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Abstract The Moore bipartite bound represents an upper bound on the order of a
bipartite graph of maximum degree A and diameter D. Bipartite graphs of maximum
degree A, diameter D and order equal to the Moore bipartite bound are called Moore
bipartite graphs. Such bipartite graphs exist only if D =2,3,4 and 6, and for D =
3,4, 6, they have been constructed only for those values of A such that A —1is a
prime power.

The scarcity of Moore bipartite graphs, together with the applications of such large
topologies in the design of interconnection networks, prompted us to investigate what
happens when the order of bipartite graphs misses the Moore bipartite bound by a
small number of vertices. In this direction the first class of graphs to be studied is
naturally the class of bipartite graphs of maximum degree A, diameter D, and two
vertices less than the Moore bipartite bound (defect 2), that is, bipartite (A, D, —2)-
graphs.

For A > 3 bipartite (A, 2, —2)-graphs are the complete bipartite graphs with par-
tite sets of orders A and A — 2. In this paper we consider bipartite (A, D, —2)-
graphs for A > 3 and D > 3. Some necessary conditions for the existence of bipartite
(A, 3, —2)-graphs for A > 3 are already known, as well as the non-existence of bi-
partite (A, D, —2)-graphs with A >3 and D =4, 5, 6, 8. Furthermore, it had been
conjectured that bipartite (A, D, —2)-graphs for A > 3 and D > 4 do not exist. Here,
using graph spectra techniques, we completely settle this conjecture by proving the
non-existence of bipartite (A, D, —2)-graphs for all A >3 and all D > 6.
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1 Introduction

The ever increasing need for the design of interconnection networks has motivated the
study of large graphs of given maximum degree and diameter. While the modelling
of a network by such graphs does not take into account implementation factors of
the network, it does provide an effective means of abstraction to study many relevant
network properties [6, 9, 12, 19, 20].

Since the features of an interconnection network depend considerably on the par-
ticular application, it is then understandable that many interpretations about the “op-
timality” of a network coexist. One possible interpretation is presented as follows;
see [9, p. 18], [12, p. 168], and [19, p. 91].

An optimal network contains the maximum possible number of nodes, given
a limit on the number of connections attached to a node and a limit on the
diameter of the network.

This interpretation is encapsulated by the so-called degree/diameter problem [15],
which can be stated as follows.

Degree/diameter problem: Given natural numbers A > 2 and D > 2, find the
largest possible number N4 p of vertices in a graph of maximum degree A and
diameter D.

It is known that the Moore bound M 4 p, defined below, provides an upper bound
for Na,p. Regular graphs of degree A, diameter D and order M 4 p are called Moore
graphs. Non-trivial Moore graphs (that is, those with A > 3 and D > 2) exist only
for diameter 2, in which case their degree is 2, 3, 7 or possibly 57; see [15].

[y Y CE i S )
2D +1 itA=2

Ma,p=

In the design of interconnection networks with bidirectional communication chan-
nels, networks subject to further topological restrictions have been also widely con-
sidered, for instance, planar networks and bipartite networks [6, 19]. Planar graphs
are universally used as topologies in the design of printed circuits, such as VLSI cir-
cuits [19, 20], while bipartite graphs model several interconnection networks, such
as the mesh and the hypercube [9, 19]. In this paper, henceforth we consider bipartite
networks.

It is not difficult to see that the degree/diameter problem can be reformulated to
consider only graphs of a given class. For instance, the degree/diameter problem for
bipartite graphs [15] can be stated as follows.

Degree/diameter problem for bipartite graphs: Given natural numbers A > 2
and D > 2, find the largest possible number N Z’ p of vertices in a bipartite
graph of maximum degree A and diameter D.

It is straightforward to verify that N g! p is well defined for A >2 and D > 2.
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Similar to the general case of the Moore bound, an upper bound for N Z, p s given
by the Moore bipartite bound, which is denoted by M g’ p and is defined below.

MZ,D=1+A+A(A—1)+---—|-A(A_1)D—2+(A_1)D—1
=21+ A -1+ +@A-D"

28-D7-1 fAs2
2D itA=2

A bipartite graph of maximum degree A, diameter D and order M Z’ p is called a
Moore bipartite graph. Moore bipartite graphs are necessarily regular of degree A,
and have turned out to be very rare. They exist only when the diameter is 2, 3, 4 or 6
[15, 17], and in the cases of D = 3,4 and 6, they have been produced only for those
values of A such that A — 1 is a prime power [3, 15].

With the exception of Néj,s = Mé”s — 6, settled in [13], the other known values of

N z’ p are those for which there is a Moore bipartite graph.

In this context it is natural to investigate what happens when the order of bipartite
graphs misses the Moore bipartite bound by a small number of vertices. So we are
prompted to consider bipartite graphs of maximum degree A, diameter D and order
MZ’D — €, that is, bipartite (A, D, —e)-graphs, where the parameter € is called the
defect.

Conditions for € under which a bipartite (A, D, —e)-graph must be regular of
degree A were established in [8], and one of them is stated below.

Proposition 1.1 [8] Fore <14+ (A—1)+A—-1)*+---+(A—-1D)P2 A>3 and
D > 3, a bipartite (A, D, —e€)-graph is regular.

