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Abstract A weight ring in type A is the coordinate ring of the GIT quotient of the
variety of flags in C

n modulo a twisted action of the maximal torus in SL(n,C). We
show that any weight ring in type A is generated by elements of degree strictly less
than the Krull dimension, which is at worst O(n2). On the other hand, we show that
the associated semigroup of Gelfand–Tsetlin patterns can have an essential generator
of degree exponential in n.

Keywords Weight ring · Weight variety · Cohen–Macaulay ring · Toric
degeneration · Gelfand–Tsetlin pattern

1 Introduction

Given a pair λ,μ of weights for SLn(C) with λ dominant, let Vλ[μ] denote the μ-
isotropic component of the irreducible representation Vλ with highest weight λ. The
weight ring R(λ,μ) is the graded ring

⊕∞
N=0 VNλ[Nμ]. We define the weight variety

W(λ,μ) as

W(λ,μ) := ProjR(λ,μ).
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Alternatively, the weight ring is the projective coordinate ring of the GIT quotient of
the flag variety modulo the μ-twisted action of the maximal torus T in SLn(C).1

Our first theorem (Theorem 3.9 below) is that R(λ,μ) is generated in degree
strictly less than the Krull dimension of R(λ,μ), provided that the degree-one piece
Vλ[μ] is nonzero. The basic idea behind the proof is to show that the degree-one piece
contains a system of parameters and that the a-invariant of R(λ,μ) is negative.2 (The
a-invariant is the degree of the Hilbert series, which is a rational function.) The the-
orem then follows from the fact that R(λ,μ) is Cohen–Macaulay.

It is well known (cf. [8, 9, 14]) that R(λ,μ) has a flat degeneration to the semi-
group algebra R′(λ,μ) of the semigroup of Gelfand–Tsetlin patterns associated to
semistandard tableaux of shape mλ and content mμ for m ≥ 0. In particular, the ring
R′(λ,μ) is the graded ring associated to a filtration of R(λ,μ) by natural numbers.
Generators for R′(λ,μ) can be lifted to generators of R(λ,μ), so one might hope that
R′(λ,μ) is relatively simple. Unfortunately, we find pairs λ,μ for which R′(λ,μ) has
essential generators of degree exponential in n.

Our second main result (Theorem 5.2 below) is that, in the case where n = 3k

is a multiple of 3, the semigroup algebra R′(k�3,0) has an essential generator of
degree approximately (

√
2)n. This is in striking contrast to the upper bound of 2n−8

for R(k�3,0), which follows from our first theorem (since the Krull dimension of
R(k�3,0) is 2n − 7). This case is particularly interesting because, via the Gelfand–
MacPherson correspondence, R(k�3,0) is the moduli space of n-tuples of points
in the projective plane. This is a remarkable example of how a semigroup algebra
produced by a promising toric degeneration can fail to serve as an effective proxy for
the original ring.

Our motivation for studying the semigroup of Gelfand–Tsetlin patterns was to
imitate the method of [12], which considered the case of n points on the projective
line. Here one takes λ to be a multiple of the second fundamental weight �2. It was
shown in [12] that the associated semigroup of Gelfand–Tsetlin patterns is generated
in degree ≤2. We had hoped to use the same method in the case of n points in the
projective plane, but the second theorem indicates why this is not the right approach.
However, there might still be another toric degeneration, perhaps among those dis-
covered by Caldero [2], that yields a bound better than the one in Theorem 3.9

2 A description of the weight ring R(λ,μ)

In this section, we give an explicit description of R(λ,μ). Let n ≥ 2, and let B denote
the Borel subgroup of SLn(C) consisting of the upper-triangular matrices in SLn(C).
Fix a nontrivial dominant weight λ of SLn(C). We represent λ as a partition, i.e., as

1Weight varieties for arbitrary reductive Lie groups (not just those of type A) were studied by A. Knutson
in his Ph.D. thesis [13]. Knutson also studied the symplectic geometry of these spaces.
2The a-invariant is negative in all types (see Remark 3.8 below); however, for types other than type A, the
degree-one piece sometimes fails to contain a system of parameters. This condition is equivalent to the con-
dition that all semistable flags lie in the supports of degree-one T-invariants; see [11] for a counterexample
in G = SO5(C).
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a weakly decreasing sequence (λ1, . . . , λn) of nonnegative integers with λ1 ≥ 1 and
λn = 0. Let μ be a weight of SLn(C) such that Vλ[μ] is nonzero. Thus μ may be
expressed as a sequence (μ1, . . . ,μn) of nonnegative integers such that

