλ
0) holds. For every i ∈ {1, . . . ,m}, we have

either εti ∈ Kλ
0 or ti is not standard. Using Lemma 4.4, it is straightforward to show

that εti ∈ Kλ
0 + im(dλ

1 ) by induction on i.
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Next we verify Condition (Bλ
0 ). Assume that ε = ∑

t∈T st(λ) αt εt ∈ Kλ
0 ⊆

Hom(Mλ, k) with 0 = dλ
0 (ε) = ε|Sλ and assume that ε 
= 0. Then λ is a partition.

Let t∗ ∈ T st(λ) be the largest tableau with αt∗ 
= 0. Then, by (2.7), αt∗ = ε(et∗) = 0,
a contradiction. �

Remark 4.5 (a) Calculations show that in general, for the set Kλ
n consisting of those

symbols whose last entry t is a standard tableau, the condition (Bλ
n ) does not hold.

This already fails for λ = (1,1,1,1). But one can show that (Aλ
n) holds for this choice

of Kλ
n , for every composition λ. Thus, Kλ

n covers Cλ
n/im(dλ

n+1) for this choice, but
it is too big to have trivial intersection with ker(dλ

n ). For n = 1, our calculations of
examples convince us that considering all symbols (λ�

T
μ, t) with μ a partition, t a

standard tableau and T a generalized standard tableau, conditions (Aλ
1) and (Bλ

1 ) will
be satisfied for all partitions λ. However, we cannot prove this statement. Looking
at larger values of n, computations show again that choosing Kλ

n by selecting those
symbols with t being a standard tableau and Tn being a standard generalized tableau,
conditions (Aλ

n) and (Bλ
n ) will not be satisfied. It seems that one needs to require

conditions on all generalized tableaux involved in the symbol. But we have no idea
what these conditions should be.

(b) We have been considering the question if we can prove that the Lefschetz
character of C̃λ∗ over a field of characteristic 0 always vanishes. This is a necessary
condition for the chain complex to be exact. Again, we are not able to prove this, but
can show with the help of the computer algebra systems MAGMA and GAP that the
Lefschetz character vanishes for all partitions λ of r with r ≤ 9.

5 Quasi-partitions and tame compositions

5.1

To every composition λ ∈ Γr , one can associate two partitions in a natural way. The
first arises by reordering the parts of λ such that they are ordered by size. This par-
tition will be denoted by λ∗. Obviously, one has λ � λ∗. Secondly, we can consider
the set Λ

�λ
r of all partitions μ of r with μ � λ. From Lemma 5.2, we can see that

Λ�λ
r has a unique smallest element with respect to the dominance partial order. We

will denote this element by λ and we will call it the closure of λ in Λr . By definition,
we have λ � λ � λ∗, and we say that λ is a quasi-partition if λ = λ∗. Clearly, if λ is
a partition then λ = λ = λ∗ and λ is also a quasi-partition. We will denote the set of
quasi-partitions of r by Λ̃r . Thus, Λr ⊆ Λ̃r ⊆ Γr .

Lemma 5.2 (a) Let λ ∈ Γr be a composition which is not a partition and assume that
μ ∈ Λr is a partition with λ � μ. Let i be a positive integer with λi+1 > λi and define

λ̃ := (λ1, . . . , λi−1, λi + 1, λi+1 − 1, λi+2, . . .).

Then λ � λ̃ � μ.
(b) Let λ ∈ Γr be a composition. The set of partitions of r which dominate λ has a

unique minimal element with respect to the dominance partial order.
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Proof (a) Clearly, we have λ � λ̃. Note that the mth partial sum
∑m

j=1 λ̃j coincides
with the mth partial sum of λ for all m except for m = i. Thus, in order to show
that λ̃ � μ it suffices to show that the ith partial sum of λ̃ is less or equal to the
ith partial sum of μ. So assume that λ1 + λ2 + · · · + λi + 1 > μ1 + · · · + μi . Then
λ1 +· · ·+λi ≥ μ1 +· · ·+μi , which forces equality since μ dominates λ. Again, since
μ dominates λ, this forces λm = μm for all m = 1, . . . , i. But λi+1 > λi = μi ≥ μi+1,
since μ is a partition. This implies that the (i +1)th partial sum of λ is bigger than the
(i + 1)th partial sum of μ. This is a contradiction. And we have shown that λ̃ � μ.

