Centerpole sets for colorings of abelian groups

Taras Banakh • Ostap Chervak

Received: 17 March 2010 / Accepted: 15 December 2010 / Published online: 8 January 2011
© Springer Science+Business Media, LLC 2011

Abstract

A subset $C \subset G$ of a group G is called k-centerpole if for each k-coloring of G there is an infinite monochromatic subset G, which is symmetric with respect to a point $c \in C$ in the sense that $S=c S^{-1} c$. By $c_{k}(G)$ we denote the smallest cardinality $c_{k}(G)$ of a k-centerpole subset in G. We prove that $c_{k}(G)=c_{k}\left(\mathbb{Z}^{m}\right)$ if G is an abelian group of free rank $m \geq k$. Also we prove that $c_{1}\left(\mathbb{Z}^{n+1}\right)=1$, $c_{2}\left(\mathbb{Z}^{n+2}\right)=3, c_{3}\left(\mathbb{Z}^{n+3}\right)=6,8 \leq c_{4}\left(\mathbb{Z}^{n+4}\right) \leq c_{4}\left(\mathbb{Z}^{4}\right)=12$ for all $n \in \omega$, and $\frac{1}{2}\left(k^{2}+3 k-4\right) \leq c_{k}\left(\mathbb{Z}^{n}\right) \leq 2^{k}-1-\max _{s \leq k-2}\binom{k-1}{s-1}$ for all $n \geq k \geq 4$.

Keywords Abelian group • Centerpole set • Coloring • Symmetric subset • Monochromatic subset

1 Introduction

Answering a problem posed in [11], T. Banakh and I. Protasov [4] proved that for any k-coloring $\chi: \mathbb{Z}^{k} \rightarrow k=\{0, \ldots, k-1\}$ of the abelian group \mathbb{Z}^{k} there is an infinite monochromatic subset $S \subset \mathbb{Z}^{k}$ such that $S-c=c-S$ for some point $c \in\{0,1\}^{k}$. The equality $S-c=c-S$ means that the set S is symmetric with respect to the point c. On the other hand, a suitable partition of \mathbb{R}^{k} into $k+1$ convex cones determines a Borel $(k+1)$-coloring of \mathbb{R}^{k} without unbounded monochromatic symmetric subsets. These two results motivate the following definition, cf. [1, 3].

[^0]Definition 1 A subset C of a topological group G is called k-centerpole ${ }^{1}$ for (Borel) colorings of G if for any (Borel) k-coloring $\chi: G \rightarrow k$ of G there is an unbounded monochromatic subset $S \subset G$, symmetric with respect to some point $c \in C$ in the sense that $S c^{-1}=c S^{-1}$.

The smallest cardinality $|C|$ of such a k-centerpole set $C \subset G$ is denoted by $c_{k}(G)$ (resp. $c_{k}^{B}(G)$). If no k-centerpole set $C \subset G$ exists, then we write $c_{k}(G)=\infty$ (resp. $\left.c_{k}^{B}(G)=\infty\right)$ and assume that ∞ is greater than any cardinal that appears in our considerations.

Now we explain some terminology that appears in this definition. A subset B of a topological group G is called totally bounded if B can be covered by finitely many left shifts of any neighborhood U of the neutral element of X. In the opposite case B is called unbounded. A subset of a discrete topological group is unbounded if and only if it is infinite.

A cardinal number k is identified with the set $\{\alpha:|\alpha|<\kappa\}$ of ordinals of smaller cardinality and endowed with the discrete topology. By a (Borel) k-coloring of a topological space X we mean a (Borel) function $\chi: X \rightarrow k$. A function $\chi: X \rightarrow k$ is Borel if for every color $i \in k$ the set $\chi^{-1}(i)$ of points of color i in X is Borel.

The definition of the numbers $c_{k}(G)$ and $c_{k}^{B}(G)$ implies that

$$
c_{k}^{B}(G) \leq c_{k}(G)
$$

for any topological group G and any cardinal number k. If the topological group G is discrete, then each coloring of G is Borel, so $c_{k}^{B}(G)=c_{k}(G)$ for all k. In general, the cardinal numbers $c_{k}(G)$ and $c_{k}^{B}(G)$ are different. For example, $c_{\omega}^{B}\left(\mathbb{R}^{\omega}\right)=\omega$ while $c_{\omega}\left(\mathbb{R}^{\omega}\right)=\infty$, see Theorem 2.

It follows from the definition that $c_{k}(G)$ and $c_{k}^{B}(G)$ considered as functions of k and G are non-decreasing with respect to k and non-increasing with respect to G. More precisely, for a number $k \in \mathbb{N}$, a topological group G and its subgroup H we have the inequalities

$$
\begin{array}{ll}
c_{k}(H) \geq c_{k}(G), & c_{k}(G) \leq c_{k+1}(G) \quad \text { and } \\
c_{k}^{B}(H) \geq c_{k}^{B}(G), & c_{k}^{B}(G) \leq c_{k+1}^{B}(G) .
\end{array}
$$

In the sequel we shall use these monotonicity properties of $c_{k}(G)$ and $c_{k}^{B}(G)$ without any special reference.

In this paper we investigate the problem of calculating the numbers $c_{k}(G)$ and $c_{k}^{B}(G)$ for an abelian topological group G and show that in many cases this problem reduces to calculating the numbers $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ and $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ where $n=$ $r_{\mathbb{R}}(G)$ is the \mathbb{R}-rank and $m=r_{\mathbb{Z}}(G)$ is the \mathbb{Z}-rank of the group G.

For topological groups G and H the H-rank $r_{H}(G)$ of G is defined as

$$
r_{H}(G)=\sup \left\{k \in \omega: H^{k} \hookrightarrow G\right\}
$$

[^1]where $H^{k} \hookrightarrow G$ means that H^{k} is topologically isomorphic to a subgroup of the topological group G. It is clear that $r_{\mathbb{R}}(G) \leq r_{\mathbb{Z}}(G)$ for each topological group G.

It is interesting to remark that the \mathbb{Z}-rank appears in the formula for calculating the value of the function

$$
\nu(G)=\min \left\{\kappa: c_{k}(G)=\infty\right\}
$$

introduced and studied in [12] and [4]. By [4], for any discrete abelian group G

$$
\nu(G)= \begin{cases}\max \{|G[2]|, \log |G|\} & \text { if } G \text { is uncountable or } G[2] \text { is infinite }, \\ r_{\mathbb{Z}}(G)+1 & \text { if } G \text { is finitely generated } \\ r_{\mathbb{Z}}(G)+2 & \text { otherwise }\end{cases}
$$

Here $G[2]=\{x \in G: 2 x=0\}$ is the Boolean subgroup of G and $\log |G|=\min \{\kappa$: $\left.|G| \leq 2^{\kappa}\right\}$.

A topological group G is called inductively locally compact (briefly, an ILC-group) if each finitely generated subgroup $H \subset G$ has locally compact closure in G. The class of ILC-groups includes all locally compact groups and all closed subgroups of topological vector spaces.

Our aim is to calculate the numbers $c_{k}(G)$ and $c_{k}^{B}(G)$ for an abelian ILC-group G. First, let us exclude two cases in which these numbers can be found in a trivial way. One of them happens if the number of colors is 1 . In this case

$$
c_{1}^{B}(G)=c_{1}(G)= \begin{cases}1 & \text { if } G \text { is not totally bounded } \\ \infty & \text { if } G \text { is totally bounded }\end{cases}
$$

The other trivial case happens if the Boolean subgroup $G[2]=\{x \in G: 2 x=0\} \subset G$ is unbounded in G. In this case, for each finite coloring $\chi: G \rightarrow k$ there is a color $i \in k$ such that the set $S=G[2] \cap \chi^{-1}(i)$ is unbounded. Since $S=-S$, we conclude that S is an unbounded monochromatic symmetric subset with respect to 0 , which means that the singleton $\{0\}$ is k-centerpole in G and thus

$$
c_{k}(G)=c_{k}^{B}(G)=1 \quad \text { for all } k \in \mathbb{N} .
$$

It remains to calculate the values of the cardinal numbers $c_{k}(G)$ and $c_{k}^{B}(G)$ for $k \geq 2$ and an abelian topological group G with totally bounded Boolean subgroup $G[2]$.

The following theorem reduces this problem of calculation of $c_{k}(G)$ to the case of the group $\mathbb{R}^{n} \oplus \mathbb{Z}^{m-n}$ where $n=r_{\mathbb{R}}(G)$ and $m=r_{\mathbb{Z}}(G)$.

Theorem 1 Let $k \in \mathbb{N}$ and G be an abelian ILC-group G with totally bounded Boolean subgroup $G[2]$ and ranks $n=r_{\mathbb{R}}(G)$ and $m=r_{\mathbb{Z}}(G)$. Then
(1) $c_{k}(G)=c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ if $k \leq m$, and
(2) $c_{k}(G) \geq \omega$ if $k>m$.

If the topological group G is metrizable, then
(3) $c_{k}^{B}(G)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ if $k \leq m$, and
(4) $c_{k}^{B}(G) \geq \omega$ if $k>m$.

Here we assume that $\omega-\omega=0$ and $\omega-n=\omega$ for each $n \in \omega$.
Theorem 1 will be proved in Sect. 10. It reduces the problem of calculation of the numbers $c_{k}(G)$ and $c_{k}^{B}(G)$ to calculating these numbers for the groups $\mathbb{R}^{n} \times \mathbb{Z}^{m-n}$ where $n \leq m$. The latter problem turned out to be highly non-trivial. In the following theorem we collect all the available information on the precise values of the numbers $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)$ and $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)$.

Theorem 2 Let k, n, m be cardinal numbers.
(1) If $n+m \geq 1$, then $c_{1}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=c_{1}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=1$.
(2) If $n+m \geq 2$, then $c_{2}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=c_{2}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=3$.
(3) If $n+m \geq 3$, then $c_{3}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=c_{3}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=6$.
(4) If $n+m=4$, then $c_{4}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=c_{4}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=12$.
(5) If $k \geq n+m+1<\omega$, then $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=\infty$.
(6) If $k \geq n+m+1$, then $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=\infty$.
(7) If $n+m \geq \omega$ and $\omega \leq k<\operatorname{cov}(\mathcal{M})$, then $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=\omega$.

In the last item by $\operatorname{cov}(\mathcal{M})$ we denote the smallest cardinality of the cover of the real line by meager subsets. It is known that $\aleph_{1} \leq \operatorname{cov}(\mathcal{M}) \leq \mathfrak{c}$ and the equality $\operatorname{cov}(\mathcal{M})=\mathfrak{c}$ is equivalent to the Martin Axiom for countable posets, see [9, 19.9].

The equality $c_{4}\left(\mathbb{Z}^{4}\right)=12$ from the statement (4) of Theorem 2 answers the problem of the calculation of $c_{4}\left(\mathbb{Z}^{4}\right)$ posed in [1] and then repeated in [5, Problem 2.4], [6, Problem 12], and [2, Question 4.5].

Theorem 2 presents all cases in which the exact values of the cardinals $c_{k}^{B}\left(\mathbb{R}^{n} \times\right.$ $\left.\mathbb{Z}^{m-n}\right)$ and $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ are known. In the remaining cases we have some upper and lower bounds for these numbers. Because of the inequalities

$$
c_{k}^{B}\left(\mathbb{R}^{m}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}\left(\mathbb{Z}^{m}\right)
$$

we see that the upper bounds for the numbers $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ and $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ would follow from the upper bounds for the numbers $c_{k}\left(\mathbb{Z}^{m}\right)$ while lower bounds from lower bounds on $c_{k}^{B}\left(\mathbb{R}^{m}\right)$.

Theorem 3 For any numbers $k \in \mathbb{N}$ and $n, m \in \mathbb{N} \cup\{\omega\}$, we get:
(1) $c_{k}\left(\mathbb{Z}^{m}\right) \leq 2^{k}-1-\max _{s \leq k-2}\binom{k-1}{s-1}$ if $k \leq m$,
(2) $c_{k}^{B}\left(\mathbb{R}^{k}\right) \geq \frac{1}{2}\left(k^{2}+3 k-4\right)$ if $k \geq 4$,
(3) $c_{k}^{B}\left(\mathbb{R}^{m}\right) \geq k+4$ if $m \geq k \geq 4$,
(4) $c_{k}^{B}\left(\mathbb{R}^{n}\right)<c_{k+1}^{B}\left(\mathbb{R}^{n+1}\right)$ and $c_{k}\left(\mathbb{R}^{n}\right)<c_{k+1}\left(\mathbb{R}^{n+1}\right)$ if $k \leq n$,
(5) $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)<c_{k+1}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)$ and $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)<c_{k+1}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)$ if $k \leq$ $n+m$.

The binomial coefficient $\binom{k}{i}$ in statement (1) equals $\frac{k!}{i!(k-i)!}$ if $i \in\{0, \ldots, k\}$ and zero otherwise. The upper bound from this statement improves the previously known
upper bound $c_{k}\left(\mathbb{Z}^{n}\right) \leq 2^{k}-1$ proved in [1]. For $k=m \leq 4$ it yields the upper bounds which coincide with the values of $c_{k}\left(\mathbb{Z}^{m}\right)$ given in Theorem 2.

The lower bound $c_{n}^{B}\left(\mathbb{R}^{n}\right) \geq \frac{1}{2}\left(n^{2}+3 n-4\right)$ from the item (2) improves the previously known lower bound $c_{n}^{B}\left(\mathbb{R}^{n}\right) \geq \frac{1}{2}\left(n^{2}+n\right)$, proved in [1]. For $n=4$ it gives the lower bound $12 \leq c_{4}^{B}\left(\mathbb{R}^{4}\right)$, which coincides with the value of $c_{4}^{B}\left(\mathbb{R}^{4}\right)=c_{4}\left(\mathbb{Z}^{4}\right)$.

The statement (5) implies that the sequence $\left(c_{k}\left(\mathbb{Z}^{k}\right)\right)_{k=1}^{\infty}$ is strictly increasing, which answers Question 2 posed in [1]. Theorem 3 will be proved in Sect. 8 after some preparatory work done in Sect. 2.

For every $k \in \mathbb{N}$ the sequence $\left(c_{k}\left(\mathbb{Z}^{n}\right)\right)_{n=k}^{\infty}$ is non-increasing and thus it stabilizes starting from some n. The value of this number n is upper bounded by the cardinal number $r c_{k}^{B}\left(\mathbb{Z}^{n}\right)$ defined as follows.

For a topological group G and a number $k \in \mathbb{N}$ let $r c_{k}^{B}(G)$ be the minimal possible \mathbb{Z}-rank $r_{\mathbb{Z}}(\langle C\rangle)$ of a subgroup $\langle C\rangle$ of G generated by a k-centerpole subset $C \subset G$ of cardinality $|C|=c_{k}^{B}(G)$. If such a set C does not exist (which happens if $c_{k}^{B}(G)=$ $\infty)$, then we put $r c_{k}^{B}(G)=\infty$.