∑n
i=1 μi =∑n

i=1 λi .
By the Borel–Weil construction, the irreducible representation with highest weight

λ is the finite-dimensional vector space

Vλ = {
holomorphic f : SLn(C) → C | f (gb) = eλ(b)f (g)

for all g ∈ SLn(C) and b ∈ B
}
,

where eλ(b) := ∏n
i=1 b

λi

ii for b = (bij )1≤i,j≤n ∈ B . The action of SLn(C) on Vλ is
given by (g · f )(h) = f (g−1h) for g,h ∈ SLn(C). We define

R(λ) :=
∞⊕

N=0

VNλ.

Multiplication in R(λ) is the usual multiplication of functions SLn(C) → C.

Remark 2.1 As we will review in the next section, the dominant weight λ determines
a line bundle Lλ → SLn(C)/B such that the space �(SLn(C)/B,Lλ) of sections
is isomorphic to Vλ. The multiplication in R(λ) coincides with multiplication of the
corresponding sections. The ring R(λ) is the coordinate ring of the partial flag variety
corresponding to the dominant weight λ.

We define

Vλ[μ] := {
f ∈ Vλ | f (tg) = eμ(t)f (g) for all t ∈ T, g ∈ SLn(C)

}
.

We now define a μ-twisted action of T ⊂ SLn(C) on R(λ). For f ∈ VNλ = R(λ)N of
degree N , the action of t ∈ T on f is given by

(t · f )(g) := eNμ(t)f
(
t−1g

)
.

Relative to this twisted action, the T-invariant subring of R(λ) is exactly

R(λ,μ) :=
∞⊕

N=0

VNλ[Nμ].

Remark 2.2 There is a unique SLn(C)-linearization of Lλ. This defines a canonical
T-linearization of Lλ by restriction to T ↪→ SLn(C). The above action of T coincides
with the canonical T-linearization twisted by μ.

A fundamental fact from the representation theory of SLn(C) is that Vλ has a basis
indexed by semistandard tableaux of shape λ. Furthermore, the elements in this basis
indexed by semistandard tableaux with content μ form a basis of Vλ[μ]. We briefly
review the construction.

A Young diagram of shape λ is a left-justified arrangement of λ1 + · · · + λn boxes
with λi boxes in the ith row. For example, if λ = (3,3,2,1,1,0), then the Young
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diagram of shape λ is

A semistandard tableaux of shape λ is a filling of each box in a Young diagram of
shape λ with a number from 1 through n such that the rows are weakly increasing
and the columns are strictly increasing. For example, if λ = (3,3,2,1,1,0), then

is a semistandard tableau of shape λ.
Such a tableau τ determines a basis vector bτ ∈ Vλ as follows. Write len(I ) for the

length of a column I of τ . We identify I with the len(I )-tuple of its entries, read from
top to bottom. If I = (i1, . . . , ilen(I )), let detI : SLn(C) → C be the function that re-
turns the determinant of the len(I )× len(I ) submatrix of entries in rows i1, . . . , ilen(I )

and columns 1,2, . . . , len(I ). The basis vector bτ is then defined by

bτ :=
∏

columns I of τ

detI .

Hence, in the example above, bτ = det1,2,3,5,6 det1,4,5 det5,6.
We can also describe the T-isotropic subspace Vλ[μ] in terms of semistandard

tableaux. The content of a tableau τ is μ = (μ1, . . . ,μn) if μi is the number of boxes
in τ that contain the number i for 1 ≤ i ≤ n. The subspace Vλ[μ] is the span of the
bτ such that τ has shape λ and content μ.

3 The first theorem: generators of R(λ,μ)

We will derive an upper bound on the degree in which R(λ,μ) is generated. We
generally follow the method of [16] (also explained in [4]). The idea is to find a
homogeneous system of parameters, together with an upper bound on the a-invariant
of the ring; this yields an upper bound on the degree of a generating set.