By Proposition 1.1, a bipartite (A, D, —1)-graph with A >3 and D > 3 must
be regular, implying its two partite sets have the same number of vertices, which is
impossible because MZ, p — 1 is odd. Thus, there is no bipartite (A, D, —1)-graph
with A>3 and D > 3.

In this paper we analyze the case of defect 2. Since bipartite (2, D, —2)-graphs
must be paths of length 2D — 3, with the exception of D = 3 they clearly do not exist
for D > 2. In the case of D = 3 the path of length 3 is the only such graph.

When A > 3, bipartite (A, 2, —2)-graphs need not be regular; they are the com-
plete bipartite graphs with partite sets of orders A and A —2. In the following, assume
A>3and D > 3.

Concerning bipartite (A, D, —2)-graphs, the paper [8] considered bipartite
(A, 3, —2)-graphs, deriving some necessary conditions for their existence, and prov-
ing the uniqueness of the two known bipartite (A, 3, —2)-graphs (both graphs are
depicted in Fig. 1). Results about bipartite (A, D, —2)-graphs for A >3 and D > 4
were first obtained in [7], where it was proved that the eigenvalues other than +A
of such graphs are the roots of the polynomials Hp_1(x) £ 1, with Hp_1(x) being
the Dickson polynomial of the second kind with parameter A — 1 and degree D — 1
[14]. Moreover, [7] provided some necessary conditions for the existence of bipar-
tite (A, D, —2)-graphs, ruled out the existence of bipartite (A, D, —2)-graphs for all
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(a)

Fig. 1 Two known bipartite (A, D, —2)-graphs for A > 3 and D > 3, the unique bipartite
(3,3, —2)-graph (a) and the unique bipartite (4, 3, —2)-graph (b)

A>3 and D =4,5,6 and 8, and conjectured that bipartite (A, D, —2)-graphs for
all A >3 and all D > 4 do not exist.

This paper is a follow-up of [7]. Here we prove the aforementioned conjecture
by settling the non-existence of bipartite (A, D, —2)-graphs for all A > 3 and all
D > 6. In our proof we are influenced by the reasoning used in the proofs of the
non-existence of Moore graphs for A > 3 and D > 3 [1], the non-existence of
regular graphs of degree A > 3, even girth g > 8 and order Mgﬁ o T 2 [5], and
the non-existence of regular graphs of degree A > 3, odd girth g > 5 and order
M4 (g—1)/2 + 1 [2]. We first prove that the multiplicities of the eigenvalues of a hypo-
thetical graph satisfy certain inequalities, and based on these inequalities, we derive
that certain sums of two eigenvalues must be integer. But, from another point of view,
we can prove that those sums must be in the open interval (0, 1), and thus arriving at
a contradiction.

As a consequence, for A >3 and D > 4 whenever there exists no Moore bipartite
graph, it follows that N4 |, <M’ | —4.

It is worth acknowledging that some of the computations in the paper were per-
formed with the help of the software Wolfram Mathematica® [18].

2 Preliminaries

The terminology used in this paper is standard and consistent with that employed
in [4].

The set of edges in a graph I” joining a vertex x in X C V(I") to a vertex y in
Y CV(I')isdenoted by E(X,Y).

Let I" be a bipartite graph of diameter D, and uv an edge of I". Also, for 0 <i <
D — 1 define the sets U; and V; as follows:

Ui ={z e V(D)ld(u,2) =i,d(v,2) =i + 1}
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Vi ={ze VIld(v,2) =i,d(u,2) =i + 1}

The decomposition of I" into the sets U; and V; is called the standard decomposition
for a graph of even girth with respect to the edge uv [5].

Since I” is bipartite, the sets U; and V; are disjoint for 0 <i < D — 1.

From now on, I" denotes a bipartite (A, D, —2)-graph for A>3 and D >3, n =
M Z’ p — 2 denotes its order, and A denotes its adjacency matrix. By Proposition 1.1,
I is regular of degree A. Considering the girth of I", denoted g(I"), it is known that
a graph of degree A and girth 2D has order at least M Z’ p [4, Proposition 23.1(2)],
so g(I') <2D — 2. But, if g(I") < 2D — 4 then the order of I" would be at most
MZ’D —2(A — 1) — 2, a contradiction. Therefore, g(I") =2D — 2.

Proposition 2.1 Every vertex u of I' is contained in exactly one cycle C,, of length
2D —2.

Proof Consider the standard decomposition for I" with respect to the edge uv.
Suppose that there are at least two edges joining vertices at Up_» to vertices at
Vp_a, thatis, |E(Up—2, Vp—2)| > 2. In such a case, |Up_1| < (A — 1)P~1 —2 and
|[Vp_1] < (A — 1)P=1 — 2. Therefore,

D—-1 D—-1
VD) =D 1U1+ ) Vil
=0 =0

<214+ A=)+ A=1)2 4 +(A—1P?)
+2((a-DP -2

=21+ (A= D)+ (A—12+ -+ (A-1P) -4

=M} p—4

which is a contradiction. Consequently, 0 < |E(Up—_2, Vp_2)| < 1.

Suppose |E(Up_2, Vp_2)| = 1. Then, since |Up_i| = (A — DP~1 — 1 and
|Vp_1] = (A — 1)P~1 — 1, we obtain our unique cycle C,,.