(b) If λ is a partition the statement obviously holds. So assume that λ is not a
partition. Note that the set of compositions of r that dominate λ is a finite set and that
it contains a partition (namely (r)). Therefore, the process of replacing λ by λ̃ as in
Part (a) will produce a partition after finitely many steps. By Part (a), this partition is
dominated by every partition that dominates λ. �

Remark 5.3 The proof of Lemma 5.2 shows that the closure λ of a composition λ ∈
Γr can be constructed by repeating the process λ �→ λ̃ until one reaches a partition.
Here, λ̃ is not determined by λ, since there might be several indices i as in part (a) of
the lemma. But all choices lead to the same partition λ.

We will need the following well-known result about λ∗. A proof using the RSK
algorithm can be found in [8, Sect. 4.3, Proposition 2], for instance. We include a
short elementary proof.

Proposition 5.4 Let λ ∈ Γr be a composition and let μ ∈ Λr be a partition. Then

∣∣T st(μ,λ)
∣∣ = ∣∣T st(μ,λ∗)∣∣.

Proof Let λ = (λ1, . . . , λn) and σ · λ := (λσ−1(1), . . . , λσ−1(n)) for some σ ∈ Sn. We
will show that

∣∣T st(μ,λ)
∣∣ = ∣∣T st(μ,σ · λ)

∣∣.

For that, we can assume that σ = (i, i + 1) for some 1 ≤ i ≤ n − 1. In this case, we
will construct the following map from T st(μ,λ) to T st(μ,σ · λ). In every row of a
generalized tableau T ∈ T st(μ,λ), we leave all boxes unchanged that have entries
different from i and i + 1. The entries that are equal to i or i + 1 occupy a connected
string S of boxes in this row. The boxes with entry i which have boxes with entry
i + 1 below them we leave unchanged. These boxes form a connected string S′ at
the left end of S. Similarly, the boxes with entry i + 1 which have boxes with entry i

above them we leave unchanged. These boxes form a connected string S′′ at the right
end of S. If the middle part S � (S′ ∪ S′′) of the string S consists of a boxes with
entry i and b boxes with entry i + 1, we replace these entries with b entries equal
to i and a entries equal to i + 1 (in ascending order). It is clear that the result is a
generalized standard tableau of the same shape and with content σ · λ. Applying the
same construction to an element of T st(μ,σ · λ) results in an element of T st(μ,λ)

and the two maps are inverse to each other. �
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Lemma 5.5 Assume that λ ∈ Λ̃r is a quasi-partition and set

Kλ
1 := {

(λ�
T

μ, t) ∈ Bλ
1 | t standard and T standard

}
.

Then
∣∣Kλ

1

∣∣ = ∣∣T rs(λ)
∣∣ − ∣∣T st(λ)

∣∣.

Proof We have

∣∣Kλ
1

∣∣ =
∑

λ�μ∈Γr

∣∣T st(μ,λ)
∣∣ · ∣∣T st(μ)

∣∣

=
∑

λ�μ∈Λr

∣∣T st(μ,λ)
∣∣ · ∣∣T st(μ)

∣∣. (5.1)

Here, the second equation holds since T st(μ) = ∅ if μ ∈ Γr � Λr . If λ is a partition
then the last expression in (5.1) equals rkMλ − rkSλ, by Young’s rule (2.8). If λ

is not a partition then rkSλ = 0 and |T st(μ,λ)| = |T st(μ,λ∗)|, by Proposition 5.4.
Since λ is a quasi-partition, this implies that the last expression in (5.1) equals

∑

λ∗�μ∈Λr

κλ∗,μ · rkSμ = rkMλ∗ = rkMλ = rkMλ − rkSλ.

Thus, altogether we obtain in both cases
∣∣Kλ

1

∣∣ = rkMλ − rkSλ = ∣∣T rs(λ)
∣∣ − ∣∣T st(λ)

∣∣,

and the proof is complete. �

We call a composition λ ∈ Γr tame if every composition μ ∈ Γr with λ � μ is a
quasi-partition. This is the technical condition that will allow us to prove Theorem 6.1
by induction. In order to know more precisely to which compositions this theorem
applies, we want to determine tame composition explicitly in part (a) of the next
proposition. Part (b) gives a crucial property of tame compositions that is also used
in the proof of Theorem 6.1. Note that if λ is tame then also every composition
dominating λ is tame.