We begin by referencing a result of [11] and showing why this implies the ex-
istence of a system of parameters in degree one. First we must introduce the no-
tion of semistability. Recall that B is the Borel subgroup of SLn(C), and SLn(C)/B

is the flag variety. A function f ∈ Vλ defines a section of the line bundle Lλ :=
SLn(C)×B C → SLn(C)/B , where SLn(C)×B C denotes the quotient of SLn(C)×C

by the equivalence relation (gb, eλ(b)z) ∼ (g, z). The projection Lλ → SLn(C)/B

is given by sending the equivalence class of (g, z) to gB . We define the μ-twisted
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linearization of T on Lλ by t · (g, z) := (t−1g, eμ(t)z). Given f ∈ Vλ, we define a
global section sf of Lλ by sf (gB) = (g, f (g)). The map f �→ sf is an isomorphism
Vλ

∼= �(SLn(C)/B,Lλ). The μ-twisted torus action on Lλ determines an action on
global sections, which coincides with the μ-twisted action on Vλ that we defined
earlier.

A flag gB is semistable if, for some positive integer N , there is a global section
s of LNλ with s(gB) �= 0 that is invariant under the μ-twisted action of T. That is,
gB is semistable if and only if there is an N > 0 and an f ∈ VNλ[Nμ] such that
f (g) �= 0. It was shown in [11] that we may take N = 1. That is, gB is semistable
if and only if there exists an f ∈ Vλ[μ] such that f (g) �= 0. We will use this fact to
show that there is a system of parameters within Vλ[μ] for R(λ,μ).

We now recall some basic facts from commutative algebra. Our main references
on Cohen–Macaulay rings and modules are [1, 15]. Let k be an algebraically closed
field. Suppose that A is a Z≥0-graded finitely-generated k-algebra with A0 = k. Let
m denote the graded ideal generated by the positive degree homogeneous elements
of A. Then m is the unique graded ideal such that all other graded ideals are contained
within it. A homogeneous system of parameters for A is a set of homogeneous ele-
ments x1, . . . , xs such that s is the Krull dimension of A and the ideal (x1, . . . , xs) is
m-primary. By [1, Theorem 1.5.17] we have that x1, . . . , xs is a homogeneous system
of parameters if and only if A is an integral extension of the subalgebra k[x1, . . . , xs],
and that this is the case if and only if A is a finitely-generated k[x1, . . . , xs]-module.

Let the null cone N be the subvariety of points in SpecR(λ) at which all positive-
degree homogeneous elements of R(λ,μ) vanish. The result of [11] translates into
the following:

Proposition 3.1 The elements of Vλ[μ] suffice to cut out the null cone set-
theoretically. That is, N is exactly the set of points at which all elements of Vλ[μ]
vanish.

Now suppose that I ⊂ R(λ) is the ideal of elements vanishing on the null cone.
By the above proposition, I is the radical closure in R(λ) of the ideal generated
by Vλ[μ] ⊂ R(λ). Recall that R(λ,μ) is the ring of polynomials in R(λ) that are
invariant under the μ-twisted action of T. Since T is linearly reductive, there is a
canonical projection π : R(λ) → R(λ,μ), called the Reynolds operator, which is
R(λ,μ)-linear. Following Hilbert (cf. [4, Proposition 3.1]), we have the following
result.

Proposition 3.2 The invariant ring R(λ,μ) is a finitely generated module over the
subalgebra generated by Vλ[μ] ⊂ R(λ,μ).

Proof Let J and S be the ideal and subalgebra, respectively, generated by Vλ[μ] in
R(λ). Then, since I = Rad(J ), we have that Im ⊂ J for some m > 0. Since T is
linearly reductive, the invariant ring R(λ,μ) is finitely generated. Thus, there exist
homogeneous y1, . . . , yt ∈ R(λ,μ) such that y1, . . . , yt generate R(λ,μ). Suppose
that h1, . . . , h� span Vλ[μ]. We have that each ym

i belongs to the ideal J , and so

ym
i = ∑�

j=1 fjhj for some homogeneous fj ∈ R(λ). Now we apply the Reynolds’s
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operator π to obtain ym
i = ∑�

j=1 π(fj )hj . Each coefficient π(fj ) is a homogeneous
invariant of degree less than ym

i . It follows that R(λ,μ) is generated as an S-module
by monomials m = ∏t

i=1 y
ei

i , where each ei < m. There are only a finite number of
such monomials, proving the claim. �

We now have the following (cf. [4, Proposition 3.2]):

Proposition 3.3 The degree-one piece Vλ[μ] of R(λ,μ) contains a homogeneous
system of parameters.

