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Abstract The de Bruijn–Tengbergen–Kruyswijk (BTK) construction is a simple al-
gorithm that produces an explicit symmetric chain decomposition of a product of
chains. We linearize the BTK algorithm and show that it produces an explicit sym-
metric Jordan basis (SJB). In the special case of a Boolean algebra, the resulting
SJB is orthogonal with respect to the standard inner product and, moreover, we can
write down an explicit formula for the ratio of the lengths of the successive vectors
in these chains (i.e., the singular values). This yields a new constructive proof of
the explicit block diagonalization of the Terwilliger algebra of the binary Hamming
scheme. We also give a representation theoretic characterization of this basis that
explains its orthogonality, namely, that it is the canonically defined (up to scalars)
symmetric Gelfand–Tsetlin basis.

Keywords Symmetric chain decomposition · Gelfand–Tsetlin bases · Symmetric
group · Terwilliger algebra · Explicit block diagonalization

1 Introduction

The de Bruijn–Tengbergen–Kruyswijk (BTK) construction is a simple visual algo-
rithm in matching theory that produces an explicit symmetric chain decomposition of
a (finite) product of (finite) linear orders. We show that the BTK algorithm admits a
simple and natural linear analog. The main purpose of this paper is to study the linear
BTK algorithm as an object in itself. It enables us to explicitly study the up operator
(i.e., the nilpotent operator taking an element to the sum of the elements covering it)
on a product of linear orders by producing an explicit symmetric Jordan basis (SJB).
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In the special case of a Boolean algebra, the resulting SJB is orthogonal with respect
to (wrt) the standard inner product and, moreover, we can write down an explicit for-
mula for the ratio of the lengths of the successive vectors in these chains (i.e., the
singular values). This yields a new constructive proof of the explicit block diagonal-
ization of the Terwilliger algebra of the binary Hamming scheme, recently achieved
by Schrijver. We also give a representation theoretic characterization of this basis that
explains its orthogonality, namely, that it is the canonically defined (up to scalars)
symmetric Gelfand–Tsetlin basis (wrt the up operator on the Boolean algebra).

A (finite) graded poset is a (finite) poset P together with a rank function r : P →
N such that if q covers p in P then r(q) = r(p) + 1. The rank of P is r(P ) =
max {r(p) : p ∈ P } and, for i = 0,1, . . . , r(P ), Pi denotes the set of elements of
P of rank i. A symmetric chain in a graded poset P is a sequence (p1, . . . , ph) of
elements of P such that pi covers pi−1, for i = 2, . . . , h, and r(p1) + r(ph) = r(P ),
if h ≥ 2, or else 2r(p1) = r(P ), if h = 1. A symmetric chain decomposition (SCD)
of a graded poset P is a decomposition of P into pairwise disjoint symmetric chains.

We now define the linear analog of a SCD. For a finite set S, let V (S) denote
the complex vector space with S as basis. Let P be a graded poset with n = r(P ).
Then we have V (P ) = V (P0) ⊕ V (P1) ⊕ · · · ⊕ V (Pn) (vector space direct sum). An
element v ∈ V (P ) is homogeneous if v ∈ V (Pi) for some i, and we extend the notion
of rank to homogeneous elements by writing r(v) = i. A linear map T : V (P ) →
V (P ) is said to be order raising if, for all p ∈ P , T (p) is a linear combination
of the elements covering p (note that this implies that T (p) = 0 for all maximal
elements of P and that T (v) is homogeneous for homogeneous v). The up operator
U : V (P ) → V (P ) is defined, for p ∈ P , by U(p) = ∑

q q , where the sum is over all
q covering p. Let T be an order raising map on a graded poset P . A graded Jordan
chain in V (P ) with respect to T (wrt T for short) is a sequence v = (v1, . . . , vh) of
nonzero homogeneous elements of V (P ) such that T (vi−1) = vi , for i = 2, . . . , h,
and T (vh) = 0 (note that the elements of this sequence are linearly independent,
being nonzero and of different ranks). We say that v starts at rank r(v1) and ends at
rank r(vh). If, in addition, v is symmetric, i.e., r(v1)+ r(vh) = r(P ), if h ≥ 2, or else
2r(v1) = r(P ), if h = 1, we say that v is a symmetric Jordan chain. A graded Jordan
basis of V (P ) wrt T is a basis of V (P ) consisting of a disjoint union of graded
Jordan chains in V (P ) wrt T . If every chain in a graded Jordan basis is symmetric
we speak of a symmetric Jordan basis (SJB) of V (P ) wrt T . When T is the up map
U , we drop the “wrt U” from the notation and speak of a graded Jordan basis/SJB of
V (P ).

Let n be a positive integer and let k1, . . . , kn be nonnegative integers. Define

M(n,k1, . . . , kn) = {
(x1, . . . , xn) ∈ N

n : 0 ≤ xi ≤ ki, for all i
}
,

and partially order it by componentwise ≤. The cardinality of M(n,k1, . . . , kn) is
(k1 + 1) · · · (kn + 1) and the rank of (x1, . . . , xn) is x1 + · · · + xn, so
r(M(n, k1, . . . , kn)) = k1 + · · · + kn. It is easily seen that M(n,k1, . . . , kn) is (order)
isomorphic to a product of n chains of lengths k1, . . . , kn, respectively. Two special
cases of M(n,k1, . . . , kn) are of interest: the uniform case, where k1 = · · · = kn = k

and we write M(n,k) for M(n,k, . . . , k) and the Boolean algebra or set case, where
k1 = · · · = kn = 1 and we write B(n) for M(n,1).
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An algorithm to construct an explicit SCD of M(n,k1, . . . , kn) was given by de
Bruijn, Tengbergen, and Kruyswijk [1, 3, 4]. We call this the BTK algorithm. Canfield
[2], Proctor [11], and Proctor, Saks, and Sturtevant [12] proved the existence of a SJB
of V (M(n, k1, . . . , kn)). These authors work in the more general context of Sperner
theory which we do not need here. An overview of this area is given in Chap. 6 of
Engel’s book [3]. In Sect. 3, we present a linear analog of the BTK algorithm and
prove the following result.

Theorem 1.1 For a positive integer n and nonnegative integers k1, . . . , kn, the lin-
ear BTK algorithm constructs an explicit SJB of V (M(n, k1, . . . , kn)). The vec-
tors in this basis have integral coefficients when expressed in the standard basis
M(n,k1, . . . , kn).

When applied to the Boolean algebra B(n), the linear BTK algorithm has proper-
ties that go well beyond producing an SJB of V (B(n)). We now discuss this. Perhaps
the linear BTK algorithm (or a variant) has interesting properties also in the general
case, but we are unable to say anything on this point here.

When the linear BTK algorithm is run on B(n), the resulting SJBs are all orthog-
onal wrt the standard inner product on B(n). Moreover, any two symmetric Jordan
chains starting at rank k and ending at rank n − k “look alike” in the sense made pre-
cise in the following result. Let 〈·, ·〉 denote the standard inner product on V (B(n)),
i.e., 〈X,Y 〉 = δ(X,Y ) (Kronecker delta) for X,Y ∈ B(n). The length

√〈v, v〉 of
v ∈ V (B(n)) is denoted ‖v‖. The following result is proved in Sect. 3. (In the for-
mulation below, item (ii) is clearly implied by item (iii) but for convenience of later
reference we have spelt out item (ii) explicitly.)

Theorem 1.2 Let O(n) be the SJB produced by the linear BTK algorithm when ap-
plied to B(n).