Theorem 4 (Stabilization) Let $k \geq 2$ be an integer and G be an abelian ILC-group with totally bounded Boolean subgroup $G[2]$ and \mathbb{R}-rank $n=r_{\mathbb{R}}(G)$. Then
(1) $c_{k}(G)=c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$ if $r_{\mathbb{Z}}(G) \geq r c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$,
(2) $c_{k}^{B}(G)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$ if G is metrizable and $r_{\mathbb{Z}}(G) \geq r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$,
(3) $c_{k}^{B}(G)=c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$ if G is metrizable and $r_{\mathbb{R}}(\mathbb{R}) \geq r c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$.

In light of Theorem 4 it is important to have lower and upper bounds for the numbers $r c_{k}(G)$.

Proposition 1 For any metrizable abelian ILC-group G with totally bounded Boolean subgroup $G[2]$, and a natural number $2 \leq k \leq r_{\mathbb{Z}}(G)$ we get
(1) $r c_{k}^{B}(G)=k$ if $k \leq 3$, and
(2) $k \leq r c_{k}^{B}(G) \leq c_{k}^{B}(G)-3$ if $k \geq 3$.

Finally, let us present the $(k+1)$-centerpole subset Ξ_{s}^{k} of \mathbb{R}^{1+k} that contains $2^{k}-1-\binom{k}{s}$ elements and gives the upper bound from Theorem 3(1). This $(k+1)-$ centerpole set Ξ_{k} is called the $\binom{k}{s}$-sandwich.

Definition 2 Let k be a non-negative integer and s be a real number. The subsets

$$
\mathbf{2}_{<s}^{k}=\left\{\left(x_{i}\right) \in \mathbf{2}^{k}: \sum_{i=1}^{k} x_{i}<s\right\} \quad \text { and } \quad \mathbf{2}_{>s}^{k}=\left\{\left(x_{i}\right) \in \mathbf{2}^{k}: \sum_{i=1}^{k} x_{i}>s\right\}
$$

are called the s-slices of the k-cube $\mathbf{2}^{k}$ where $\mathbf{2}=\{0,1\}$ is the doubleton. For $s \in$ $\{0, \ldots, k\}$ the union of such slices has cardinality

$$
\left|2_{<s}^{k} \cup 2_{>s}^{k}\right|=2^{k}-\binom{k}{s}=2^{k}-\frac{k!}{s!(k-s)!} .
$$

The subset

$$
\Xi_{s}^{k}=\left(\{-1\} \times \mathbf{2}_{<s}^{k}\right) \cup\left(\{0\} \times \mathbf{2}_{<k}^{k}\right) \cup\left(\{1\} \times \mathbf{2}_{>s}^{k}\right)
$$

of the group $\mathbb{Z} \times \mathbb{Z}^{k}$ is called the $\binom{k}{s}$-sandwich. For $s \in\{0, \ldots, k\}$ it has cardinality

$$
\left|\Xi_{s}^{k}\right|=\left|\mathbf{2}_{<k}^{k}\right| \cup\left|\mathbf{2}_{<s}^{k} \cup \mathbf{2}_{>s}^{k}\right|=2^{k+1}-1-\binom{k}{s} .
$$

The following theorem implies the upper bound in Theorem 3(1). The proof of this theorem (given in Sect. 3) is not trivial and uses some elements of Algebraic Topology.

Theorem 5 For every $k \in \mathbb{N}$ and $s \leq k-2$ the $\binom{k}{s}$-sandwich Ξ_{s}^{k} is a $(k+1)$ centerpole set in the group $\mathbb{Z} \times \mathbb{Z}^{k}$.

In light of this theorem it is important to know the geometric structure of $\binom{k}{s}$ sandwiches Ξ_{s}^{k} for $s \leq k-2$. For $k \leq 3$ those sandwiches are written below:

- $\Xi_{-2}^{0}=\{(1,0)\}$ is a singleton in $\mathbb{Z} \times \mathbb{Z}^{0}=\mathbb{Z} \times\{0\}$;
$-\Xi_{-1}^{1}=\{(0,1),(1,0),(1,1)\}$ is the unit square without a vertex in \mathbb{Z}^{2};
$-\Xi_{0}^{2}=\{(0,0,0),(0,0,1),(0,1,0),(1,0,1),(1,1,0),(1,1,1)\}$ is the unit cube without two opposite vertices in \mathbb{Z}^{3};
$-\Xi_{0}^{3}$ is the unit cube without two opposite vertices in \mathbb{Z}^{4}, so $\left|\Xi_{0}^{3}\right|=14$;
- Ξ_{1}^{3} is a 12 -element subset in \mathbb{Z}^{4} whose slices $\{-1\} \times \mathbf{2}_{<1}^{3},\{0\} \times \mathbf{2}_{<3}^{3}$, and $\{1\} \times \mathbf{2}_{>1}^{3}$ have one, seven, and four points, respectively.
By a triangle (centered at the origin) we shall understand any affinely independent subset $\{a, b, c\}$ in \mathbb{R}^{n} (such that $a+b+c=0$). A tetrahedron (centered at the origin) is any affinely independent subset $\{a, b, c, d\} \subset \mathbb{R}^{n}$ (with $a+b+c+d=0$).

Let us observe that the sandwich

- Ξ_{-2}^{0} has cardinality $c_{1}\left(\mathbb{R}^{1}\right)=1$ and is affinely equivalent to any singleton $\{a\}$ in \mathbb{R}^{1};
- Ξ_{-1}^{1} has cardinality $c_{2}\left(\mathbb{R}^{2}\right)=3$ and is affinely equivalent to any triangle $\Delta=$ $\{a, b, c\}$ in \mathbb{R}^{2};
- Ξ_{0}^{2} has cardinality $c_{3}\left(\mathbb{R}^{3}\right)=6$ and is affinely equivalent to $\Delta \cup(x-\Delta)$ where $\Delta \subset \mathbb{R}^{3}$ is a triangle centered at zero and $x \in \mathbb{R}^{3}$ does not belong to the linear span of Δ;
- Ξ_{1}^{3} has cardinality $c_{4}\left(\mathbb{R}^{4}\right)=12$ and is affinely equivalent to $(x-\Delta) \cup \Delta \cup(-x-$
Δ) where $\Delta \subset \mathbb{R}^{4}$ is a tetrahedron centered at zero and $x \in \mathbb{R}^{4}$ does not belong to the linear span of Δ.
To see that Ξ_{1}^{3} is of this form, observe that $c=\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is the barycenter of Ξ_{1}^{3} and $\Xi_{1}^{3}-c=(x-\Delta) \cup \Delta \cup(-x-\Delta)$ for the tetrahedron

$$
\Delta=\{(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,1,1,1)\}-c
$$

and the point $x=\left(\frac{1}{2}, 0,0,0\right)$.

Now we briefly describe the structure of this paper. In Sect. 2 we establish a covering property of sandwiches, which will be essentially used in the proof of Theorem 5, given in Sect. 3. Section 4 is devoted to T-shaped sets which will give us lower bounds for the numbers $c_{k}^{B}\left(\mathbb{R}^{k}\right)$. In Sect. 5 we prove some lemmas that will help us to analyze the geometric structure of centerpole sets in Euclidean spaces. In Sect. 6 we study the interplay between centerpole properties of subsets in a group and those of its subgroups. In Sect. 7 we prove a particular case of the Stability Theorem 4 for the groups $\mathbb{R}^{n} \times \mathbb{Z}^{m-n}$. In Sects. 8, 9, and 10 we give the proofs of Theorems 3, 2, and 1, respectively. Sections 11 and 12 are devoted to the proofs of Proposition 1 and Theorem 4. The final Sect. 13 contains selected open problems.

2 Covering Σ_{0}-sets by shifts of the sandwich Ξ_{s}^{k}

In this section we shall prove a crucial covering property of the $\binom{k}{s}$-sandwich Ξ_{s}^{k}. In the next section this property will be used in the proof of Theorem 5 . We assume that $k \in \omega$ and $s \leq k-2$ is an integer.

First we introduce the notion of a Σ_{0}-subset of the cube $\mathbf{2}^{k+1}=\{0,1\}^{k+1}$. For $i \in\{0, \ldots, k\}$ consider the i th coordinate projection

$$
\mathrm{pr}_{i}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}, \quad \mathrm{pr}_{i}:\left(x_{j}\right)_{j=0}^{k} \mapsto x_{i}
$$

The subsets of the form $2^{k+1} \cap \operatorname{pr}_{i}^{-1}(l)$ for $l \in\{0,1\}$ are called the facets of the cube 2^{k+1}.

Next, consider the function

$$
\Sigma: \mathbb{R}^{k+1} \rightarrow \mathbb{R}, \quad \Sigma:\left(x_{i}\right)_{i=0}^{k} \mapsto \sum_{i=1}^{k} x_{i}
$$

and observe that $\Sigma\left(\mathbf{2}^{k+1}\right)=\{0, \ldots, k\}$.
Taking the diagonal product of the functions pr_{0} and Σ, we obtain the linear operator

$$
\Sigma_{0}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{2}, \quad \Sigma_{0}:\left(x_{i}\right)_{i=0}^{k} \mapsto\left(x_{0}, \sum_{i=1}^{k} x_{i}\right)
$$

Definition 3 A subset $\tau \subset \mathbf{2}^{k+1}$ will be called a Σ_{0}-set if

- τ lies in a facet of $\mathbf{2}^{k+1}$;
- there exists $a \in\{0, \ldots, k-1\}$ such that $\Sigma_{0}(\tau) \subset\{(0, a),(0, a+1),(1, a+1)\}$ or $\Sigma_{0}(\tau) \subset\{(0, a),(1, a),(1, a+1)\}$.

Lemma 1 Each Σ_{0}-set $\tau \subset \mathbf{2}^{k+1}$ is covered by a suitable shift $x+\Xi_{s}^{k}$ of the $\binom{k}{s}$ sandwich Ξ_{s}^{k}.

Proof Decompose the Σ_{0}-set τ into the union $\tau=\tau_{0} \cup \tau_{1}$ where $\tau_{i}=\tau \cap \operatorname{pr}_{0}^{-1}(i)$ for $i \in\{0,1\}$. By our hypothesis τ lies in a facet of the cube $\mathbf{2}^{k+1}$. Consequently, there are numbers $\gamma \in\{0, \ldots, k\}$ and $l \in\{0,1\}$ such that $\tau \subset \operatorname{pr}_{\gamma}^{-1}(l)$. If τ_{0} or τ_{1} is empty, then we can change the facet and assume that $\gamma=0$.

Since τ is a Σ_{0}-set, the image $\Sigma_{0}(\tau)$ lies in one of the triangles: $\{(0, a),(0, a+1)$, $(1, a+1)\}$ or $(\{(0, a),(1, a),(1, a+1)\}$ for some $a \in\{0, \ldots, k-1\}$. This implies that $\Sigma(\tau) \subset\{a, a+1\}$.

Identify the cube $\mathbf{2}^{k}$ with the subcube $\{0\} \times \mathbf{2}^{k}$ of Ξ_{s}^{k} and let $\mathbf{e}_{0}=(1,0, \ldots, 0) \in$ $\mathbf{2}^{k+1}$. Then

$$
\Xi_{s}^{k}=\mathbf{2}_{<k}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{>s}^{k}\right) \cup\left(-\mathbf{e}_{0}+\mathbf{2}_{<s}^{k}\right) .
$$

Depending on the value of γ, two cases are possible.
0. $\gamma=0$. This case has four subcases.
0.1. If $l=0$ and $a<k-1$ then $\Sigma_{0}(\tau) \subset\{(0, a),(0, a+1)\} \subset\{0, \ldots, k-1\}$ and $\tau \subset \mathbf{2}_{<k}^{k} \subset \Xi_{s}^{k}$.
0.2. If $l=0$ and $a \geq k-1$, then $a>k-2 \geq s$ and $\tau \subset \mathbf{2}_{>s}^{k} \subset-\mathbf{e}_{0}+\Xi_{s}^{k}$.
0.3. If $l=1$ and $a<k-1$, then $\Sigma_{0}(\tau) \subset\{(1, a),(1, a+1)\} \subset\{0, \ldots, k-1\}$ and hence $\tau \subset \mathbf{e}_{0}+\mathbf{2}_{<k}^{k} \subset \mathbf{e}_{0}+\Xi_{s}^{k}$.
0.4. If $l=1$ and $a \geq k-1$, then $a>k-2 \geq s$ and then $\tau \subset \mathbf{e}_{0}+\mathbf{2}_{>s}^{k} \subset \Xi_{s}^{k}$.
I. $\gamma \neq 0$. In this case τ_{0} and τ_{1} are not empty. Let \mathbf{e}_{γ} be the basic vector whose γ th coordinate is 1 and the others are zero. By our assumption, $\Sigma_{0}(\tau) \subset$ $\{(0, a),(1, a),(1, a+1)\}$ or $\Sigma_{0}(\tau) \subset\{(0, a),(0, a+1),(1, a+1)\}$ for some $a \in\{0, \ldots, k-1\}$. So, we consider two subcases.
I.1. $\Sigma_{0}(\tau) \subset\{(0, a),(1, a),(1, a+1)\}$. This case has two subcases.
I.1.0. $l=0$. In this subcase $\Sigma(\tau)=\Sigma\left(\tau_{0}\right) \cup \Sigma\left(\tau_{1}\right)=\{a, a+1\} \subset\{0, \ldots$, $k-1\}$ and hence $a \leq k-2$. Depending on the value of a, we have three possibilities.

If $a>s$, then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<k}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{>s}^{k}\right) \subset \Xi_{s}^{k}$.
If $a=s$, then for the shifted set $\mathbf{e}_{\gamma}+\tau$ we get

$$
\Sigma_{0}\left(\mathbf{e}_{\gamma}+\tau\right) \subset\{(0, a+1),(1, a+1),(1, a+2)\} .
$$

Since $a=s \leq k-2$, we conclude that $\mathbf{e}_{\gamma}+\tau_{0} \subset \mathbf{2}_{<k}^{k} \subset \Xi_{s}^{k}$. On the other hand, $\mathbf{e}_{\gamma}+\tau_{1} \subset \mathbf{e}_{1}+\mathbf{2}_{>s}^{k} \subset \Xi_{s}^{k}$. Then $\tau \subset-\mathbf{e}_{\gamma}+\Xi_{s}^{k}$.

If $a<s$, then $a+1 \leq s \leq k-2$ and hence $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<s}^{k} \cup\left(\mathbf{e}_{0}+\right.$ $\left.\mathbf{2}_{<k}^{k}\right) \subset \mathbf{e}_{0}+\Xi_{s}^{k}$.
I.1.1. $l=1$. In this subcase three possibilities can occur:

If $a>s$, then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<k}^{k}+\left(\mathbf{e}_{0}+\mathbf{2}_{>s}^{k}\right) \subset \Xi_{s}^{k}$;
If $a<s$, then $a+1 \leq s \leq k-2$ and then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<s}^{k} \cup\left(\mathbf{e}_{0}+\right.$ $\left.\mathbf{2}_{<k}^{k}\right) \subset \mathbf{e}_{0}+\Xi_{s}^{k}$.