Proposition 5.6 Let λ = (λ1, λ2, . . .) ∈ Γr be a composition.

(a) The composition λ is tame if and only if one of the following holds:
(i) λ3 + λ4 + · · · = 0 and λ1 + 1 ≥ λ2.

(ii) λ3 + λ4 + · · · = 1 and λ1 ≥ λ2.
(b) If λ is tame then T ∧(μ,λ) = T st(μ,λ) for every partition μ ∈ Λr with λ � μ.

Proof Assume that λ is tame. We first show that λ3 + λ4 + · · · ≤ 1. Assume that
λ3 + λ4 + · · · ≥ 2. Then λ � (r − 2,0,2) =: μ. But μ is not a quasi-partition. In fact,
if r − 2 = 0 then μ∗ = (2) and μ = (1,1), if r − 2 = 1 then μ∗ = (2,1) and μ =
(1,1,1), and if r − 2 ≥ 2 then μ∗ = (r − 2,2) and μ = (r − 2,1,1). This contradicts
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the tameness of λ, and therefore λ3 + λ4 + · · · ≤ 1. Now we consider the case that
λ3 + λ4 + · · · = 1. We will show that λ1 ≥ λ2. Assume that λ1 < λ2. Then μ :=
(λ1, λ2 + 1) � λ and μ satisfies μ2 − μ1 ≥ 2. Therefore, μ∗ = (μ2,μ1) and μ̃ :=
(μ2 − 1,μ1 + 1) is a partition satisfying μ � μ̃ � μ∗. This implies μ � μ̃ � μ∗,
contradicting the tameness of λ. Finally, we consider the case that λ3 + λ4 + · · · = 0.
Then λ = (λ1, λ2). Assume that λ1 + 1 < λ2. Then λ2 − λ1 ≥ 2 and λ is not a quasi-
partition (as we have seen for μ in the previous case). Therefore, λ1 + 1 ≥ λ2 in this
case. This finishes the proof of the forward implication in part (a).

Next assume that λ satisfies (i). Then the compositions that dominate λ are of the
form λ(i) = (λ1 + i, λ2 − i) for i = 0, . . . , λ2, and this set is totally ordered. Clearly,
λ(i) is a partition for i = 1, . . . , λ2. Also λ = λ(0) is a partition unless λ2 = λ1 + 1.
In this case, λ∗ = (λ2, λ1) = λ. Therefore, λ is tame. Moreover, for i ∈ {1, . . . , λ2},
we see immediately that there exists only one element T in T ∧(λ(i), λ), namely the
generalized tableaux with λ1 entries equal to 1 in the first row followed by i entries
equal to 2 in the first row and λ2 − i entries equal to 2 in the second row. Since
λ1 ≥ λ2 − i, this generalized tableau is also standard. This shows that the reverse
implication of part (a) and also that part (b) holds if λ is of the form (i).

Next we assume that λ satisfies (ii). The compositions that dominate λ are of the
form μ = (μ1,μ2, . . .) with either μ being of type (i) with λ1 ≤ μ1, or μ being of
type (ii) with μ1 ≥ λ1 and μ1 + μ2 = r − 1 = λ1 + λ2.

First, we assume that μ is of type (i). Then μ is tame (and in particular a quasi-
partition) by the previous paragraph. Moreover, if μ is a partition and if T ∈ T ∧(μ,λ)

then all λ1 entries of T that are equal to 1 have to be in the first row of T . Therefore, T
is determined by the position of the single entry which is larger than 2. This entry can
be at the end of the first row or at the end of the second row. The only obstruction to T

being standard can occur if an entry equal to 2 in the second row is positioned below
some entry ≥ 2 in the first row. There are only λ2 entries equal to 2 and λ2 ≤ λ1, with
λ1 the number of entries equal to 1 in the first row. This shows that T is standard.