(i) The elements of O(n) are orthogonal with respect to 〈·, ·〉.
(ii) Let 0 ≤ k ≤ �n/2� and let (xk, . . . , xn−k) and (yk, . . . , yn−k) be any two sym-

metric Jordan chains in O(n) starting at rank k and ending at rank n − k. Then

‖xu+1‖
‖xu‖ = ‖yu+1‖

‖yu‖ , k ≤ u < n − k.

(iii) In the notation of part (ii) we have, for k ≤ u < n − k,

‖xu+1‖
‖xu‖ = √

(u + 1 − k)(n − k − u) (1)

= (n − k − u)

(
n − 2k

u − k

) 1
2
(

n − 2k

u + 1 − k

)− 1
2

. (2)

In a recent breakthrough, Schrijver [13] obtained new polynomial time computable
upper bounds on binary code size using semidefinite programming and the Ter-
williger algebra (this approach was later extended to nonbinary codes in [7]). There
are two main steps involved here. The first is to (upper) bound binary code size by
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the optimal value of an exponential size semidefinite program, and the second is to
reduce the semidefinite program to polynomial size by explicitly block diagonalizing
the Terwilliger algebra. For background on coding theory, we refer to [7, 13]. In this
paper, we consider the second step. Theorem 1.2 contains most of the information
necessary to explicitly block-diagonalize the Terwilliger algebra of the binary Ham-
ming scheme. We show this in Sect. 2. Here we would like to add a few remarks about
the present proof of explicit block diagonalization. There are two proofs available for
this result: the linear-algebraic proof of Schrijver and the representation-theoretic
proof of Vallentin [16] based on the work of Dunkl [5, 6]. Our proof can be seen
as a constructive version of Schrijver’s proof that also has representation-theoretic
meaning (see Theorem 1.3 below). The basic pattern of the proof is the same as in
[13]. Given Theorem 1.2, the rest of the proof is a binomial inversion argument from
[13]. On the other hand, though not explicitly stated in this form in [13], the exis-
tence of a SJB of V (B(n)) satisfying (i), (ii), and (iii) of Theorem 1.2 easily follows
from the results in [13]. So the new ingredient here is the explicit construction of the
SJB O(n) and its representation-theoretic characterization in Theorem 1.3 below. We
remark here that this explicit construction is primarily of mathematical interest and
is not important from the complexity point of view since even to write down O(n)

takes exponential time. We rewrite (1) as (2) so that the final formula for the block
diagonalization turns out to equal Schrijver’s which is in a very convenient form with
respect to the location of square roots (see Theorem 2.2).

Our proof of Theorem 1.2 is self-contained and elementary, but more insight into
the result is obtained by using a bit of representation theory. We first give a short
proof, due to Go [8], of the existence of a SJB of V (B(n)) satisfying (i) and (iii) of
Theorem 1.2 by using the representation theory of the Lie algebra sl(2,C).

Define the down operator D on V (B(n)) analogous to the up operator and define
the operator H on V (B(n)) by H(vi) = (2i −n)vi, vi ∈ V (B(n)i), i = 0,1, . . . , n. It
is easy to check that [H,U ] = 2U , [H,D] = −2D, and [U,D] = H . Thus the linear
map sl(2,C) → gl(V (B(n))) given by

(
0 1
0 0

)

→ U,

(
0 0
1 0

)

→ D,

(
1 0
0 −1

)

→ H

is a representation of sl(2,C). Decompose V (B(n)) into irreducible sl(2,C)-
submodules and let W be an irreducible in this decomposition with dimension l + 1.
It follows from the representation theory of sl(2,C) (see Sect. 2.3.1 in [9]) that there
exists a basis {v0, v1, . . . , vl} of W such that, for i = 0,1, . . . , l, we have (below we
take v−1 = vl+1 = 0)

U(vi) = vi+1, D(vi) = i(l − i + 1)vi−1, H(vi) = (2i − l)vi . (3)

So the eigenvalues of H on v0, v1, . . . , vl are −l,−l + 2, . . . , l − 2, l, respectively.
It now follows from the definition of H that each vi is homogeneous and that
(v0, . . . , vl) is a symmetric Jordan chain in V (B(n)). Thus there exists a SJB of
V (B(n)). Note also that the basis {v0, . . . , vl} of W is canonically determined (up
to a common scalar multiple) since the eigenvalues of the vi on H are distinct. Let
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r(v0) = k and put xj = vj−k, k ≤ j ≤ n−k. The symmetric Jordan chain (v0, . . . , vl)

now gets rewritten as (xk, . . . , xn−k) and (3) becomes, for k ≤ u ≤ n − k,

U(xu) = xu+1, D(xu) = (u − k)(n − k − u + 1)xu−1. (4)

Now observe that U∗ = D and H ∗ = H (∗ = conjugate transpose). It thus fol-
lows that, with respect to the standard inner product, V (B(n)) is an orthogonal di-
rect sum of irreducible sl(2,C)-modules. Thus there exists an orthogonal SJB J (n)

of V (B(n)). Normalize J (n) to get an orthonormal basis J ′(n) of V (B(n)). Let
(xk, . . . , xn−k), xu ∈ V (B(n)u)) for all u be a symmetric Jordan chain in J (n). Put
x′
u = xu‖xu‖ and αu = ‖xu+1‖

‖xu‖ , k ≤ u ≤ n − k (we take xk−1 = xn−k+1 = 0). We have,
for k ≤ u ≤ n − k,

U(x′
u) = U(xu)

‖xu‖ = xu+1

‖xu‖ = αux
′
u+1. (5)

Since U∗ = D and J ′(n) is orthonormal wrt the standard inner product, it follows
that the matrices of U and D, in the basis J ′(n), must be adjoints of each other. Thus
we must have, using (5), D(x′

u+1) = αux
′
u. We now have, using (4),

DU(x′
u) = α2

ux
′
u = (u + 1 − k)(n − k − u)x′

u

and thus αu = √
(u + 1 − k)(n − k − u).

Using the representation theory of the symmetric group Sn, we can give a charac-
terization of O(n) among all SJBs satisfying Theorem 1.2. Consider an irreducible
Sn-module V . By the branching rule, the decomposition of V into irreducible Sn−1-
modules is multiplicity free and is therefore canonical. Each of these modules, in
turn, decomposes canonically into irreducible Sn−2-modules. Iterating this construc-
tion we get a canonical decomposition of V into irreducible S1-modules, i.e., one-
dimensional subspaces. Thus, there is a canonical basis of V , determined up to
scalars, and called the Gelfand–Tsetlin or Young basis (GZ-basis) (see [17]). Note
that the GZ-basis is orthogonal wrt any Sn-invariant inner product on V (since V

is irreducible, such an inner product is unique up to scalars). We now observe the
following:

(i) If f : V → W is an Sn-linear isomorphism between irreducibles V,W then the
GZ-basis of V goes to the GZ-basis of W .

(ii) Let V be an Sn-module whose decomposition into irreducibles is multiplicity
free. By the GZ-basis of V we mean the union of the GZ-bases of the various
irreducibles occurring in the (canonical) decomposition of V into irreducibles.
Then the GZ-basis of V is orthogonal wrt any Sn-invariant inner product on V .

Now consider the substitution action of Sn on B(n) and the corresponding per-
mutation representation V (B(n)). It is well known that, for all k, the Sn-submodule
V (B(n)k) is multiplicity free (see [10]). Since U is Sn-linear and there exists an
SJB of V (B(n)), it now follows from points (i) and (ii) above that there is a canon-
ically defined orthogonal SJB of V (B(n)) (up to a common scalar multiple on each
symmetric Jordan chain) that consists of the union of the GZ-bases of V (B(n)k),



306 J Algebr Comb (2011) 34:301–322

0 ≤ k ≤ n. We call this basis the symmetric Gelfand–Tsetlin basis of V (B(n)). We
prove the following result in Sect. 4.