If $a=s$, then for the shift $-\mathbf{e}_{\gamma}+\tau$ we get $\Sigma_{0}\left(-\mathbf{e}_{\gamma}+\tau\right) \subset$ $\{(0, a-1),(1, a-1),(1, a)\}$ and hence $-\mathbf{e}_{\gamma}+\tau \subset \mathbf{2}_{<s}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{<k}^{k}\right) \subset$ $\mathbf{e}_{0}+\Xi_{s}^{k}$. Consequently, $\tau \subset \mathbf{e}_{\gamma}+\mathbf{e}_{0}+\Xi_{s}^{k}$.
I.2. $\Sigma_{0}(\tau) \subset\{(0, a),(0, a+1),(1, a+1)\}$. Depending on the value of $l \in\{0,1\}$, consider two subcases.
I.2.0. $l=0$. In this case $\{0, \ldots, k-1\} \supset \Sigma(\tau)=\Sigma\left(\tau_{0}\right) \cup \Sigma\left(\tau_{1}\right)=\{a$, $a+1\} \cup\{a+1\}$ and consequently, $a+1 \leq k-1$.

If $a \geq s$, then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<k}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{>s}^{k}\right) \subset \Xi_{s}^{k}$.
If $a=s-1$, then we can consider the shift $\mathbf{e}_{\gamma}+\tau$ and repeating the preceding argument, show that $\mathbf{e}_{\gamma}+\tau \subset \Xi_{s}^{k}$. Consequently, $\tau \subset$ $-\mathbf{e}_{\gamma}+\Xi_{s}^{k}$.

If $a<s-1$, then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<s}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{<k}^{k}\right) \subset \mathbf{e}_{0}+\Xi_{s}^{k}$.
I.2.1. $l=1$. In this case we have four subcases.

If $a=k-1$, then for the shifted set $-\mathbf{e}_{\gamma}+\tau$ we get $\Sigma_{0}\left(-\mathbf{e}_{\gamma}+\tau\right) \subset$ $\{(0, a-1),(0, a),(1, a)\}$ and $-\mathbf{e}_{\gamma}+\tau \subset \mathbf{2}_{<k}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{>s}^{k}\right)=\Xi_{s}^{k}$. Then $\tau \subset \mathbf{e}_{\gamma}+\Xi_{s}^{k}$.

If $s \leq a<k-1$, then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<k}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{>s}^{k}\right)=\Xi_{s}^{k}$.
If $a=s-1$, then for the shifted set $-\mathbf{e}_{\gamma}+\tau$ we get $\Sigma_{0}\left(-\mathbf{e}_{\gamma}+\tau\right) \subset$ $\{(0, a-1),(0, a),(1, a)\}$ and then $-\mathbf{e}_{\gamma}+\tau \subset 2_{<s}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{<k}^{k}\right)=\mathbf{e}_{0}+$ Ξ_{s}^{k} and $\tau \subset \mathbf{e}_{\gamma}+\mathbf{e}_{0}+\Xi_{s}^{k}$.

If $a<s-1$, then $\tau=\tau_{0} \cup \tau_{1} \subset \mathbf{2}_{<s}^{k} \cup\left(\mathbf{e}_{0}+\mathbf{2}_{<k}^{k}\right)=\mathbf{e}_{0}+\Xi_{s}^{k}$.
This was the last of the 17 cases we have considered.

3 Proof of Theorem 5

The proof of Theorem 5 uses the idea of the proof of Lemma 6 in [1] (which established the upper bound $c_{3}\left(\mathbb{Z}^{3}\right) \leq 6$).

We need to prove that for every $k \leq n$ and $s \leq k-2$ the $\binom{k}{s}$-sandwich Ξ_{s}^{k} is $(k+1)$-centerpole in $\mathbb{Z} \times \mathbb{Z}^{k}=\mathbb{Z}^{1+k}$. Assuming that this is not true, find a coloring χ : $\mathbb{Z}^{1+k} \rightarrow k+1=\{0, \ldots, k\}$ such that \mathbb{Z}^{1+k} contains no unbounded monochromatic subset, symmetric with respect to some point $c \in \Xi_{s}^{k}$. Observe that for each color $i \in\{0, \ldots, k\}$ the intersection $A_{i} \cap\left(2 c-A_{i}\right)$ is the largest subset of A_{i}, symmetric with respect to the point c. By our assumption, the (maximal i-colored c-symmetric) set $A_{i} \cap\left(2 c-A_{i}\right)$ is bounded and so is the union

$$
B=\bigcup_{i=0}^{k} \bigcup_{c \in \Xi_{s}^{k}} A_{i} \cap\left(2 c-A_{i}\right)
$$

of all such maximal symmetric monochromatic subsets.
Claim $1 \chi(x) \notin \chi\left(-x+2 \Xi_{s}^{k}\right)$ for any $x \notin B$.
Proof Assuming conversely that $\chi(x)=\chi(-x+2 c)$ for some $c \in \Xi_{s}^{k}$, we get $\frac{1}{2}(x+(-x+2 c))=c$ and hence x and $-x+2 c$ are two points symmetric with respect to the center $c \in \Xi_{s}^{k}$ and colored by the same color. Consequently, $x \in B$ by the definition of B.

Fix a number $n \in \mathbb{N}$ so big that the cube $K=[-2 n, 2 n]^{1+k} \subset \mathbb{R}^{1+k}$ contains the bounded set B in its interior and let ∂K be the topological boundary ∂K of the cube K in \mathbb{R}^{1+k}. Observe that Claim 1 implies:

Claim $2 \chi(-x) \notin \chi\left(x+2 \Xi_{s}^{k}\right)$ for each point $x \in \mathbb{Z}^{1+k} \cap \partial K$.
We recall that for every $i \in k+1=\{0, \ldots, k\}$

$$
\mathrm{pr}_{i}: \mathbb{R}^{1+k} \rightarrow \mathbb{R}, \quad \operatorname{pr}_{i}:\left(x_{j}\right)_{j=0}^{k} \mapsto x_{i}
$$

denotes the i th coordinate projection and \mathbf{e}_{i} is the unit vector along the i th coordinate axis, that is, $\operatorname{pr}_{j}\left(\mathbf{e}_{i}\right)=1$ if $i=j$, and 0 otherwise.

For a subset $J \subset\{0, \ldots, k\}$ let $\mathbf{e}_{J}=\sum_{j \in J} \mathbf{e}_{j} \in \mathbb{R}^{1+k}$ be the vector of the principal diagonal of the cube $\mathbf{2}^{J}=\left\{\left(x_{i}\right)_{i=0}^{k} \in \mathbf{2}^{1+k}: \forall i \notin J\left(x_{i}=0\right)\right\} \subset \mathbf{2}^{1+k}$.

For a point $x \in \mathbb{R}^{1+k}$ let $J_{x}=\left\{i \in k+1: x_{i} \notin 2 \mathbb{Z}\right\}$ and let $\lfloor x\rfloor$ be the unique point in $(2 \mathbb{Z})^{1+k}$ such that $x \in\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}$. So, $\lfloor x\rfloor \leq x \leq\lfloor x\rfloor+2 \mathbf{e}_{J_{x}}$.

Consider the function $\Sigma: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ assigning to each sequence $x=\left(x_{i}\right)_{i=0}^{k}$ the sum $\Sigma(x)=\sum_{i=1}^{k} x_{i}$. The map Σ combined with the 0 th coordinate projection pr_{0} compose the linear operator

$$
\Sigma_{0}: \mathbb{R}^{1+k} \rightarrow \mathbb{R}^{2}, \quad \Sigma_{0}:\left(x_{i}\right)_{i=0}^{k} \mapsto\left(x_{0}, \Sigma(x)\right)=\left(x_{0}, \sum_{i=1}^{k} x_{i}\right)
$$

Choose a triangulation T of the boundary ∂K of the cube $K=[-2 n, 2 n]^{1+k}$ such that for each simplex τ of the triangulation there is a point $\dot{\tau} \in(2 \mathbb{Z})^{1+k}$ such that $\frac{1}{2}(\tau-\dot{\tau})$ is a Σ_{0}-subset of $\mathbf{2}^{1+k}$. The reader can easily check that such a triangulation T always exists. The choice of the triangulation T combined with Lemma 1 implies

Claim 3 Each simplex τ of the triangulation T is covered by a suitable shift $x+2 \Xi_{s}^{k}$ of the homothetic copy $2 \Xi_{s}^{k}$ of the $\binom{k}{s}$-sandwich Ξ_{s}^{k}.

Let Δ be (the geometric realization of) a simplex in \mathbb{R}^{k} with vertices w_{0}, \ldots, w_{k} such that $w_{0}+\cdots+w_{k}=0$. The latter equality means that Δ is centered at the origin (which lies in the interior of Δ). By $\Delta^{(0)}=\left\{w_{0}, \ldots, w_{k}\right\}$ we denote the set of vertices of the simplex Δ.

Each point $y \in \Delta$ can be uniquely written as the convex combination $y=$ $\sum_{i=0}^{k} y_{i} w_{i}$ for some non-negative real numbers y_{0}, \ldots, y_{k} with $\sum_{i=0}^{k} y_{i}=1$. The set

$$
\operatorname{supp}(y)=\left\{i \in\{0, \ldots, k\}: y_{i} \neq 0\right\}
$$

is called the support of y. It is clear that $\operatorname{supp}(y)$ is the smallest subset of $\Delta^{(0)}$ whose convex hull contains the point y.

Identifying each number $i \in\{0, \ldots, k\}$ with the vertex w_{i} of Δ, we can think of the coloring $\chi: \mathbb{Z}^{1+k} \rightarrow\{0, \ldots, k\}$ as a function $\chi: \mathbb{Z}^{1+k} \rightarrow \Delta^{(0)}=\left\{w_{0}, \ldots, w_{k}\right\}$.

Now extend the restriction $\chi \mid \partial K \cap(2 \mathbb{Z})^{1+k}$ of χ to a simplicial map $f: \partial K \rightarrow \Delta$ (which is affine on the convex hull of each simplex $\tau \in T$). The simpliciality of f implies

Claim 4 For each simplex $\tau \in T$ and a point $x \in \operatorname{conv}(\tau)$

$$
\operatorname{supp}(f(x)) \subset \chi(\tau) \subset \chi\left(\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}\right)
$$

This claim has the following corollary.
Claim $5 f(\partial K) \subset \partial \Delta$.
Proof Given any point $x \in \partial K$, find a simplex $\tau \in T$ whose convex hull contains x. By the choice of the triangulation T and Lemma $1, \tau \subset-y+2 \Xi_{s}^{k}$ for some point $y \in \mathbb{Z}^{1+k}$. By Claim 2, $\chi(-y) \notin \chi(\tau)$ and thus

$$
f(x) \in \operatorname{conv}(f(\tau))=\operatorname{conv}(\chi(\tau)) \subset \operatorname{conv}\left(\Delta^{(0)} \backslash \chi(-y)\right) \subset \partial \Delta .
$$

Now consider the intersection $K_{0}=\{0\} \times[-2 n, 2 n]^{k}$ of the cube K with the hyperplane $\{0\} \times \mathbb{R}^{k}$, which will be identified with the space \mathbb{R}^{k}, and let $\partial K_{0}=$ $\partial K \cap \mathbb{R}^{k}$ be the boundary of K_{0}.

For each subset $J \subset k+1=\{0, \ldots, k\}$ consider the map

$$
p_{J}: \mathbb{R}^{1+k} \rightarrow \mathbb{R}, \quad p_{J}:\left(x_{i}\right)_{i=0}^{k} \mapsto 1 \cdot \prod_{j \in J} x_{j}
$$

Here we assume that $p_{\emptyset}(x)=1$. It follows that $\sum_{J \subset k+1} p_{J}(x)>0$ for all $x \in$ $[0,2]^{k+1}$.

We remind that for a point $x \in \mathbb{R}^{1+k}, J_{x}=\left\{i \in\{0, \ldots, k\}: x_{i} \notin 2 \mathbb{Z}\right\}$ and $\lfloor x\rfloor$ stands for the unique point in $(2 \mathbb{Z})^{1+k}$ such that $x \in\lfloor x\rfloor+\mathbf{2}^{J_{x}}$ where $\mathbf{2}^{J}=\left\{\left(x_{i}\right)_{i=0}^{k} \in\right.$ $\left.\mathbf{2}^{k+1}: \forall i \notin J\left(x_{i}=0\right)\right\}$.

Now consider the map $\varphi: \partial K_{0} \rightarrow \Delta$ defined by the formula

$$
\varphi(x)=\frac{\sum_{J \subset k+1} p_{J}(x-\lfloor x\rfloor) \cdot \chi\left(\lfloor x\rfloor+\mathbf{e}_{J}\right)}{\sum_{J \subset k+1} p_{J}(x-\lfloor x\rfloor)} .
$$

It can be shown that the map φ is well-defined and continuous.
Claim $6 \operatorname{supp}(\varphi(x))=\chi\left(\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}\right) \subset \chi\left(\lfloor x\rfloor+2 \Xi_{s}^{k}\right)$ for all $x \in \partial K_{0}$.
Proof Let $x \in \partial K_{0}$ be any point. The definition of φ implies that $\operatorname{supp}(\varphi(x))=$ $\chi\left(\lfloor x\rfloor+\mathbf{2}^{J_{x}}\right)$. The inclusion $x \in \partial K_{0}$ implies that the set $J_{x}=\{j \in\{0, \ldots, k\}$: $\left.\operatorname{pr}_{j}(x) \notin 2 \mathbb{Z}\right\}$ has cardinality $\left|J_{x}\right|<k$ and thus $\mathbf{2}^{J_{x}} \subset\{0\} \times \mathbf{2}_{<k}^{k} \subset \Xi_{s}^{k}$. Consequently, $\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}} \subset\lfloor x\rfloor+2 \Xi_{s}^{k}$ and $\chi\left(\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}\right) \subset \chi\left(\lfloor x\rfloor+2 \Xi_{s}^{k}\right)$.

Claim $7 \varphi(x) \neq \varphi(-x)$ for all $x \in \partial K_{0}$.
Proof Observe that $J_{x}=J_{-x}$ and $\lfloor-x\rfloor=-\lfloor x\rfloor-2 \mathbf{e}_{J_{x}}$. By Claim 6,

$$
\chi(-\lfloor x\rfloor)=\chi\left(\lfloor-x\rfloor+2 \cdot \mathbf{e}_{-J_{x}}\right) \in \chi\left([-x]+2 \cdot 2^{J_{-x}}\right)=\operatorname{supp}(\varphi(-x)) .
$$

On the other hand, Claim 1 guarantees that

$$
\chi(-\lfloor x\rfloor) \not \supset \chi\left(\lfloor x\rfloor+2 \Xi_{s}^{k}\right) \supset \chi\left(\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}\right)=\operatorname{supp}(\varphi(x)) .
$$

Consequently, $\operatorname{supp}(\varphi(-x)) \neq \operatorname{supp}(\varphi(x))$ and $\varphi(x) \neq \varphi(-x)$.