Suppose |E(Xp_2,Yp_2)| = 0. Then, since |Up_i| = (A — DP~! — 1 and
[Vp_i| = (A — 1)P~1 — 1, there must exist exactly one vertex x € Up_1 such that
|E({x}, Up—2)| =2, and exactly one vertex y € Vp_1 such that |E({y}, Vp_2)| =2.
This argument shows the existence of the unique cycle C,,, which contains # and x. [J

We call the unique vertex on C,, at distance D — 1 from u the repeat of u, and we
denote it by rep(u). From now on set r = @ =D-—1.
Therefore, we have the following lemma.

Lemma 2.1 [7] If a bipartite (A, D, —2)-graph exists, then (2D — 2) divides its
order n.

The fact that rep is an automorphism of I" was proved in [8]. The permutation

matrix associated with rep is called the defect matrix of I' and plays an important
role in the study of the structure of I" (see [7]).
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In [7] it was proved that the eigenvalues of I", other than £ A, satisfy (1).

Theorem 2.1 [7] If 6 (£ £A) is an eigenvalue of the adjacency matrix A of I, then
Hy(0) —e=0 ()
where ¢ = +1.

The polynomials H,(x) satisfy Recurrence Equation (2) [7, 17], and as noted
in [7], they are the Dickson polynomials of the second kind with parameter A — 1
and degree r [14].

Ho(x) =1
Hi(x)=x (2)
Hit1(x) =xH;i(x) —(A—-1H;_(x) fori=>1

The roots of H,(x), obtained in [17], are 2/ A =1cos % fori=1,...,r. This
result suggests setting x = —24/A — 1 cosg, 0 < ¢ < 7, in H,(x), from which we
obtain
Lsin(r + e

sin g

Hy(x) = (—s) , withs=+vA—-1 3)
For the rest of the paper let s = /A — 1.

Now we make the change of variable ¢ = Z-¢

as suggested in [2, 5]. Then, by

r+1 >
using (3), equation (1) transforms into the following function in «.
i '
sina — ;5" sin(l a) =0, where n; =e(—1)" ! “)
r+1

We note that the polynomial H,(x) equals the polynomial E,1(x) (Eo(x) =0,
Eix)=1land Ej41(x) =xEi(x) —(A—1DE;_1(x) fori > 1) from [5, p. 4]. There-
fore, by substituting r for r 4+ 1 in Lemma 3.3 from [5], we obtain the following result
(the bounds for « are derived from the proof of Lemma 3.3).

Lemma 2.2 (Modification of Lemma 3.3 from [5]) For either value of €, (1) has r

distinct roots 0 < 6 < --- < 0, with 0; = —2scos¢; (0 < ¢; < 7). Furthermore, if
we set ¢; = S+ then
0<oz,-<min{s"<pi,s_’(7r—g0i)} ifni=1

max{—s"g;, —s (T —@i)} <ai <0 ifni=—1

and consequently

im im . 1
— <y < ifn =
rrltsr T rxn YT
im im

7 _— ] :—1
P T s g if ni
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By Theorem 2.1 and Lemma 2.2, it follows that the polynomial
¥ (x) = (x* = A%)(He (x) — 1) (H, (x) + 1)

has only simple roots and is a multiple of the minimal polynomial of I".
From (2) and (3) we obtain the following assertion.

Proposition 2.2 The roots of the polynomial ¥ (x) = (x% — A?)(H, (x) — 1) (H, (x) +
1) are symmetric with respect to 0, that is, 0 is a root of W (x) if, and only if, —0 is a

root of ¥ (x).

Proof Suppose r is even. Then, from (2) and (3) it follows that H,(—x) = H,(x),
that is, 8 is a root of H,(x) — ¢ if, and only if, —0 is a root of H,(x) — &, where
e==+l.

Suppose r is odd. Then, from (2) and (3) it follows that H,(—x) = — H,-(x), that
is, 6 is aroot of H, (x) — ¢ if, and only if, —6 is a root of H,(x) + ¢, where e = £1.

3 Multiplicities of eigenvalues

In this section we compute the multiplicities of the eigenvalues different from +A
of I'. First some lemmas and some definitions are needed.

Lemma 3.1 (Lemma 3.4 from [10]) Let 6 be a simple root of the polynomial f(x),
and put fp(x) = )J:(_Xe) If M is a matrix satisfying f(M) = 0 then % is the
multiplicity of 6 as an eigenvalue of M, and so is rational, where tr(M) stands for

the trace of M.

Let G be a Moore bipartite graph of degree A and diameter D (and of girth 2D),
and let Bp be the (D + 1) x (D + 1) intersection matrix of G. Then, the matrix Bp
is defined as follows; see [4, p. 182].

0 1
A 0 1 0
A—1 1
A-1 0 1
Bp =
. . 1
0 A—1 0 A
A-1 0

Let Tx denote the infinite A-regular tree, and for a graph G and a vertex u of G,
denote by Ng (1) the number of closed walks of length g starting at u. Also, let
(B);,; denote the entry (i, j) in the matrix B.
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Lemma 3.2 (Corollary of Proposition 21.2 from [4]) Let G be a Moore bipartite
graph of degree A and diameter D (and of girth 2D). Then, G has D + 1 distinct
eigenvalues, which are the eigenvalues of the matrix Bp of G.