Theorem 1.3 The SJB O(n), produced by the linear BTK algorithm when applied to
the Boolean algebra B(n), is the symmetric Gelfand–Tsetlin basis of V (B(n)).

In Example 3.4 in Sect. 3, we write down the symmetric Gelfand–Tsetlin bases of
V (B(n)) for n = 1,2,3,4.

2 Terwilliger algebra of the binary Hamming scheme

The Terwilliger algebra was introduced in [15] in the general context of association
schemes and the binary Hamming case was further studied by Go [8]. The Terwilliger
algebra of the binary Hamming scheme, denoted Tn, is well known to equal the com-
mutant of the Sn action on B(n), i.e., Tn = EndSn(V (B(n))) (in this definition, the
order structure on B(n) is irrelevant) and we shall work with this characterization. In
this section, we explicitly block-diagonalize Tn. It is convenient to think of B(n) as
the poset of subsets of the set {1,2, . . . , n}.

Being the commutant of a finite group action, Tn is a C∗-algebra. Note that Tn is
noncommutative (since, for example, the trivial representation occurs at every rank
and thus more than once). Let us first describe Tn in matrix terms. We represent
elements of End(V (B(n))) (in the standard basis) as B(n)×B(n) matrices (we think
of elements of V (B(n)) as column vectors with coordinates indexed by B(n)). For
X,Y ∈ B(n), the entry in row X, column Y of a matrix M will be denoted M(X,Y ).
The matrix corresponding to f ∈ End(V (B(n))) is denoted Mf .

Lemma 2.1 Let f : V (B(n)) → V (B(n)) be a linear map. Then f is Sn-linear if
and only if

Mf (X,Y ) = Mf

(
π(X),π(Y )

)
, for all X,Y ∈ B(n), π ∈ Sn.

Proof (only if) For Y ∈ B(n) we have f (Y ) = ∑
X∈B(n) Mf (X,Y )X. Since f is Sn-

linear, we now have, for π ∈ Sn,

∑

X∈B(n)

Mf

(
X,π(Y )

)
X = f

(
π(Y )

) = π
(
f (Y )

) =
∑

X∈B(n)

Mf (X,Y )π(X).

It follows that Mf (X,π(Y )) = Mf (π−1(X),Y ). Thus we have Mf (π(X),π(Y )) =
Mf (X,Y ).
(if) Similar to the “only if” part. �

Define An to be the set of all B(n) × B(n) complex matrices M satisfy-
ing M(X,Y ) = M(π(X),π(Y )), for all X,Y ∈ B(n), π ∈ Sn. It follows from
Lemma 2.1 that An is a C∗-algebra of matrices isomorphic to Tn. We can easily
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determine its dimension. For nonnegative integers i, j, t, let Mt
i,j be the B(n)×B(n)

matrix given by

Mt
i,j (X,Y ) =

{
1 if |X| = i, |Y | = j, |X ∩ Y | = t,

0 otherwise.

Given (X,Y ), (X′, Y ′) ∈ B(n) × B(n), there exists π ∈ Sn with π(X) = X′, π(Y ) =
Y ′ if and only if |X| = |X′|, |Y | = |Y ′|, and |X ∩ Y | = |X′ ∩ Y ′|. It follows that

{
Mt

i,j | i − t + t + j − t ≤ n, i − t, t, j − t ≥ 0
}

is a basis of An and its cardinality is
(
n+3

3

)
.

It follows from general C∗-algebra theory that there exists a block diagonalization
of An, i.e., there exists a B(n) × S unitary matrix N(n), for some index set S of
cardinality 2n, and positive integers p0, q0, . . . , pm,qm such that N(n)∗AnN(n) is
equal to the set of all S × S block-diagonal matrices

⎛

⎜
⎜
⎜
⎝

C0 0 . . . 0
0 C1 . . . 0
...

...
. . .

...

0 0 . . . Cm

⎞

⎟
⎟
⎟
⎠

(6)

where each Ck is a block-diagonal matrix with qk repeated, identical blocks of or-
der pk

Ck =

⎛

⎜
⎜
⎜
⎝

Bk 0 . . . 0
0 Bk . . . 0
...

...
. . .

...

0 0 . . . Bk

⎞

⎟
⎟
⎟
⎠

. (7)

Thus p2
0 + · · · + p2

m = dim(An) and p0q0 + · · · + pmqm = 2n. The numbers
p0, q0, . . . , pm,qm and m are uniquely determined (up to permutation of the indices)
by An.

By dropping duplicate blocks, we get a positive semidefiniteness preserving C∗-
algebra isomorphism (below Mat(n × n) denotes the algebra of complex n × n ma-
trices)

Φ : An
∼=

m⊕

k=0

Mat(pk × pk).

In an explicit block-diagonalization we need to know this isomorphism explicitly,
i.e., we need to know the entries in the image of Mt

i,j . In [13], an explicit block-
diagonalization was determined. We now show that this result follows from Theo-
rem 1.2. The present proof also yields an explicit, canonical (real) unitary matrix
N(n) achieving the isomorphism Φ .
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The first step is a binomial inversion argument. Fix i, j ∈ {0, . . . , n}. Then we have

Mt
i,tM

t
t,j =

n∑

u=0

(
u

t

)

Mu
i,j , t = 0, . . . , n,

since the entry of the lhs in row X, col Y with |X| = i, |Y | = j is equal to the number
of common subsets of X and Y of size t . Apply binomial inversion to get

Mt
i,j =

n∑

u=0

(−1)u−t

(
u

t

)

Mu
i,uM

u
u,j , t = 0, . . . , n. (8)

Since Mu
u,j = (Mu

j,u)
t and it will turn out that N(n) can be taken to be real (see the

definition below), it follows that

Φ(Mt
i,j ) =

n∑

u=0

(−1)u−t

(
u

t

)

Φ(Mu
i,u)Φ(Mu

j,u)
t , t = 0, . . . , n, (9)

and hence all the images under Φ can be calculated by knowing the images Φ(Mu
i,u).

For the second step, we use Theorem 1.2 whose notation we preserve. For the rest
of this section, set m = �n/2�, and pk = n− 2k + 1, qk = (

n
k

)− (
n

k−1

)
, k = 0, . . . ,m.

Note that

m∑

k=0

p2
k =

(
n + 3

3

)

, (10)

since both sides are polynomials in l (treating the cases n = 2l and n = 2l + 1 sepa-
rately) of degree 3 and agree for l = 0,1,2,3.

For 0 ≤ k ≤ m, O(n) will contain qk symmetric Jordan chains, each contain-
ing pk vectors, starting at rank k and ending at rank n − k. We can formalize this
as follows: define the finite set S = {(k, b, i) | 0 ≤ k ≤ m, 1 ≤ b ≤ qk, k ≤ i ≤
n − k}. For each 0 ≤ k ≤ m, fix some linear ordering of the qk Jordan chains of O(n)

going from rank k to rank n − k. Then there is a bijection B : O(n) → S defined
as follows: let v ∈ O(n). Then B(v) = (k, b, i), where i = r(v) and v occurs on the
bth symmetric Jordan chain going from rank k to rank n − k (there are unique such
k, b). Linearly order S as follows: (k, b, i) <� (k′, b′, i′) iff k < k′ or k = k′, b < b′
or k = k′, b = b′, i < i′. Form a B(n) × S matrix N(n) as follows: the columns of

N(n) are the normalized images B−1(s)

‖B−1(s)‖ , s ∈ S listed in increasing order (of <�). By

Theorem 1.2(i), N(n) is unitary. Since the action of Mu
i,u on V (B(n)u) is 1

(i−u)! times

the action of Ui−u on V (B(n)u), it follows by Theorem 1.2(ii) and Identities (8), (10)
above that conjugating by N(n) provides a block diagonalization of An of the form
(6), (7) above. Set Φ equal to conjugation by N(n) followed by dropping duplicate
blocks. To calculate the images under Φ, we shall now use part (iii) of Theorem 1.2.