Finally, consider the homotopy

$$
\left(f_{t}\right): \partial K_{0} \times[0,1] \rightarrow \Delta, \quad f_{t}: x \mapsto t \varphi(x)+(1-t) f(x)
$$

connecting the map $f=f_{0}$ with the map $\varphi=f_{1}$.
Claim $8 \operatorname{supp}\left(f_{t}(x)\right) \subset \chi\left(\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}\right) \subset \partial \Delta$ for all $x \in \partial K_{0}$ and $t \in[0,1]$.

Proof The inclusion $\operatorname{supp}\left(f_{t}(x)\right) \subset \chi\left(\lfloor x\rfloor+2 \cdot \mathbf{2}^{J_{x}}\right)$ follows from Claims 4 and 6.
The inclusion $x \in \partial K_{0}$ implies that the set $J_{x}=\left\{j \in\{0, \ldots, k\}: \operatorname{pr}_{j}(x) \notin 2 \mathbb{Z}\right\}$ has cardinality $\left|J_{x}\right|<k$ and thus $\mathbf{2}^{J_{x}} \subset\{0\} \times \mathbf{2}_{<k}^{k} \subset \Xi_{s}^{k}$. By Claim 1, $\chi(-\lfloor x\rfloor) \notin$ $\chi\left(\lfloor x\rfloor+2 \Xi_{s}^{k}\right)$ and then

$$
\begin{aligned}
f_{t}(x) & \in \operatorname{conv}\left(\operatorname{supp}\left(f_{t}(x)\right) \subset \operatorname{conv}\left(\chi\left(\lfloor x\rfloor+2 \cdot 2^{J_{x}}\right)\right)\right. \\
& \subset \operatorname{conv}\left(\chi\left(\lfloor x\rfloor+2 \Xi_{s}^{k}\right)\right) \subset \operatorname{conv}\left(\Delta^{(0)} \backslash \chi(-\lfloor x\rfloor)\right) \subset \partial \Delta .
\end{aligned}
$$

Let $S^{k-1}=\left\{x \in \mathbb{R}^{k}:\|x\|=1\right\}$ be the unit sphere in \mathbb{R}^{k} with respect to the Euclidean norm $\|\cdot\|$ and $r: \mathbb{R}^{k} \backslash\{0\} \rightarrow S^{k-1}, r: x \mapsto x /\|x\|$, be the radial retraction. Observe that its restriction $r \mid \partial \Delta$ to the boundary of the geometric simplex Δ is a homeomorphism.

By Claim $5, f(\partial K) \subset \partial \Delta \subset \mathbb{R}^{k} \backslash\{0\}$, so we can consider the map $g_{0}: \partial K \rightarrow$ S^{k-1} defined by $g_{0}(x) \mapsto r \circ f(x)=f(x) /\|f(x)\|$. By Claim 8 , the map $g_{0} \mid \partial K_{0}$ is homotopic to the map

$$
g_{1}: \partial K_{0} \rightarrow S^{k-1}, \quad g_{1}(x) \mapsto r \circ f_{1}(x)=r \circ \varphi(x)
$$

It follows from Claim 7 that $g_{1}(x) \neq g_{1}(-x)$ for all $x \in \partial K_{0}$. This implies that the formula

$$
h_{t}(x)=\frac{g_{1}(x)-\operatorname{tg}_{1}(-x)}{\left\|g_{1}(x)-\operatorname{tg}_{1}(-x)\right\|}, \quad x \in \partial K_{0}, t \in[0,1],
$$

determines a well-defined homotopy $\left(h_{t}\right): \partial K_{0} \rightarrow S^{k-1}$ connecting the map g_{1} with the map

$$
h_{1}(x)=\frac{g_{1}(x)-g_{1}(-x)}{\left\|g_{1}(x)-g_{1}(-x)\right\|},
$$

which is antipodal in the sense that $h_{1}(-x)=-h_{1}(x)$. By [13, Chap. 4, Sect. 7.10], each antipodal map between spheres of the same dimension is not homotopically trivial. Consequently, the antipodal map $h_{1}: \partial K_{0} \rightarrow S^{k-1}$ is not homotopically trivial. On the other hand, h_{1} is homotopic to the map $h_{0}=g_{1}$, which is homotopic to $g_{0} \mid \partial K_{0}$ and the latter map is homotopically trivial since the boundary ∂K_{0} of the cube K_{0} is contractible in the boundary ∂K of K. This contradiction completes the proof of Theorem 5.

$4 T$-shaped sets in $\mathbb{R}^{\boldsymbol{n}}$

Theorem 5, proved in the preceding section, yields an upper bound for the numbers $c_{k}\left(\mathbb{Z}^{k}\right)$. A lower bound for the numbers $c_{k}^{B}\left(\mathbb{R}^{k}\right)$ will be obtained by the technique of T-shaped sets created in [1].

Let $\mathbb{R}_{+}=[0, \infty)$ be the closed half-line. For every $n \geq 0$ consider the subset $T_{0} \subset \mathbb{R}^{0}$ defined inductively:

$$
\begin{aligned}
& T_{0}=\emptyset \subset \mathbb{R}^{0}=\{0\}, \quad T_{1}=\{0\} \subset \mathbb{R}^{1}, \quad \text { and } \\
& T_{n}=\left(\mathbb{R}^{n-1} \times\{0\}\right) \cup\left(T_{n-1} \times \mathbb{R}_{+}\right) \subset \mathbb{R}^{n}
\end{aligned}
$$

for $n>1$.

Definition 4 A subset $C \subset \mathbb{R}^{n}$ is called T-shaped if $f(C) \subset \mathbb{R} \times T_{n-1}$ for some affine transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \times \mathbb{R}^{n-1}$. The smallest cardinality of a subset $A \subset$ \mathbb{R}^{n}, which is not T-shaped is denoted by $t\left(\mathbb{R}^{n}\right)$.

Let us describe the geometric structure of T-shaped sets.
We say that for $k \leq n$, hyperplanes H_{1}, \ldots, H_{k} in \mathbb{R}^{n} are in general position if they are pairwise distinct and their normal vectors are linearly independent. This happens if and only if there is an affine transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that maps the i th hyperplane onto the hyperplane $\mathbb{R}^{i-1} \times\{0\} \times \mathbb{R}^{n-i}$ for all $i \in\{1, \ldots, k\}$.

We shall say that a hyperplane $H \subset \mathbb{R}^{n}$ does not separate a subset $S \subset \mathbb{R}^{n+1}$ if S lies in one of two closed half-spaces bounded by the hyperplane H. Such a hyperplane H will be called non-separating for S. A hyperplane H is called a support hyperplane for S if $H \cap S \neq \emptyset$ and H does not separate S.

Proposition 2 Let $n \in \mathbb{N}$. A subset $S \subset \mathbb{R}^{n+1}$ is T-shaped if and only if

$$
S \subset H_{1} \cup \cdots \cup H_{n}
$$

for some hyperplanes H_{1}, \ldots, H_{n} in general position such that each hyperplane H_{i}, $1 \leq i \leq n$, does not separate the set $S \backslash\left(H_{1} \cup \cdots \cup H_{i-1}\right)$.

Proof This proposition can be easily derived from the equality

$$
\mathbb{R} \times T_{n}=\bigcup_{i=0}^{n-1} \mathbb{R}^{n-i} \times\{0\} \times \mathbb{R}_{+}^{i}
$$

that can be easily proved by induction on n.
By Lemma 7 of [1], T-shaped subsets of Euclidean spaces \mathbb{R}^{k} are k-centerpole for Borel colorings. Consequently, $t\left(\mathbb{R}^{n}\right) \leq c_{n}^{B}\left(\mathbb{R}^{n}\right)$. This gives us a lower bound for the numbers $c_{k}^{B}\left(\mathbb{R}^{n}\right)$ and $c_{k}\left(\mathbb{R}^{n}\right)$:

Proposition $3 t\left(\mathbb{R}^{k}\right) \leq c_{k}^{B}\left(\mathbb{R}^{k}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n}\right) \leq c_{k}\left(\mathbb{R}^{n}\right)$ for any finite $k \leq n$.

In the following theorem we collect all the available information on the numbers $t\left(\mathbb{R}^{n}\right)$.

Theorem 6

1. $t\left(\mathbb{R}^{1}\right)=1$,
2. $t\left(\mathbb{R}^{2}\right)=3$,
3. $t\left(\mathbb{R}^{3}\right)=6$,
4. $t\left(\mathbb{R}^{4}\right)=12$,
5. $t\left(\mathbb{R}^{n}\right) \leq n^{2}-n+1$ for every $n \geq 1$,
6. $t\left(\mathbb{R}^{n}\right) \geq t\left(\mathbb{R}^{n-1}\right)+n+1$ for any $n \geq 4$,
7. $t\left(\mathbb{R}^{n}\right) \geq \frac{1}{2}\left(n^{2}+3 n-4\right)$ for any $n \geq 4$.

Proof

1. Since $T_{0}=\emptyset$, a subset of \mathbb{R}^{1} is T-shaped if and only if it is empty. Consequently, $t\left(\mathbb{R}^{1}\right)=1$.
2. Since $T_{1}=\{0\} \subset \mathbb{R}^{1}$, a subset $C \subset \mathbb{R}^{2}$ is T-shaped if and only if C lies in an affine line. Consequently, $t\left(\mathbb{R}^{2}\right)=3$.
3. By Theorem 5, the 6-element $\binom{2}{0}$-sandwich Ξ_{0}^{2} is 3-centerpole in \mathbb{R}^{3}. Consequently, $c_{3}\left(\mathbb{R}^{3}\right) \leq 6$. By Proposition $3, t\left(\mathbb{R}^{3}\right) \leq c_{3}\left(\mathbb{R}^{3}\right) \leq 6$. To see that $t\left(\mathbb{R}^{3}\right) \geq 6$, we need to check that a subset $C \subset \mathbb{R}^{3}$ of cardinality $|C| \leq 5$ is T-shaped, which means that after a suitable affine transformation of \mathbb{R}^{3}, C can be embedded into $\mathbb{R} \times T_{2}$. By the definition, $T_{2}=\mathbb{R} \times\{0\} \cup\{0\} \times \mathbb{R}_{+}$.

Consider the convex hull $\operatorname{conv}(C)$ of C in \mathbb{R}^{3}. If C lies in an affine plane H, then applying to \mathbb{R}^{3} a suitable affine transformation, we can assume that $C \subset H=$ $\mathbb{R} \times \mathbb{R} \times\{0\} \subset \mathbb{R} \times T_{2}$. If C does not lie in a plane, then the convex polyhedron $\operatorname{conv}(C)$ has a supporting plane H_{1} such that $\left|H_{1} \cap C\right| \geq 3$. So, $C \backslash H_{1}$ lies in one of the closed half-spaces with respect to the plane H_{1}. Denote this subspace by H_{1}^{+}. The set $C \backslash H_{1}$ has cardinality $\left|C \backslash H_{1}\right| \leq 2$ and hence it lies in an affine plane $H_{2} \subset \mathbb{R}^{3}$ that meets H_{1}. Find an affine transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $f\left(H_{1}\right)=\mathbb{R} \times \mathbb{R} \times\{0\}, f\left(H_{1}^{+}\right)=\mathbb{R} \times \mathbb{R} \times \mathbb{R}_{+}$and $f\left(H_{2}\right)=\{\mathbb{R}\} \times\{0\} \times\{\mathbb{R}\}$. Then

$$
f(C) \subset \mathbb{R} \times \mathbb{R} \times\{0\} \cup \mathbb{R} \times\{0\} \times \mathbb{R}_{+}=\mathbb{R} \times T_{2}
$$

and hence C is T-shaped.
4. By Theorem 5, the $\binom{3}{1}$-sandwich Ξ_{1}^{3} is 4-centerpole in \mathbb{Z}^{4}. Consequently,

$$
t\left(\mathbb{R}^{4}\right) \leq c_{4}\left(\mathbb{R}^{4}\right) \leq c_{4}\left(\mathbb{Z}^{4}\right) \leq\left|\Xi_{1}^{3}\right|=2^{4}-1-\binom{3}{1}=12
$$

The reverse inequality $t\left(\mathbb{R}^{4}\right) \geq 12$ will be proved in Lemma 2 below.
5. Let $C \subset \mathbb{R}^{n}$ be a set consisting of $n^{2}-n+1=n(n-1)+1$ points in general position. This means that no $(n+1)$-element subset of C lies in a hyperplane. Then C cannot be covered by less than n hyperplanes and consequently C is not T-shaped (because the set $\mathbb{R} \times T_{n-1}$ lies in the union of ($n-1$) hyperplanes). Then $t\left(\mathbb{R}^{n}\right) \leq|C|=n^{2}-n+1$.
6. First we prove the inequality

$$
\begin{equation*}
t\left(\mathbb{R}^{n}\right) \geq \min \left\{2 t\left(\mathbb{R}^{n-1}\right), t\left(\mathbb{R}^{n-1}\right)+n+1\right\} \tag{1}
\end{equation*}
$$

for every $n \geq 2$. Take any subset $C \subset \mathbb{R}^{n}$ of cardinality $|C|<\min \left\{2 t\left(\mathbb{R}^{n-1}\right)\right.$, $\left.t\left(\mathbb{R}^{n-1}\right)+n+1\right\}$. We need to show that C is T-shaped.

Consider the convex hull $\operatorname{conv}(C)$ of C in \mathbb{R}^{n}. If $\operatorname{conv}(C)$ lies in some hyperplane, then C is T-shaped by the definition. So, we assume that $\operatorname{conv}(C)$ does not lie in a hyperplane and then $\operatorname{conv}(C)$ is a compact convex body in \mathbb{R}^{n}. Let H be a supporting hyperplane of $\operatorname{conv}(C)$ having maximal possible cardinality of the intersection $C \cap H$. It is clear that $|C \cap H| \geq n$.

Now two cases are possible:
(a) The set $C \backslash H$ lies in a hyperplane H_{1}, parallel to H. Then H_{1} is a supporting hyperplane of $\operatorname{conv}(C)$ and then $\left|C \cap H_{1}\right| \leq|C \cap H|$ by the choice of H. Now we see that $\left|C \cap H_{1}\right| \leq \frac{1}{2}|C|<t\left(\mathbb{R}^{n-1}\right)$.

