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Abstract A subset C C G of a group G is called k-centerpole if for each k-coloring
of G there is an infinite monochromatic subset G, which is symmetric with respect
to a point ¢ € C in the sense that § = ¢S~ !c. By cx(G) we denote the smallest
cardinality c;(G) of a k-centerpole subset in G. We prove that cx(G) = cx(Z™)
if G is an abelian group of free rank m > k. Also we prove that c{(Z"t!) =1,
2 (Z'T?) = 3, e3(Z'3) = 6, 8 < c4(Z"*) < es(Z*) = 12 for all n € w, and
L +3k —4) < cp(Z") <28 — 1 —max, 4 (V7]) forall n > k > 4.

Keywords Abelian group - Centerpole set - Coloring - Symmetric subset -
Monochromatic subset

1 Introduction

Answering a problem posed in [11], T. Banakh and I. Protasov [4] proved that for
any k-coloring x : Z¥ — k= {0, ..., k—1} of the abelian group Z* there is an infinite
monochromatic subset § C Z* such that S — ¢ = ¢ — § for some point ¢ € {0, 1}*. The
equality S — ¢ = ¢ — S means that the set S is symmetric with respect to the point c.
On the other hand, a suitable partition of R¥ into k + 1 convex cones determines a
Borel (k 4 1)-coloring of R* without unbounded monochromatic symmetric subsets.
These two results motivate the following definition, cf. [1, 3].
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Definition 1 A subset C of a topological group G is called k-centerpole' for (Borel)
colorings of G if for any (Borel) k-coloring x : G — k of G there is an unbounded
monochromatic subset § C G, symmetric with respect to some point ¢ € C in the
sense that Sc~! = ¢S

The smallest cardinality |C| of such a k-centerpole set C C G is denoted by cx (G)
(resp. c,?(G)). If no k-centerpole set C C G exists, then we write cx(G) = oo (resp.
cf (G) = 00) and assume that oo is greater than any cardinal that appears in our
considerations.

Now we explain some terminology that appears in this definition. A subset B of a
topological group G is called totally bounded if B can be covered by finitely many
left shifts of any neighborhood U of the neutral element of X. In the opposite case
B is called unbounded. A subset of a discrete topological group is unbounded if and
only if it is infinite.

A cardinal number k is identified with the set {« : |o| < k} of ordinals of smaller
cardinality and endowed with the discrete topology. By a (Borel) k-coloring of a
topological space X we mean a (Borel) function x : X — k. A function x : X — k is
Borel if for every color i € k the set X’l (i) of points of color i in X is Borel.

The definition of the numbers c; (G) and cf (G) implies that

cB(G) <ear(G)

for any topological group G and any cardinal number k. If the topological group G is
discrete, then each coloring of G is Borel, so cf (G) = ck(G) for all k. In general, the
cardinal numbers cx(G) and c,f (G) are different. For example, cg (R®) = w while
o (R®) = 00, see Theorem 2.

It follows from the definition that c;(G) and c,f (G) considered as functions of k
and G are non-decreasing with respect to k and non-increasing with respect to G.
More precisely, for a number k € N, a topological group G and its subgroup H we
have the inequalities

ck(H) > cx(G),  cx(G) <crs1(G)  and
RH)=cf(G), (G =cf (6.

In the sequel we shall use these monotonicity properties of cx(G) and c,f (G) without
any special reference.

In this paper we investigate the problem of calculating the numbers c;(G) and
c,f (G) for an abelian topological group G and show that in many cases this problem
reduces to calculating the numbers cx (R" x Z™~") and c,f (R" x Z"~™") where n =
rr(G) is the R-rank and m = rz(G) is the Z-rank of the group G.

For topological groups G and H the H-rank ri(G) of G is defined as

ri(G) =suplk € w: HF — G}

IS0, a centerpole set can be thought as a set of poles of central symmetries that detects unbounded mono-
chromatic symmetric subsets.
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where H* < G means that H¥ is topologically isomorphic to a subgroup of the
topological group G. It is clear that rr(G) < rz(G) for each topological group G.

It is interesting to remark that the Z-rank appears in the formula for calculating
the value of the function

v(G) =min{k : cx(G) = oo}
introduced and studied in [12] and [4]. By [4], for any discrete abelian group G

max{|G[2]|,log|G|} if G is uncountable or G[2] is infinite,
v(G)=1rz(G) +1 if G is finitely generated,
rz(G) +2 otherwise.

Here G[2] = {x € G : 2x = 0} is the Boolean subgroup of G and log |G| = min{k :
|G| <2°}.

A topological group G is called inductively locally compact (briefly, an ILC-group)
if each finitely generated subgroup H C G has locally compact closure in G. The
class of ILC-groups includes all locally compact groups and all closed subgroups of
topological vector spaces.

Our aim is to calculate the numbers ¢ (G) and c,f (G) for an abelian ILC-group G.
First, let us exclude two cases in which these numbers can be found in a trivial way.
One of them happens if the number of colors is 1. In this case

1 if G is not totally bounded,

B
(@) =eal@)= oo if G is totally bounded.
The other trivial case happens if the Boolean subgroup G[2]={x e G :2x =0} C G
is unbounded in G. In this case, for each finite coloring x : G — k there is a color
i € k such that the set S = G[2]N X_l(i) is unbounded. Since S = —S§, we conclude
that S is an unbounded monochromatic symmetric subset with respect to 0, which
means that the singleton {0} is k-centerpole in G and thus

k(G)=cB(G)=1 forallkeN.

It remains to calculate the values of the cardinal numbers ¢ (G) and c,f (G) for
k > 2 and an abelian topological group G with totally bounded Boolean subgroup
G|[2].

The following theorem reduces this problem of calculation of ¢ (G) to the case of
the group R” @ Z™~" where n = rr(G) and m = rz(G).

Theorem 1 Let k € N and G be an abelian ILC-group G with totally bounded
Boolean subgroup G[2] and ranks n = rr(G) and m = rz(G). Then

(1) cx(G) =cx(R" x Z"™) if k <m, and
(2) c(G) > wifk >m.

If the topological group G is metrizable, then
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3) cf(G)=cP®R" xZ™" ") ifk <m, and
@) B G =wifk>m.

Here we assume that ® —w =0 and w —n = w for each n € w.

Theorem 1 will be proved in Sect. 10. It reduces the problem of calculation of the
numbers ¢, (G) and c,? (G) to calculating these numbers for the groups R" x Z"~"
where n < m. The latter problem turned out to be highly non-trivial. In the following
theorem we collect all the available information on the precise values of the numbers
ck(R™ x Z™) and cf (R" x Z™).

Theorem 2 Let k, n, m be cardinal numbers.

() Ifn+m>1,then cB(R" x Z") = ¢;(R" x Z") = 1.

(2) Ifn+m =2, then cZR" x Z™) = cr(R" x Z™) = 3.

(3) Ifn+m >3, then cB(R" x Z") = c3(R" x Z™") = 6.

(4) Ifn+m=4,then cBR" x Z™) = c4(R" x Z™") = 12.

(S) Ifk=n+m+1<w, then cf (R" x Z™) = o0.

©) Ifk=n+m+1, then cy(R" x Z™) = 00.

(7) Ifn+m > wand w <k < cov(M), then cE(R" x Z") = w.

In the last item by cov(M) we denote the smallest cardinality of the cover of
the real line by meager subsets. It is known that 81 < cov(M) < ¢ and the equality
cov(M) = c¢ is equivalent to the Martin Axiom for countable posets, see [9, 19.9].

The equality c4(Z*) = 12 from the statement (4) of Theorem 2 answers the prob-
lem of the calculation of c4 (Z4) posed in [1] and then repeated in [5, Problem 2.4],
[6, Problem 12], and [2, Question 4.5].

Theorem 2 presents all cases in which the exact values of the cardinals c,f R"* x
7"y and cx (R" x Z™~") are known. In the remaining cases we have some upper
and lower bounds for these numbers. Because of the inequalities

R (R™) < cf(R* x Z"") <k (R" x Z" ") < ek (Z™),

we see that the upper bounds for the numbers c,f (R" x Z™™") and ¢ (R" x Z™™")
would follow from the upper bounds for the numbers ¢ (Z™) while lower bounds
from lower bounds on ¢ (R™).

Theorem 3 For any numbers k € N and n,m € NU {w}, we get:

(1) @™y <28 =1 —max,<— (*7}) ifk <m,
(2) cBRY) = 3(k> + 3k —4) if k > 4,
3) E®R™ >k+4ifm=>k=>4,
@) cfR") <cf R and cx(R") < crr 1 R ifk <,
(5) cFR* x Z™) < ¢ | (R" x Z" 1) and c; (R" x Z™") < ey (R" x Z™ M) ifk <
n-+m.
The binomial coefficient (]f) in statement (1) equals % ifi €{0,...,k} and
zero otherwise. The upper bound from this statement improves the previously known
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upper bound ¢ (Z") < 2F — 1 proved in [1]. For k = m < 4 it yields the upper bounds
which coincide with the values of cx(Z™) given in Theorem 2.

The lower bound cf (R") > %(n2 + 3n — 4) from the item (2) improves the previ-
ously known lower bound cf (R") > %(n2 + n), proved in [1]. For n = 4 it gives the
lower bound 12 < ¢ (R*), which coincides with the value of ¢ (R*) = c4(Z*).

The statement (5) implies that the sequence (cx (Zk)),fil is strictly increasing,
which answers Question 2 posed in [1]. Theorem 3 will be proved in Sect. 8 after
some preparatory work done in Sect. 2.

For every k € N the sequence (cx(Z"));2, is non-increasing and thus it stabilizes
starting from some n. The value of this number » is upper bounded by the cardinal
number rc,? (Z"™) defined as follows.

For a topological group G and a number k € N let rc,f (G) be the minimal possible
Z-rank rz({C)) of a subgroup (C) of G generated by a k-centerpole subset C C G of
cardinality |C| = cf(G). If such a set C does not exist (which happens if cf(G) =
00), then we put rc,f (G) =o00.

Theorem 4 (Stabilization) Let k > 2 be an integer and G be an abelian \LC-group
with totally bounded Boolean subgroup G[2] and R-rank n = rr(G). Then

(1) cx(G) =cg(Z®) if rz(G) = ref (Z°),
(2) cB(G) =cPR" x Z?) if G is metrizable and r7(G) > rcB (R" x Z),
(3) cf(G) =cBR?) if G is metrizable and rg(R) > rc (R).

In light of Theorem 4 it is important to have lower and upper bounds for the
numbers rci (G).

Proposition 1 For any metrizable abelian ILC-group G with totally bounded
Boolean subgroup G[2], and a natural number 2 <k <rz(G) we get

() rcf(G)=kifk <3,and
2) k<rcf(G) <cB(G) -3 ifk > 3.

Finally, let us present the (k 4+ 1)-centerpole subset Ef‘ of R*¥ that contains
2k 1 — (];) elements and gives the upper bound from Theorem 3(1). This (k + 1)-
centerpole set &y is called the (¥)-sandwich.