Finally, we assume that μ is of type (ii). Recall that μ1 ≥ λ1 ≥ λ2 ≥ μ2. We first
show that μ is a quasi-partition. In fact, if μ1 = 0 then μ2 = 0 and μ∗ = μ = (1); if
μ1 ≥ 1 and μ2 = 0 then μ∗ = (μ1,1) = μ; and if μ2 ≥ 1 then μ∗ = (μ1,μ2,1) = μ.
Now let T ∈ T ∧(μ,λ) and assume that μ is a partition. This implies μ = (μ1,μ2,1)

with λ1 + λ2 = μ1 + μ2 = r − 1. Since the λ1 entries in T that are equal to 1 are
in the first row, the λ2 entries equal to 2 fill the remaining positions in the first and
second row, and the only entry larger than 2 must be in the third row. Since there are
μ2 entries equal to 2 in the second row, and λ1 entries equal to 1 in the first row and
since μ2 ≤ λ1, we see that T is standard. This completes the proof of (a) and (b) in
the case that λ satisfies (ii). �

6 Exactness for tame compositions

In this section, we prove the main theorem stating that C̃λ∗ is exact for every tame
composition. See Proposition 5.6 for a classification of tame compositions.
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Theorem 6.1 Let λ ∈ Γr be a tame composition. For n = −1 set Kλ−1 = ∅, for n = 0
set Kλ

0 = T st(λ), and for n ≥ 1 set

Kλ
n := {(

λ = λ(0) �
T1

· · · �
Tn

λ(n), t
) ∈ Bλ

n | t ∈ T st(λ(n)
)}

.

Then (Aλ
n) and (Bλ

n ) hold for all n ≥ −1. In particular, the chain complex C̃λ∗ is exact
(cf. 4.1).

Proof We first show by induction on n ∈ {−1,0,1, . . .} that (Aλ
n) holds. By Theo-

rem 4.2 and Theorem 4.3, this is already shown for n = −1 and n = 0. So let n ≥ 1
and assume that (Aμ

n−1) holds for all tame μ ∈ Γr . We will show that (Aλ
n) holds for

all tame λ ∈ Γr by induction on the depth d(λ) (cf. 3.2). If d(λ) < n then Cλ
n = 0 and

(Aλ
n) is satisfied. This anchors the induction proof. So assume that λ ∈ Γr is tame and

that d(λ) ≥ n. We may assume that (Aμ
n ) holds for all μ ∈ Γr with λ�μ, since then μ

is also tame and d(μ) < d(λ). Let (λ = λ(0) �
T1

λ(1) �
T2

· · · �
Tn

λ(n), t) ∈ Bλ
n . By induction

on n there exist elements cn ∈ Cλ(1)

n and xn−1 ∈ Kλ(1)

n−1 such that

θT2 ⊗ · · · ⊗ θTn ⊗ εt = dλ(1)

n (cn) + xn−1. (6.1)

Since d(λ(1)) < d(λ) we have cn ∈ Kλ(1)

n + im(dλ(1)

n+1) and we can write cn = xn +
dλ(1)

n+1(cn+1) with xn ∈ Kλ(1)

n and cn+1 ∈ Cλ(1)

n+1. Substituting cn in (6.1) yields

θT2 ⊗ · · · ⊗ θTn ⊗ εt = dλ(1)

n (xn) + xn−1.

Applying (3.6) to the element θT1 ⊗ xn ∈ Cλ
n+1 yields

dλ
n+1(θT1 ⊗ xn) = yn − θT1 ⊗ dλ(1)

n (xn)

= yn − θT1 ⊗ θT2 ⊗ · · · ⊗ θTn ⊗ εt + θT1 ⊗ xn−1

with yn ∈ Kλ
n , since xn ∈ Kλ(1)

n and θT1 ⊗ xn−1 ∈ Kλ
n , since xn−1 ∈ Kλ(1)

n−1. Therefore,

θT1 ⊗ θT2 ⊗ · · · ⊗ θTn ⊗ εt ∈ Kλ
n + im

(
dλ
n+1

)
,

and (Aλ
n) holds.

Next we show that (Bλ
n ) holds for all n ≥ −1. We do this by showing the following

stronger condition by induction on n:

If x ∈ Kλ
n and dλ

n (x) ∈ Kλ
n−1 then x = 0. (B̃λ

n )

If n = −1 there is nothing to show, since Kλ−1 = 0. For n = 0, condition (B̃λ
0 ) is

equivalent to condition (Bλ
0 ), since Kλ−1 = 0. Moreover, (Bλ

0 ) is satisfied by Theo-
rem 4.3.