Proof We already know from the previous proposition that R(λ,μ) is a finitely gen-
erated module over the subalgebra S generated by its degree-one piece Vλ[μ]. Let s

be the Krull dimension of R(λ,μ). Note that the Krull dimension of the subring S of
R(λ,μ) is also equal to s, since R(λ,μ) is a finitely generated module over S.

By Noether normalization [7, Theorem 13.3], there exist f1, . . . , fs ∈ Vλ[μ] that
are algebraically independent and such that S is finitely generated over the polyno-
mial subring C[f1, . . . , fs] ⊂ S. (The fi may be taken to be s generic linear combi-
nations of a basis of Vλ[μ].)

Since furthermore R(λ,μ) is finitely generated over S, we have that R(λ,μ)

is finitely generated over C[f1, . . . , fs]. Finally, we may deduce from the Cayley–
Hamilton theorem [7, Theorem 4.3 and Corollary 4.6] that R(λ,μ) is an integral
extension of C[f1, . . . , fs]. �

Proposition 3.4 The weight ring R(λ,μ) is Cohen–Macaulay.

Proof The argument is the same as that given in [15, Corollary 14.25] to show that
R(λ) is Cohen–Macaulay. We know that R(λ,μ) has a Gröbner degeneration to a
semigroup algebra of Gelfand–Tsetlin patterns (see Sect. 4). Such semigroup alge-
bras are the invariant subrings of polynomial rings by the action of a torus (cf. [5]).
By the theorem of Hochster [10], the subring of torus invariants in a polynomial ring
is Cohen–Macaulay. A general principle regarding Gröbner degenerations is that any
good property of the special fiber is shared by the general fiber. This is true in partic-
ular for the Cohen–Macaulay property [15, Corollary 8.31]. �

Proposition 3.5 If f1, . . . , fs is a homogeneous system of parameters for R(λ,μ),
then R(λ,μ) is a free C[f1, . . . , fs]-module.

Proof Since f1, . . . , fs are algebraically independent, the ring C[f1, . . . , fs] is regu-
lar, and so this proposition follows from [1, Proposition 2.2.11]. �

For a graded module M , let H(M; t) := ∑∞
d=0 dim(Md)td denote the Hilbert se-

ries of M . It is well known that, if M is finitely generated, then H(M; t) is a rational
function in t . Let a(M) be the degree of H(M; t) as a rational function. The number
a(M) is called the a-invariant of M .

Fix a homogeneous system of parameters f1, . . . , fs ∈ Vλ[μ] for R(λ,μ). Let
S = C[f1, . . . , fs] be the subalgebra generated by the fi . For brevity of notation, we
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will write R := R(λ,μ). Let f denote the s-tuple f1, . . . , fs . By Theorems 13.37(5)
and 13.37(6) of [15], R is a free S-module, and

H(R/fR; t) = H(R; t)(1 − t)s .

But we can easily compute H(R/fR; t). Suppose that R = Sy1 ⊕ · · · ⊕ Sym. Let
k := maxj (degyj ). Now, H(R/fR; t) is the polynomial p(t) = ∑k

i=0 hdtd , where hd

is the number of yj such that degyj = d . Therefore, we have proved the following.

Proposition 3.6 The ring R(λ,μ) is generated in degree ≤k = dimR(λ,μ) +
a(R(λ,μ)).

Proposition 3.7 The a-invariant of R(λ,μ) is negative.

Proof Let R := R(λ,μ). The dimension of the d th graded piece Rd of R is equal to
the number of semistandard tableaux of shape dλ and content dμ; this coincides with
the number of integer lattice points in the d th dilate of the rational polytope GT(λ,μ)

(see Definition 4.1 below). As a result of the theory of lattice point enumeration for
rational polytopes (see, e.g., [17, Chap. 4]), we may conclude that the Hilbert series
H(R; t) = ∑∞

d=0 f (d)td is a rational function of negative degree. �

Remark 3.8 In fact, in all types, given a pair of weights λ,μ with λ dominant, the
dimension of the dμ-weight space in the irreducible representation Vdλ with highest
weight dλ equals the number of integer lattice points in the d th dilate of a certain
polytope (for example, the string polytope associated with the reduced word for the
longest Weyl element). And so, in all types, the a-invariants of weight rings are neg-
ative.