Definition 2 Let k be a non-negative integer and s be a real number. The subsets
k k
2"<S={(x,~)62k:2x,-<s} and Zﬁsz{(xi)GZk:sz'>S}
i=1 i=1

are called the s-slices of the k-cube 2¢ where 2 = {0, 1} is the doubleton. For s €
{0, ..., k} the union of such slices has cardinality

k k!
k k | _n~k _nk _
2o u2f=2 (s) =2 stk —s)!
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The subset
EF=(1—1yx 25 ) U (foy x 25, ) U ({1} x 2%))

of the group Z x ZF is called the (¥)-sandwich. For s € {0, ..., k} it has cardinality

k
2= kvl vz | =2 -1 - (1),

The following theorem implies the upper bound in Theorem 3(1). The proof of
this theorem (given in Sect. 3) is not trivial and uses some elements of Algebraic
Topology.

Theorem 5 For every k €e N and s < k — 2 the ( ) sandwich & Y isa (k+1)-
centerpole set in the group 7. x 7.

In light of this theorem it is important to know the geometric structure of (":)-
sandwiches & gk for s < k — 2. For k < 3 those sandwiches are written below:

- EO2 ={(1,0)} is a singleton in Z x Z° = Z x {0};

- Ell {(0, 1), (1,0), (1, 1)} is the unit square without a vertex in VAS

- "'g = {(0,0,0), (0,0, 1), (0,1,0), (1,0, 1), (1,1,0), (1, 1, 1)} is the unit cube
Wlthout two opposite vertices in Z3

- uo is the unit cube without two opposite vertices in Z*, so | & 3| = 14;

- 1s a 12-element subset in Z* whose slices {—1} x 23 ,, {0} x 23 ., and {1} x 23>1

have one, seven, and four points, respectively.

<1 <3

By a triangle (centered at the origin) we shall understand any affinely independent
subset {a, b, ¢} in R” (such that a + b+ c = 0). A tetrahedron (centered at the origin)
is any affinely independent subset {a, b, ¢,d} C R" (witha +b+ c +d =0).

Let us observe that the sandwich
- EEZ has cardinality ¢ (R') = 1 and is affinely equivalent to any singleton {a} in

R!;

-zt | has cardinality c2(R?) = 3 and is affinely equivalent to any triangle A =
{a,b,c}in R?;

— E2 has cardinality c3 (R?) =6 and is affinely equivalent to A U (x — A) where
A C R3 is a triangle centered at zero and x € R? does not belong to the linear span
of A;

— E3 has cardinality ca(RY =12 and is affinely equivalentto (x — A)U AU (—x —
A) where A C R* is a tetrahedron centered at zero and x € R* does not belong to
the linear span of A.

To see that Ef is of this form, observe that ¢ = (A—l‘, %, % %) is the barycenter of 5'13
and 313 —c=(x—A)UAU(—x — A) for the tetrahedron

=1{(0,0,0,1),(0,0,1,0),(0,1,0,0), (1,1,1, D} —

and the point x = (,0,0,0).
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Now we briefly describe the structure of this paper. In Sect. 2 we establish a cover-
ing property of sandwiches, which will be essentially used in the proof of Theorem 5,
given in Sect. 3. Section 4 is devoted to T-shaped sets which will give us lower bounds
for the numbers cf (R¥). In Sect. 5 we prove some lemmas that will help us to an-
alyze the geometric structure of centerpole sets in Euclidean spaces. In Sect. 6 we
study the interplay between centerpole properties of subsets in a group and those of
its subgroups. In Sect. 7 we prove a particular case of the Stability Theorem 4 for
the groups R” x Z™~". In Sects. 8, 9, and 10 we give the proofs of Theorems 3, 2,
and 1, respectively. Sections 11 and 12 are devoted to the proofs of Proposition 1 and
Theorem 4. The final Sect. 13 contains selected open problems.

2 Covering X -sets by shifts of the sandwich .‘:'.'sk

In this section we shall prove a crucial covering property of the (ls‘)-sandwich Ei‘ In
the next section this property will be used in the proof of Theorem 5. We assume that
k € w and s < k — 2 is an integer.

First we introduce the notion of a Xy-subset of the cube 25+ = {0, 1}¥*1. For
i €{0,...,k} consider the ith coordinate projection

pr; RS R, pr; : (xj)]j‘-:() = X

The subsets of the form 251 N pr; ! (I) for [ € {0, 1} are called the facets of the cube
2k+] )

Next, consider the function
k
. ok+1 . k
E.R+ —)R, E.(xi)iZOHin,
i=1

and observe that ¥ (2kt1) =10, ..., k).
Taking the diagonal product of the functions pry, and X', we obtain the linear op-
erator

k
Xo: R Rz, 20: (xi)f.‘zo — (xo, Zx,).

i=1

Definition 3 A subset t C 25t will be called a Xy-set if

— 7 lies in a facet of 2Ft1;
— there exists a € {0, ..., k — 1} such that Xy(7) C {(0,a), (0,a+1),(1,a+ 1)} or
2o(r) C{©0,a),(1,a), (1,a+ D}

Lemma 1 Each Xy-set t C 251 is covered by a suitable shift x + Esk of the (":)-
sandwich B
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Proof Decompose the Xy-set 7 into the union 7 = 7o Uty where t; = 7 Npr, ! (i) for
i € {0, 1}. By our hypothesis 7 lies in a facet of the cube 2!, Consequently, there
are numbers y € {0, ..., k} and [ € {0, 1} such that T C pr;l(l). If 79 or 17 is empty,
then we can change the facet and assume that y = 0.

Since 7 is a Xy-set, the image X () lies in one of the triangles: {(0, a), (0,a+ 1),
(1,a+D}or ({(0,a), (1,a),(1,a+ 1)} forsomea € {0, ..., k— 1}. This implies that
X(r)Cla,a+1}.

Identify the cube 2k with the subcube {0} x 2kof B and leteyg =(1,0,...,0)
2k+1 Then

—k k k k
Ef=2,U (eO + 2>s) U (—e() + 2<s)'
Depending on the value of y, two cases are possible.

0. y =0. This case has four subcases.

0.1. Ifl—Oanda <k —1then Xy(r) C{(0,a),(0,a+ 1)} C{0,...,k—1}and
tc2k, c gk

0.2. Ifl—Oandazk— I,thena >k —2>sandt C 25 C —eo+ EF.

0.3. Ifil=1anda <k —1, then Eo(r) c{(d,a),(l,a+ 1)} C{0,...,k—1}and
hencetCeo+2 kCe0+S .

04. Ifl=1anda>k—1,thena >k —2>s and then T C eg + 28 . C &%,

I. y # 0. In this case 19 and 71 are not empty. Let e, be the basic vector whose
yth coordinate is 1 and the others are zero. By our assumption, Xy(t) C
{(0,a),(1,a),(1,a + 1)} or Xo(r) C {(0,a),(0,a + 1),(1,a + 1)} for some
ae€{0,...,k—1}. So, we consider two subcases.

L1. Xo(r) C{(0,a), (1,a),(1,a+ 1)}. This case has two subcases.
1.1.0. [ =0. In this subcase X'(t) = X' (19) U X (11) ={a,a+ 1} C {0, ...,
k — 1} and hence a < k —2. Depending on the value of a, we have three
possibilities.
Ifa>s,thent=19UT1 C2k<kU(eo+2k>A.) C Ef‘
If a = s, then for the shifted set e, + T we get

Zoe, +17) C{0,a+ 1, (1,a+ 1), (1,a+2)}.

Since a = s < k — 2, we conclude that e, + 19 C 2, C uk On the
other hand, e, + 71 Ce; +2%  C EF. Then v C —e, + EX.

Ifa<s,thena+1<s<k—2andhencet =79UT1 C2]‘<3U(eo+
2k,) Ceg+ EL.

I.1.1. I = 1. In this subcase three possibilities can occur:
Ifa>s,thent=19UT1 C2k<k+(e0+2/;S) C Esk,
Ifa<s,thena+1<s<k—2andthent =719Ut] C25 U (eo+

2k,) Ceg+ EL.

If a =s, then for the shift —e, + 7 we get Xp(—e,+7) C
{(0,a—1), (1,a—1), (1,a)} and hence —e, + 1 C 25 U (eg +2%,) C
ey + uk Consequently, T C e, + e + Sk.

L2. Xo(r) C{(0,a), (0,a+ 1), (1,a+ 1)}. Depending on the value of / € {0, 1},
consider two subcases.
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1.2.0. I = 0. In this case {0,...,k — 1} D X(r) = X (1r9) U X (11) = {a,
a+ 1} U{a + 1} and consequently,a + 1 <k — 1.
Ifa>s,thent=1UT] C2k<k U(eo+2k>s) C ES"
If a =5 — 1, then we can consider the shift e, + 7 and repeating
the prece(]ging argument, show that e, + 1 C Ef Consequently, T C
—e, + &Y.
Ifa<s—1,thent=1UT] CZ/LSU(e0+2]ik)CeO+ESk.
1.2.1. [ = 1. In this case we have four subcases.
If a = k — 1, then for the shifted set — e,, + T we get Z‘o( e, +1)C
{(0,a—1),(0,a),(1,a)} and ey+rc2 U(e0+2 §) = k . Then
T Ce, + 3k
Ifs<a<k—1thenr_TOUrlc2<kU(e0+2 :a!‘.
If a = 5 — 1, then for the shifted set —e,, + 7 we get Eo( e, +1)C
{(o a—1),(0,a),(1,a)} and then —e, +7 C 25 U (eg+2*,) =eo+
Ekandt Cey +e+ EF.
a<s— Ithent =719Ut C25,U(eg +25,) =9+ EF.
This was the last of the 17 cases we have considered.

3 Proof of Theorem 5

The proof of Theorem 5 uses the idea of the proof of Lemma 6 in [1] (which estab-
lished the upper bound c3(Z3) < 6).

We need to prove that for every k <n and s < k — 2 the (*)-sandwich EF is
(k+1)-centerpole in Z x Z* = Z'**. Assuming that this is not true, find a colormg X:
Z*K > k4+1=1{0,...,k} such that Z'** contains no unbounded monochromatic
subset, symmetric with respect to some point ¢ € & Sk Observe that for each color
i €{0,...,k} the intersection A; N (2c — A;) is the largest subset of A;, symmetric
with respect to the point ¢. By our assumption, the (maximal i-colored c-symmetric)
set A; N (2c — A;) is bounded and so is the union

B= U UA NQc— Ap)

CG..;

of all such maximal symmetric monochromatic subsets.

Claim 1 x(x) ¢ x(—x +2EK) for any x ¢ B.