J Algebr Comb (2011) 34: 141–162 159

Next we show that (B̃λ
1 ) holds. We denote by Nλ

0 the k-span of the basis elements
of Cλ

0 which are parametrized by Bλ
0 � Kλ

0 . Thus, Cλ
0 = Kλ

0 ⊕ Nλ
0 . We consider the

k-linear map

f : Kλ
1

i−→ Cλ
1

dλ
1−→ Cλ

0
p−→ Nλ

0

which is the composition of dλ
1 with the inclusion i : Kλ

1 → Cλ
1 and the projection

p : Cλ
0 → Nλ

0 with respect to the decomposition Cλ
0 = Kλ

0 ⊕ Nλ
0 . We will show that

f is an isomorphism. In order to see that f is surjective, let v0 ∈ Nλ
0 . By (Aλ

0) we
can write v0 = dλ

1 (c1) + x0 with c1 ∈ Cλ
1 and x0 ∈ Kλ

0 , and by (Aλ
1) we can write

c1 = dλ
2 (c2) + x1 with c2 ∈ Cλ

2 and x1 ∈ Kλ
1 . Substituting c1 in the first equation

yields v0 = dλ
1 (x1) + x0 and dλ

1 (x1) = v0 − x0. This implies that f (x1) = v0. Thus,
f is surjective. By Lemma 5.5, we have

rkKλ
1 = ∣∣T rs(λ)

∣∣ − ∣∣T st(λ)
∣∣ = ∣∣Bλ

0 � Kλ
0

∣∣ = rkNλ
0 .

Together with the surjectivity of f this implies that f is an isomorphism. In order to
see that (B̃λ

1 ) holds, let x1 ∈ Kλ
1 and assume that dλ

1 (x1) ∈ Kλ
0 . Then f (x1) = 0 and

the injectivity of f implies x1 = 0. This completes the proof that (B̃λ
1 ) holds.

Now let n ≥ 2 and assume that (B̃μ
n−1) holds for every tame composition μ ∈ Γr .

Note that this applies in particular to every μ which dominates λ. Let xn ∈ Kλ
n and

assume that dλ
n (xn) ∈ Kλ

n−1. We will show that xn = 0. We can write xn as a k-linear
combination of the basis elements θT1 ⊗ · · · ⊗ θTn ⊗ εt parametrized by the symbols
(λ(0) �

T1
λ(1) �

T2
· · · �

Tn

λ(n), t) ∈ Bλ
n . Since a generalized tableau T ∈ T (μ, ν) determines

μ and ν, we will abbreviate the above symbol by (T1, T2, . . . , Tn, t) and we can write

xn =
∑

(T1,...,Tn,t)∈Kλ
n

a(T1, . . . , Tn, t) · θT1 ⊗ · · · ⊗ θTn ⊗ εt

with uniquely determined elements a(T1, . . . , Tn, t) ∈ k. We apply the formula from
(3.6) to xn and obtain

dλ
n (xn) =

∑

(T1,...,Tn,t)∈Kλ
n

a(T1, . . . , Tn, t) · (θT2 ◦ θT1) ⊗ θT3 ⊗ · · · ⊗ θTn ◦ εt

−
∑

(T1,...,Tn,t)∈Kλ
n

a(T1, . . . , Tn, t) · θT1 ⊗ dλ(1)

n−1(θT2 ⊗ · · · ⊗ θTn ⊗ εt ), (6.2)

where λ(1) denotes the shape of T1. Next we fix an element μ ∈ Γr with λ � μ and
an element S ∈ T ∧(μ,λ). We define πS : Kλ

n−1 → Kλ
n−2 as the k-linear map which

sends a basis element parametrized by a symbol (T1, . . . , Tn−1, t) ∈ Kλ
n−1 to the basis

element parametrized by the symbol (T2, . . . , Tn−1, t) ∈ Kμ
n−2 if T1 = S and to 0

otherwise. Note that both sides of (6.2) lie in Kλ
n−1 so that we can apply πS . The
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application of πS to the second sum in (6.2) yields

∑

(T1,T2,...,Tn,t)∈Kλ
n

T1=S

a(S,T2, . . . , Tn, t) · dμ
n−1(θT2 ⊗ · · · ⊗ θTn ⊗ εt ) = d

μ
n−1

(
xS
n−1

)
,

with

xS
n−1 :=

∑

(T1,T2,...,Tn,t)∈Kλ
n

T1=S

a(S,T2, . . . , Tn, t) · θT2 ⊗ · · · ⊗ θTn ⊗ εt ∈ K
μ
n−1.