The above propositions imply our first theorem:

Theorem 3.9 The algebra R(λ,μ) is generated in degree strictly less than the Krull
dimension of R(λ,μ).

Proof This follows immediately from Propositions 3.6 and 3.7. �

Finally, we point out that the Krull dimension of R(λ,μ) is one more than the
dimension of the GIT quotient of the flag variety by T. This is at most the dimension
of the flag variety itself, which is n(n − 1)/2. In the case of n points in projective
space P

m−1, where λ is a multiple of the mth fundamental weight �m for SLn(C),
the Krull dimension of R(λ,μ) is at most n(m − 1) − (m2 − 1) + 1.

4 The toric degeneration to Gelfand–Tsetlin patterns

A Gelfand–Tsetlin pattern, or GT pattern, is a triangular array x = (xij )1≤i≤j≤n of
real numbers satisfying the interlacing inequalities xi,j+1 ≥ xij ≥ xi+1,j+1. We ex-
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press x as a triangular array by arranging the entries as follows:

x1n x2n x3n · · · xnn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x13 x23 x33

x12 x22

x11

Given a semistandard tableaux τ with entries from 1 through n, let τ(j) be the
tableau obtained from τ by deleting all boxes containing indices strictly larger than j .
Hence, τ(n) = τ . Let λ(j) denote the shape of τ(j). One obtains an integral GT pat-
tern x(τ ) = (x(τ )ij )1≤i≤j≤n by letting x(τ)ij = λ(j)i . If τ has shape λ and con-
tent μ = (μ1, . . . ,μn), then the resulting GT pattern x(τ ) has top row λ, and, for
1 ≤ j ≤ n,

j∑

i=1

x(τ)ij = μ1 + · · · + μj .

We denote this assignment by Φ : τ �→ x(τ ). It is easy to see that it is a bijection from
semistandard tableaux of shape λ and content μ to integral GT patterns with top row
λ and row sums equal to the partial sums of μ. The GT patterns with a fixed integral
top row and fixed integral row sums constitute a rational polytope.

Definition 4.1 The GT polytope GT(λ,μ) is the set of real GT patterns (xij )1≤i≤j≤n

with top row λ and with row sums
∑j

i=1 xij = μ1 + · · · + μj for 1 ≤ j ≤ n.

Let S(λ,μ) denote the graded semigroup of integral GT patterns (under addition)
that lie in GT(Nλ,Nμ) for some nonnegative integer N . Gonciulea and Lakshmibai
have described a Gröbner degeneration of the ring R(λ) = ⊕∞

N=0 VNλ to a semigroup
algebra R′(λ) as the special fiber [9]. It was shown in [14] (and also in [15, Corol-
lary 14.24]) that this semigroup is isomorphic to the semigroup of integral GT pat-
terns with top row Nλ for some nonnegative integer N . This construction also applies
to the subring R(λ,μ) by restricting to T-invariants, as we now describe. See [8] for
details.

The resulting degenerated ring R′(λ,μ) has the same underlying graded vec-
tor space as R(λ,μ). The semistandard tableaux of shape Nλ and content Nμ,
N > 0, index a basis for R′(λ,μ)N . Let b′

τ ∈ R′(λ,μ) denote the basis element
indexed by τ . The basis element b′

τ is the leading term of bτ ∈ R(λ,μ) for a cer-
tain filtration of R(λ,μ) (see [9] and [8, 14]). The filtration has the special property
that, if τ1, τ2 are any two semistandard tableaux and if bτ1bτ2 = ∑

τ cτ bτ , where
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the sum is over semistandard tableaux, then the term bΦ−1(x(τ1)+x(τ2))
appears on

the right-hand side with coefficient equal to 1. Furthermore, all other terms cτ bτ

have strictly smaller filtration level. Thus, in R′(λ,μ), the multiplication rule be-
comes

b′
τ1

b′
τ2

= b′
Φ−1(x(τ1)+x(τ2))

.

Therefore R′(λ,μ) is isomorphic to C[S(λ,μ)], the semigroup algebra of GT pat-
terns under addition of patterns.

Given an m-tuple of rational numbers q1, . . . , qm, define den(q1, . . . , qm) to be
the least positive integer N such that Nqi ∈ Z for each i, 1 ≤ i ≤ m. We call this
the denominator of the m-tuple. Now, if some vertex x of the polytope GT(λ,μ)

has denominator N > 1, then the integer point Nx is an essential generator of
the semigroup C[S(λ,μ)], since x cannot be written as a sum of other integral
patterns in S(λ,μ). In the next section we show the existence of such a vertex
with large denominator for the case where n is a multiple of 3, λ = n

3 �3, and
μ = (1,1, . . . ,1).