Proof Assuming conversely that x(x) = x(—x + 2¢) for some ¢ € Sk, we get
2(x +(—x+2c)=c and hence x and —x + 2¢ are two points symmetric with
respect to the center ¢ € E ¥ and colored by the same color. Consequently, x € B by

the definition of B. O
Fix a number n € N so big that the cube K = [—2n, 2n]"t*F ¢ R* contains the

bounded set B in its interior and let K be the topological boundary dK of the cube
K in R!** Observe that Claim 1 implies:
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Claim 2 x(—x) ¢ x(x +2 EX) for each point x € Z'** N 3K.

We recall that for everyi e k+1=1{0,...,k}
pr; RIFF SR, pr; : (xj)I;-ZO = X,

denotes the ith coordinate projection and e; is the unit vector along the ith coordinate
axis, that is, pr; (e;) = 1if i = j, and O otherwise.

Forasubset J C{0,....k}lete; =3 ., €; € R!** be the vector of the principal
diagonal of the cube 27 = {(x;))*_, € 2!k : Vi ¢ J (x; = 0)} C 21K,

For a point x € RIF*Jet Jy ={i ek +1:x; ¢ 27} and let |x | be the unique point
in (2Z)'** such that x € [x| +2-2”*. So, [x| <x < |x] +2ey,.

Consider the function X : R¥t! — R assigning to each sequence x = (Xi)f;o the
sum X (x) = Zf-;l x;. The map ¥ combined with the Oth coordinate projection pr,
compose the linear operator

k
Xo: Rtk Rz, Xo: (xi)ﬁ.‘zo — (xo, E(x)) = (xo, in).
i=1

Choose a triangulation T of the boundary 3K of the cube K = [—2n, 2n]'™* such
that for each simplex 7 of the triangulation there is a point 7 € (2Z)'™* such that
%(t — 1) is a Xo-subset of 2!7%. The reader can easily check that such a triangulation
T always exists. The choice of the triangulation 7 combined with Lemma 1 implies

Claim 3 Each simplex t of the triangulation T is covered by a suitable shift x + 25 Sk
of the homothetic copy ZESk of the (Is‘)-sandwich E!‘

Let A be (the geometric realization of) a simplex in RF with vertices wo, ..., Wk
such that wo + - - - +wy = 0. The latter equality means that A is centered at the origin
(which lies in the interior of A). By A© = {wy, ..., wi} we denote the set of vertices
of the simplex A.

Each point y € A can be uniquely written as the convex combination y =
Zf:o y;w; for some non-negative real numbers Yy, ..., y; with Zf:o y; = 1. The
set

supp(y):{ie{O,...,k}:yi7&0}

is called the support of y. It is clear that supp(y) is the smallest subset of A®) whose
convex hull contains the point y.
Identifying each number i € {0, ..., k} with the vertex w; of A, we can think of
the coloring x : Z!** — {0, ..., k} as a function x : Z't% — A© = {wy, ..., wi}.
Now extend the restriction x |3 K N (2Z)'+* of x to a simplicial map f : 9K — A
(which is affine on the convex hull of each simplex t € T'). The simpliciality of f
implies

Claim 4 For each simplex Tt € T and a point x € conv(t)

supp(f(x)) C x(v) C x(Lx] +2-2%).
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This claim has the following corollary.
Claim5 f(0K) CdA.

Proof Given any point x € 9K, find a simplex T € T whose convex hull contains x.
By the choice of the triangulation 7" and Lemma 1, T C —y + ZE_!‘ for some point
y € Z'*% By Claim 2, x (—y) ¢ x (t) and thus

f(x) € conv(f(z)) =conv(x (7)) C conv(A@\ x(—y)) CaA. O

Now consider the intersection Ko = {0} x [—2n, 2n]¥ of the cube K with the
hyperplane {0} x R¥, which will be identified with the space R¥, and let 9K( =
dK NR* be the boundary of Kj.

For each subset J C k + 1 ={0, ..., k} consider the map

prRITF SR, pJ:(x,-)i-‘onl-nxj.
jeJ

Here we assume that pg(x) = 1. It follows that ZJck+1 ps(x) >0 for all x €
[0, 2]k+1 )

We remind that for a point x € Rk g ={i €{0,...,k}: x; ¢ 27} and |x]
stands for the unique point in (2Z)!** such that x € |x] +2%x where 2/ = {(x)*_, €
2K+ vi ¢ J (x; =0)).

Now consider the map ¢ : d Kg — A defined by the formula

Y sckat Prx —1x]) - x(Lx] +ey)
Do ckar Pr(x = |x])

p(x) =
It can be shown that the map ¢ is well-defined and continuous.
Claim 6 supp(p(x)) = x(|x] +2-2%) C x(lx] + ZES]‘)for all x € Kj.
Proof Let x € 0K be any point. The definition of ¢ implies that supp(p(x)) =

x(Lx] + 27r). The inclusion x € 3K implies that the set J, = {j € {0,...,k} :
pr;(x) ¢ 27} has cardinality | J| < k and thus 27 {0} x 2"<k - Esk Consequently,

lx] +2-2% C |x] +28Fand x(lx] +2-27) C x(lx] +285). O
Claim 7 ¢(x) # ¢(—x) for all x € 0Kj.
Proof Observe that J, = J_, and |—x] = —|x] — 2e,,. By Claim 6,

x(=1x]) = x(l—x] +2-e_y,) € x([=x]1+2-2") = supp(p(—x)).
On the other hand, Claim 1 guarantees that
x(=1x)) # x(lx) +255) o x(Lx] +2-27%) = supp(p(x)).

Consequently, supp(¢(—x)) # supp(¢(x)) and ¢(x) # ¢(—x).
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Finally, consider the homotopy
(f):0Ko x [0,1] — A, frixte(x) + (1 —1)f(x),
connecting the map f = fy with the map ¢ = fi. g
Claim 8 supp(f;(x)) C x(lx] +2-2/) CdA forall x € 3Ky and t € [0, 1].
Proof The inclusion supp( f;(x)) C x(|x] 4 2 - 2/x) follows from Claims 4 and 6.
The inclusion x € dK¢ implies that the set Jy = {j € {0,..., k} : pr;(x) ¢ 2Z}
has cardinality |J;| < k and thus 2/r C {0} x 2];k C Esk By Claim 1, x(—|x]) ¢

x(Lx] +25%) and then

fi(x) € conv(supp(f;(x)) C conv(x (|x] +2-27r))
C conv(x(LxJ +2E;‘)) C conv(A(O) \X(— LxJ)) CoA. O

Let S5~ = {x e RF: || x| = 1} be the unit sphere in R¥ with respect to the Euclid-

ean norm || - || and r : RK\ {0} = S*~1, r: x > x/||x||, be the radial retraction.
Observe that its restriction r|d A to the boundary of the geometric simplex A is a
homeomorphism.

By Claim 5, f(0K) C0A C R¥ \ {0}, so we can consider the map go: 0K —
Sk=1 defined by go(x) — r o f(x) = f(x)/|l f(x)|. By Claim 8, the map go|d Ky is
homotopic to the map

g1:0Ky— S, g1(x) > ro fi(x) =rop(x).

It follows from Claim 7 that g;(x) # g1(—x) for all x € dKy. This implies that the
formula

g1(x) —181(—x)
llg1(x) —tg1(=x)|l’

hy(x) = x € 9Ko, 1 [0, 1],

determines a well-defined homotopy (h;) : Ko — S¥~! connecting the map g; with
the map

Iy () = g1(x) — g1(—x) ’
lg1(x) — g1 (=x)ll

which is antipodal in the sense that 41 (—x) = —h(x). By [13, Chap. 4, Sect. 7.10],
each antipodal map between spheres of the same dimension is not homotopically
trivial. Consequently, the antipodal map /1 : Ko — S*~! is not homotopically triv-
ial. On the other hand, %; is homotopic to the map ho = g1, which is homotopic to
g0|0 Ko and the latter map is homotopically trivial since the boundary 0K of the
cube K| is contractible in the boundary 0 K of K. This contradiction completes the
proof of Theorem 5. 0
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4 T-shaped sets in R"

Theorem 5, proved in the preceding section, yields an upper bound for the numbers
cx(Z5). A lower bound for the numbers c,f (R¥) will be obtained by the technique of
T -shaped sets created in [1].

Let Ry = [0, 00) be the closed half-line. For every n > 0 consider the subset
Ty C R? defined inductively:

To =9 c R® = {0}, T, ={0}cR!, and
T, = (R x {0})) U(T—1 x Ry) CR”

forn > 1.

Definition 4 A subset C C R” is called T-shaped if f(C) C R x T,,_; for some
affine transformation f : R” — R x R"~!. The smallest cardinality of a subset A C
R”", which is not T -shaped is denoted by ¢ (R").

Let us describe the geometric structure of 7'-shaped sets.

We say that for k < n, hyperplanes Hj, ..., H, in R" are in general position if
they are pairwise distinct and their normal vectors are linearly independent. This
happens if and only if there is an affine transformation f : R" — R” that maps the
ith hyperplane onto the hyperplane R\~ x {0} x R"~ foralli € {1,...,k}.

We shall say that a hyperplane H C R" does not separate a subset S C R"*!
if S lies in one of two closed half-spaces bounded by the hyperplane H. Such a
hyperplane H will be called non-separating for S. A hyperplane H is called a support
hyperplane for S if HN S # ) and H does not separate S.

Proposition 2 Let n € N. A subset S C R"*! is T-shaped if and only if
SCHU---UH,

for some hyperplanes Hy, ..., H, in general position such that each hyperplane H;,
1 <i <n, does not separate the set S\ (Hy U---U H;_1).

Proof This proposition can be easily derived from the equality

n—1
RxTn=URn—" x {0} x R,
i=0
that can be easily proved by induction on 7. g

By Lemma 7 of [1], T-shaped subsets of Euclidean spaces R¥ are k-centerpole for
Borel colorings. Consequently, #(R") < ¢Z(R"). This gives us a lower bound for the
numbers c,? (R™) and ¢ (R"):

Proposition 3 1(R¥) < c,f (RKy < c,? R < cx(R") for any finite k < n.
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In the following theorem we collect all the available information on the numbers
t(R™).

Theorem 6

t(RY =1,

t(R?) =3,

t(R3) =6,

t(RY =12,

tRYY <n?—n+ 1 for everyn > 1,
t(R") >t (RN +n+1forany n > 4,
t(R") > $(n? +3n — 4) for any n > 4.

Nk W=

Proof

1. Since Ty = #, a subset of R! is T-shaped if and only if it is empty. Consequently,
t(RYH =1.

2. Since T} = {0} c R!, asubset C C R? is T-shaped if and only if C lies in an affine
line. Consequently, #(R?) = 3.

3. By Theorem 5, the 6-element (%)—sandwich Eg is 3-centerpole in R3. Conse-
quently, c3(R?) < 6. By Proposition 3, 1 (R?) < c3(R?) < 6. To see that 1 (R?) > 6,
we need to check that a subset C C R? of cardinality |C| < 5 is T-shaped, which
means that after a suitable affine transformation of R3, C can be embedded into
R x T,. By the definition, 7, =R x {0} U {0} x R.