This implies that d
μ
n−1(x

S
n−1) ∈ K

μ
n−2. The induction hypothesis now implies

xS
n−1 = 0. But

xn =
∑

λ�μ∈Γr

∑

S∈T ∧(μ,λ)

θS ⊗ xS
n−1,

and we obtain xn = 0. This shows that (B̃λ
n ) and (Bλ

n ) hold and the proof is com-
plete. �

7 Comparison with similar complexes

We end our article with a short discussion of related results. All of these were ob-
tained using quite different methods, working with representations of the general lin-
ear group instead. More precisely, one constructs a resolution of the Weyl module by
symmetric powers of the standard representation. Then applying the Schur functor to
this complex gives an exact complex of modules for the symmetric group, where the
Weyl module is sent to the corresponding Specht module, and the symmetric powers
are sent to permutation modules. Though our construction is different in nature, it is
interesting to compare the results. To keep this section short, we just present results
without any details on the construction. We refer the reader to the respective arti-
cles, and to [9] for details on the intimate connection between representations of the
symmetric group and polynomial representations of the general linear group.

The first constructions of this kind were given independently by Akin [1] and
Zelevinskii [14]. They both used the Bernstein–Gelfand–Gelfand resolution ([4]) to
give a resolution of Weyl modules over the complex numbers. Zelevinskii also notes
that one obtains a corresponding resolution for Specht modules in Example 3 at the
end of [14]. There was no hope that this complex would be exact in positive character-
istic, or even over any commutative ring. In fact, one easily checks that even for small
partitions our resolution will involve many more terms than the Akin–Zelevinskii
complex. For example, consider the partition λ = (1,1,1). The Akin–Zelevinskii res-
olution

0 → M(3) → M(2,1) ⊕ M(2,1) → M(1,1,1) → S(1,1,1) → 0

has length 2, while our resolution has length 3 and involves several more summands.
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Akin and Buchsbaum also realized that the complex must be extended to work in
a characteristic-free setting. In [2] and [3], they work out such an extension over an
arbitrary infinite field. However, an explicit form of the complex could only be ob-
tained for two-part partitions (in fact, they allow not just partitions, but more general
skew-shapes). It is easily seen that for two-part partitions our resolution has the same
terms as the one given by Akin and Buchsbaum, namely

C
(λ1,λ2)
i =

λ2∑

t=1

(
i − 1

t − 1

)
× M(λ1+t,λ2−t),

cf. Sect. 4 in [2].
There are other generalizations of the Akin–Zelevinskii resolution. In [6], Donkin

works in the more general context of reductive algebraic groups and gives a new
proof of existence of resolutions, but no explicit description. In a similar spirit, Doty
[7] constructs resolutions for one-dimensional representations of the Borel subgroup
of an algebraic group in characteristic zero. Also in characteristic zero, Woodcock
[12] constructs resolutions for simple S(B)-modules, where S(B) is the Schur alge-
bra for the subgroup B of lower triangular matrices in GLn(k). He also shows in
[13] that such resolutions induce projective resolutions of Weyl modules. A similar
approach is taken by Santana in [11]. She constructs minimal projective resolutions
of simple S(B)-modules in characteristic zero. Over a field of positive characteristic
she describes the first three terms of a minimal projective resolution when n = 2.

While we are working in a more special situation, considering only the case of
the group algebra of the symmetric group, our construction has other advantages.
One is what we call integrability, i.e., the construction works over any commutative
ring. Another one is functoriality, cf. Remark 3.5(b). Finally, the construction of the
chain complex C̃λ∗ is completely explicit and combinatorial. This allows us to actually
compute resolutions using computer calculations.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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