5 The second theorem: 3k points on P
2 and a nasty GT pattern

Suppose that n = 3k, where k ≥ 2 is an integer. Let λ = k�3 be a multiple of the third
fundamental weight for SLn(C). Thus, as a partition, λ = (k, k, k,0, . . . ,0) ∈ R

3k .
Now let μ be the “democratic” weight dominated by λ. That is, we represent μ by
the composition (1, . . . ,1) ∈ R

3k . With this choice of λ and μ, the projective variety
ProjR(λ,μ) is the moduli space of equally weighted 3k-tuples of points in projective
space P

2 (see [6] for more details).
We now construct a GT pattern that we claim will be a vertex of GT(λ,μ). Define

the sequences {T (1)
j } and {T (2)

j } by the coupled recurrence relations

T
(1)
0 = k, T

(2)
0 = k − 1/2,

T
(1)
j = T

(2)
j−1 − 1 (j ≥ 1), T

(2)
j = 1

2

(
T

(1)
j + T

(1)
j−1

)
(j ≥ 1).

(5.1)

Solving this system of recurrence relations yields the closed-form expressions

T
(1)
j = k − 2

3
j + 5

9

(−1

2

)j

− 5

9
, (5.2)

T
(2)
j = k − 2

3
j − 5

18

(−1

2

)j

− 2

9
. (5.3)

Let N = k + �k/2� − 2. We will construct a triangular array x by filling in the
entries of x in blocks from the upper left to the lower right using the values T

(1)
j and



246 J Algebr Comb (2011) 34:237–249

T
(2)
j . Begin by filling the entries in the upper left of the triangular array as follows:

x1n x2n x3n

x1,n−1 x2,n−1 x3,n−1

x1,n−2 x2,n−2

x1,n−3

=

k k k

k k k − 1

k k − 1
2

k

We then proceed from the upper left to the lower right of the triangular array by filling
in blocks of entries as follows. For 1 ≤ j ≤ N − 1, let

x3,n−2j

x2,n−2j−1 x3,n−2j−1

x1,n−2j−2 x2,n−2j−2

x1,n−2j−3

=

T
(1)
j

T
(1)
j T

(1)
j

T
(2)
j T

(1)
j

T
(1)
j

If k is even, the final entries at the bottom of the array are filled in as follows:

x34

x23 x33

x12 x22

x11

=

T
(1)
N

T
(1)
N T

(1)
N

2 − T
(1)
N T

(1)
N

1

On the other hand, if k is odd, then the final entries are filled in as follows:

x35

x24 x34

x13 x23 x33

x12 x22

x11

=

T
(1)
N

T
(1)
N T

(1)
N

T
(1)
N T

(1)
N 3 − 2T

(1)
N

T
(1)
N 2 − T

(1)
N

1

All the remaining entries of the triangular array are assigned the value 0.

Proposition 5.1 The triangular array constructed above is a vertex of GT(λ,μ) with
denominator 2N .
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Proof To show that x ∈ GT(λ,μ), we first check that x is a GT-pattern. In this case,
the interlacing inequalities to be verified are

T
(1)
j−1 > T

(1)
j > 0

T
(1)
j−2 > T

(2)
j−1 > T

(1)
j−1

⎫
⎬

⎭
for 2 ≤ j ≤ N ,

T
(1)
N−1 > 2 − T

(1)
N > T

(1)
N

2 − T
(1)
N > 1 > T

(1)
N

⎫
⎬

⎭
if k is even,

T
(1)
N > 3 − 2T

(1)
N > 0

T
(1)
N > 2 − T

(1)
N > 3 − 2T

(1)
N

T
(1)
N > 1 > 2 − T

(1)
N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

if k is odd.