Consider the convex hull conv(C) of C in R3. If C lies in an affine plane H,
then applying to R a suitable affine transformation, we can assume that C ¢ H =
R x R x {0} C R x T». If C does not lie in a plane, then the convex polyhedron
conv(C) has a supporting plane H; such that |H; N C| > 3. So, C \ H; lies in
one of the closed half-spaces with respect to the plane H;. Denote this subspace
by H 1+ . The set C \ Hj has cardinality |C \ Hi| <2 and hence it lies in an affine
plane H, C R? that meets H;. Find an affine transformation f : R> — R3 such
that f(H;) =R x R x {0}, f(Hf):Rx]RxR+ and f(H>) = {R} x {0} x {R}.
Then

FO)CRXxRx{OJURX {0} xR =R xT;

and hence C is T -shaped.
4. By Theorem 5, the (?)-sandwieh &} is 4-centerpole in Z*. Consequently,

((RY) < ca(RY) < ey(Z9) < |8 =24 — 1 = G) —12.
The reverse inequality 7 (R*) > 12 will be proved in Lemma 2 below.

5. Let C C R” be a set consisting of n> —n + 1 =n(n — 1) + 1 points in general
position. This means that no (n 4 1)-element subset of C lies in a hyperplane.
Then C cannot be covered by less than n hyperplanes and consequently C is not
T-shaped (because the set R x T,,_; lies in the union of (n — 1) hyperplanes).
Then t(R") < |C|=n?—n+1.
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6. First we prove the inequality
t(R") > min{2¢ (R"™1), 1 (R"™) +n + 1} (1)

for every n > 2. Take any subset C C R”" of cardinality |C| < min{2r(R"™1),
t(R"™1) 4 n + 1}. We need to show that C is T-shaped.

Consider the convex hull conv(C) of C in R”. If conv(C) lies in some hyper-
plane, then C is T-shaped by the definition. So, we assume that conv(C) does not
lie in a hyperplane and then conv(C) is a compact convex body in R”. Let H be
a supporting hyperplane of conv(C) having maximal possible cardinality of the
intersection C N H. Itis clear that |C N H| > n.

Now two cases are possible:

(a) The set C'\ H lies in a hyperplane Hj, parallel to H. Then H; is a supporting
hyperplane of conv(C) and then |C N Hy| < |C N H| by the choice of H. Now we
see that |C N Hy| < |C| < t(R"™1).

Applying to R” = R"~! x R a suitable affine transformation, we can assume
that H=R""! x {0} and C\ H Cc R"~! x Ry. Let pr: R” — R"~! be the coor-
dinate projection. Since |pr, (C \ H)| < t(R*™1), the set C' = pr,(C\ H)is T-
shaped. This means that there is an affine transformation f : R"~! — R”~! such
that f(C’) C R x T,_». This affine transformation f induces the affine transfor-
mation

P RIXxR-RTI R, @x,y) = (f(0), ),

such that

P(C)=P(CNH)UDP(C\H)C (RX R"2 x {0}) UR X T2 x Ry)
=R xT,_;.

The affine transformation @ witnesses that the set C is T -shaped.

(b) The set C \ H does not lie in a hyperplane parallel to H. Then C \ H con-
tains two distinct points x, y such that the vector xy is not parallel to H. Apply-
ing to R" = R x R a suitable affine transformation, we can assume that H =
R*1 x {0}, C\ H c R"~! xR, and under the projection pr: R*~! x R — R"~!
the images of the points x and y coincide. Then the projection C’ = pr(C \ H) has
cardinality |C'| <|C\H|—1<|C|—|CNH|—1 <t(R" H4n+1—n—1=
t(R"~1). Continuing as in the preceding case, we can find an affine transformation
@, witnessing that C is a T -shaped set in R”.

This proves the inequality (1). By analogy we can prove that #(R") >
t(R"1) 4+ n. Since t(R') = 1, by induction we can show that # (R") > %n(n +1).
In particular, f (R"~!) > %n(n — 1) >n+1 forall n > 4. In this case

t(R") > min{2r (R, t(R" ) +n+ 1} =t(R" ) +n+ 1.

7. The lower bound 7 (R") > %(n2 +3n —4), n > 4, will be proved by induction. For
n =4 it is true according to the statement (4). Assuming that it is true for some
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n > 4 and applying the lower bound (6), we get
1
(R 2 1 (RY) + (et D+ 12 5 (07 +3n = 4) 4042
1 2
= 5((n +D?+3(m+1)—4).
To finish the proof of Theorem 6, it remains to prove the promised:

Lemma 2 Each subset C C R* of cardinality |C| < 12 is T -shaped.

Proof Assume that some subset C C R* of cardinality |C| < 12 is not T-shaped.
Without loss of generality, |C| =11.

We recall that a hyperplane H C R* is called a support hyperplane for C if C N
H # () and H does not separate C (which means that C lies in a closed half-space
H™ bounded by the hyperplane). g

Claim 9 Each support hyperplane H C R* for C has at most five common points
with C.

Proof Assume that H is a support hyperplane for C with |H N C| > 5. After a suit-
able affine transformation of R*, we can assume that H = R3 x {0} and C C R x R;.
Let pr: R* — R3 be the coordinate projection. Since |C \ H| =|C| - |C N H| <
11-5=6and (R} =6 (by Theorem 6(3)), pr(C \ H) is T-shaped in H and so C
is T-shaped R*. (|

Claim 10 For any two parallel hyperplanes Hy and Hy in R* the set C \ (Hy U H,)
is non-empty.

Proof Otherwise one of these hyperplanes contains more than six points, which con-
tradicts Claim 9. 0

Claim 11 Each support hyperplane H for the set C has less than five common points
with C.

Proof Previous claim guarantees the existence of two distinct points a, b € C that lie
in an affine line L that meets H. After a suitable affine transformation of R*, we can
assume that H = R3 x {0}, C ¢ R3 x Ry, and L = {0}® x R. Let pr : R* = R3 be
the coordinate projection. Assuming that |H N C| > 5 and taking into account that
pr(a) = pr(b), we conclude that

[pr(C\H)|<|C\H|-1=|C|-|CNH|-1<5<6=t(R%).
It follows that pr(C \ H) is T-shaped in R? and then C is T-shaped in R*. g

The characterization of T'-shaped sets given in Proposition 2 implies:
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Claim 12 If Hy is a support hyperplane for C, H is a support hyperplane for C \ H
and Hy, H, are not parallel, then |C \ (Hy U H>)| > 3 and if |C \ (H1U Hy)| = 3, then
the set C \ (H1 U H») does not lie in a line but lies in a plane, parallel to Hy N H.

Claim 13 If H| and P, are parallel support hyperplanes for C and |Hy N C| =4,
then |P,NC| = 1.

Proof By Claim 11, C \ Hj does not lie in a hyperplane. Now consider four cases.

(1) |P,NC| > 4. In this case C is T-shaped by Claim 11.

(2) |P, N C| =4. We claim that the set P, N C does not lie in a plane P. Otherwise
P can be enlarged to a support hyperplane that contains > 5 points of C, which
is forbidden by Claim 11. Therefore, the convex hull of P, N C is a convex body
in P> and we can find a support hyperplane H; for C \ H; that meets Hj, has
at least four common points with C \ H; and exactly three common points with
the set C N P,. In this case the unique point ¢, of the set C N P> \ H> lies in
C \ (H1 U H,). By Proposition 2, the set C \ (H; U H>) contains exactly three
points that lie in a plane parallel to H; N H,. Since this set contains the point
¢y € C N P, we conclude that C \ (Hy U Hy) C P> and hence |C N P,| =6,
which is a contradiction.

(3) |P,NC|=3.Let Pl be a plane which contains P, N C and lies in the hyperplane
P>. We claim that the set C \ (H; U PI) lies in a plane P!, that is parallel to PI.
Let S be the set of all points x € C\ (H; U PI) that belong to a support hyperplane
H, to C \ Hj that has at least four common points with C \ H; and contains
the plane PI. Claim 12 guarantees that the set C \ (H; U H,) contains exactly
three elements and lies in a plane that is parallel to the intersection Hy N H,
(which is parallel to PI). Since the set C \ H; does not lie in a hyperplane, the
set S contains more that one point, which implies that the set C \ (H; U Pl) =
U,es €\ (H1 U Hy) lies in a plane Pl; that is parallel to the plane PI. Let H; be
the hyperplane that contains the parallel planes Pl and P/;. Since H> meets Hj,
we see that C C H1 U H; is T-shaped by Proposition 2 and this is a contradiction.

(4) |P,NC|=2.Since C \ H; does not lie in a hyperplane, there is a support hy-
perplane H, to C \ Hj such that |Hy N (C \ Hy)| >4 and |Hb NP, NC|=1.1t
follows that the hyperplane H, does not coincide with P, and hence meets the
hyperplane H;. By Claim 12, the complement C \ (H; U H>) contains exactly
three points that lie in a plane, parallel to H; N H>. Since C \ (H; U H) meets
the hyperplane P, we conclude that C \ (H; U Hy) C P> and |C N P»| > 4, which
is a contradiction.

O

Claim 14 If Py and P, are parallel support hyperplanes for C and |P1 N C| =4,
then the set C \ (P1 U P») lies in a hyperplane P3 that is parallel to Py and P;.

Proof By Claim 13, |P, NC| =1 and hence |C \ (P} U P,)| = 6. Let x be the unique
point of P, N C. Take any support hyperplane H > x for the set C \ P; such that
|[H N C| > 4. Since H meets Py, Proposition 2 guarantees that the set C' = C \
(P1 U H) contains exactly three points that lie in a plane parallel to the intersection
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P; N H and hence parallel to P;. The hyperplane H' containing the set C' U {x} is a
support hyperplane for the set C \ P;. Applying Proposition 2, we conclude that the
set C"=C\ (PLUH')=CnNH\ P, contains exactly three points lying in a plane
parallel to Py N H'. Thus C \ (P, U P,) lies in two planes parallel to P; and hence
it lies in a hyperplane Psz. Proposition 2 implies that the hyperplane P is parallel
to Pj. O

By an octahedron in a linear space L we understand a set of the form
c+{e,—e :1<i<3}

where eg, e, e3 are linearly independent vectors in L and ¢ € L is the center of
the octahedron. Up to an affine equivalence an octahedron is a unique 6-element set
Xwith 3-dimensional affine hull A such that for each support plane P C A of X with
|P N X|>3the set X \ P contains three points and lies in a plane P’, parallel to P.

Claim 15 If Py and P> are parallel support hyperplanes for X and |P1 N C| =4,
then the set C \ (P1 U Py) is an octahedron that lies in a hyperplane P, parallel
to Py.

Proof By the preceding claim, the set K = C \ (P} U P,) lies in a hyperplane Ps,
parallel to P;. Let us show that K does not lie in a plane. In the opposite case, we
could find a hyperplane H, that contains the set K and meets the hyperplane Pj.
Then for each hyperplane H3 that contains the unique point C N P, and has one-
dimensional intersection with Py N Hy, we get C C P; U Hy U H3 witnessing that C
is T-shaped.