Applying to $\mathbb{R}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}$ a suitable affine transformation, we can assume that $H=\mathbb{R}^{n-1} \times\{0\}$ and $C \backslash H \subset \mathbb{R}^{n-1} \times \mathbb{R}_{+}$. Let pr: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be the coordinate projection. Since $\left|\operatorname{pr}_{n}(C \backslash H)\right|<t\left(\mathbb{R}^{n-1}\right)$, the set $C^{\prime}=\operatorname{pr}_{n}(C \backslash H)$ is T shaped. This means that there is an affine transformation $f: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ such that $f\left(C^{\prime}\right) \subset \mathbb{R} \times T_{n-2}$. This affine transformation f induces the affine transformation

$$
\Phi: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R}, \quad \Phi(x, y)=(f(x), y)
$$

such that

$$
\begin{aligned}
\Phi(C) & =\Phi(C \cap H) \cup \Phi(C \backslash H) \subset\left(\mathbb{R} \times \mathbb{R}^{n-2} \times\{0\}\right) \cup\left(\mathbb{R} \times T_{n-2} \times \mathbb{R}_{+}\right) \\
& =\mathbb{R} \times T_{n-1}
\end{aligned}
$$

The affine transformation Φ witnesses that the set C is T-shaped.
(b) The set $C \backslash H$ does not lie in a hyperplane parallel to H. Then $C \backslash H$ contains two distinct points x, y such that the vector $\overrightarrow{x y}$ is not parallel to H. Applying to $\mathbb{R}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}$ a suitable affine transformation, we can assume that $H=$ $\mathbb{R}^{n-1} \times\{0\}, C \backslash H \subset \mathbb{R}^{n-1} \times \mathbb{R}_{+}$, and under the projection pr: $\mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{R}^{n-1}$ the images of the points x and y coincide. Then the projection $C^{\prime}=\operatorname{pr}(C \backslash H)$ has cardinality $\left|C^{\prime}\right| \leq|C \backslash H|-1<|C|-|C \cap H|-1<t\left(\mathbb{R}^{n-1}\right)+n+1-n-1=$ $t\left(\mathbb{R}^{n-1}\right)$. Continuing as in the preceding case, we can find an affine transformation Φ, witnessing that C is a T-shaped set in \mathbb{R}^{n}.

This proves the inequality (1). By analogy we can prove that $t\left(\mathbb{R}^{n}\right) \geq$ $t\left(\mathbb{R}^{n-1}\right)+n$. Since $t\left(\mathbb{R}^{1}\right)=1$, by induction we can show that $t\left(\mathbb{R}^{n}\right) \geq \frac{1}{2} n(n+1)$. In particular, $t\left(\mathbb{R}^{n-1}\right) \geq \frac{1}{2} n(n-1) \geq n+1$ for all $n \geq 4$. In this case

$$
t\left(\mathbb{R}^{n}\right) \geq \min \left\{2 t\left(\mathbb{R}^{n-1}\right), t\left(\mathbb{R}^{n-1}\right)+n+1\right\}=t\left(\mathbb{R}^{n-1}\right)+n+1
$$

7. The lower bound $t\left(\mathbb{R}^{n}\right) \geq \frac{1}{2}\left(n^{2}+3 n-4\right), n \geq 4$, will be proved by induction. For $n=4$ it is true according to the statement (4). Assuming that it is true for some
$n>4$ and applying the lower bound (6), we get

$$
\begin{aligned}
t\left(\mathbb{R}^{n+1}\right) & \geq t\left(\mathbb{R}^{n}\right)+(n+1)+1 \geq \frac{1}{2}\left(n^{2}+3 n-4\right)+n+2 \\
& =\frac{1}{2}\left((n+1)^{2}+3(n+1)-4\right) .
\end{aligned}
$$

To finish the proof of Theorem 6, it remains to prove the promised:
Lemma 2 Each subset $C \subset \mathbb{R}^{4}$ of cardinality $|C|<12$ is T-shaped.
Proof Assume that some subset $C \subset \mathbb{R}^{4}$ of cardinality $|C|<12$ is not T-shaped. Without loss of generality, $|C|=11$.

We recall that a hyperplane $H \subset \mathbb{R}^{4}$ is called a support hyperplane for C if $C \cap$ $H \neq \emptyset$ and H does not separate C (which means that C lies in a closed half-space H^{+}bounded by the hyperplane).

Claim 9 Each support hyperplane $H \subset \mathbb{R}^{4}$ for C has at most five common points with C.

Proof Assume that H is a support hyperplane for C with $|H \cap C|>5$. After a suitable affine transformation of \mathbb{R}^{4}, we can assume that $H=\mathbb{R}^{3} \times\{0\}$ and $C \subset \mathbb{R}^{3} \times \mathbb{R}_{+}$. Let pr: $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the coordinate projection. Since $|C \backslash H|=|C|-|C \cap H|<$ $11-5=6$ and $t\left(\mathbb{R}^{3}\right)=6$ (by Theorem 6(3)), $\operatorname{pr}(C \backslash H)$ is T-shaped in H and so C is T-shaped \mathbb{R}^{4}.

Claim 10 For any two parallel hyperplanes H_{1} and H_{2} in \mathbb{R}^{4} the set $C \backslash\left(H_{1} \cup H_{2}\right)$ is non-empty.

Proof Otherwise one of these hyperplanes contains more than six points, which contradicts Claim 9.

Claim 11 Each support hyperplane H for the set C has less than five common points with C.

Proof Previous claim guarantees the existence of two distinct points $a, b \in C$ that lie in an affine line L that meets H. After a suitable affine transformation of \mathbb{R}^{4}, we can assume that $H=\mathbb{R}^{3} \times\{0\}, C \subset \mathbb{R}^{3} \times \mathbb{R}_{+}$, and $L=\{0\}^{3} \times \mathbb{R}$. Let pr: $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the coordinate projection. Assuming that $|H \cap C| \geq 5$ and taking into account that $\operatorname{pr}(a)=\operatorname{pr}(b)$, we conclude that

$$
|\operatorname{pr}(C \backslash H)| \leq|C \backslash H|-1=|C|-|C \cap H|-1 \leq 5<6=t\left(\mathbb{R}^{3}\right) .
$$

It follows that $\operatorname{pr}(C \backslash H)$ is T-shaped in \mathbb{R}^{3} and then C is T-shaped in \mathbb{R}^{4}.

The characterization of T-shaped sets given in Proposition 2 implies:

Claim 12 If H_{1} is a support hyperplane for C, H_{2} is a support hyperplane for $C \backslash H_{1}$ and H_{1}, H_{2} are not parallel, then $\left|C \backslash\left(H_{1} \cup H_{2}\right)\right| \geq 3$ and if $\left|C \backslash\left(H_{1} \cup H_{2}\right)\right|=3$, then the set $C \backslash\left(H_{1} \cup H_{2}\right)$ does not lie in a line but lies in a plane, parallel to $H_{1} \cap H_{2}$.

Claim 13 If H_{1} and P_{2} are parallel support hyperplanes for C and $\left|H_{1} \cap C\right|=4$, then $\left|P_{2} \cap C\right|=1$.

Proof By Claim 11, $C \backslash H_{1}$ does not lie in a hyperplane. Now consider four cases.
(1) $\left|P_{2} \cap C\right|>4$. In this case C is T-shaped by Claim 11.
(2) $\left|P_{2} \cap C\right|=4$. We claim that the set $P_{2} \cap C$ does not lie in a plane P. Otherwise P can be enlarged to a support hyperplane that contains ≥ 5 points of C, which is forbidden by Claim 11. Therefore, the convex hull of $P_{2} \cap C$ is a convex body in P_{2} and we can find a support hyperplane H_{2} for $C \backslash H_{1}$ that meets H_{1}, has at least four common points with $C \backslash H_{1}$ and exactly three common points with the set $C \cap P_{2}$. In this case the unique point c_{2} of the set $C \cap P_{2} \backslash H_{2}$ lies in $C \backslash\left(H_{1} \cup H_{2}\right)$. By Proposition 2, the set $C \backslash\left(H_{1} \cup H_{2}\right)$ contains exactly three points that lie in a plane parallel to $H_{1} \cap H_{2}$. Since this set contains the point $c_{2} \in C \cap P_{2}$, we conclude that $C \backslash\left(H_{1} \cup H_{2}\right) \subset P_{2}$ and hence $\left|C \cap P_{2}\right|=6$, which is a contradiction.
(3) $\left|P_{2} \cap C\right|=3$. Let $P l$ be a plane which contains $P_{2} \cap C$ and lies in the hyperplane P_{2}. We claim that the set $C \backslash\left(H_{1} \cup P l\right)$ lies in a plane $P l_{1}$ that is parallel to $P l$. Let S be the set of all points $x \in C \backslash\left(H_{1} \cup P l\right)$ that belong to a support hyperplane H_{x} to $C \backslash H_{1}$ that has at least four common points with $C \backslash H_{1}$ and contains the plane $P l$. Claim 12 guarantees that the set $C \backslash\left(H_{1} \cup H_{x}\right)$ contains exactly three elements and lies in a plane that is parallel to the intersection $H_{1} \cap H_{x}$ (which is parallel to $P l$). Since the set $C \backslash H_{1}$ does not lie in a hyperplane, the set S contains more that one point, which implies that the set $C \backslash\left(H_{1} \cup P l\right)=$ $\bigcup_{x \in S} C \backslash\left(H_{1} \cup H_{x}\right)$ lies in a plane $P l_{1}$ that is parallel to the plane $P l$. Let H_{2} be the hyperplane that contains the parallel planes $P l$ and $P l_{1}$. Since H_{2} meets H_{1}, we see that $C \subset H_{1} \cup H_{2}$ is T-shaped by Proposition 2 and this is a contradiction.
(4) $\left|P_{2} \cap C\right|=2$. Since $C \backslash H_{1}$ does not lie in a hyperplane, there is a support hyperplane H_{2} to $C \backslash H_{1}$ such that $\left|H_{2} \cap\left(C \backslash H_{1}\right)\right| \geq 4$ and $\left|H_{2} \cap P_{2} \cap C\right|=1$. It follows that the hyperplane H_{2} does not coincide with P_{2} and hence meets the hyperplane H_{1}. By Claim 12, the complement $C \backslash\left(H_{1} \cup H_{2}\right)$ contains exactly three points that lie in a plane, parallel to $H_{1} \cap H_{2}$. Since $C \backslash\left(H_{1} \cup H_{2}\right)$ meets the hyperplane P_{2} we conclude that $C \backslash\left(H_{1} \cup H_{2}\right) \subset P_{2}$ and $\left|C \cap P_{2}\right| \geq 4$, which is a contradiction.

Claim 14 If P_{1} and P_{2} are parallel support hyperplanes for C and $\left|P_{1} \cap C\right|=4$, then the set $C \backslash\left(P_{1} \cup P_{2}\right)$ lies in a hyperplane P_{3} that is parallel to P_{1} and P_{2}.

Proof By Claim 13, $\left|P_{2} \cap C\right|=1$ and hence $\left|C \backslash\left(P_{1} \cup P_{2}\right)\right|=6$. Let x be the unique point of $P_{2} \cap C$. Take any support hyperplane $H \ni x$ for the set $C \backslash P_{1}$ such that $|H \cap C| \geq 4$. Since H meets P_{1}, Proposition 2 guarantees that the set $C^{\prime}=C \backslash$ $\left(P_{1} \cup H\right)$ contains exactly three points that lie in a plane parallel to the intersection
$P_{1} \cap H$ and hence parallel to P_{1}. The hyperplane H^{\prime} containing the set $C^{\prime} \cup\{x\}$ is a support hyperplane for the set $C \backslash P_{1}$. Applying Proposition 2, we conclude that the set $C^{\prime \prime}=C \backslash\left(P_{1} \cup H^{\prime}\right)=C \cap H \backslash P_{2}$ contains exactly three points lying in a plane parallel to $P_{1} \cap H^{\prime}$. Thus $C \backslash\left(P_{1} \cup P_{2}\right)$ lies in two planes parallel to P_{1} and hence it lies in a hyperplane P_{3}. Proposition 2 implies that the hyperplane P_{3} is parallel to P_{1}.

By an octahedron in a linear space L we understand a set of the form

$$
c+\left\{\mathbf{e}_{i},-\mathbf{e}_{i}: 1 \leq i \leq 3\right\}
$$

where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are linearly independent vectors in L and $c \in L$ is the center of the octahedron. Up to an affine equivalence an octahedron is a unique 6 -element set X with 3-dimensional affine hull A such that for each support plane $P \subset A$ of X with $|P \cap X| \geq 3$ the set $X \backslash P$ contains three points and lies in a plane P^{\prime}, parallel to P.

Claim 15 If P_{1} and P_{2} are parallel support hyperplanes for X and $\left|P_{1} \cap C\right|=4$, then the set $C \backslash\left(P_{1} \cup P_{2}\right)$ is an octahedron that lies in a hyperplane P_{3}, parallel to P_{1}.

Proof By the preceding claim, the set $K=C \backslash\left(P_{1} \cup P_{2}\right)$ lies in a hyperplane P_{3}, parallel to P_{1}. Let us show that K does not lie in a plane. In the opposite case, we could find a hyperplane H_{2} that contains the set K and meets the hyperplane P_{1}. Then for each hyperplane H_{3} that contains the unique point $C \cap P_{2}$ and has onedimensional intersection with $P_{1} \cap H_{2}$, we get $C \subset P_{1} \cup H_{2} \cup H_{3}$ witnessing that C is T-shaped.

Thus the affine hull of K is 3-dimensional. To see that K is an octahedron, it suffices to check that for each support plane $P \subset P_{3}$ of K with $|P \cap K| \geq 3$ the set $K \backslash P$ contains exactly three points and lies in a plane parallel to P.

Let x be the unique point of the set $C \cap P_{2}$ and H_{2} be the hyperplane containing the plane P and passing through x. It follows that H_{2} is a support hyperplane for the set $C \backslash P_{1}$. By Claim 12, the set $C \backslash\left(P_{1} \cup H_{2}\right)=K \backslash P$ contains exactly three elements and lies in a plane P^{\prime} parallel to the intersection $H_{1} \cap H_{2}$.

Now let H_{2}^{\prime} be the hyperplane that contains the support plane P^{\prime} and passes through the point x. Since P^{\prime} is a support plane for K in the hyperplane P_{3}, H_{3} is a support hyperplane for $K \cup\{x\}=C \backslash P_{1}$ in \mathbb{R}^{4}. Since H_{3}^{\prime} intersects P_{1}, Claim 12 guarantees that the set $C \backslash\left(P_{1} \cup H_{2}^{\prime}\right)=K \backslash P^{\prime}$ contains exactly three points and the plane P containing these three points is parallel to $P_{1} \cap H_{2}^{\prime}$ which is parallel to the plane P^{\prime}.