These are all straightforward consequences of the closed-form expressions (5.2)
and (5.3) for T

(1)
j and T

(2)
j , respectively, so x is a GT-pattern. Thus, to show that x ∈

GT(λ,μ), we need only establish that the row-sums of x are correct. This amounts to
showing that

T
(2)
j−1 + T

(1)
j−1 + T

(1)
j = 3k − 2j,

T
(1)
j−1 + 2T

(1)
j = 3k − 2j − 1 (5.4)

for 2 ≤ j ≤ N . These equalities may be shown using induction and the recursive
definition (5.1) of T

(1)
j and T

(2)
j . It is clear from (5.4) that T

(1)
j has denominator 2j

when written as a reduced fraction. Hence, x has denominator 2N , as claimed.
It remains only to show that x is a vertex of GT(λ,μ). We prove this by showing

that, for any triangular array ε, if x ± ε ∈ GT(λ,μ), then ε = 0. This is most easily

Fig. 1 Tiling of x when k is
even



248 J Algebr Comb (2011) 34:237–249

seen by partitioning the entries of x so that entries that are equal and adjacent are
grouped together. Following [3], we call each group of entries in this partition a tile.
See Fig. 1 for a depiction of the case when k is even. Each tile is labeled with the
value shared by the entries that it contains.

Suppose that x ± ε ∈ GT(λ,μ). Note that, after the addition of ±ε, the entries
in each tile must still share a value, and the row-sums must be unchanged [3, The-
orem 1.5]. We prove inductively that the entries in each tile cannot have changed,
proceeding from the upper left to the lower right.

The entries in the tile labeled T
(1)
0 = k cannot have changed because the top row is

fixed. For the same reason, the 0 entries in x are also fixed. Proceeding by induction,
the entries in the tile labeled T

(1)
j cannot have changed because there is a row on

which this is the only tile besides the tile labeled T
(1)
j−1 and the tile of 0s, which have

already been fixed. Hence, the entries in all the tiles labeled T
(1)
j , 0 ≤ j ≤ N , are

fixed under the addition of ±ε. Finally, for 1 ≤ j ≤ N − 1, the tile labeled T
(2)
j lies

on a row in which the other entries (T (1)
j , T

(1)
j+1, and 0) have been shown to be fixed,

so the entry in this tile is also fixed under the addition of ±ε. Therefore, we conclude
that ε = 0, so that x is a vertex, as claimed. �

The following theorem is an immediate consequence.

Theorem 5.2 The Gelfand–Tsetlin algebra R′(k�3,μ) has essential generators of
degree exceeding 2(n/2)−3.
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invaluable advice. We also thank the anonymous referees for several helpful suggestions.

References

1. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics,
vol. 39. Cambridge University Press, Cambridge (1993)

2. Caldero, P.: Toric degenerations of Schubert varieties. Transform. Groups 7(1), 51–60 (2002)
3. De Loera, J.A., McAllister, T.B.: Vertices of Gelfand–Tsetlin polytopes. Discrete Comput. Geom.

32(4), 459–470 (2004)
4. Derksen, H., Kraft, H.: Constructive Invariant Theory, Algèbre non commutative, groupes quantiques

et invariants, Reims, 1995. Sémin. Congr., vol. 2, pp. 221–244. Soc. Math. France, Paris (1997)
5. Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series,

vol. 296. Cambridge University Press, Cambridge (2003)
6. Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions. Astérisque 165, 210

(1988)
7. Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in

Mathematics, vol. 150. Springer, New York (1995)
8. Foth, P., Hu, Y.: Toric Degenerations of Weight Varieties and Applications. Travaux mathématiques.

Fasc. XVI, Trav. Math., XVI, pp. 87–105. Univ. Luxemb., Luxembourg (2005)
9. Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Trans-

form. Groups 1(3), 215–248 (1996)
10. Hochster, M.: Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and poly-

topes. Ann. Math. (2) 96, 318–337 (1972)
11. Howard, B.J.: Matroids and geometric invariant theory of torus actions on flag spaces. J. Algebra

312(1), 527–541 (2007)



J Algebr Comb (2011) 34:237–249 249

12. Howard, B.J., Millson, J., Snowden, A., Vakil, R.: The equations for the moduli space of n points on
the line. Duke Math. J. 146(2), 175–226 (2009). doi:10.1215/0012794-2008-063

13. Knutson, A.: Weight varieties. Ph.D. thesis, Massachusetts Institute of Technology, May 1996
14. Kogan, M., Miller, E.: Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes. Adv.

Math. 193(1), 1–17 (2005)
15. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics,

vol. 227. Springer, New York (2005)
16. Popov, V.L.: Constructive Invariant Theory, Young tableaux and Schur functors in algebra and geom-
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