Thus the affine hull of K is 3-dimensional. To see that K is an octahedron, it
suffices to check that for each support plane P C P3 of K with [P N K| > 3 the set
K \ P contains exactly three points and lies in a plane parallel to P.

Let x be the unique point of the set C N P, and H, be the hyperplane containing
the plane P and passing through x. It follows that H, is a support hyperplane for
the set C \ P;. By Claim 12, the set C \ (P} U Hy) = K \ P contains exactly three
elements and lies in a plane P’ parallel to the intersection H; N H.

Now let H, be the hyperplane that contains the support plane P’ and passes
through the point x. Since P’ is a support plane for K in the hyperplane P3, Hj
is a support hyperplane for K U {x} = C\ P; in R*. Since Hj intersects Py, Claim 12
guarantees that the set C \ (P; U H}) = K \ P’ contains exactly three points and the
plane P containing these three points is parallel to P; N H} which is parallel to the
plane P’. O

After this preparatory work we are ready to finish the proof of Lemma 2. As C is
not T -shaped, it does not lie in a hyperplane. So, we can find a support hyperplane P;
for C such that | P N C| > 4. Let P, be a support hyperplane for C, which is parallel
to P;. By Claim 13, |P1 N C| =4 and |P, N C| = 1. Let p, be the unique point of
the set P, N C. By Claim 15, C \ (P; U P>) is an octahedron that lies in a hyperplane
P3, parallel to the hyperplanes Py and P;. Let ¢ be the center of this octahedron and
2¢ — p» be the point, symmetric to p, with respect to c.
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Fix any 3-element subset F' of P; N C such that 2c — pp € F if 2c — pp € CN Py.
Next, find a hyperplane H; for C that contains F and meets C \ Hj at some point a.
If a = p, thenthe set C C H1 U P3 U (C N Py \ F) is T-shaped by Proposition 2.

Consequently, a is a point of the octahedron C N Pz with center c. Let H> be a
support hyperplane for C that is parallel to the hyperplane H;. By Claims 13 and 15,
[CNH|=4,|CNHy=1and C\ (H; U Hp) is an octahedron that lies in a hyper-
plane Hi, parallel to H; and H,. If H3 does not meet the octahedron C N Ps, then
(CNP)N(CNH3)=(CNP3)\ H = CN P3\{a}. In this case the octahedra C N P3
and C N Hz have five common points and hence lie in the same hyperplane P; = Hs,
which is not possible. So, the support hyperplane H3 meets the octahedron C N P at
a single point and this point is 2¢ — a. In this case the octahedra C N P3 and C N H3
have four common points which belong to the set C N P3 \ {a, 2c — a} and lie in the
2-dimensional plane P3N H3. This implies that the octahedra C N P3 and C N H3 have
the common center c. Since p; € C N H3, the point 2¢ — p; belongs to the octahedron
CNH; C C.lItfollows from py € P, andc € Py that2c—p, e C\(P,UP3;) =CN P
and hence 2¢ — p» C F C H; by the choice of the set F'. On the other hand, 2¢ — p»
belongs to the hyperplane H3, which is disjoint with H; and this is a desired contra-
diction. g

5 Enlarging non-centerpole sets

In this section we prove several lemmas on enlarging non-centerpole subsets. Namely,
we show that under certain conditions, a non-k-centerpole subset C of a topological
group X (possibly enlarged by one or two points) remains not k-centerpole in the
direct sum X @ R. The group X @ R can be identified with the direct product X x R
so that X is identified with the subgroup X x {0} C X x R, while the real line R is
identified with the subgroup {e} x R C X x R where e is the neutral element of the
group X.

Lemma 3 If for k > 2 a subset C C X of a topological group X is not k-centerpole
(for Borel colorings), then set C is not k-centerpole in X @ R.

Proof Since the set C C X is not k-centerpole (for Borel colorings), there exists
a (Borel) coloring x : X — k such that X contains no monochromatic unbounded
subset, which is symmetric with respect to a point ¢ € C. Extend x to a (Borel)
coloring ¥ : X x R — k letting

x(x) ift=0,
X(x,1)=130 ift <O,
1 ift > 0.

This coloring witnesses that C is not k-centerpole in X @ R (for Borel colorings). [J
Lemma 4 If for k > 3 a subset C C X of a topological group X with cf X)=2is

not k-centerpole (for Borel colorings), then for each x € X x (0, 00) the set C U {x}
is not k-centerpole for (Borel) colorings of the topological group X @ R.
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Proof Without loss of generality we may assume that x = (e, 1) where e is the neutral
element of topological group X. Fix a (Borel) coloring x : X — k witnessing that the
subset C C X is not k-centerpole (for Borel colorings).

This coloring induces a (Borel) 2-coloring x2 : X — 2 defined by

x2(x) =min ({0, 1}\ x(x~')) forx e X.
Since cf (X) = 2, there exists a Borel coloring yx; : X — 2 witnessing that the

singleton {e} is not 2-centerpole for Borel colorings of X.
It is easy to see that the (Borel) coloring x : X x R — k defined by

x(x), ift=0,
xi(x), ifr=1,

- 2(x), ift=2,

1 0= ())(, if1<r£2,
1, if0<t <1,
2 ift <0

witnesses that the set C U {(e, 1)} fails to be k-centerpole for (Borel) colorings of the
topological group X @ R. d

Lemma 5 c¥(R™) > 6 forall m > 3.

Proof By Theorem 6(3) and Proposition 3, cf (R3) > 1(R3) =6.

Next, we check that ¢ (R*) > 6. Assuming that ¢Z (R*) < 6 find a subset C C R*
of cardinality |C| < 5, which is 3-centerpole for Borel colorings of R*.

Since |C| < 5, there is a 3-dimensional hyperplane H3 C R* such that
|C\ H3| <1.Since |CNH3| <|C|<6= cf(]l@), the set C N Hj3 is not 3-centerpole
for Borel colorings of H3. By (the proof of) Proposition 4.1 of [3], cf R} =3>2.
By Lemma 4, the set C is not 3-centerpole for Borel colorings of Hz @ R (which can
be identified with R*).

Now assume that the inequality cf (R™~1) > 6 has been proved for some m >
4. Assuming that cf (R™) <5 find a subset C C R™ of cardinality |C| < 5 which
is 3-centerpole for Borel colorings of R™. This set lies in an (m — 1)-dimensional
hyperplane and according to Lemma 3, is 3-centerpole for Borel colorings of R~
Then c? (R™~1) < |C| <5, which contradicts the inductive assumption. O

Lemma 6 If for k > 4 a subset C C X of a topological group X with cf (X)=3is
not k-centerpole (for Borel colorings), then for any 2-element set A C X x (0, 00) the
set C U A is not k-centerpole for (Borel) colorings of the topological group X @ R.

Proof Let (a, v) and (b, w) be the points of the 2-element set A C X x (0, 00). We
can assume that v < w. Let xo : X — k be a (Borel) coloring witnessing that the set

C is not k-centerpole for (Borel) colorings of the group X.
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Consider the Borel 4-coloring ¥ : R — 4 of the real line defined by

3 ifr<0

0 if0<tr=<vw
Y(t) = . -

1 ifv<t<w

2 ifw<t

and observe that for each ¢ € {0, v, w} and t e R\ {c} we get ¥ (t) # ¥ (2c —1).
We consider two cases.

(1) v = w. In this case we can assume that v = w = 1. Since cf(X) > 3, there exists
a Borel coloring x1 : X — 2 witnessing that the 2-element set {a, b} C X is not 2-
centerpole for Borel colorings of X. The (Borel) coloring o induces the (Borel)
coloring x> : X — 3 defined by the formula

x2(x) = min ({0, 1, 2} \ {xo(ax""a), xo(bx~"b)}).

Now we see that the (Borel) coloring x : X x R — k defined by

- x:(x), ifre{0,1,2},
x(x, 1) = .
Y(t), otherwise
witnesses that the set C U A is not k-centerpole for (Borel) colorings of the topo-
logical group X & R.
(2) The second case occurs when v # w. Without loss of generality, v < w and w —
v = 1. This case has three subcases.
(2a) v =1 and w = 2. In this case we can assume that b = ¢ is the neutral ele-
ment of the group X.
Since cf (X) = 3, there is a Borel 2-coloring x; : X — 2 witnessing that
the singleton {a} is not 2-centerpole in X. By the same reason, there is a
Borel 2-coloring ¢ : X — 2 witnessing that the singleton {b} = {e} is not
2-centerpole for Borel colorings of X. Using the colorings ¢ and xo one
can define a (Borel) 3-coloring x2 : X — 3 such that x2(x) # xg(ax’la)
for all x € X and x2(x) # x2(x~") if and only if ¢ (x) # P (x~1).
Such a coloring x2 : X — 3 can be defined by the formula

min(3 \ {xo(axa), xolax'a)}), ifp(x)=¢x"1);
¢ (x),
if xo(ax~'a)#¢ (x)#p (x~#xo(axa);
min(3 \ {¢ (x 1), xo(ax"'a)}),
x2(x) =1 if xolax'a) = ¢ (x)#p (x " #xo(axa);
¢ (x),
if xo(ax'a)#¢ (x)#p (x 1) = xo(axa);
p(x 1,
if xo(ax~'a) = p()#p(x 1) = xo(axa).
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(2b)

(2¢)
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Let x3 : X — 2 be the Borel 2-coloring defined by y3(x) =1 — x1 xH
for x € X. It is clear that x3 @ # x1(x) for all x € X. Finally, consider
the Borel 2-coloring x4 : X — 2 defined by

x4(x) =min ({0, 1}\ {xo(x~")}) forxeX.

The (Borel) colorings v, xo, X1, X2, X3, X4 compose a (Borel) k-coloring
X: X xR—k,

- xr(x), ifref0,1,2,3,4},
X, 1) = .
Y(t), otherwise,

witnessing that the set C U A is not k-centerpole for (Borel) colorings of
X@R.
v =2 and w = 3. Since cg(X) > 3 > 1, there is a Borel 2-coloring
X2 : X — 2 witnessing that the singleton {a} is not 2-centerpole for Borel
colorings of X. By the same reason, there is a Borel 2-coloring x3: X — 2
witnessing that the singleton {b} is not 2-centerpole for Borel colorings
of X.

Next consider the (Borel) colorings x1 : X — 2, x4 : X — 3, and ye :
X — 2 defined by the formulas

x1) =1-xs(ax""a),
X4(x) = min (3 \ {Xo(axfla), Xz(bxflb)}),
X6(x) = min (2\ {Xo(bx_lb)}).

The (Borel) colorings ¥ and x;, ¢t € {0, 1, 2, 3, 4, 6}, compose the (Borel)
coloring ¥ : X x R — k defined by

i {X,(x), ift €{0,1,2,3,4,6),
x(x,1)= .
¥(t), otherwise.