Lemma 3.3 [11] In a A-regular graph G the number Ng (u) of closed walks of
length q < g(G) starting (and ending) at any vertex u of G equals the number N;A (u)
of such walks starting (and ending) at any vertex u of the infinite A-regular tree.
Furthermore, the entry (B?@ : )o,0 gives this number.

Recall that the number of closed walks of length ¢ in I is given by tr(.A49).

Observation 3.1 Let u be a vertex of I'. Since g(I") = 2r, in I" the number quw (n)
of closed walks of length q (¢ =1, ..., 2r — 1) starting at u is the same as the number
N?A () of closed walks of length q (¢ =1, ...,2r — 1) starting at u in the infinite
A-regular tree Ty rooted at u. By Lemma 3.3, N?A () = (B;’H)o,o.

Furthermore, as I' is bipartite, I' contains no closed walk of odd length, assertion

that is also true in Tx.
Thus, it follows that tr(A9) = n(BfH)o,ofor g=1,...,2r—1,2r +1.

Theorem 3.1 The multiplicity m(6) of 0, 0 # L+ A, as an eigenvalue of I' is

g _MAA=DH_10) né S
O = oA =67 | sHI@)(A? 62 ©)

where H/(x) is the derivative of Hy(x), ¢ = £1 and H,(#) — & =0.

Proof To compute the multiplicity of an eigenvalue 6 of I", we follow the method
suggested in [2]. Consider ¥ (x) = (x2— A%)(H,(x) = 1)(H,(x)+1) and set Yy (x) =
%. Then, as ¥ (A) =0, by Lemma 3.1 m(6) = %.

As deg(H,(x)) =r, deg(¥p(x)) =2r + 1, where deg(p(x)) stands for the degree
of the polynomial p(x).

Let us assume that g (x) = xZ T 4 gy X 4+ ...+ ajx + ag. Then, by virtue of
Proposition 2.2 and Viete’s formulae, we obtain that ay, = 6. Furthermore,

tr(we (A)) = tr(,A2’H) + ayr tr(Azr) + -4 artr(A) + ag tr(Z,)

Let now B;j41, for i > 0, be the intersection matrix representing a Moore bipartite
graph of girth 2i + 2 and degree A (in particular, B; = (g 3)).

By Observation 3.1, we have tr(A49) = n(BfH)(),o forg=1,...,2r —1,2r + 1.
Furthermore, since every vertex u of I" is contained in exactly one cycle of length
2r, NF () = N7’ (u) + 2. Thus

(Yo (A) =n((Yo(Br11)) o + 202/
=n((Ve(Br+1))y o +26)
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As (x2 — A?)H, (x) is the minimal polynomial of B, ;| (see [17]), we have

Vo B an) = B =4
0 \Pr4+1) = Br+1_91n

Setting Li11(x) = 2=2% (H; (x) — H;(9)) fori =0, ..., r, we get

B2, , — A%, B2, — A%,
L B — _H.0 r+1 = _¢ r+1
r—H( r—H) +(0) Br+1 — 01, Br+1 — 01,

Therefore, Yo (By+1) = eLr+1(Br+1)-

By using ((x — )y (x)) = (x> — A%)(H?(x) — 1))’, where the prime ’ indicates
the derivative of the corresponding function, we have g (0) = 2¢ H, 0)(62 — A?).
Thus
_ n(Lr11(Br4+1))0,0 no

2H/(0)(02 — A%)  eH/(0)(0? — A?)

We are now interested in finding a recurrence relation for the expression
(Li+1(Bi+1))0,0- In fact

m(d)

¥2 A2
Liti(x) = ﬁ(Hi(x) - Hi(9))
x2— A2
=5 [rHi 1) — (A= DH @)
—(0H;—1(0) — (A— 1) H; 2(9))]
x2— A2
i (xH;—1(x) —6H;_1(0)) — (A= 1)L 1 (x)

W2 A2
— (xHi—1(x) —0H;_1(x)) + 0L;i(x) — (A= DLi_(x)

= (x* = AP Hi_1(x) +0L;i(x) = (A — DLi_1 (x)

Setting x = B;, we have L;11(B;) =60L;(3;) — (A —1)L;_1(5;).

As the Moore bipartite graphs represented by B, 41, B;, Bi_1 have girths 2i + 2, 2i
and 2i — 2, respectively, (B, )o.0 = (B})o.0 = (B}_)o,0 for ¢ =0,...,2i — 3 and
i > 2 (this can be deduced by reasoning as in Observation 3.1).

Since deg(L;1(x)) =i +1, (Li—1(Bi))o,0=(Li—1(Bi-1))o,0 and (L;4+1(B;i+1))0,0
= (Li+1(B;i))o,0-

Thus, (Liy1(Bit1)o,0 = 0(Li(Bi))o,o — (A — D(Li—1(Bi-1))o,0, and setting
li+1 = (Li+1(Bi+1))0.0, we have the desired recurrence relation

Ih=A—A?
liy1=0L; —(A—1)];—; fori>2
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Hence, we obtain that [; ;1 = (A — Az)Hl;] (0) for i > 1, and the theorem follows,
that is,

nAA — 1)Hy—_1(0) né
m(9) = / 202y e f 22 O
2H/(0)(A* —674) eH/(0)(A* —6%)
3.1 Multiplicities as functions of cos ¢
Next we express m(6) with 0 = —2scos@ as a function of cos¢. But before, we

define the following functions f(z) and g(z).