For i, j, k, t ∈ {0, . . . , n}, define

βt
i,j,k =

n∑

u=0

(−1)u−t

(
u

t

)(
n − 2k

u − k

)(
n − k − u

i − u

)(
n − k − u

j − u

)

.
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For 0 ≤ k ≤ m and k ≤ i, j ≤ n− k, define Ei,j,k to be the pk ×pk matrix, with rows
and columns indexed by {k, k + 1, . . . , n − k}, and with entry in row i and column j

equal to 1 and all other entries 0.

Theorem 2.2 (Schrijver [13]) Let i, j, t ∈ {0, . . . , n}. Write

Φ
(
Mt

i,j

) = (N0, . . . ,Nm),

where, for k = 0, . . . ,m, the rows and columns of Nk are indexed by {k, k + 1, . . . ,

n − k}. Then, for 0 ≤ k ≤ m,

Nk =
{(

n−2k
i−k

)− 1
2
(
n−2k
j−k

)− 1
2 βt

i,j,kEi,j,k if k ≤ i, j ≤ n − k,

0 otherwise.

Proof Fix 0 ≤ k ≤ m. If both i, j are not elements of {k, . . . , n − k} then clearly
Nk = 0. So we may assume k ≤ i, j ≤ n − k. Clearly, Nk = λEi,j,k for some λ. We
now find λ = Nk(i, j).

Let u ∈ {0, . . . , n}. Write Φ(Mu
i,u) = (Au

0, . . . ,Au
m). We claim that

Au
k =

{
(
n−k−u

i−u

)(
n−2k
u−k

) 1
2
(
n−2k
i−k

)− 1
2 Ei,u,k if k ≤ u ≤ n − k,

0 otherwise.

The “otherwise” part of the claim is clear. If k ≤ u ≤ n − k and i < u then we have
Au

k = 0. This also follows from the rhs since the binomial coefficient
(
a
b

)
is 0 for

b < 0. So we may assume that k ≤ u ≤ n − k and i ≥ u. Clearly, in this case we
have Au

k = αEi,u,k , for some α. We now determine α = Au
k(i, u). We have using

Theorem 1.2(iii)

Au
k(i, u) =

∏i−1
w=u

{
(n − k − w)

(
n−2k
w−k

) 1
2
(

n−2k
w+1−k

)− 1
2
}

(i − u)!

=
(

n − k − u

i − u

)(
n − 2k

u − k

) 1
2
(

n − 2k

i − k

)− 1
2

.

Similarly, if we write Φ(Mu
u,j ) = (Bu

0 , . . . ,Bu
m) then, since Mu

u,j = (Mu
j,u)

t , we
have

Bu
k =

{(
n−k−u
j−u

)(
n−2k
u−k

) 1
2
(
n−2k
j−k

)− 1
2 Eu,j,k if k ≤ u ≤ n − k,

0 otherwise.

It now follows from (8) that Nk = ∑n
u=0(−1)u−t

(
u
t

)
Au

kB
u
k = ∑n−k

u=k(−1)u−t
(
u
t

)
Au

kB
u
k .

Thus

Nk(i, j)

=
n−k∑

u=k

(−1)u−t

(
u

t

){
n−k∑

l=k

Au
k(i, l)B

u
k (l, j)

}
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=
n−k∑

u=k

(−1)u−t

(
u

t

)

Au
k(i, u)Bu

k (u, j)

=
n−k∑

u=k

(−1)u−t

(
u

t

)(
n − k − u

i − u

)(
n − 2k

u − k

) 1
2
(

n − 2k

i − k

)− 1
2

×
(

n − k − u

j − u

)(
n − 2k

u − k

) 1
2
(

n − 2k

j − k

)− 1
2

=
(

n − 2k

i − k

)− 1
2
(

n − 2k

j − k

)− 1
2
{

n∑

u=0

(−1)u−t

(
u

t

)(
n − k − u

i − u

)

×
(

n − k − u

j − u

)(
n − 2k

u − k

)}

,

completing the proof. �

3 The linear BTK algorithm

In this section, we present the linear analog of the BTK algorithm for constructing
a SJB of V (M(n, k1, . . . , kn)). Though we do not recall here the BTK algorithm for
constructing a SCD of M(n,k1, . . . , kn) (see [1, 3, 4]), readers familiar with that
method will easily recognize the present algorithm as its linear analog.

The basic building block of the linear BTK algorithm is an inductive method
for constructing a SJB of V (M(2,p, q)). If p or q = 0, then M(2,p, q) is order-
isomorphic to a chain and the characteristic vectors of the elements of the chain form
a SJB . For positive p,q, we shall now reduce the problem of constructing a SJB of
V (M(2,p, q)) to that of constructing a SJB of V (M(2,p−1, q −1)). We begin with
the following elementary lemma on determinants.

Lemma 3.1 Let N = (ai,j ) be a n × n real matrix, n ≥ 2. Suppose that

(i) ai,1 > 0, for i ∈ {1, . . . , n}, i.e., the first column contains positive entries.
(ii) For j ∈ {2, . . . , n}, aj,j > 0, aj−1,j < 0, and all other entries in column j are 0.

Then det(N) > 0.

Proof By induction on n. The assertion is clear for n = 2. Now assume that n > 2.
Let N [i, j ] denote the (n − 1) × (n − 1) matrix obtained from N by deleting row i

and column j . Expanding det(N) by the first row we get

det(N) = a1,1det
(
N [1,1]) − a1,2det

(
N [1,2]).

Now a1,1 > 0, a1,2 < 0, N [1,1] is upper-triangular with positive diagonal entries,
and det(N [1,2]) > 0 (by induction hypothesis). The result follows. �
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Let p,q be positive and set P = M(2,p, q), W = V (P ) with up operator U . Let
r denote the rank function of P . We have dim W = (p + 1)(q + 1). The action of U

on the standard basis of W is given as follows: for 0 ≤ i ≤ p, 0 ≤ j ≤ q

U((i, j)) =

⎧
⎪⎪⎨

⎪⎪⎩

(i + 1, j) + (i, j + 1) if i < p, j < q,

(i + 1, j) if i < p, j = q,

(i, j + 1) if i = p, j < q,

0 if i = p, j = q.

Consider the following symmetric Jordan chain in W generated by v(0) = (0,0):

(
v(0), v(1), v(2), . . . , v(p + q)

)
,

where, for 0 ≤ k ≤ p + q ,

v(k) = Uk
(
(0,0)

) =
∑

i,j

(
k

i

)

(i, j), (11)

the sum being over all 0 ≤ i ≤ p, 0 ≤ j ≤ q with i + j = k.
The following result is basic to our inductive approach.

Theorem 3.2 Define homogeneous vectors in W as follows:

v(i, j) = (p − i)(i, j) − (q − j + 1)(i + 1, j − 1), 0 ≤ i ≤ p − 1, 1 ≤ j ≤ q.

(12)

Then

(i) v(i, j) is nonzero and r(v(i, j)) = i + j, 0 ≤ i ≤ p − 1, 1 ≤ j ≤ q.

(ii) {v(k) | 0 ≤ k ≤ p + q} ∪ {v(i, j) | 0 ≤ i ≤ p − 1, 1 ≤ j ≤ q} is a basis of W .
(iii) For 0 ≤ i ≤ p − 1, 1 ≤ j ≤ q we have

U(v(i, j)) =

⎧
⎪⎪⎨

⎪⎪⎩

v(i + 1, j) + v(i, j + 1) if i < p − 1, j < q,

v(i + 1, j) if i < p − 1, j = q,

v(i, j + 1) if i = p − 1, j < q,

0 if i = p − 1, j = q.