After this preparatory work we are ready to finish the proof of Lemma 2. As C is not T-shaped, it does not lie in a hyperplane. So, we can find a support hyperplane P_{1} for C such that $\left|P_{1} \cap C\right| \geq 4$. Let P_{2} be a support hyperplane for C, which is parallel to P_{1}. By Claim 13, $\left|P_{1} \cap C\right|=4$ and $\left|P_{2} \cap C\right|=1$. Let p_{2} be the unique point of the set $P_{2} \cap C$. By Claim 15, $C \backslash\left(P_{1} \cup P_{2}\right)$ is an octahedron that lies in a hyperplane P_{3}, parallel to the hyperplanes P_{1} and P_{2}. Let c be the center of this octahedron and $2 c-p_{2}$ be the point, symmetric to p_{2} with respect to c.

Fix any 3-element subset F of $P_{1} \cap C$ such that $2 c-p_{2} \in F$ if $2 c-p_{2} \in C \cap P_{1}$. Next, find a hyperplane H_{1} for C that contains F and meets $C \backslash H_{1}$ at some point a. If $a=p_{2}$, then the set $C \subset H_{1} \cup P_{3} \cup\left(C \cap P_{1} \backslash F\right)$ is T-shaped by Proposition 2.

Consequently, a is a point of the octahedron $C \cap P_{3}$ with center c. Let H_{2} be a support hyperplane for C that is parallel to the hyperplane H_{1}. By Claims 13 and 15, $\left|C \cap H_{1}\right|=4,\left|C \cap H_{2}\right|=1$ and $C \backslash\left(H_{1} \cup H_{2}\right)$ is an octahedron that lies in a hyperplane H_{3}, parallel to H_{1} and H_{2}. If H_{3} does not meet the octahedron $C \cap P_{3}$, then $\left(C \cap P_{3}\right) \cap\left(C \cap H_{3}\right)=\left(C \cap P_{3}\right) \backslash H_{1}=C \cap P_{3} \backslash\{a\}$. In this case the octahedra $C \cap P_{3}$ and $C \cap H_{3}$ have five common points and hence lie in the same hyperplane $P_{3}=H_{3}$, which is not possible. So, the support hyperplane H_{3} meets the octahedron $C \cap P_{3}$ at a single point and this point is $2 c-a$. In this case the octahedra $C \cap P_{3}$ and $C \cap H_{3}$ have four common points which belong to the set $C \cap P_{3} \backslash\{a, 2 c-a\}$ and lie in the 2-dimensional plane $P_{3} \cap H_{3}$. This implies that the octahedra $C \cap P_{3}$ and $C \cap H_{3}$ have the common center c. Since $p_{2} \in C \cap H_{3}$, the point $2 c-p_{2}$ belongs to the octahedron $C \cap H_{3} \subset C$. It follows from $p_{2} \in P_{2}$ and $c \in P_{3}$ that $2 c-p_{2} \in C \backslash\left(P_{2} \cup P_{3}\right)=C \cap P_{1}$ and hence $2 c-p_{2} \subset F \subset H_{1}$ by the choice of the set F. On the other hand, $2 c-p_{2}$ belongs to the hyperplane H_{3}, which is disjoint with H_{1} and this is a desired contradiction.

5 Enlarging non-centerpole sets

In this section we prove several lemmas on enlarging non-centerpole subsets. Namely, we show that under certain conditions, a non- k-centerpole subset C of a topological group X (possibly enlarged by one or two points) remains not k-centerpole in the direct sum $X \oplus \mathbb{R}$. The group $X \oplus \mathbb{R}$ can be identified with the direct product $X \times \mathbb{R}$ so that X is identified with the subgroup $X \times\{0\} \subset X \times \mathbb{R}$, while the real line \mathbb{R} is identified with the subgroup $\{e\} \times \mathbb{R} \subset X \times \mathbb{R}$ where e is the neutral element of the group X.

Lemma 3 Iffor $k \geq 2$ a subset $C \subset X$ of a topological group X is not k-centerpole (for Borel colorings), then set C is not k-centerpole in $X \oplus \mathbb{R}$.

Proof Since the set $C \subset X$ is not k-centerpole (for Borel colorings), there exists a (Borel) coloring $\chi: X \rightarrow k$ such that X contains no monochromatic unbounded subset, which is symmetric with respect to a point $c \in C$. Extend χ to a (Borel) coloring $\tilde{\chi}: X \times \mathbb{R} \rightarrow k$ letting

$$
\tilde{\chi}(x, t)= \begin{cases}\chi(x) & \text { if } t=0 \\ 0 & \text { if } t<0 \\ 1 & \text { if } t>0\end{cases}
$$

This coloring witnesses that C is not k-centerpole in $X \oplus \mathbb{R}$ (for Borel colorings).
Lemma 4 If for $k \geq 3$ a subset $C \subset X$ of a topological group X with $c_{2}^{B}(X) \geq 2$ is not k-centerpole (for Borel colorings), then for each $x \in X \times(0, \infty)$ the set $C \cup\{x\}$ is not k-centerpole for (Borel) colorings of the topological group $X \oplus \mathbb{R}$.

Proof Without loss of generality we may assume that $x=(e, 1)$ where e is the neutral element of topological group X. Fix a (Borel) coloring $\chi: X \rightarrow k$ witnessing that the subset $C \subset X$ is not k-centerpole (for Borel colorings).

This coloring induces a (Borel) 2-coloring $\chi_{2}: X \rightarrow 2$ defined by

$$
\chi_{2}(x)=\min \left(\{0,1\} \backslash \chi\left(x^{-1}\right)\right) \quad \text { for } x \in X
$$

Since $c_{2}^{B}(X) \geq 2$, there exists a Borel coloring $\chi_{1}: X \rightarrow 2$ witnessing that the singleton $\{e\}$ is not 2-centerpole for Borel colorings of X.

It is easy to see that the (Borel) coloring $\tilde{\chi}: X \times \mathbb{R} \rightarrow k$ defined by

$$
\tilde{\chi}(x, t)= \begin{cases}\chi(x), & \text { if } t=0 \\ \chi_{1}(x), & \text { if } t=1 \\ \chi_{2}(x), & \text { if } t=2 \\ 0, & \text { if } 1<t \neq 2 \\ 1, & \text { if } 0<t<1 \\ 2 & \text { if } t<0\end{cases}
$$

witnesses that the set $C \cup\{(e, 1)\}$ fails to be k-centerpole for (Borel) colorings of the topological group $X \oplus \mathbb{R}$.

Lemma $5 c_{3}^{B}\left(\mathbb{R}^{m}\right) \geq 6$ for all $m \geq 3$.
Proof By Theorem 6(3) and Proposition 3, $c_{3}^{B}\left(\mathbb{R}^{3}\right) \geq t\left(\mathbb{R}^{3}\right)=6$.
Next, we check that $c_{3}^{B}\left(\mathbb{R}^{4}\right) \geq 6$. Assuming that $c_{3}^{B}\left(\mathbb{R}^{4}\right)<6$ find a subset $C \subset \mathbb{R}^{4}$ of cardinality $|C| \leq 5$, which is 3-centerpole for Borel colorings of \mathbb{R}^{4}.

Since $|C| \leq 5$, there is a 3-dimensional hyperplane $H_{3} \subset \mathbb{R}^{4}$ such that $\left|C \backslash H_{3}\right| \leq 1$. Since $\left|C \cap H_{3}\right| \leq|C|<6=c_{3}^{B}\left(\mathbb{R}^{3}\right)$, the set $C \cap H_{3}$ is not 3-centerpole for Borel colorings of H_{3}. By (the proof of) Proposition 4.1 of [3], $c_{2}^{B}\left(\mathbb{R}^{3}\right)=3 \geq 2$. By Lemma 4, the set C is not 3-centerpole for Borel colorings of $H_{3} \oplus \mathbb{R}$ (which can be identified with \mathbb{R}^{4}).

Now assume that the inequality $c_{3}^{B}\left(\mathbb{R}^{m-1}\right) \geq 6$ has been proved for some $m \geq$ 4. Assuming that $c_{3}^{B}\left(\mathbb{R}^{m}\right) \leq 5$ find a subset $C \subset \mathbb{R}^{m}$ of cardinality $|C| \leq 5$ which is 3-centerpole for Borel colorings of \mathbb{R}^{m}. This set lies in an $(m-1)$-dimensional hyperplane and according to Lemma 3, is 3-centerpole for Borel colorings of \mathbb{R}^{m-1}. Then $c_{3}^{B}\left(\mathbb{R}^{m-1}\right) \leq|C| \leq 5$, which contradicts the inductive assumption.

Lemma 6 If for $k \geq 4$ a subset $C \subset X$ of a topological group X with $c_{2}^{B}(X) \geq 3$ is not k-centerpole (for Borel colorings), then for any 2-element set $A \subset X \times(0, \infty)$ the set $C \cup A$ is not k-centerpole for (Borel) colorings of the topological group $X \oplus \mathbb{R}$.

Proof Let (a, v) and (b, w) be the points of the 2-element set $A \subset X \times(0, \infty)$. We can assume that $v \leq w$. Let $\chi_{0}: X \rightarrow k$ be a (Borel) coloring witnessing that the set C is not k-centerpole for (Borel) colorings of the group X.

Consider the Borel 4-coloring $\psi: \mathbb{R} \rightarrow 4$ of the real line defined by

$$
\psi(t)= \begin{cases}3 & \text { if } t \leq 0 \\ 0 & \text { if } 0<t \leq v \\ 1 & \text { if } v<t \leq w \\ 2 & \text { if } w<t\end{cases}
$$

and observe that for each $c \in\{0, v, w\}$ and $t \in \mathbb{R} \backslash\{c\}$ we get $\psi(t) \neq \psi(2 c-t)$.
We consider two cases.
(1) $v=w$. In this case we can assume that $v=w=1$. Since $c_{2}^{B}(X) \geq 3$, there exists a Borel coloring $\chi_{1}: X \rightarrow 2$ witnessing that the 2-element set $\{a, b\} \subset X$ is not 2centerpole for Borel colorings of X. The (Borel) coloring χ_{0} induces the (Borel) coloring $\chi_{2}: X \rightarrow 3$ defined by the formula

$$
\chi_{2}(x)=\min \left(\{0,1,2\} \backslash\left\{\chi_{0}\left(a x^{-1} a\right), \chi_{0}\left(b x^{-1} b\right)\right\}\right) .
$$

Now we see that the (Borel) coloring $\tilde{\chi}: X \times \mathbb{R} \rightarrow k$ defined by

$$
\tilde{\chi}(x, t)= \begin{cases}\chi_{t}(x), & \text { if } t \in\{0,1,2\}, \\ \psi(t), & \text { otherwise }\end{cases}
$$

witnesses that the set $C \cup A$ is not k-centerpole for (Borel) colorings of the topological group $X \oplus \mathbb{R}$.
(2) The second case occurs when $v \neq w$. Without loss of generality, $v<w$ and $w-$ $v=1$. This case has three subcases.
(2a) $v=1$ and $w=2$. In this case we can assume that $b=e$ is the neutral element of the group X.

Since $c_{2}^{B}(X) \geq 3$, there is a Borel 2-coloring $\chi_{1}: X \rightarrow 2$ witnessing that the singleton $\{a\}$ is not 2-centerpole in X. By the same reason, there is a Borel 2-coloring $\phi: X \rightarrow 2$ witnessing that the singleton $\{b\}=\{e\}$ is not 2-centerpole for Borel colorings of X. Using the colorings ϕ and χ_{0} one can define a (Borel) 3-coloring $\chi_{2}: X \rightarrow 3$ such that $\chi_{2}(x) \neq \chi_{0}\left(a x^{-1} a\right)$ for all $x \in X$ and $\chi_{2}(x) \neq \chi_{2}\left(x^{-1}\right)$ if and only if $\phi(x) \neq \phi\left(x^{-1}\right)$.

Such a coloring $\chi_{2}: X \rightarrow 3$ can be defined by the formula

$$
\chi_{2}(x)=\left\{\begin{array}{l}
\min \left(3 \backslash\left\{\chi_{0}(a x a), \chi_{0}\left(a x^{-1} a\right)\right\}\right), \quad \text { if } \phi(x)=\phi\left(x^{-1}\right) ; \\
\phi(x), \\
\text { if } \chi_{0}\left(a x^{-1} a\right) \neq \phi(x) \neq \phi\left(x^{-1}\right) \neq \chi_{0}(a x a) ; \\
\min \left(3 \backslash\left\{\phi\left(x^{-1}\right), \chi 0\left(a x^{-1} a\right)\right\}\right), \\
\text { if } \chi_{0}\left(a x^{-1} a\right)=\phi(x) \neq \phi\left(x^{-1}\right) \neq \chi_{0}(a x a) ; \\
\phi(x), \\
\text { if } \chi_{0}\left(a x^{-1} a\right) \neq \phi(x) \neq \phi\left(x^{-1}\right)=\chi_{0}(\text { axa }) ; \\
\phi\left(x^{-1}\right), \\
\text { if } \chi_{0}\left(a x^{-1} a\right)=\phi(x) \neq \phi\left(x^{-1}\right)=\chi_{0}(a x a) .
\end{array}\right.
$$

Let $\chi_{3}: X \rightarrow 2$ be the Borel 2-coloring defined by $\chi_{3}(x)=1-\chi_{1}\left(x^{-1}\right)$ for $x \in X$. It is clear that $\chi_{3}\left(x^{-1}\right) \neq \chi_{1}(x)$ for all $x \in X$. Finally, consider the Borel 2-coloring $\chi_{4}: X \rightarrow 2$ defined by

$$
\chi_{4}(x)=\min \left(\{0,1\} \backslash\left\{\chi_{0}\left(x^{-1}\right)\right\}\right) \quad \text { for } x \in X .
$$

The (Borel) colorings $\psi, \chi_{0}, \chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ compose a (Borel) k-coloring $\tilde{\chi}: X \times \mathbb{R} \rightarrow k$,

$$
\tilde{\chi}(x, t)= \begin{cases}\chi_{t}(x), & \text { if } t \in\{0,1,2,3,4\}, \\ \psi(t), & \text { otherwise },\end{cases}
$$

witnessing that the set $C \cup A$ is not k-centerpole for (Borel) colorings of $X \oplus \mathbb{R}$.
(2b) $v=2$ and $w=3$. Since $c_{2}^{B}(X) \geq 3>1$, there is a Borel 2 -coloring $\chi_{2}: X \rightarrow 2$ witnessing that the singleton $\{a\}$ is not 2 -centerpole for Borel colorings of X. By the same reason, there is a Borel 2-coloring $\chi_{3}: X \rightarrow 2$ witnessing that the singleton $\{b\}$ is not 2-centerpole for Borel colorings of X.