470 -2
fz) = AT a2
AA=DG1 =521 =22 +s57T7) —4s* "z
gx) =

rF+1D/1—s"271—=22) 4572

These functions will receive some attention from now on.
Lemma 3.4 For either value of ¢, if we set 0; = —2scosg; fori =1,...,r then
n
m(6;) = Ef(COS ®i)g(mi cos ;)
where f and g are defined as above.

Proof By (3), we have

dHr(G)% _ i((—s Lsin(r + l)go)
df de¢ de

sin ¢
(—s)" .
= ——((r + 1)cos (r + 1) — cotgsin (r + 1)¢)
sing
dH)(e) ﬂ _ i

We now evaluate L fori=1,...,r.

a0 de M=

d H, () ﬁ(‘ﬂi = in —a,~> = (=s)” ((r + 1)cos(im — ;) — cotg; sin(im —Oli))

dé do r+1 sin @;
—s) (=1 i
= w((r + 1) cosa; + cotg; sinai)
Sin @;
Therefore
—s) (=1 i
H/(6;) = %((;’ + 1) cosa; + cotg; sina;)
2s sin” @;
and by (4), we have
—s) (1)
H(6;) = #((r + 1) cosa; + nis~" cos ¢;) (6)
2s sin“ @;
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Substituting H,—1(6;) = (=)™~ (=1)*1 S0EHD and H/(6;) in (5), we obtain

nsing; A(A —1)sin(¢; + o;) +26in:s' " sing;
(A2 — 91.2) (r + 1) cosa; + n;s~" cos ;

m(6;) =

Since sin (¢; 4+ ;) = sing; (cosa; + 1;s~" cos ;) (by (4)), we have

nsin® ;. A(A — 1)(cosoy + nis ™" cosg;) + 26;n;s1 "

m) = (A2 —62) (r + 1) cosa; + n;s" cos g;

By (4) and Lemma 2.2, as A > 3 and r > 2, it follows that if n; = 1 then 0 <
o < % and that if »; = —1 then —% < a; < 0. Therefore, cosao; > 0, and cosa; =
V1 =572 (1 —cos2 ¢;) by (4).

Consequently

n 4s2(1 — cos? i)
452 (A% — 452 cos? ¢;)

m(0;) =

AA = 1D)(/1 =572 (1 —cos? ¢;) + nis " cos ;) — 4nis> " cos ¢;
X
(r+ 1)\/1 — 572 (1 — cos2 ;) + n;s " cos ¢;

452(1—22)
AZ_45272

and taking f(z) = (as suggested in [2, 5]) and

CAA-D =571 —2) +5772) —4sT' g
r+Dy1T =572 (1 —22) +57'z ’

we obtain the desired formula

g(2)

n
m(6;) = mf(cos @i)8(ni cos ¢;) O

Corollary 3.1 The polynomial ¥ (x) = (x% — A?)(H, (x) — 1)(H, (x) + 1) is the min-
imal polynomial of I

Proof 1t is not difficult to see that for |z| < 1, we have f(z) > 0. To see that g(z) >0
for |z] < 1, we multiply both the numerator and the denominator of g(z) by s”. Then,

AL =DV =57 (1 —22) +2) —4s%z
STr4+1Dy1—s72r(1—=22) 4z
AN DV — 1+ 22+ (AA— 1) —4s?)z
r+ DV —T+22+2
In the last expression of g(z) we can readily see that, for |z| < 1, g(z) > 0.

Therefore, setting 6; = —2s cos¢; withi =1, ..., r for either value of ¢, it follows
that m(6;) > 0. Thus, 6; is an eigenvalue of I". Il

8@
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4 Properties of the functions f and g

In the previous section we expressed the multiplicity of an eigenvalue 6 of I" by
means of certain functions f and g. In this section we obtain several properties and
relationships between these functions.

Lemma 4.1 (See Lemma 3.5 from [5]) For A >3 and |z| < 1 the function f(z) is
even and concave down.

Lemma 4.2 For A >3,r > 5 and |z| < 1, the monotonicity of g(z) behaves as fol-
lows.
(i) For A =3, 4 the function g(z) is monotonic decreasing; and

(1) for A =5 g(z) is monotonic increasing

Proof To prove that g(z) is monotonic increasing (decreasing) for |z| < 1, it suffices
to show that g’(z) is positive (negative) along the interval.

sSTT(=14+s"Y A=A +r)—rA)
VI+s 27 (=14+22) 2+ A +r)s"/1+s72 (=1 +22))?

g =-

From the expression of g’(z), we can verify that g’(z) is negative for A = 3,4 and
r > 5, while it is positive for A > 5 and r > 5. O

Lemma 4.3 [f cos g < —cos¢, and r > 5, the following relationships between the
functions f and g hold.