Thus, the action of U on the v(i, j) is isomorphic to the action of the up opera-
tor on the standard basis of V (M(2,p − 1, q − 1)), except that the map (i, j) →
v(i, j + 1), (i, j) ∈ M(2,p − 1, q − 1) shifts ranks by one (since r(v(i, j + 1)) =
i + j + 1).

Proof (i) This is clear.
(ii) For 0 ≤ k ≤ p + q define

Xk = {
v(k)

} ∪ {
v(i, j) : 0 ≤ i ≤ p − 1, 1 ≤ j ≤ q, i + j = k

}
.
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The map Φk : Xk → M(2,p, q)k given by Φk(v(i, j)) = (i, j) and

Φk

(
v(k)

) =
{
(k,0) if k < p,

(p, k − p) if k ≥ p

is clearly a bijection. It is enough to show that Xk is a basis of V (M(2,p, q)k).
Linearly order the elements of M(2,p, q)k using reverse lexicographic order <r :
(i, j) <r (i′, j ′) if and only if i > i′. Transfer this order to Xk via Φ−1

k . Consider
the M(2,p, q)k × Xk matrix N , with rows and columns listed in the order <r ,
and whose columns are the coordinate vectors of elements of Xk in the standard
basis M(2,p, q)k of V (M(2,p, q)k). Equation (11) shows that hypothesis (i) of
Lemma 3.1 is satisfied and (12) shows that hypothesis (ii) of Lemma 3.1 is satis-
fied. The result now follows from Lemma 3.1.

(iii) We check the first case. The other cases are similar. Let i < p − 1, j < q .
Then

U
(
v(i, j)

)

= U
(
(p − i)(i, j) − (q − j + 1)(i + 1, j − 1)

)

= (p − i)
(
(i + 1, j) + (i, j + 1)

) − (q − j + 1)
(
(i + 2, j − 1) + (i + 1, j)

)

= (p − i − 1)(i + 1, j) − (q − j + 1)(i + 2, j − 1)

+ (p − i)(i, j + 1) − (q − j)(i + 1, j)

= v(i + 1, j) + v(i, j + 1),

completing the proof. �

Theorem 3.2, whose notation we preserve, gives the following inductive method
for constructing a SJB of V (M(2,p, q)): if p or q equals 0, the chain M(2,p, q)

itself gives a SJB. Now suppose p,q > 1. Set v(0) = (0,0) and form the symmetric
Jordan chain C = (v(0), v(1), . . . , v(p + q)), where v(k) is given by (11). Take the
(inductively constructed) SJB of V (M(2,p − 1, q − 1)) and (using parts (ii) and
(iii) of Theorem 3.2) transfer each Jordan chain in this SJB to a Jordan chain in
V (M(2,p, q)) via the map (i, j) → v(i, j + 1). Since r(v(0,1)) = 1 and r(v(p −
1, q)) = p+q −1, each such transferred Jordan chain is symmetric in V (M(2,p, q))

and part (ii) of Theorem 3.2 now shows that the collection of these chains together
with C gives a SJB of V (M(2,p, q)).

Example 3.3 (i) Here we work out the SJB of V (M(2,2,2)) produced by the algo-
rithm above. The symmetric Jordan chain generated by (0,0) is given by

(
(0,0) , (1,0) + (0,1) , (2,0) + 2(1,1) + (0,2) , 3(2,1) + 3(1,2) , 6(2,2)

)
. (13)

The v(i, j) are given by

v(0,1) = 2(0,1) − 2(1,0), v(1,1) = (1,1) − 2(2,0),

v(0,2) = 2(0,2) − (1,1), v(1,2) = (1,2) − (2,1).
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The SJB of V (M(2,1,1)) is given by the following two chains

(
(0,0) , (1,0) + (0,1) , 2(1,1)

)
,

(
(0,1) − (1,0)

)
.

Transferring these chains to V (M(2,2,2)) via the map (i, j) → v(i, j + 1) gives the
following two chains

(
v(0,1) , v(1,1) + v(0,2) , 2v(1,2)

)
, (14)

(
v(0,2) − v(1,1)

)
. (15)

Chains (13), (14) and (15) give a SJB of V (M(2,2,2)).
(ii) The procedure above is especially simple when, say q = 1, as in this case

the recursion stops right at the first stage. For later reference, we spell out this case in
detail. Consider M(2, n,1). Define a 1–1 linear map V (M(2, n,0)) → V (M(2, n,1))

by (i,0) → (i,1), (i,0) ∈ M(2, n,0). For v ∈ V (M(2, n,0)), we denote the image
of v under this map by v.

Let (x0, x1, . . . , xn), where xi = (i,0) be the SJB of V (M(2, n,0)). Set x−1 =
xn+1 = 0. We now consider two cases:

(a) n = 0 : In this case,

(x0, x0) (16)

is the SJB of V (M(2, n,1)) produced by Theorem 3.2.
(b) n ≥ 1 : The symmetric Jordan chain in V (M(2, n,1)) generated by (0,0) can

be written as (using (11))

(y0, y1, . . . , yn+1), where yl = xl + l xl−1, 0 ≤ l ≤ n + 1. (17)

The SJB of V (M(2, n,1)) produced by Theorem 3.2 is given by (17) and the follow-
ing symmetric Jordan chain:

(z1, . . . , zn), where zl = (n − l + 1) xl−1 − xl, 1 ≤ l ≤ n. (18)

We can now give the full linear BTK algorithm which reduces the general case to
the n = 2 case.

Proof of Theorem 1.1 The proof is by induction on n, the case n = 1 being clear
and the case n = 2 established above. Let P = M(n,k1, . . . , kn), n ≥ 3 and set V =
V (P ). Denote the rank function of P by r . Define induced subposets P(j) of P by

P(j) = {
(a1, . . . , an) ∈ P : an = j

}
, 0 ≤ j ≤ kn,

and set V (j) = V (P (j)). Let U denote the up operator on V and Uj denote the up
operator on V (j), 0 ≤ j ≤ kn. Note that all the P(j) are order-isomorphic. We have

V = V (0) ⊕ V (1) ⊕ · · · ⊕ V (kn). (19)
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For 0 ≤ j < kn define linear isomorphisms Rj : V (j) → V (j + 1) by

Rj

(
(a1, . . . , an−1, j)

) = (a1, . . . , an−1, j + 1), (a1, . . . , an−1, j) ∈ P(j).

Put V (kn + 1) = {0} and define Rkn to be the zero map.
For v ∈ V (j), 0 ≤ j ≤ kn, we have

U(v) = Uj (v) + Rj (v), (20)

Uj+1Rj (v) = RjUj (v). (21)

By induction, there is a SJB of V (0) (wrt U0). Let t denote the number of symmetric
Jordan chains in this SJB, with the mth chain denoted by

S(0,m) = (
v(0,0,m), v(1,0,m), . . . , v(lm,0,m)

)
, 1 ≤ m ≤ t,

where lm ≥ 0 is the length of the mth symmetric Jordan chain. Thus,

r(v(0,0,m)) + r(v(lm,0,m)) = k1 + · · · + kn−1 if lm > 0,

2r(v(0,0,m)) = k1 + · · · + kn−1 if lm = 0.

Define subspaces X(0,m) ⊆ V (0) by

X(0,m) = Span S(0,m) = Span
{
v(0,0,m), . . . , v(lm,0,m)

}
, 1 ≤ m ≤ t.