This coloring x witnesses that the set C U A is not k-centerpole for (Borel)
colorings of X ® R.
v ¢ {1, 2}. Since cf (X) > 1 there is a Borel 2-coloring x, : X — 2 witness-
ing that the singleton {a} is not 2-centerpole for Borel colorings of X. By
the same reason, there is a Borel 2-coloring x,, : X — {1, 2} witnessing that
the singleton {b} is not 2-centerpole for Borel colorings of X.

Next, define the (Borel) colorings x2y, x2w : X — 3 by the formula

x20(x) =min (3\ {xo(ax"'a), ¥(2)}) and
Xow(x) =min (2\ {xo(bx~'D)}).

Here let us note that the points 2v and 2 are symmetric with respect to w in
the group R.
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Finally, define a (Borel) k-coloring x : X @ R — k letting

- x:(x) ift € {0, v, w, 2v, 2w}
X(x,1)= .
Y(t) otherwise.
This coloring witnesses that the set C U A is not k-centerpole for (Borel)
colorings of the topological group X & R.
O

Lemma 7 c?(R™)>8 forallm > 4.

Proof This lemma will be proved by induction on m > 4. For m = 4 the inequality
cf (R*) > t(R*) = 12 > 8 follows from Lemma 2. Assume that for some m > 4 we
know that c£(R™) > 8. The inequality ¢ (R™*!) > 8 will follow as soon as we
check that each 7-element subset C € R”*! is not 4-centerpole for Borel colorings
of Rm+1,

Given a 7-element subset C C R”+! find a support m-dimensional hyperplane
H c R™+! that has at least min{m + 1, |C|} > 5 common points with the set C. After
a suitable shift, we can assume that the intersection C N H contains the origin of
R”+! In this case H is a linear subspace of R”*! and R™*! can be written as the
direct sum R”"*! = H @ R.

Since |H N C| < |C| <7, the inductive assumption guarantees that H N C is not
4-centerpole for Borel colorings of H. By Lemma 5, cf (R™) > 3. Since |C\ H| <2,
we can apply Lemma 6 and conclude that C is not 4-centerpole for Borel colorings
of the topological group H @ R = R"*1, g

6 Centerpole sets in subgroups and groups

It is clear that each k-centerpole subset C C H in a subgroup H of a topological
group G is k-centerpole in G. In some cases the converse statement also is true.

Lemma 8 If a subset C of an abelian topological group G is k-centerpole in G for
some k > 2, then it is k-centerpole in the subgroup H = (C) + G[2].

Proof Observe that for each x € G \ H the cosets ¢ + 2(C) and —x + 2(C) are
disjoint. Assuming the opposite, we would conclude that 2x € 2(C) and hence x €
(C) 4+ G[2] = H, which contradicts the choice of x.

Now we are able to prove that the set C is k-centerpole in the group H. Given
any k-coloring x : H — k, extend x to a k-coloring x : G — k such that for each
x € G\ H the coset x + 2(C) is monochromatic and its color is different from the
color of the coset —x + 2(C).

Since C is k-centerpole in the group G, there is an unbounded monochromatic
subset S C G such that § =2¢ — S for some ¢ € C. We claim that S C H. Assuming
the converse, we would find a point x € S \ H and conclude that the coset x + 2(C)
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has the same color as the coset 2c — x + 2(C) = —x + 2(C), which contradicts the
choice of the coloring . O

The Borel version of this result is a bit more difficult.

Lemma9 Let k > 2 and H be a Borel subgroup of an abelian topological group G
such that G[2] C H. A subset C C H is k-centerpole for Borel colorings of H if C
is k-centerpole for Borel colorings of G, the subgroup 2H = {2x : x € H} is closed
in G, and the subspace X = (G/2H) \ (H/2H) contains a Borel subset B that has
one-point intersection with each set {x, —x}, x € X. Such a Borel set B C X exists if
the space X is paracompact.

Proof Given any Borel k-coloring x : H — k, extend x to a Borel k-coloring x :
G — k defined by

x(x), ifxeH,
Xxx)=10, ifxeG\ Handx +2H € B,
1, ifxeG\Handx+2H ¢ B.

Since C is k-centerpole for Borel colorings of the group G, there is an unbounded
monochromatic subset S C G, symmetric with respect to some point ¢ € C. We claim
that § C H, witnessing that C is k-centerpole for Borel colorings of H.

Assuming conversely that S ¢ H, find a point x € S \ H. It follows that x and
2c¢ — x have the same color. If this color is 0, then the cosets x +2H and 2¢ — x +
2H = —x +2H = —(x + 2H) both belong to the set B C G/2H . By our hypothesis
B has one-point intersection with the set {x + 2H, —(x 4+ 2H)}. Consequently, x +
2H = —(x+2H) and hence 2x € 2H and x € H + G[2] = H, which contradicts the
choice of the point x. If the color of the cosets x +2H and 2c —x +2H = —(x +2H)
is 1, then (x +2H), —(x + 2H) ¢ B and then x + 2H = —(x + 2H) because B
has one-point intersection with the set {x + 2H, —(x + 2H)}. This again leads to a
contradiction. g

Claim 16 [f the space X = (G/2H) \ (H/2H) is paracompact, then X contains a
Borel subset B C X that has one-point intersection with each set {x, —x}, x € X.

Consider the action
a:Crx X — X, a:(e,x)—~>¢€-x,

of the cyclic group C; = {1, —1} on the space X and let X/Cp = {{x, —x}:x € X} be
the orbit space of this action. It is easy to check that the orbit map ¢ : X — X/C3 is
closed and then the orbit space X/C> is paracompact as the image of a paracompact
space under a closed map, see Michael, Theorem 5.1.33 in [7].

Since H D 2H + G[2], for every x € G \ H the cosets x + 2H and —x + 2H
are disjoint, which implies that each point x € X is distinct from —x. Then each
point x € X has a neighborhood U, C X such that Uy N —U, = @. Replacing U,
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by Uy N (—U_y) we can additionally assume that U, = —U_,. Now consider the
open neighborhood Uy, = q(Uy) = q(U—_y) C X/C» of the orbit {x, —x} € X/C; of
the point x € X. By the paracompactness of X/C the open cover {U+y : x € X} of
X/C, has a X-discrete refinement f = Unew U,. This means that each family U),,
n € w, is discrete in X/ C;. For each U € U find a point xyy € X such that U C U4y, .
For every n € w consider the open subset W, = vel, q_1 (U) N Uy, of the space
X and let £W,, = —W,, U W,,. One can check that the Borel subset

B={J (W,,\ U :tW,-)

new i<n

of X has one-point intersection with each orbit {x, —x}, x € X.
The following lemma will be helpful in the proof of the upper bound rcf (G) <
¢ (G) — 2 from Proposition 1.

Lemma 10 Let k > 4 and C C R® be a finite k-centerpole subset for Borel colorings
of R?®. Then the affine hull of C in R® has dimension < |C| — 3.

Proof This lemma will be proved by induction on the cardinality |C|.

First observe that |C| > c,f(R‘”) > cf(R“’) > 6 by Lemma 5. So, we start the
induction with |[C| = 6.

Suppose that either m = 6 or m > 6 and the lemma is true for all C with 6 <|C| <
m. Fix a k-centerpole subset C C R® for Borel colorings of cardinality |C| =m. We
need to show that the affine hull A of C has dimension dim A < m — 3. Assuming
the opposite, we can find a support hyperplane H C A for C such that |H N C| >
dimH +1=dimA > |C| —2 and hence 0 < |C \ H| < 2. After a suitable shift, we
can assume that A contains the origin of R“ and hence is a subgroup of R®. In this
case the affine hull A is a linear subspace in R that can be identified with the direct
sum H @ R. It follows that dimH =dimA —-1>|C|-2—-1>|CNH|—2.

We claim that the set H N C is not k-centerpole for Borel colorings of the topo-
logical group H.

If 6 <|C N H| <|C|=m, then by the inductive assumption, the set C N H is
not k-centerpole for Borel colorings of R® because its affine hull A has dimension
dimH > |CNH|—-2.If |C N H| < 6 (which happens for m = 6), then the inequalities
cf(H)>=c¥(H)>=6=m=|C|>|HNC]| given by Lemma 5 guarantee that C N H
is not k-centerpole for Borel colorings of R®.

By (the proof) of Proposition 1 in [3], CZB (H) = 3. Since H is a support hyperplane
for C and |C \ H| < 2, we can apply Lemma 6 and conclude that C is not k-centerpole
for Borel colorings of H @R = A. Since the subgroup 2A is closed in the metrizable
group R®, by Lemma 9, C is not k-centerpole for Borel colorings of R“ and this is
a desired contradiction that completes the proof of the inductive step and base of the
induction. U

7 Stability properties

In this section we shall prove some particular cases of the Stability Theorem 4.
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Lemma 11 For any numbers k >2 andn <m

Biew o cBR" x Z?), ifm=>rcB@R" x Z*),
cy, (]R X Z ) =1 5 o0 : B oo
cy (R®), ifn>rcg (R?).
Proof First assume that m > rcf (R" x Z®). By the definition of the number r =
rcf (R™ x Z*), the topological group G = R" x Z® contains a k-centerpole subset
C C G of cardinality |C| = c,f (G) that generates a subgroup (C) C Z® of Z-rank r.
It follows that the linear subspace L C R" x R® generated by the set C has dimen-
sion r. Then H = L N G, being a closed subgroup of Z-rank r in the r-dimensional
vector space L is topologically isomorphic to R® x Z"~* for some s <r <m, see
Theorem 6 in [10]. Taking into account that H is a closed subgroup of G =R" x Z*,
we conclude that s <n. By Lemma 9, the set C is k-centerpole in H for Borel color-
ings. Consequently,

implies the desired equality ¢Z (R" x Z™™") = cB(R" x Z*).

Now assume that n > rc,f (R®). In this case we can repeat the above argument
for a set C C R of cardinality |C| = c,f (R®) that generates a subgroup (C) C R
of Z-rank r = rc,f (R®). Then the linear subspace L C R generated by the set C
is topologically isomorphic to R”. By Lemma 9, the set C is k-centerpole for Borel
colorings of L. Since R" < R” x Z"™" — R®, we get

R (R?) <cf(R" x Z" ") <cf (R") =cf (L) < |C| = cf (R?)
and hence ¢ (R" x Z"™") = cZ(R?). O

Lemma 12 ¢;(R" x Z" ") = c,f (Z®) for any numbers k € N and n < m with m >
cB(Z%).

Proof For k =1 the equality ¢y (R" x Z" ) =1= c,f (Z®) is trivial. So we assume
that k > 2.