() If A=3,4 then
f(cos ) - g(cosm)
f(cosg,)  g(cos0)

with the exception of the pairs (A,r) = (3,5), (3,6), (3,7), and (3, 8); and
(i1) if A >S5 then

f(cosgy) _ g(cos0)
f(cosgr) ~ gleos)

Proof Since ¢ € (0, ) and ¢, € (3, 7) by Lemma 2.2, t =7 — ¢, € (0, ) and
T < @ (since cos ¢y < —COS @, = COST).
From the expression of f(cos¢), we have

f(cos¢a) _ f(cos¢a) _q C0S2T — cos2¢2 A2 — 452
f(cosgy) — flcost) 2sin’ 1 A2 — 452 cos? g,

c0s2t—cos2¢;

By the mean value theorem, we have pr=

Consequently

= —sin2y forsome y € (7, ¢2).

cos2t —cos2¢y (o —7)sin2y  2(gp —7)siny cosy

2sin®t sin? T sin® t
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Also,since 0 <t <y <@ < %, we have siny > sint and cos y > cos ¢, and thus

CcoS2T — cos2¢; cos <p2
) 2( $2 — T)
2sin“t nt
By Lemma 22,fori=1,...,r if n; =1 then +1li — <@ < _fl, and ’”1 <
@i < +1 = otherwise. Therefore, in any case
i i
T <Y< =
r+1+s" r+1—s7"
and consequently
n 2 n rmw a(=1+s")
—T= -7 > —-T=—
2 p2 e FHl4s7T  r4l4sT 14+ (1 47r)s"

Furthermore, cos ¢, > cos le% > COS 25” = @ > 41_1 (since r > 5), and since

|sinx| < |x| for all x € R, we have
rmw ol +s")

SINT<T=7 —@, <T — =
r+1+s7 14+{04+r)s"

Therefore
f(cos @) 27(=145") 1+ (14r)s" 4(A2 —4s?)
—_— >
S (cosT) 14+ (1 4r)s") dn(l+s") 4A2—s2
2(—14s") A2 —4
_ g 2D S o

1+s7 4A2 -2
Proof of Claim (i) From the expression of g(z), we obtain
g(=1) 25" (4(r + 1) — rA)
g() (=145 + DA +57) —4)

Therefore, considering (7) and (8), it suffices to show that, for A =3,4 and r > 5,
with the exceptions of the pairs (A, r) = (3, 5), (3, 6), (3,7), and (3, 8), the following
inequality holds:

®)

—14s" A2 — 452 s"A@r+1) —ra)
>
145" 4A2 —s2 7 (=1 +s"(r+ D) (A1 +s") —4)

or equivalently that

—14s" A2 — 452 s"(4(r+1) —rA)
= >
1+s" 4A2—52  (=1+s"(r+ DA +57) —4)

Indeed, using s =+/A — 1, for A =3 and r > 9 we have

—1— (131 +33r)2% — 143.2" — 19,21 + (3 +3r)23’
34(1+27/2) (=1 +3-22) (=1 + (1 +1)27)

h(r) =
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(As the numerator of h(r) is clearly monotonic increasing, with value —248321 +
23891242 >0 atr = 9.) While for A =4 and r > 4 we have

—57 —4r37 — 23315 4 44 4r)3"
- >
61(14+372)(=1+ (1 +71)32)

h(r) = 0

(As the numerator of A (r) is clearly monotonic increasing, with value 798 at r =4.)
Thus we obtain the claim. U

Proof of Claim (ii) It is proved analogously to Claim (i). A complete proof of this
claim can be found in [16, p. 112]. Il

This completes the proof of the lemma. U

5 Main result
In this section we prove the main result of this paper (Theorem 5.1).
Theorem 5.1 Bipartite (A, D, —2)-graphs for A > 3 and D > 6 do not exist.

To prove the theorem we prepare two more lemmas, and some definitions.
Henceforth, let A1 < Ay < --- < A, be the roots of H,.(x) — 1 =0, and let p; <
02 < --- < p be the roots of H,(x) +1=0.

Lemma 5.1 Let Ay, ..., A, and py, ..., pr be defined as above. Then the following
assertions hold for A >3 and r > 5.

(1) If r is even then m(A;) = m(A14r—;) and m(p;) = m(p14+r—i), Whereas if r is
odd then m(\;) = m(p14r—i), for 1 <i <r;and
(ii) If r is even then m(p1) < m(p;), whereas if r is odd then m(A1) < m(};), for
i=2,...,r—1,and any pair (A,r) # (3,5),(3,6), (3,7), (3, 8); and
@iii) m(A,) <m@;) fori=2,...,r—1

Proof Next we prove each claim in order.

Proof of Claim (i) If r is even, it follows that H.(—x) = H,(x) (see (3)) and that
Ai + A4r—i = pi + p1+r—i =0, and thus, by checking (5), m(X;) = m(A{4,—;) and
m(p;) =m(pi4r—;) for 1 <i <r.Ifinstead r is odd, H,(—x) = — H,-(x); therefore,
Ai + p1yr—i =0and m(A;) =m(p14,—;) for 1 <i <r. O

Proof of Claim (ii) In the proof of this claim we consider the trigonometric form of
the multiplicity of an eigenvalue of I (Lemma 3.4).
Assume r is even, ¢ = —1, and p; = —2scosg; fori =1,...,r. Then n; = (—=1)".
By (i), —cos¢; = cosg,. Then, since —cos@; = cosg, < cosg; < cos¢; (for
ie{2,...,r—1}),by Lemma 4.1 we have

f(cosgr) < f(cosg;) fori=2,...,r —1
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First suppose A > 5 and r > 5. Since cos ¢; < | cos ¢1|, we obtain that g(—cos ¢1)
< g(xcosg;) fori =2,...,r — 1 (by Lemma 4.2(ii)), and thus, m(p1) < m(p;).