We have V (0) = X(0,1) ⊕ · · · ⊕ X(0, t). Note that dim X(0,m) = lm + 1.
For 1 ≤ m ≤ t, 1 ≤ j ≤ kn, 0 ≤ i ≤ lm, define, by induction on j (starting with
j = 1),

v(i, j,m) = Rj−1
(
v(i, j − 1,m)

)
, (22)

S(j,m) = (
v(0, j,m), v(1, j,m), . . . , v(lm, j,m)

)
,

(23)
X(j,m) = Span S(j,m) = Span

{
v(0, j,m), . . . , v(lm, j,m)

}
.

Since the Rj , 0 ≤ j < kn, are isomorphisms, we have
{
v(0, j,m), . . . , v(lm, j,m)

}
is independent , 0 ≤ j ≤ kn,1 ≤ m ≤ t, (24)

V (j) = X(j,1) ⊕ X(j,2) ⊕ · · · ⊕ X(j, t), 0 ≤ j ≤ kn. (25)

For 1 ≤ m ≤ t, 1 ≤ j ≤ kn, we see from (24) and the following inductive calculation
on j (using (21)) that each S(j,m) is a graded Jordan chain in V (j) (below we take
v(lm + 1,0,m) = 0, for all m)

Uj

(
v(i, j,m)

) = UjRj−1
(
v(i, j − 1,m)

) = Rj−1Uj−1
(
v(i, j − 1,m)

)

= Rj−1
(
v(i + 1, j − 1,m)

) = v(i + 1, j,m). (26)

For m = 1, . . . , t, define subspaces Y(m) ⊆ V by

Y(m) = X(0,m) ⊕ X(1,m) ⊕ · · · ⊕ X(kn,m). (27)
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We have from (19) and (25) that

V = Y(1) ⊕ · · · ⊕ Y(t). (28)

It follows from (23), (24), and (27) that the set

B(m) = {
v(i, j,m) : 0 ≤ i ≤ lm, 0 ≤ j ≤ kn

}
, 1 ≤ m ≤ t

is a basis of Y(m). Note that

r
(
v(i, j,m)

) = r
(
v(0,0,m)

) + i + j, 1 ≤ m ≤ t, 0 ≤ i ≤ lm, 0 ≤ j ≤ kn.(29)

Fix 1 ≤ m ≤ t . Using (20), (22), and (26), we see that the action of U on the basis
B(m) is given by

U(v(i, j,m)) =

⎧
⎪⎪⎨

⎪⎪⎩

v(i + 1, j,m) + v(i, j + 1,m) if i < lm, j < kn,

v(i + 1, j,m) if i < lm, j = kn,

v(i, j + 1,m) if i = lm, j < kn,

0 if i = lm, j = kn.

So this action is isomorphic to the action of the up operator on the standard basis
of V (M(2, lm, kn)), except for the shift of rank given by (29). We can now use the
algorithm of Theorem 3.2 to construct an SJB of Y(m) wrt U . Since

r
(
v(0,0,m)

)+r
(
v(lm, kn,m)

) = r
(
v(0,0,m)

)+r
(
v(lm,0,m)

)+kn = k1 +· · ·+kn,

each graded Jordan chain in this SJB is symmetric in V . From (28) it follows that the
union of the SJB’s of Y(m) gives an SJB of V . That completes the proof. �

Proof of Theorem 1.2 The proof is by induction of n. The result is clear for n = 1.
We write B(n) as M(n,k1, . . . , kn), where k1 = · · · = kn = 1.

Consider V = V (M(n + 1, k1, . . . , kn+1)), with ki = 1 for all i. We preserve the
notation of the proof of Theorem 1.1. Let there be t symmetric Jordan chains in the
SJB of V (0) = V (B(n)). For v ∈ V (0), we denote R0(v) = v (agreeing with the
notation in Example 3.3(ii)).

We have

V = V (0) ⊕ V (1),

V (0) = X(0,1) ⊕ X(0,2) ⊕ · · · ⊕ X(0, t),

V (1) = X(1,1) ⊕ X(1,2) ⊕ · · · ⊕ X(1, t).

Since the inner product is standard, we have

〈u,v〉 = 〈u,v〉, 〈u,v〉 = 0, u, v ∈ V (0). (30)

It follows that V (0) is orthogonal to V (1). The subspaces X(0,1), . . . ,X(0, t) are
mutually orthogonal, by the induction hypothesis, and thus

V = Y(1) ⊕ · · · ⊕ Y(t)
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is an orthogonal decomposition of V , where

Y(m) = X(0,m) ⊕ X(1,m), 1 ≤ m ≤ t.

Fix 1 ≤ m ≤ t . The subspaces X(0,m) and X(1,m) are orthogonal, but Theorem 3.2
will produce new symmetric Jordan chains from linear combinations of vectors in
X(0,m) and X(1,m). We now show that these too are orthogonal and satisfy (1).
This will prove the theorem.

Write the mth symmetric chain in V (0) as

(xk, . . . , xn−k), 0 ≤ k ≤ �n/2�, (31)

where r(xk) = k. By induction hypothesis,

〈xu+1, xu+1〉
〈xu, xu〉 = (u + 1 − k)(n − k − u), k ≤ u < n − k. (32)

We now consider two cases.

(a) k = n − k : It follows from (16) (after changing n to n − 2k and shifting the rank
by k) that the SJB of Y(m) will consist of the single symmetric Jordan chain

(xk, xk). (33)

We have

〈xk, xk〉
〈xk, xk〉 = 〈xk, xk〉

〈xk, xk〉 = 1 = (k + 1 − k)(n + 1 − k − k).

(b) k < n − k : By (17) and (18), the SJB of Y(m) will consist of the following two
symmetric Jordan chains (after changing n to n − 2k and shifting the rank by k):

(yk, . . . , yn+1−k) and (zk+1, . . . , zn−k), (34)

where

yl = xl + (l − k) xl−1, k ≤ l ≤ n + 1 − k, (35)

zl = (n − k − l + 1) xl−1 − xl, k + 1 ≤ l ≤ n − k, (36)

and xk−1 = xn+1−k = 0.

For k + 1 ≤ l ≤ n − k, we have from (30)

〈yl, zl〉 = (n − k − l + 1)(l − k)〈xl−1, xl−1〉 − 〈xl, xl〉 = 0,

where the last step follows from (32) upon substituting u = l − 1. Thus

{yk, . . . , yn+1−k, zk+1, . . . , zn−k}
is an orthogonal basis of Y(m).
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We now check (1) for the case n + 1. Let k ≤ u < n + 1 − k. Note that (32) holds
for u = n − k also. Also note that in the following computation (in the last but one
step) we have used (32) when u = k − 1 (in which case the rhs is 0 and the lhs is ∞).
This is permissible here because of the presence of the factor (u − k)2.

We have, using (30) and (32),

〈yu+1, yu+1〉
〈yu, yu〉 = 〈xu+1 + (u + 1 − k) xu , xu+1 + (u + 1 − k) xu〉

〈xu + (u − k) xu−1 , xu + (u − k) xu−1〉

= 〈xu+1, xu+1〉 + (u + 1 − k)2〈xu, xu〉
〈xu, xu〉 + (u − k)2〈xu−1, xu−1〉

=
〈xu+1,xu+1〉

〈xu,xu〉 + (u + 1 − k)2

1 + 〈xu−1,xu−1〉
〈xu,xu〉 (u − k)2

= (u + 1 − k)(n − k − u) + (u + 1 − k)2

1 + (u−k)2

(u−k)(n−k−u+1)

= (u + 1 − k)(n + 1 − k − u).

The calculation for 〈zu+1,zu+1〉
〈zu,zu〉 is similar and is omitted. �

Example 3.4 In this example, we work out the SJBs of V (B(n)), for n = 2,3,4,
starting with the SJB of V (B(1)), using the formulas (31), (33), (34), (35) and (36)
given in the proof of Theorem 1.2. We write elements of B(n) as subsets of [n] =
{1,2, . . . , n} rather than as their characteristic vectors. Thus, for X ⊆ [n], we have
R0(X) = X = X ∪ {n + 1}.