We claim that cf (Z?) < cx(R™). Indeed, take any k-centerpole subset C C R®
of cardinality |C| = ¢, (R™). By Lemma 8, the set C is k-centerpole in the subgroup
(C) C R® generated by C. Being a torsion-free finitely generated abelian group, (C)
is algebraically isomorphic to Z" for some r € w. Then

Ck(Zr) =< Ck((C)) <|C|= ck(}R’"),
On the other hand, Lemma 11 ensures that

e (B7) = au(27) = of (2) = cf (2)

@ Springer



J Algebr Comb (2011) 34:267-300 293

Unifying these inequalities we get
0 (2°) = (27) = er(Z) = e (R™) =ex (R" x Z"7") < ex(2") = ¢ (2")
= (20).

which implies the desired equality ¢ (R" x Z™ ") = c,f (Z®). d

8 Proof of Theorem 3

1. The upper bound ¢ (Z") < cx (ZFy <2k —1— maxg<g—2 (];:}) for k < n follows
from Theorem 5.

2. By Proposition 3 and Theorem 6(7), ¢, (Z") > c,(R") > cB([®R") > t(R") >
Tn? +3n—9).

For technical reasons, first we prove the statement (4) of Theorem 3 and after that
return back to the statement (3).

4. Let 1 <k <m < w be two numbers. We need to prove that c,f(Rm) <
cd Ry and ¢ (R™) < ¢y (R™F).

First we assume that m is finite. The strict inequality c,? R™) < cf 'l (R™+1y will
follow as soon as we show that any subset C € R™*! of cardinality |C| < c,f (R™)
fails to be (k + 1)-centerpole for Borel colorings of R”*!. If C is a singleton, then
it is not (k + 1)-centerpole since c,§+](Rm+1) > cB(R"*1) > 3 by (the proof of)
Proposition 4.1 in [3]. So, C contains two distinct points a,b. Let L=R - (@ —
b) C R™*! be the linear subspace generated by the vector @ — b. Write the space
R™+! as the direct sum R”*! = H @ L where H is a linear m-dimensional subspace
of R”*! and consider the projection pr : R”*! — H whose kernel is equal to L.
Since pr(a) = pr(b), the projection of the set C onto the subspace H has cardinality
lpr(C)| < |C| < cf R™) = c,? (H) and hence prg (C) is not k-centerpole for Borel
k-colorings of the group H. Consequently, there is a Borel k-coloring x : H — k
such that no monochromatic unbounded subset of H is symmetric with respect to a
point ¢ € pr(C).

For a real number y € R, consider the half-line L?,‘ ={t@a—>b):t>y}of L.
Since the subset C C R”*! is finite, there is € R such that C C H + L;r.

Now define a Borel (k + 1)-coloring x : H® L — k+1=1{0,...,k} by the
formula

x(pr(x)), ifxeH +L;r,

Z () —
x(x) k, otherwise.

It can be shown that this coloring witnesses that C is not (k 4 1)-centerpole for Borel
colorings of R"*! = H @ L.

Now assume that the number m is infinite. Then for the finite number r =
max{rcf (R?), reg, | (R®)} we get cf(R") = cf (R?) and cf R =cf | (R?)
by the stabilization Lemma 11. Since r is finite, the case considered above guaran-
tees that

c,f (Rm) = c,f (Rm) = c,ig (Rr) < c,f_H (]RH']) = c,f_H (Rw) = ck+1(Rm+1).
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By analogy we can prove the strict inequality cx (R™) < cx (R™*1).

3. Now we are able to prove the lower bound c,f (R®) > k + 4 from the statement
(3) of Theorem 3. By the preceding item, c,?H(R‘“) >1+ cf (R®) for all kK € N. By
induction, we shall show that cf (R®) > k + 4 for all k > 4. For k = 4 the inequality
cf (R?) > 8 > 4 + 4 was proved in Lemma 7. Assuming that c,f (R®) > k + 4 for
some k > 4, we conclude that C£+1(Rw) > cf (R®) > k + 4 and hence cfH (R®) >
(k+1)+4.

Now we see that for every n > k > 4 we have the desired lower bound:

c¢ (R") = ¢f (R”) = k +4.

5.Let k e N and n,m € w U {w} be numbers with 1 <k <n + m. We need to
prove that ¢} (R" x Z™") < cf | (R" x 7"y and ¢ (R” x ZM) < cpp1 (R x 2"+,
According to the Stabilization Lemma 11, it suffices to consider the case of finite
numbers n, m.

First we prove the inequality c,f R* x 7)) < c,? (R Z"*1). We need to show
that each subset C C R" x Z™*! of cardinality |C| < ¢ (R" x Z™) is not (k + 1)-
centerpole in R” x Z™*! for Borel colorings. We shall identify R” x Z™+! with
the direct sum R" @ Z"+!. Since k < n + m, Theorem 5 implies that the numbers
IC| < cf (R" x ZM) < ci(Z"™) < i (ZF) all are finite.

Three cases are possible.

(1) |C] < 1. In this case we can assume that C = {0} and take any coloring x :
R" @ 7"+ — k+1 such that the color of each non-zero element x € R” x Z"+!
differs from the color of —x. This coloring witnesses that C is not (k + 1)-
centerpole in R” x Z"+1,

(ii) |C] > 1 and C C z + R" for some z € Z"™*!. Without lose of generality, z =
0 and hence C C R". Take two distinct points a,b € C and consider the 1-
dimensional linear subspace L = R (¢ —b) C R" generated by the vector a — b.
Write the space R” as the direct sum R” = L @ H where H is a linear (n — 1)-
dimensional subspace of R” and consider the projection pr: R* @ Z"t! - H &
7Z"™+1 whose kernel is equal to L. Since pr(a) = pr(b), the projection of the set
C onto the subgroup H & Z"*! of R" @ Z"*! has cardinality

pr(O)| < ICl < (R* x Z™) < cf (R x ") = cf (H @ Z"T")

and hence pry(C) is not k-centerpole for Borel colorings of the group H @
Z"™+1. Consequently, there is a Borel k-coloring x : H @ Z"*! — k such that
no monochromatic unbounded subset of H @ Z™*! is symmetric with respect
to a point ¢ € pr(C).

For a real number y € R, consider the half-line L;“ ={t(a—>b):t>y}of L.
Since the subset C C R” @ Z"*! = H @ L @ Z™ ! is finite, there is y € R such
that C C H + L + 7"+

Now define a Borel (k + 1)-coloring ¥ : H®L®Z"T!' - k+1=1{0,...,k}
by the formula

x(pr(x)), ifxeH+ L +2zm+,

x(x) = k, otherwise.
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It can be shown that this coloring witnesses that C is not (k 4+ 1)-centerpole for
Borel colorings of R" @ Z"t! = H @ L @ 7" 1.

(iii) The set C C R" @ Z"*! contains two points a, b whose projections on the sub-
space Z/"+! are distinct. Without loss of generality, the projections of a, b on the
last coordinate are distinct. Then the 1-dimensional subspace L =R - (@ — b) of
R” x R”*+! meets the subspace R” @ R™ and hence R” @ R”+! can be iden-
tified with the direct sum R" @ R” @ L. Let pr: R" x R"*! — R” x R™ be
the projection whose kernel coincides with L. Since pr is an open map, the im-
age H = pr(R" x Z"+1) is a locally compact (and hence closed) subgroup of
R" x R™, which can be written as the countable union of shifted copies of the
space R”. By Theorem 6 of [10], H is topologically isomorphic to R" x Z™. It
follows from the definition of H that R" @ Z"*! c H @ L.

Since pr(a) = pr(b), the projection of the set C has cardinality |pr(C)| <
IC| < cB(R" @ Z™) = cf (H), which means that pr(C) is not k-centerpole for
Borel colorings of H. Consequently, there is a Borel k-coloring x : H — k such
that no monochromatic unbounded subset of H is symmetric with respect to a
point ¢ € pr(C).

For a real number y € R, consider the half-line L;j ={t(a—b):t>y}of L.
Since the subset C C H @ L is finite, there is ¥ € R such that C C H + L;,“.

Now define a Borel (k + 1)-coloring x : H & L — k + 1 by the formula

- x(pr(x)), ifxe H+ L;,
X(x) = )
k, otherwise.

It can be shown that this coloring witnesses that C is not (k + 1)-centerpole for
Borel colorings of H @ L D R" @ 7"+,

After considering these three cases, we can conclude that c,iL T (R" x zmtly >
cB®R" x Z™).

Deleting the adjective “Borel” from the above proof, we get the proof of the strict
inequality

k(R x ZM) < cq1(R" x 2T,

9 Proof of Theorem 2

In this section we prove Theorem 2. Let k, n, m be cardinals. We shall use known
upper bounds for the numbers ¢ (Z"), lower bounds for 7 (R") and the inequality

l‘(Rner) < C])(B(Rn+m) < C}?(Rn X Zm) < Ck(Rn X Zm) = Ck(Zm)

established in Proposition 3.

1. Assume that n +m > 1. Since each singleton is 1-centerpole for (Borel) colorings
of the group R” x Z™, we conclude that ¢ (R" x Z™) = cf(]R” x 7"y =1.
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2. Assume thatn+m > 2. The inequalities 3 < 1 (R?) < c&(R?) < ¢2(Z?) < 3 follow
from Theorem 5, 6(2) and Proposition 3.

We claim that cf (R®) > 3. Assuming that c2B (R?®) < 3 we conclude that
rcB(R?) < cB(R?) — 1 < 1. Then by the Stabilization Lemma 11, we get that
c2(RY) = ¢2(R?) is finite. On the other hand, the real line has the 2-coloring
x:R—2, X_l (1) = (0, 00), without unbounded monochromatic symmetric sub-
sets. This coloring witnesses that ¢;(R') = oo and this is a contradiction. There-
fore,

3< B R?) < B (R x 2" ") < B (R x Z"7") < e2(Z%) =3.
3. Assume that n +m > 3. Lemma 5 and Theorem 5 imply the inequalities
6<cFR") < FR" xZ"™) < B[R xZ"™") <¢3(2°) =6

that turn into equalities.
4. Assume that n + m = 4. Theorem 5, 6(4) and Proposition 3 imply the inequalities

12 <t(R*) < cf (RY) < cf (R" x Z™) < ca(R" x Z™") < es(Z7) < 12,

which actually are equalities.

5. We need to prove that c,f R"x Z") =00 if k > n+m + 1 < w. This equality
will follow as soon as we check that c,f (R"*"™) = 00. Let A be a simplex in R
centered at the origin. Write the boundary d A as the union A = U:’:(;" A; of its
facets. Define a Borel k-coloring x : R" — {0, ...,n + m} C k assigning to each
point x € R"\ {0} the smallest number i < n+m such that the ray R - x meets the
facet A;. Also put x(0) = 0. It is easy to check that the coloring x witnesses that
the set R"™ is not k-centerpole for Borel colorings of R**" and consequently,
cB(R"™M) = 0.