Suppose A = 3,4 and r > 5. In this case g is monotonic decreasing (by
Lemma 4.2(1)), so we cannot use the same argument as before. Here we also want to
prove

f(cosgi)g(—cosgr) < f(cosgi)g(nicosg;) fori=2,....,r—1
Since cos0 > cos¢; > cos, we have g(cos0) < g(cos¢;) < g(cosm). Then

f(cospr)g(—cosgr) < f(cosgr)g(cosm) and f(cosg;)g(cos0)
< f(cosgi)g(n;cos ;)

Consequently, it suffices to prove that, for any pair (A, r) other than (3, 5), (3, 6),
(3,7),@3,8),

f(cosg;)  g(cosm)
Flcosgr)  g(cos0)

Besides, since f(cosgy) < f(cosg;) fori =2,...,r — 1, we can equivalently prove
that

f(cosgy) — g(cosm)
flcosgy)  g(cos0)

and as cos ¢y < cos@; = —cos@,, such an inequality follows from Lemma 4.3(i).
Therefore, m(p1) < m(p;).

Now assume that r is odd, e = 1, A; = —2scosg;, and p; = —2scoso; for i =
1,...,r. Thenn; = (—1).

Since A1 < A, n;cos@; > —cosg; for n; = —1. Moreover, since r is odd, we
obtain that p; + A14,—; = 0 by virtue of (i). We next prove that n; cos¢; > —cos ¢
for n; = 1. Since cos ¢1 > 0 by Lemma 2.2, we only consider the case of cos¢; < 0.
By Lemma 2.2

im im im i
— <gpgij<—— and — <o <———
r+1+s7 +1 r+1 r+1—s7
As a consequence, ¢; < o;, and since ¢;, o; € (0, ), it follows that cos ¢; > coso;.
Since p, = 2scos @) > p; = —2s coso; > —2s5COS@;, COS®; > —cos ;. That is
—cos@) <cosg; <cosgy fori=2,...,r

Then, by Lemma 4.1, f(cos¢;) < f(cosg;) fori =2,...,r.

First suppose A > 5 and r > 5. By Lemma 4.2(ii), g(—cos¢1) < g(Zcosg;) for
i=2,...,r—1,and thus, m(A) < m(};).

Suppose A =3,4 and r > 5. Since cos0 > cos¢; > cosm, by Lemma 4.2(i) we
have g(cos0) < g(cosg;) < g(cosm). Therefore, as above, we only need to show
that

f(cosg;)  g(cosm)
flcosg)  g(cos0)
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or alternatively, since f(cos¢i) < f(cos¢,) and f(cosgy) < f(cosg;) for i =
2,...,r — 1, that
fleosg)  g(cosm)
flcosg) ~ g(cosO)
Indeed, by (i) we have —cos ¢, = cosoq, and by Lemma 2.2, we have ¢» > o1,

which implies that cos ¢» < coso;. Consequently, the inequality ;Egg: gf; > i, ((Ccilﬁf
follows from Lemma 4.3(i), and thus, m(1;) < m(};). Il

Proof of Claim (iii) It is proved similarly to Claim (ii) using Lemma 4.3(ii). A com-
plete proof of this claim can be found in [16, p. 119]. 0

This completes the proof of the lemma. U

Next we rule out the pairs (A, r) not covered in the previous lemma, that is, (3, 5),
3,6), (3,7) and (3, 8).

Lemma 5.2 There are no bipartite (3, D, —2)-graphs for D =6,7,8,9.

Proof The non-existence of bipartite (3, D, —2)-graphs with D = 6, 8,9 follows
from Lemma 2.1. Indeed, the condition 2(D — 1)|n implies for cubic graphs that
(D — 1)|(2D — 2), and the values 6, 8,9 do not pass the test. To prove the non-
existence of bipartite (3,7, —2)-graphs, we use the fact that the multiplicity of
each eigenvalue of the hypothetical graph must be integer. Set ¢ = 1. For A = 3,
He(0) = —8 + 2467 — 100* + 6°, He(9) — 1 = (-3 4+ 62)(3 — 70> + 6*), H/(0) =
480 — 4003 + 60°, and Hs(0) =0 (12 — 89> + 6*). The order of such a hypothetical
graph is 252. By Theorem 3.1

2520 756(120 — 863 + 6°)

0)=—
m(®) (9 — 62)(480 — 4003 + 60°) + (9 — 62)(486 — 4003 + 60)

Considering the eigenvalue 6 = \/5, we have m(\/g) = ?, a contradiction. Thus,
there are no bipartite (3, 7, —2)-graphs, and the lemma follows. O

Theorem 5.1 Bipartite (A, D, —2)-graphs for A >3 and D > 6 do not exist.

Proof of Theorem 5.1 A proof of the non-existence of bipartite (A, D, —2)-graphs
for all A >3 and D =4, 5 was obtained in [7], so we can assume D =r + 1 > 6. By
Lemma 5.2, we can additionally assume that for A > 3 and r > 5, the pair (A, r) is
different from (3, 5), (3, 6), (3,7) or (3, 8).

Suppose r is odd. By Lemma 5.1(ii) and (iii), we have m(A{) # m(%;) and
m(A,;) # m(};) for i =2,...,r — 1. Therefore, A; and A, are either conjugate
quadratic irrationals or integers,' and thus, A1 + A, € Z.