Next consider the (Borel) colorings $\chi_{1}: X \rightarrow 2, \chi_{4}: X \rightarrow 3$, and $\chi_{6}:$ $X \rightarrow 2$ defined by the formulas

$$
\begin{aligned}
& \chi_{1}(x)=1-\chi_{3}\left(a x^{-1} a\right), \\
& \chi_{4}(x)=\min \left(3 \backslash\left\{\chi_{0}\left(a x^{-1} a\right), \chi_{2}\left(b x^{-1} b\right)\right\}\right), \\
& \chi_{6}(x)=\min \left(2 \backslash\left\{\chi_{0}\left(b x^{-1} b\right)\right\}\right) .
\end{aligned}
$$

The (Borel) colorings ψ and $\chi_{t}, t \in\{0,1,2,3,4,6\}$, compose the (Borel) coloring $\tilde{\chi}: X \times \mathbb{R} \rightarrow k$ defined by

$$
\tilde{\chi}(x, t)= \begin{cases}\chi_{t}(x), & \text { if } t \in\{0,1,2,3,4,6\}, \\ \psi(t), & \text { otherwise }\end{cases}
$$

This coloring $\tilde{\chi}$ witnesses that the set $C \cup A$ is not k-centerpole for (Borel) colorings of $X \oplus \mathbb{R}$.
(2c) $v \notin\{1,2\}$. Since $c_{2}^{B}(X)>1$ there is a Borel 2-coloring $\chi_{v}: X \rightarrow 2$ witnessing that the singleton $\{a\}$ is not 2 -centerpole for Borel colorings of X. By the same reason, there is a Borel 2-coloring $\chi_{w}: X \rightarrow\{1,2\}$ witnessing that the singleton $\{b\}$ is not 2 -centerpole for Borel colorings of X.

Next, define the (Borel) colorings $\chi_{2 v}, \chi_{2 w}: X \rightarrow 3$ by the formula

$$
\begin{aligned}
& \chi_{2 v}(x)=\min \left(3 \backslash\left\{\chi_{0}\left(a x^{-1} a\right), \psi(2)\right\}\right) \quad \text { and } \\
& \chi_{2 w}(x)=\min \left(2 \backslash\left\{\chi_{0}\left(b x^{-1} b\right)\right\}\right) .
\end{aligned}
$$

Here let us note that the points $2 v$ and 2 are symmetric with respect to w in the group \mathbb{R}.

Finally, define a (Borel) k-coloring $\tilde{\chi}: X \oplus \mathbb{R} \rightarrow k$ letting

$$
\tilde{\chi}(x, t)= \begin{cases}\chi_{t}(x) & \text { if } t \in\{0, v, w, 2 v, 2 w\} \\ \psi(t) & \text { otherwise }\end{cases}
$$

This coloring witnesses that the set $C \cup A$ is not k-centerpole for (Borel) colorings of the topological group $X \oplus \mathbb{R}$.

Lemma $7 c_{4}^{B}\left(\mathbb{R}^{m}\right) \geq 8$ for all $m \geq 4$.
Proof This lemma will be proved by induction on $m \geq 4$. For $m=4$ the inequality $c_{4}^{B}\left(\mathbb{R}^{4}\right) \geq t\left(\mathbb{R}^{4}\right)=12 \geq 8$ follows from Lemma 2. Assume that for some $m \geq 4$ we know that $c_{4}^{B}\left(\mathbb{R}^{m}\right) \geq 8$. The inequality $c_{4}^{B}\left(\mathbb{R}^{m+1}\right) \geq 8$ will follow as soon as we check that each 7-element subset $C \subset \mathbb{R}^{m+1}$ is not 4-centerpole for Borel colorings of \mathbb{R}^{m+1}.

Given a 7 -element subset $C \subset \mathbb{R}^{m+1}$, find a support m-dimensional hyperplane $H \subset \mathbb{R}^{m+1}$ that has at least $\min \{m+1,|C|\} \geq 5$ common points with the set C. After a suitable shift, we can assume that the intersection $C \cap H$ contains the origin of \mathbb{R}^{m+1}. In this case H is a linear subspace of \mathbb{R}^{m+1} and \mathbb{R}^{m+1} can be written as the direct sum $\mathbb{R}^{m+1}=H \oplus \mathbb{R}$.

Since $|H \cap C| \leq|C| \leq 7$, the inductive assumption guarantees that $H \cap C$ is not 4-centerpole for Borel colorings of H. By Lemma 5, $c_{3}^{B}\left(\mathbb{R}^{m}\right) \geq 3$. Since $|C \backslash H| \leq 2$, we can apply Lemma 6 and conclude that C is not 4 -centerpole for Borel colorings of the topological group $H \oplus \mathbb{R}=\mathbb{R}^{m+1}$.

6 Centerpole sets in subgroups and groups

It is clear that each k-centerpole subset $C \subset H$ in a subgroup H of a topological group G is k-centerpole in G. In some cases the converse statement also is true.

Lemma 8 If a subset C of an abelian topological group G is k-centerpole in G for some $k \geq 2$, then it is k-centerpole in the subgroup $H=\langle C\rangle+G[2]$.

Proof Observe that for each $x \in G \backslash H$ the cosets $c+2\langle C\rangle$ and $-x+2\langle C\rangle$ are disjoint. Assuming the opposite, we would conclude that $2 x \in 2\langle C\rangle$ and hence $x \in$ $\langle C\rangle+G[2]=H$, which contradicts the choice of x.

Now we are able to prove that the set C is k-centerpole in the group H. Given any k-coloring $\chi: H \rightarrow k$, extend χ to a k-coloring $\tilde{\chi}: G \rightarrow k$ such that for each $x \in G \backslash H$ the coset $x+2\langle C\rangle$ is monochromatic and its color is different from the color of the coset $-x+2\langle C\rangle$.

Since C is k-centerpole in the group G, there is an unbounded monochromatic subset $S \subset G$ such that $S=2 c-S$ for some $c \in C$. We claim that $S \subset H$. Assuming the converse, we would find a point $x \in S \backslash H$ and conclude that the coset $x+2\langle C\rangle$
has the same color as the coset $2 c-x+2\langle C\rangle=-x+2\langle C\rangle$, which contradicts the choice of the coloring $\tilde{\chi}$.

The Borel version of this result is a bit more difficult.
Lemma 9 Let $k \geq 2$ and H be a Borel subgroup of an abelian topological group G such that $G[2] \subset H$. A subset $C \subset H$ is k-centerpole for Borel colorings of H if C is k-centerpole for Borel colorings of G, the subgroup $2 H=\{2 x: x \in H\}$ is closed in G, and the subspace $X=(G / 2 H) \backslash(H / 2 H)$ contains a Borel subset B that has one-point intersection with each set $\{x,-x\}, x \in X$. Such a Borel set $B \subset X$ exists if the space X is paracompact.

Proof Given any Borel k-coloring $\chi: H \rightarrow k$, extend χ to a Borel k-coloring $\tilde{\chi}$: $G \rightarrow k$ defined by

$$
\tilde{\chi}(x)= \begin{cases}\chi(x), & \text { if } x \in H, \\ 0, & \text { if } x \in G \backslash H \text { and } x+2 H \in B \\ 1, & \text { if } x \in G \backslash H \text { and } x+2 H \notin B .\end{cases}
$$

Since C is k-centerpole for Borel colorings of the group G, there is an unbounded monochromatic subset $S \subset G$, symmetric with respect to some point $c \in C$. We claim that $S \subset H$, witnessing that C is k-centerpole for Borel colorings of H.

Assuming conversely that $S \not \subset H$, find a point $x \in S \backslash H$. It follows that x and $2 c-x$ have the same color. If this color is 0 , then the cosets $x+2 H$ and $2 c-x+$ $2 H=-x+2 H=-(x+2 H)$ both belong to the set $B \subset G / 2 H$. By our hypothesis B has one-point intersection with the set $\{x+2 H,-(x+2 H)\}$. Consequently, $x+$ $2 H=-(x+2 H)$ and hence $2 x \in 2 H$ and $x \in H+G[2]=H$, which contradicts the choice of the point x. If the color of the cosets $x+2 H$ and $2 c-x+2 H=-(x+2 H)$ is 1 , then $(x+2 H),-(x+2 H) \notin B$ and then $x+2 H=-(x+2 H)$ because B has one-point intersection with the set $\{x+2 H,-(x+2 H)\}$. This again leads to a contradiction.

Claim 16 If the space $X=(G / 2 H) \backslash(H / 2 H)$ is paracompact, then X contains a Borel subset $B \subset X$ that has one-point intersection with each set $\{x,-x\}, x \in X$.

Consider the action

$$
\alpha: C_{2} \times X \rightarrow X, \quad \alpha:(\varepsilon, x) \mapsto \varepsilon \cdot x,
$$

of the cyclic group $C_{2}=\{1,-1\}$ on the space X and let $X / C_{2}=\{\{x,-x\}: x \in X\}$ be the orbit space of this action. It is easy to check that the orbit map $q: X \rightarrow X / C_{2}$ is closed and then the orbit space X / C_{2} is paracompact as the image of a paracompact space under a closed map, see Michael, Theorem 5.1.33 in [7].

Since $H \supset 2 H+G[2]$, for every $x \in G \backslash H$ the cosets $x+2 H$ and $-x+2 H$ are disjoint, which implies that each point $x \in X$ is distinct from $-x$. Then each point $x \in X$ has a neighborhood $U_{x} \subset X$ such that $U_{x} \cap-U_{x}=\emptyset$. Replacing U_{x}
by $U_{x} \cap\left(-U_{-x}\right)$ we can additionally assume that $U_{x}=-U_{-x}$. Now consider the open neighborhood $U_{ \pm x}=q\left(U_{x}\right)=q\left(U_{-x}\right) \subset X / C_{2}$ of the orbit $\{x,-x\} \in X / C_{2}$ of the point $x \in X$. By the paracompactness of X / C_{2} the open cover $\left\{U_{ \pm x}: x \in X\right\}$ of X / C_{2} has a Σ-discrete refinement $\mathcal{U}=\bigcup_{n \in \omega} \mathcal{U}_{n}$. This means that each family \mathcal{U}_{n}, $n \in \omega$, is discrete in X / C_{2}. For each $U \in \mathcal{U}$ find a point $x_{U} \in X$ such that $U \subset U_{ \pm x_{U}}$. For every $n \in \omega$ consider the open subset $W_{n}=\bigcup_{U \in \mathcal{U}_{n}} q^{-1}(U) \cap U_{x_{U}}$ of the space X and let $\pm W_{n}=-W_{n} \cup W_{n}$. One can check that the Borel subset

$$
B=\bigcup_{n \in \omega}\left(W_{n} \backslash \bigcup_{i<n} \pm W_{i}\right)
$$

of X has one-point intersection with each orbit $\{x,-x\}, x \in X$.
The following lemma will be helpful in the proof of the upper bound $r c_{k}^{B}(G) \leq$ $c_{k}^{B}(G)-2$ from Proposition 1.

Lemma 10 Let $k \geq 4$ and $C \subset \mathbb{R}^{\omega}$ be a finite k-centerpole subset for Borel colorings of \mathbb{R}^{ω}. Then the affine hull of C in \mathbb{R}^{ω} has dimension $\leq|C|-3$.

Proof This lemma will be proved by induction on the cardinality $|C|$.
First observe that $|C| \geq c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \geq c_{3}^{B}\left(\mathbb{R}^{\omega}\right) \geq 6$ by Lemma 5 . So, we start the induction with $|C|=6$.

Suppose that either $m=6$ or $m>6$ and the lemma is true for all C with $6 \leq|C|<$ m. Fix a k-centerpole subset $C \subset \mathbb{R}^{\omega}$ for Borel colorings of cardinality $|C|=m$. We need to show that the affine hull A of C has dimension $\operatorname{dim} A \leq m-3$. Assuming the opposite, we can find a support hyperplane $H \subset A$ for C such that $|H \cap C| \geq$ $\operatorname{dim} H+1=\operatorname{dim} A \geq|C|-2$ and hence $0<|C \backslash H| \leq 2$. After a suitable shift, we can assume that H contains the origin of \mathbb{R}^{ω} and hence is a subgroup of \mathbb{R}^{ω}. In this case the affine hull A is a linear subspace in \mathbb{R}^{ω} that can be identified with the direct sum $H \oplus \mathbb{R}$. It follows that $\operatorname{dim} H=\operatorname{dim} A-1 \geq|C|-2-1 \geq|C \cap H|-2$.

We claim that the set $H \cap C$ is not k-centerpole for Borel colorings of the topological group H.

If $6 \leq|C \cap H|<|C|=m$, then by the inductive assumption, the set $C \cap H$ is not k-centerpole for Borel colorings of \mathbb{R}^{ω} because its affine hull H has dimension $\operatorname{dim} H \geq|C \cap H|-2$. If $|C \cap H|<6$ (which happens for $m=6$), then the inequalities $c_{k}^{B}(H) \geq c_{3}^{B}(H) \geq 6=m=|C|>|H \cap C|$ given by Lemma 5 guarantee that $C \cap H$ is not k-centerpole for Borel colorings of \mathbb{R}^{ω}.

By (the proof) of Proposition 1 in [3], $c_{2}^{B}(H)=3$. Since H is a support hyperplane for C and $|C \backslash H| \leq 2$, we can apply Lemma 6 and conclude that C is not k-centerpole for Borel colorings of $H \oplus \mathbb{R}=A$. Since the subgroup $2 A$ is closed in the metrizable group \mathbb{R}^{ω}, by Lemma $9, C$ is not k-centerpole for Borel colorings of \mathbb{R}^{ω} and this is a desired contradiction that completes the proof of the inductive step and base of the induction.

7 Stability properties

In this section we shall prove some particular cases of the Stability Theorem 4.

Lemma 11 For any numbers $k \geq 2$ and $n \leq m$

$$
c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)= \begin{cases}c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right), & \text { if } m \geq r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right), \\ c_{k}^{B}\left(\mathbb{R}^{\omega}\right), & \text { if } n \geq r c_{k}^{B}\left(\mathbb{R}^{\omega}\right)\end{cases}
$$

Proof First assume that $m \geq r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$. By the definition of the number $r=$ $r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$, the topological group $G=\mathbb{R}^{n} \times \mathbb{Z}^{\omega}$ contains a k-centerpole subset $C \subset G$ of cardinality $|C|=c_{k}^{B}(G)$ that generates a subgroup $\langle C\rangle \subset \mathbb{Z}^{\omega}$ of \mathbb{Z}-rank r. It follows that the linear subspace $L \subset \mathbb{R}^{n} \times \mathbb{R}^{\omega}$ generated by the set C has dimension r. Then $H=L \cap G$, being a closed subgroup of \mathbb{Z}-rank r in the r-dimensional vector space L is topologically isomorphic to $\mathbb{R}^{s} \times \mathbb{Z}^{r-s}$ for some $s \leq r \leq m$, see Theorem 6 in [10]. Taking into account that H is a closed subgroup of $G=\mathbb{R}^{n} \times \mathbb{Z}^{\omega}$, we conclude that $s \leq n$. By Lemma 9, the set C is k-centerpole in H for Borel colorings. Consequently,

$$
\begin{aligned}
c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right) & \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}^{B}\left(\mathbb{R}^{s} \times \mathbb{Z}^{r-s}\right)=c_{k}^{B}(H) \leq|C|=c_{k}^{B}(G) \\
& =c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)
\end{aligned}
$$

implies the desired equality $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$.
Now assume that $n \geq r c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$. In this case we can repeat the above argument for a set $C \subset \mathbb{R}^{\omega}$ of cardinality $|C|=c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$ that generates a subgroup $\langle C\rangle \subset \mathbb{R}^{\omega}$ of \mathbb{Z}-rank $r=r c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$. Then the linear subspace $L \subset \mathbb{R}^{\omega}$ generated by the set C is topologically isomorphic to \mathbb{R}^{r}. By Lemma 9 , the set C is k-centerpole for Borel colorings of L. Since $\mathbb{R}^{r} \hookrightarrow \mathbb{R}^{n} \times \mathbb{Z}^{m-n} \hookrightarrow \mathbb{R}^{\omega}$, we get

$$
c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}^{B}\left(\mathbb{R}^{r}\right)=c_{k}^{B}(L) \leq|C|=c_{k}^{B}\left(\mathbb{R}^{\omega}\right)
$$

and hence $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$.
Lemma $12 c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$ for any numbers $k \in \mathbb{N}$ and $n \leq m$ with $m \geq$ $c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$.