6. Assuming that k > n + m + 1, we shall show that ¢ (R" x Z") = o00. If n +m
is finite, then this follows from the preceding item. So, we assume that n + m is
infinite. Then the group G = R" x Z™ has cardinality 2"™". By Theorem 4 of
[4], for the group G endowed with the discrete topology, we get v(G) = log |G| =
min{y :2Y > |G|} <n + m < k, which means that G admits a k-coloring without
infinite monochromatic symmetric subset. This implies that the set G is not k-
centerpole in G and thus cx (G) = oo.

7. Assume that n + m > @ and w < k < cov(M). The lower bound from The-
orem 3(3) implies that w < c,f R®) < cf (Z®). The upper bound cf (Z®) < w
will follow as soon as we check that each countable dense subset C C Z® is
k-centerpole for Borel colorings of Z®. Let x : Z® — « be a Borel x-coloring
of Z. Taking into account that Z® = | J;, x ~'(i) is homeomorphic to a dense
Gs-subset of the real line, we conclude that for some color i € x the preimage
A = x~1(i) is not meager in Z“. Being a Borel subset of Z®, the set A has the
Baire property, which means that for some open subset U C Z® the symmetric
difference AAU is meager in Z®. Since A is not meager, the set U is not empty.
Take any point c € U N C and observe that V = U N (2c — U) is an open symmetric
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neighborhood of c. It follows that for the set B = A N (2c — A) the symmetric dif-
ference BAV is meager. Since V is not meager in Z“, the set B is not meager and
hence is unbounded in Z* (since totally bounded subsets of Z® are nowhere dense
in Z%*). Now we see that B = AN (2¢ — A) is a monochromatic unbounded subset,
symmetric with respect to the point ¢, witnessing that the set C is w-centerpole
for Borel coloring of Z®.

10 Proof of Theorem 1

Let k£ > 2 be a finite cardinal number and G be an abelian ILC-group with totally
bounded Boolean subgroup G[2] and ranks n = rr(G) and m = rz(G). Let G be the
completion of the group with respect to its (two-sided) uniformity.

We shall give the detailed proofs of the statements (3) and (4) of Theorem 1 hold-
ing under the additional assumption of the metrizability of the group G and indicate
the changes which should be made for the proof of the statements (1) and (2).

Since c,f R" x Z" ™) < w iff k < m, the statements (3), (4) of Theorem 1 will
follow as soon as we prove two inequalities:

(1) B(G)<cB®" xzZ" ™) if k <m, and
(2) @™ x Zm) < cB(G) if cB(G) is finite.

1. Assume that k < m. If the Z-rank m = rz(G) is finite, then so is the R-rank
n =rr(G) and we can find copies of the topological groups R" and Z™ in G. Now
consider the closure H of the subgroup R” + Z™ in G. Since G is an ILC-group
and R" 4+ Z™ contains a dense finitely generated subgroup, the group H is locally
compact. By the structure theorem of locally compact abelian groups [10, Theorem
25], H is topologically isomorphic to R" @ Z for some r € w and a closed subgroup
Z C H that contains an open compact subgroup K. It follows from the inclusion
R" C H that n <r. On the other hand, r < rz(G) = n. By the same reason, rz(H) =
m =ryz(G). In particular, r7z(Z) =m — n and hence H contains an isomorphic copy
of the group R” x Z™~". Now we see that r,f(G) < r,f (R" x 7™My,

Next, assume that the Z-rank m = rz(G) is infinite but n = rr(G) is finite. By
the Stabilization Lemma 11, cf (R" x Z"™") = cB(R" x Z?) = cB(R" x Z"™") for
r= rc,f (R" x Z*®) < c,f (R" x Z*) < oo. Repeating the above argument we can
find a copy of the group R"” @ Z°~" in G for some finite s > r and conclude that
BG) < BR"xZ5™) < BR" x Z7=5) = cB®R" x 2" 7).

Finally, assume that the R-rank n = rr(G) is infinite. Then c,f R" x 7" ™) =
cBR?) = cBR") for r = rcP(R?) < cB(R®) < . By the definition of the R-
rank rr(G) = n = w, we can find a copy of the group R" in G and conclude that
c,? (G) < c,? R") = cf (R™ x Z™™™). This completes the proof of the inequality
cf(G) <cB@R" x Z"™).

Deleting the adjective “Borel” from the above proof we get the proof of the in-
equality cx(G) < cx(R" x Z™~") holding for each k < m.

2. Now assuming that c,f (G) is finite and the group G is metrizable, we prove the
inequality ¢B (R" x Z"™") < cB(G).
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Fix a k-centerpole subset C C G for Borel colorings of G with cardinality |C| =
c,? (G). The subgroup G[2] is totally bounded and hence has compact closure K> in
the completion G of the group G. It follows that K» C G[2]. Since G is an ILC-group,

the finitely generated subgroup (C) has locally compact closure (C) in G. It follows
from the compactness of the subgroup K> that the sum H = (C) + K> is a locally
compact subgroup of G. This subgroup is compactly generated because it contains a
dense subgroup generated by the compact set C + K.

By the Structure Theorem for compactly generated locally compact abelian groups
[10, Theorem 24], H is topologically isomorphic to R” & Z*~" & K for some compact
subgroup K that contains all torsion elements of H. In particular, K» C K. Now
we see that the subgroup 2H = {2x : x € H} is closed in H and consequently, the
subgroup 2H N G is closed in G. The group G is metrizable and so is the quotient
group G/2H. Then the subspace X = (G/2H) \ (H/2H) is metrizable and thus
paracompact. Since H O G[2] we can apply Lemma 9 and conclude that the set C is
k-centerpole for Borel colorings of the subgroup H N G. Since H N G C H, the set
C is k-centerpole for Borel colorings of the group H.

The compactness of the subgroup K C H implies that the image g(C) of C un-
der the quotient map g : H — H/K is a k-centerpole set for Borel colorings of the

quotient group H/K =R" x Z*~". Since H = (C) + K3 and K, C K, we conclude

that (C)/({C) N K) = ¢({C)) = H/K =R’ x Z*" and hence r <n and s < m.
Consequently, R” x Z°~" < R" x Z™ " and

R xZ"™) Ccf(R" x ") = cf (H/K) < |C| = £ (G).

This proves the statements (3) and (4) of Theorem 1. Deleting the adjective
“Borel” from the above proof and applying Lemma 8 instead of Lemma 9, we get the
proof of the inequality cx(R” x Z™™") < ¢x(G) under the assumption that the num-
ber ¢ (G) is finite. Since Lemma 8 does not require the metrizability of G, this upper
bound holds without this assumption. In such a way, we prove the statements (1)
and (2) of Theorem 1.

11 Proof of Proposition 1

Let G be a metrizable abelian ILC-group with totally bounded Boolean subgroup
G[2] and k € N be such that 2 < k < rz(G). Theorems 1 and 3 guarantee that
cB(G)=cB(R" x Z"™") < oo where n = rz(G) and m = rz(G).

Let r = rcx(G) and C C G be a subset of cardinality |C| = c,f(G) such that
rz({C)) = r. Without loss of generality, 0 € C. Since G is an ILC-group, the finitely
generated subgroup (C) has locally compact closure in G.

The totally bounded Boolean subgroup G[2] has compact closure K in the
completion G of the abelian topological group G. It follows that the subgroup
H = (C) + K3 of G is locally compact and compactly generated. Consequently, it
contains a compact subgroup K D K> such that the quotient group H/K is topologi-
cally isomorphic to R® x Z"~* for some r < s. It follows from Lemma 8 that the set C
is k-centerpole for Borel colorings of the group H. The compactness of the subgroup
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K C H implies that the image ¢(C) C H/K of C under the quotient homomorphism
q : H— H/K is a k-centerpole set for Borel colorings of H/K . Consequently,

A R) =g (RS xZ %) =cf(H/K) < |q(C)| =|Cl =cf(G) <00

and hence r > k by Theorem 3(5).

Now assume that k > 4. Since the set ¢(C) is k-centerpole for Borel colorings
of H/IK =R* x Z"=° C R", Lemma 10 implies that the affine hull of ¢(C) in the
linear space R” has dimension < |g(C)| — 3. Since 0 € ¢(C), the affine hull of the
set ¢(C) coincides with its linear hull. Consequently, r = rz((C)) = rz({g(C))) <
lg(C)|-=3=<|C|-3= c}f (G) — 3. This completes the proof of the lower and upper
bounds

k<re(G)<cf(G) -3

for all k > 3.

Next, we show that rcy(G) = k for k € {2, 3}. In this case CE(G) = c1(Z5) by
Theorems 1 and 2. Since rz(G) > k, the group G contains an isomorphic copy of
the group ZK. Then each k-centerpole subset C C 7k ¢ G with |C| = cx(ZF) is k-
centerpole for Borel colorings of G and thus k < rc,f (G) <rz({C)) <k, which im-
plies the desired equality rc,ig (G)=k.

12 Proof of Stabilization Theorem 4

Let k > 2 and G be an abelian ILC-group with totally bounded Boolean subgroup

G[2]. Let n = rr(G) and m = ry(G).

1. Assume that m = rz(G) > rcf (Z®). By Proposition 1, k < rcf (Z”) < rz(G)
and then ¢z (G) = cx (R" x Z™™") by Theorem 1. Since m = rz(R" x Z"™") >
rcf (Z?), Lemma 12 guarantees that cx (G) = c,? R" x ") = c,f (Z*).

2. Assume that the group G is metrizable and rz(G) > rcf (R™ x Z*). By Proposi-
tion 1, k < rcf (R" x Z*) < rz(G) = m and hence cf(G) = cf (R" x Z"~") by
Theorem 1. Since m = rz(R" x Z™™") > rcf (R" x Z®), Lemma 11 guarantees
that ¢ (G) = cB(R" x Z"™") = cf (R" x Z°).

3. By analogy with the preceding case we can prove that cf (G) = ¢ (R®) if G is
metrizable and rg(G) > rc? (R?).

13 Selected open problems
By Theorem 2, c? (R?) = cx(Z”) = cx (Z) for all k < 4.

Problem 1 Is ¢ (Z®) = ¢ (Z¥) for all k € N? In particular, is c4(Z") = 12 for every
n>4?

Problem 2 Is ¢ (R") = ¢ (R") for every k <n?
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Theorem 3 gives upper and lower bounds for the numbers cx (Z¥) that have expo-
nential and polynomial growths, respectively.

Problem 3 Is the growth of the sequence (¢, (Z")),cN exponential?

By [1], for every k € {1, 2, 3} any k-centerpole subset C C Z* of cardinality |C| =
Ck (Zk ) is affinely equivalent to the (i:;)-sandwich E,f__;

Problem 4 Is each 12-element 4-centerpole subset of Z* affinely equivalent to the
(3)-sandwich &}?

It follows from the proof of Theorem 1 in [8] that the free group F» with two
generators and discrete topology has ¢ (F2) < 13.

Problem 5 What is the value of the cardinal ¢, (F>)? Is ¢3(F>) finite?
The last problem can be posed in a more general context.

Problem 6 Investigate the cardinal characteristics c;(G) and c,f (G) for non-
commutative topological groups G.
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