IRecall that, if a; and « are eigenvalues of a real square matrix A with rational entries, such that o; and
o are algebraic conjugates over Q, then m(¢;) = m(«x i)
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By Lemma 2.2, A1 = —2s cos¢; and A, = —2s cos ¢,, where

b4 b4
P
rm rm
r+1 <¢r<r—|—l—s"
We have A} + A, = —2s(cos ¢ ~|— cosg,). By (9), A1 + A, > —2s(cos =7+
cos T) =0, because 7 — ril = r+1

By Lemma 5.1(1), A, = —p1 < 2sc0s w. Therefore

©)

T T
—— tcos ———
r+1—s7" r+1+s">

1
— 25 —2sin- .
2\r+1+s7" r+1—-s7"
! b4 T
X SIn — +
2\r+1+s7" r4+1—s7

1 T T 1 T T
4s - - = +
2\r+1—s7 r4+14+s7)2\r+14+s7 r+1—s—7"

(as |sinx| < |x|Vx € R)

( T )2 < T )2 72(r + Dstr

=S _— - —F— :4

r+1—s" r+l+s7 (r+1)2—52)2
1

w2+ Ds'™" i+ Ds' w2sl=r

G+ D2—G+D2 " 2e+12 2+ !

Thus, 0 < A1 + A, < 1, a contradiction.
If instead r is even, by Lemma 5.1, we have p; and p, = —p; are either conju-
gate quadratic irrationals or integers. Therefore, ,012 € Z. Analogously, we have )L% =

)L% € Z. Hence, )L% — pf e .

AMAA < 2s<—cos

By Lemma 2.2
b4
—25C0S ————— < A < —2scC08
r+1+4+s" r+1
. (10)
—25cos < p1 < —2scos
r+1 r+1—s—"
Then, as Az > 452 cos? X =T and ,;)1 < 4s%cos? X r+1 , We havezk2 ,012 > 0.

and ,o1 > 452 cos — =, We have

Furthermore, as Az < 452 cos |

r+1+s*’
T b4
)\% — p% < 45| cos? ——— —cos? ———
r+14s" r+1—-s7r"

= 457 SiHZL —SinzL
r+1—s" r+14+s"
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= 4s2( sin id — sin id
r4+1—s7" r4+14s7"

. s . v
X | sin -+ sin
( r+1l—sr" r+1+s">
ws~" a(r+1)
cos
(}, + 1)2 _ S—Zr (r + 1)2 _ s—2r
w(r+1) s~
cos
(r + 1)2 — 52 (V + 1)2 — s 2r
722 r 4 1) x(r+1) s
G+ 12 —s 22 02— 7 P25
(as [sinx| < |x| Vx € R)
722 r 4 1) 722 (r 4+ 1) als 2
16 < = <1
C+D2—s 22" P+ 2=+ D)2 rr+D

= 16s%sin

X sin

< 16

Thus, 0 < )»% — ,0]2 < 1, a contradiction, and the theorem follows. O

6 Conclusions

In this paper we have proved the non-existence of bipartite (A, D, —2)-graphs for all
A >3 and all D > 6, result that, combined with [7], assert that there are no bipar-
tite (A, D, —2)-graphs for all A > 3 and all D > 4. Consequently, the existence or
otherwise of bipartite (A, D, —2)-graphs is open only for D = 3.

Interestingly enough, for a given Ay if the defect €9 = f(Ag) (€p is a function of
Ap, and thus, independent of D) then there exists a constant Dg such that a hypothet-
ical (or real) bipartite (Ao, D, —ep)-graph for D > Dy must be regular. To see this,
consider a bipartite graph A of maximum degree Ay and diameter Dy with a vertex
u of degree at most Ag — 1, and an edge uv of A. Then we use the standard de-
composition for a bipartite graph with respect to an edge uv [5]. For 0 <i < Dg — 1
we count the vertices at distance i from u and at distance i + 1 from v, and the
vertices at distance { from v and at distance i + 1 from u. Then we count at most
TS (Ao, Do) = MZO’DO —(14+(Ag—=1) 4+ (Ag — 1)P0=2) vertices in A.

Therefore, taking Dy as the least number such that M ZO, Dy — €0 > Tob (Ag, Do),
we obtain that any bipartite (Ag, D, —eg)-graph with D > Dy must be regular, and
thus, €p must be even. Therefore, we have proved

Proposition 6.1 For a given Ay and €y = f(Ag) there exists a constant Dy such that
any bipartite (Ao, D, —eg)-graph for D > Dy must be regular, and consequently, €q
must be even.

Then the next interesting case occurs when € = 4. In this case each vertex of I has

two repeats, and consequently, the defect matrix can be considered as a direct sum
of circulant matrices. Therefore, the spectrum of the defect matrix is not specified as
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in the case of defect 2, thereby making it difficult to apply the same approach to this
case.

In general we believe that the following conjecture holds. However, we feel that
to make a breakthrough in its proof or disproof, new techniques are required.

Conjecture 6.1 For a given Ay and € = f(Ag) there exists a constant D1 > Dy
such that regular bipartite (Ao, D, —€p)-graphs with D > D1 do not exist.

Contributions to the degree/diameter problem for bipartite graphs

For those combinations of A > 3 and D > 4 where the non-existence of Moore bi-
partite graphs of degree A and diameter D is known, we have showed that

b b
Nap=Myp—4
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