(i) The SJB of V (B(1)) is given by
(∅ , {1}).

(ii) The SJB of V (B(2)) consists of
(∅ , {1} + {2} , 2{1,2}),
({2} − {1}).

(iii) The SJB of V (B(3)) consists of
(∅ , {1} + {2} + {3} , 2({1,2} + {1,3} + {2,3}) , 6{1,2,3}),
(
2{3} − {1} − {2} , {1,3} + {2,3} − 2{1,2}),

({2} − {1} , {2,3} − {1,3}).
(iv) The SJB of V (B(4)) consists of (some of the chains are split across two lines)

(∅, {1} + {2} + {3} + {4},
2
({1,2} + {1,3} + {1,4} + {2,3} + {2,4} + {3,4}),

6
({1,2,3} + {1,2,4} + {1,3,4} + {2,3,4}), 24{1,2,3,4}),



318 J Algebr Comb (2011) 34:301–322

(
3{4} − ({1} + {2} + {3}),

2
({1,4} + {2,4} + {3,4}) − 2

({1,2} + {1,3} + {2,3}),
2
({1,2,4} + {1,3,4} + {2,3,4}) − 6{1,2,3}),

(
2{3} − ({1} + {2}), {1,3} + {2,3} − 2{1,2} + 2{3,4} − ({1,4} + {2,4}),

2
({1,3,4} + {2,3,4}) − 4{1,2,4}),

({2} − {1}, {2,3} − {1,3} + {2,4} − {1,4}, 2
({2,3,4} − {1,3,4})),

({2,4} − {1,4} − {2,3} + {1,3}),
(
2({3,4} + {1,2}) − ({1,4} + {2,4} + {1,3} + {2,3})).

It may be verified that all of the SJBs are orthogonal and satisfy (1).

4 Symmetric Gelfand–Tsetlin basis

The author believes that the linear BTK algorithm deserves further study from the
point of view of representation theory of the symmetric group. In this section, we
take a small step in this direction by proving Theorem 1.3. The proof is an application
of the Vershik–Okounkov [17] theory of (complex) irreducible representations of the
symmetric group. We first recall briefly (without proofs), in items (A)–(D) below,
those points of the theory which we need:

(A) A direct elementary argument is given to show that branching from Sn to Sn−1 is
simple, i.e., multiplicity free. Once this is done, we have the canonically defined
(up to scalars) Gelfand–Tsetlin basis (or GZ-basis) of an irreducible Sn-module,
as in the introduction. As stated there, the GZ-basis of an irreducible represen-
tation V is orthogonal wrt the unique (up to scalars) Sn-invariant inner product
on V .

(B) Denote by S∧
n the set of equivalence classes of finite dimensional complex ir-

reducible representations of Sn. Denote by Lλ the irreducible Sn-module corre-
sponding to λ ∈ S∧

n .
We have identified a canonical basis, namely the GZ-basis, in each irreducible

representation of Sn. A natural question at this point is to identify those elements
of C[Sn] that act diagonally in this basis (in every irreducible representation). In
other words, consider the algebra isomorphism

C[Sn] ∼=
⊕

λ∈S∧
n

End
(
Lλ

)
, (37)

given by

π → (
Lλ π→ Lλ : λ ∈ S∧

n

)
, π ∈ Sn.

Let D(Lλ) consist of all operators on Lλ diagonal in the GZ-basis of Lλ. The
question above can now be stated as: What is the image under the isomorphism
(37) of the subalgebra

⊕
λ∈S∧

n
D(Lλ) of

⊕
λ∈S∧

n
End(Lλ)?
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Let Zn denote the center of the algebra C[Sn] and set GZn equal to the sub-
algebra of C[Sn] generated by Z1 ∪ Z2 ∪ · · · ∪ Zn (where we have the natural
inclusions S1 ⊆ S2 ⊆ · · ·). It is easy to see that GZn is a commutative subal-
gebra of C[Sn]. It is called the Gelfand–Tsetlin algebra (GZ-algebra) of the
inductive family of group algebras C[Sn]. It is proved that GZn is the image
of

⊕
λ∈S∧

n
D(Lλ) under the isomorphism (37) above, i.e., GZn consists of all

elements of C[Sn] that act diagonally in the GZ-basis in every irreducible repre-
sentation of Sn. Thus GZn is a maximal commutative subalgebra of C[Sn] and
its dimension is equal to

∑
λ∈S∧

n
dim Lλ. By a GZ-vector v (in

⋃
λ∈S∧

n
Lλ) we

mean an element of the GZ-basis of Lλ, for some λ ∈ S∧
n . It follows that the GZ-

vectors are the only vectors that are eigenvectors for the action of every element
of GZn. Moreover, any GZ-vector is uniquely determined by the eigenvalues of
the elements of GZn on this vector.

(C) For i = 1,2, . . . , n, define Xi = (1, i) + (2, i) + · · · + (i − 1, i) ∈ C[Sn]. The
Xis are called the Young–Jucys–Murphy elements (YJM-elements) and it is
shown that they generate GZn. To a GZ-vector v we associate the tuple α(v) =
(a1, a2, . . . , an), where ai = eigenvalue of Xi on v. We call α(v) the weight of
v and we set

spec(n) = {
α(v) : v is a GZ-vector

}
.

It follows from step (B) above that, for GZ-vectors u and v, u = v iff α(u) =
α(v) and thus #spec(n) = ∑

λ∈S∧
n

dim Lλ. Given α ∈ spec(n), we denote by vα

(∈ Lλ for some unique λ ∈ S∧
n ) the GZ-vector with weight α.

There is a natural equivalence relation ∼ on spec(n): for α,β ∈ spec(n),

α ∼ β ⇔ vα and vβ belong to the same irreducible Sn-module Lλ

for some λ ∈ S∧
n .

Clearly, we have #(spec(n)/ ∼) = #S∧
n = number of partitions of n.

(D) In the final step, we construct a bijection between spec(n) and tab(n) (= set of all
standard Young tableaux on the letters {1,2, . . . , n}) sending weights in spec(n)

to content vectors of standard Young tableaux showing, in particular, that the
weights are integral. Weights in spec(n) that are related by ∼ go to standard
Young tableaux of the same shape. We shall not use this step.

Let V be an Sn-module, not necessarily multiplicity free. For α =
(a1, a2, . . . , an) ∈ spec(n) define the weight space

V (α) = {
v ∈ V : Xi(v) = aiv, i = 1, . . . , n

}
.

Note that if V is multiplicity free then it follows from items (B), (C) above that
every weight space is either zero or one-dimensional.

For λ ∈ S∧
n , let V (λ) ⊆ V denote the isotypical component of Lλ and let

spec(n,λ) denote the set of all weights α ∈ spec(n) with vα ∈ Lλ. Basic proper-
ties of the weight spaces are given below.

Lemma 4.1 Let V,W be Sn-modules. We have
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(i) For λ ∈ S∧
n , V (λ) = ⊕

α∈spec(n,λ) V (α) is an orthogonal decomposition of V (λ)

under any Sn-invariant inner product on V .
(ii) V = ⊕

α∈spec(n) V (α) is an orthogonal decomposition of V under any Sn-
invariant inner product on V .

(iii) Let λ ∈ S∧
n , and α,β ∈ spec(n,λ). There is a canonical linear isomorphism

fα,β : V (α) → V (β), unique up to scalars, satisfying the following property:
for v ∈ V (α), the subspace C[Sn]v ∩ V (β) is generated by fα,β(v).

(iv) Let λ ∈ S∧
n , α ∈ spec(n,λ), and f : V (λ) → W(λ) an Sn-linear map. Then

f (V (α)) ⊆ W(α) and any linear map g : V (α) → W(α) has a unique Sn-linear
extension g : V (λ) → W(λ).

Proof (i) Fix an Sn-invariant inner product on V and let V (λ) = W1 ⊕ · · · ⊕ Wt

be an orthogonal decomposition of V (λ) into irreducible submodules, with all Wi

isomorphic to Lλ. For α ∈ spec(n,λ), it follows from (B), (C) above that V (α) ∩ Wi

is one-dimensional for all i and that the span of these one dimensional subspaces is
V (α). Since the GZ-bases of Wi are orthogonal, the result follows.

(ii) Follows from part (i), since the decomposition of V into isotypical components
is orthogonal.

(iii) Let v ∈ V (α). Consider the irreducible submodule C[Sn]v of V generated
by v. By item (B) above, the subspace C[Sn]v ∩ V (β) is one-dimensional, say gen-
erated by u. There is an element a ∈ C[Sn] with av = u. The linear map

V (α) → V (β), x → ax (38)

has the required properties. It is also clear that such a map is unique up to scalars.
(iv) The first part of the assertion is clear. For the second part, note that (38) implies

that g has at most one Sn-linear extension. Dimension considerations now show that
g has exactly one Sn-linear extension. �

Consider the poset M(n,k) on which the symmetric group Sn acts by substitution.
Set V = V (M(n, k)) and Vi = V (M(n, k)i), 0 ≤ i ≤ kn. Note that each Vi is an Sn-
submodule of V and, for α ∈ spec(n), we have V (α) = V0(α) ⊕ · · · ⊕ Vkn(α). Since
the up operator U is Sn-linear it follows from Lemma 4.1(iv) that

U
(
Vi(α)

) ⊆ Vi+1(α), 0 ≤ i < kn, α ∈ spec(n). (39)

Let C = (vi, vi+1, . . . , vkn−i ), with r(vl) = l for all l, be a symmetric Jordan chain
in V . We say that C is a symmetric Gelfand–Tsetlin chain if each vl is a simul-
taneous eigenvector for the action of X1,X2, . . . ,Xn. It follows that vl ∈ Vl(α),
i ≤ l ≤ kn − i, for some α ∈ spec(n). Since an SJB of V exists, it follows from
Lemma 4.1(ii) and (39) that there exists a SJB of V consisting of symmetric Gelfand–
Tsetlin chains (to see this, note that the existence of a SJB is equivalent to the
condition that, for 0 ≤ i ≤ j ≤ kn, the Sn-linear map Uj−i : Vi → Vj is surjective
(respectively, an isomorphism) (respectively, injective) if i + j > kn (respectively,
i + j = kn) (respectively, i + j < kn)). However, in such an SJB the Gelfand–Tsetlin
chains belonging to different weight spaces (of the same isotypical component) need
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not be related to each other. Note that, for α ∼ β, α,β ∈ spec(n), if C is a Gelfand–
Tsetlin chain in V (α) then fα,β(C) is a Gelfand–Tsetlin chain in V (β) (from (38)
and the fact that U is Sn-linear). We now add this condition to the definition.

A symmetric Gelfand–Tsetlin basis (SGZB) of V is an SJB B of V satisfying the
following conditions:

(a) Each vector in B is a simultaneous eigenvector for the action of X1, . . . ,Xn.
(b) For α ∼ β, α,β ∈ spec(n), if v ∈ B ∩ V (α), then some multiple of fα,β(v) is

also in B .

Clearly, a SGZB of V exists (for each isotypical component choose a SJB of any
one weightspace and transfer it to the other weightspaces via fα,β ). In the special
case of Boolean algebras, this definition of SGZB coincides with the one given in the
introduction (see proof of Theorem 1.3 below).

At this point, two natural questions arise:

(i) Is it possible to characterize in some way the SJB produced by the linear BTK
algorithm?

(ii) Is there an explicit construction (inductive or direct) of an SGZB of V (M(n, k))?

Theorem 1.3 answers both these questions in the special case of Boolean algebras.
We now prove this result.

Lemma 4.2 For 0 ≤ i ≤ n, V (B(n)i) is a multiplicity free Sn-module with min{i, n−
i} + 1 irreducible summands.

For the proof of this lemma, see Theorem 29.13 in [10]. To actually identify the
irreducibles (as corresponding to two part partitions), see Example 7.18.8 in [14].
To identify the irreducibles, along with their multiplicity (given by the number of
semistandard Young tableaux), in the Sn-module V (M(n, k)i), see Exercise 7.75 in
[14].

Proof of Theorem 1.3 We shall show inductively that each element of O(n) is a
simultaneous eigenvector of X1, . . . ,Xn, the case n = 1 being clear. By Lemma 4.2,
condition (b) in the definition of SGZB is then automatically satisfied. It also follows
from Lemma 4.2 that in the case of V (B(n)) the definition of SGZB given in the
introduction agrees with the definition given above.

Assume that each element of O(n) is an eigenvector for the action of X1, . . . ,Xn.
Note that if v ∈ V (B(n)k) is an eigenvector for Xi , for some 1 ≤ i ≤ n, then v ∈
V (B(n + 1)k+1) is also an eigenvector for Xi with the same eigenvalue. Thus it
follows from (31), (33), (34), (35), and (36) that each element of O(n + 1) is an
eigenvector for X1, . . . ,Xn. It remains to show that each element of O(n + 1) is an
eigenvector for Xn+1.

For 0 ≤ i ≤ n+1
2 and 0 ≤ k ≤ i, define a subset R(k, i) ⊆ O(n + 1) consisting

of all v ∈ O(n + 1) satisfying: r(v) = i and the symmetric Jordan chain in which v

lies starts at rank k and ends at rank n + 1 − k. Put W(k, i) = Span R(k, i). Clearly,
V (B(n + 1)i) = W(0, i) ⊕ W(1, i) ⊕ · · · ⊕ W(i, i). We claim that each W(k, i) is
an Sn+1-submodule. We prove this by induction on i, the case W(0,0) being clear.
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Assume inductively that W(0, i − 1), . . . ,W(i − 1, i − 1) are submodules, where
i ≤ n+1

2 . Since U is Sn+1-linear, U(W(j, i − 1)) = W(j, i), 0 ≤ j ≤ i − 1, are sub-
modules. Now consider W(i, i). Let u ∈ W(i, i) and π ∈ Sn+1. Since U is Sn+1-
linear, we have Un+2−2i (πu) = πUn+2−2i (u) = 0. It follows that πu ∈ W(i, i).

We now have from Lemma 4.2 that, for 0 ≤ i ≤ n+1
2 , W(0, i), . . . ,W(i, i) are

mutually nonisomorphic irreducibles. Consider the Sn+1-linear map f : V (B(n +
1)i) → V (B(n + 1)i) given by f (v) = av, where

a = sum of all transpositions in Sn+1 = X1 + · · · + Xn+1.

It follows by Schur’s lemma that there exist scalars λ0, . . . , λi such that f (u) = λku,
for u ∈ W(k, i). Thus each element of R(k, i) is an eigenvector for X1 + · · · + Xn+1
(and also for X1, . . . ,Xn). It follows that each element of R(k, i) is an eigenvector
for Xn+1.

The paragraph above has shown that the bottom element of each symmetric Jordan
chain in O(n + 1) is a simultaneous eigenvector for X1, . . . ,Xn+1. It now follows
from Lemma 4.1(iv) that each element of O(n + 1) is a simultaneous eigenvector for
X1, . . . ,Xn+1. This completes the proof. �
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