Proof For $k=1$ the equality $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=1=c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$ is trivial. So we assume that $k \geq 2$.

We claim that $c_{k}^{B}\left(\mathbb{Z}^{\omega}\right) \leq c_{k}\left(\mathbb{R}^{m}\right)$. Indeed, take any k-centerpole subset $C \subset \mathbb{R}^{\omega}$ of cardinality $|C|=c_{k}\left(\mathbb{R}^{m}\right)$. By Lemma 8 , the set C is k-centerpole in the subgroup $\langle C\rangle \subset \mathbb{R}^{\omega}$ generated by C. Being a torsion-free finitely generated abelian group, $\langle C\rangle$ is algebraically isomorphic to \mathbb{Z}^{r} for some $r \in \omega$. Then

$$
c_{k}\left(\mathbb{Z}^{r}\right) \leq c_{k}(\langle C\rangle) \leq|C|=c_{k}\left(\mathbb{R}^{m}\right)
$$

On the other hand, Lemma 11 ensures that

$$
c_{k}\left(\mathbb{R}^{m}\right) \leq c_{k}\left(\mathbb{Z}^{m}\right)=c_{k}^{B}\left(\mathbb{Z}^{m}\right)=c_{k}^{B}\left(\mathbb{Z}^{\omega}\right) .
$$

Unifying these inequalities we get

$$
\begin{aligned}
c_{k}^{B}\left(\mathbb{Z}^{\omega}\right) & \leq c_{k}^{B}\left(\mathbb{Z}^{r}\right)=c_{k}\left(\mathbb{Z}^{r}\right) \leq c_{k}\left(\mathbb{R}^{m}\right) \leq c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}\left(\mathbb{Z}^{m}\right)=c_{k}^{B}\left(\mathbb{Z}^{m}\right) \\
& =c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)
\end{aligned}
$$

which implies the desired equality $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$.

8 Proof of Theorem 3

1. The upper bound $c_{k}\left(\mathbb{Z}^{n}\right) \leq c_{k}\left(\mathbb{Z}^{k}\right) \leq 2^{k}-1-\max _{s \leq k-2}\binom{k-1}{s-1}$ for $k \leq n$ follows from Theorem 5.
2. By Proposition 3 and Theorem $6(7), c_{n}\left(\mathbb{Z}^{n}\right) \geq c_{n}\left(\mathbb{R}^{n}\right) \geq c_{n}^{B}\left(\mathbb{R}^{n}\right) \geq t\left(\mathbb{R}^{n}\right) \geq$ $\frac{1}{2}\left(n^{2}+3 n-4\right)$.

For technical reasons, first we prove the statement (4) of Theorem 3 and after that return back to the statement (3).
4. Let $1 \leq k \leq m \leq \omega$ be two numbers. We need to prove that $c_{k}^{B}\left(\mathbb{R}^{m}\right)<$ $c_{k+1}^{B}\left(\mathbb{R}^{m+1}\right)$ and $c_{k}\left(\mathbb{R}^{m}\right)<c_{k+1}\left(\mathbb{R}^{m+1}\right)$.

First we assume that m is finite. The strict inequality $c_{k}^{B}\left(\mathbb{R}^{m}\right)<c_{k+1}^{B}\left(\mathbb{R}^{m+1}\right)$ will follow as soon as we show that any subset $C \subset \mathbb{R}^{m+1}$ of cardinality $|C| \leq c_{k}^{B}\left(\mathbb{R}^{m}\right)$ fails to be $(k+1)$-centerpole for Borel colorings of \mathbb{R}^{m+1}. If C is a singleton, then it is not $(k+1)$-centerpole since $c_{k+1}^{B}\left(\mathbb{R}^{m+1}\right) \geq c_{2}^{B}\left(\mathbb{R}^{m+1}\right) \geq 3$ by (the proof of) Proposition 4.1 in [3]. So, C contains two distinct points a, b. Let $L=\mathbb{R} \cdot(a-$ b) $\subset \mathbb{R}^{m+1}$ be the linear subspace generated by the vector $a-b$. Write the space \mathbb{R}^{m+1} as the direct sum $\mathbb{R}^{m+1}=H \oplus L$ where H is a linear m-dimensional subspace of \mathbb{R}^{m+1} and consider the projection $\mathrm{pr}: \mathbb{R}^{m+1} \rightarrow H$ whose kernel is equal to L. Since $\operatorname{pr}(a)=\operatorname{pr}(b)$, the projection of the set C onto the subspace H has cardinality $|\operatorname{pr}(C)|<|C| \leq c_{k}^{B}\left(\mathbb{R}^{m}\right)=c_{k}^{B}(H)$ and hence $\operatorname{pr}_{H}(C)$ is not k-centerpole for Borel k-colorings of the group H. Consequently, there is a Borel k-coloring $\chi: H \rightarrow k$ such that no monochromatic unbounded subset of H is symmetric with respect to a point $c \in \operatorname{pr}(C)$.

For a real number $\gamma \in \mathbb{R}$, consider the half-line $L_{\gamma}^{+}=\{t(a-b): t \geq \gamma\}$ of L. Since the subset $C \subset \mathbb{R}^{m+1}$ is finite, there is $\gamma \in \mathbb{R}$ such that $C \subset H+L_{\gamma}^{+}$.

Now define a Borel $(k+1)$-coloring $\tilde{\chi}: H \oplus L \rightarrow k+1=\{0, \ldots, k\}$ by the formula

$$
\tilde{\chi}(x)= \begin{cases}\chi(\operatorname{pr}(x)), & \text { if } x \in H+L_{\gamma}^{+}, \\ k, & \text { otherwise } .\end{cases}
$$

It can be shown that this coloring witnesses that C is not $(k+1)$-centerpole for Borel colorings of $\mathbb{R}^{m+1}=H \oplus L$.

Now assume that the number m is infinite. Then for the finite number $r=$ $\max \left\{r c_{k}^{B}\left(\mathbb{R}^{\omega}\right), r c_{k+1}^{B}\left(\mathbb{R}^{\omega}\right)\right\}$ we get $c_{k}^{B}\left(\mathbb{R}^{r}\right)=c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$ and $c_{k+1}^{B}\left(\mathbb{R}^{r+1}\right)=c_{k+1}^{B}\left(\mathbb{R}^{\omega}\right)$ by the stabilization Lemma 11. Since r is finite, the case considered above guarantees that

$$
c_{k}^{B}\left(\mathbb{R}^{m}\right)=c_{k}^{B}\left(\mathbb{R}^{m}\right)=c_{k}^{B}\left(\mathbb{R}^{r}\right)<c_{k+1}^{B}\left(\mathbb{R}^{r+1}\right)=c_{k+1}^{B}\left(\mathbb{R}^{\omega}\right)=c_{k+1}\left(\mathbb{R}^{m+1}\right)
$$

By analogy we can prove the strict inequality $c_{k}\left(\mathbb{R}^{m}\right)<c_{k}\left(\mathbb{R}^{m+1}\right)$.
3. Now we are able to prove the lower bound $c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \geq k+4$ from the statement (3) of Theorem 3. By the preceding item, $c_{k+1}^{B}\left(\mathbb{R}^{\omega}\right) \geq 1+c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$ for all $k \in \mathbb{N}$. By induction, we shall show that $c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \geq k+4$ for all $k \geq 4$. For $k=4$ the inequality $c_{4}^{B}\left(\mathbb{R}^{\omega}\right) \geq 8 \geq 4+4$ was proved in Lemma 7. Assuming that $c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \geq k+4$ for some $k \geq 4$, we conclude that $c_{k+1}^{B}\left(\mathbb{R}^{\omega}\right)>c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \geq k+4$ and hence $c_{k+1}^{B}\left(\mathbb{R}^{\omega}\right) \geq$ $(k+1)+4$.

Now we see that for every $n \geq k \geq 4$ we have the desired lower bound:

$$
c_{k}^{B}\left(\mathbb{R}^{n}\right) \geq c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \geq k+4
$$

5. Let $k \in \mathbb{N}$ and $n, m \in \omega \cup\{\omega\}$ be numbers with $1 \leq k \leq n+m$. We need to prove that $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)<c_{k+1}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)$ and $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)<c_{k+1}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)$. According to the Stabilization Lemma 11, it suffices to consider the case of finite numbers n, m.

First we prove the inequality $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)<c_{k+1}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)$. We need to show that each subset $C \subset \mathbb{R}^{n} \times \mathbb{Z}^{m+1}$ of cardinality $|C| \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)$ is not $(k+1)$ centerpole in $\mathbb{R}^{n} \times \mathbb{Z}^{m+1}$ for Borel colorings. We shall identify $\mathbb{R}^{n} \times \mathbb{Z}^{m+1}$ with the direct sum $\mathbb{R}^{n} \oplus \mathbb{Z}^{m+1}$. Since $k \leq n+m$, Theorem 5 implies that the numbers $|C| \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right) \leq c_{k}\left(\mathbb{Z}^{n+m}\right) \leq c_{k}\left(\mathbb{Z}^{k}\right)$ all are finite.

Three cases are possible.
(i) $|C| \leq 1$. In this case we can assume that $C=\{0\}$ and take any coloring χ : $\mathbb{R}^{n} \oplus \mathbb{Z}^{m+1} \rightarrow k+1$ such that the color of each non-zero element $x \in \mathbb{R}^{n} \times \mathbb{Z}^{m+1}$ differs from the color of $-x$. This coloring witnesses that C is not $(k+1)$ centerpole in $\mathbb{R}^{n} \times \mathbb{Z}^{m+1}$.
(ii) $|C|>1$ and $C \subset z+\mathbb{R}^{n}$ for some $z \in \mathbb{Z}^{m+1}$. Without lose of generality, $z=$ 0 and hence $C \subset \mathbb{R}^{n}$. Take two distinct points $a, b \in C$ and consider the 1dimensional linear subspace $L=\mathbb{R} \cdot(a-b) \subset \mathbb{R}^{n}$ generated by the vector $a-b$. Write the space \mathbb{R}^{n} as the direct sum $\mathbb{R}^{n}=L \oplus H$ where H is a linear $(n-1)$ dimensional subspace of \mathbb{R}^{n} and consider the projection $\mathrm{pr}: \mathbb{R}^{n} \oplus \mathbb{Z}^{m+1} \rightarrow H \oplus$ \mathbb{Z}^{m+1} whose kernel is equal to L. Since $\operatorname{pr}(a)=\operatorname{pr}(b)$, the projection of the set C onto the subgroup $H \oplus \mathbb{Z}^{m+1}$ of $\mathbb{R}^{n} \oplus \mathbb{Z}^{m+1}$ has cardinality

$$
|\operatorname{pr}(C)|<|C| \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n-1} \times \mathbb{Z}^{m+1}\right)=c_{k}^{B}\left(H \oplus \mathbb{Z}^{m+1}\right)
$$

and hence $\operatorname{pr}_{H}(C)$ is not k-centerpole for Borel colorings of the group $H \oplus$ \mathbb{Z}^{m+1}. Consequently, there is a Borel k-coloring $\chi: H \oplus \mathbb{Z}^{m+1} \rightarrow k$ such that no monochromatic unbounded subset of $H \oplus \mathbb{Z}^{m+1}$ is symmetric with respect to a point $c \in \operatorname{pr}(C)$.

For a real number $\gamma \in \mathbb{R}$, consider the half-line $L_{\gamma}^{+}=\{t(a-b): t \geq \gamma\}$ of L. Since the subset $C \subset \mathbb{R}^{n} \oplus \mathbb{Z}^{m+1}=H \oplus L \oplus \mathbb{Z}^{m+1}$ is finite, there is $\gamma \in \mathbb{R}$ such that $C \subset H+L_{\gamma}^{+}+\mathbb{Z}^{m+1}$.

Now define a Borel $(k+1)$-coloring $\tilde{\chi}: H \oplus L \oplus \mathbb{Z}^{m+1} \rightarrow k+1=\{0, \ldots, k\}$ by the formula

$$
\tilde{\chi}(x)= \begin{cases}\chi(\operatorname{pr}(x)), & \text { if } x \in H+L_{\gamma}^{+}+\mathbb{Z}^{m+1} \\ k, & \text { otherwise }\end{cases}
$$

It can be shown that this coloring witnesses that C is not $(k+1)$-centerpole for Borel colorings of $\mathbb{R}^{n} \oplus \mathbb{Z}^{m+1}=H \oplus L \oplus \mathbb{Z}^{m+1}$.
(iii) The set $C \subset \mathbb{R}^{n} \oplus \mathbb{Z}^{m+1}$ contains two points a, b whose projections on the subspace \mathbb{Z}^{m+1} are distinct. Without loss of generality, the projections of a, b on the last coordinate are distinct. Then the 1 -dimensional subspace $L=\mathbb{R} \cdot(a-b)$ of $\mathbb{R}^{n} \times \mathbb{R}^{m+1}$ meets the subspace $\mathbb{R}^{n} \oplus \mathbb{R}^{m}$ and hence $\mathbb{R}^{n} \oplus \mathbb{R}^{m+1}$ can be identified with the direct sum $\mathbb{R}^{n} \oplus \mathbb{R}^{m} \oplus L$. Let pr : $\mathbb{R}^{n} \times \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}$ be the projection whose kernel coincides with L. Since pr is an open map, the image $H=\operatorname{pr}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)$ is a locally compact (and hence closed) subgroup of $\mathbb{R}^{n} \times \mathbb{R}^{m}$, which can be written as the countable union of shifted copies of the space \mathbb{R}^{n}. By Theorem 6 of [10], H is topologically isomorphic to $\mathbb{R}^{n} \times \mathbb{Z}^{m}$. It follows from the definition of H that $\mathbb{R}^{n} \oplus \mathbb{Z}^{m+1} \subset H \oplus L$.

Since $\operatorname{pr}(a)=\operatorname{pr}(b)$, the projection of the set C has cardinality $|\operatorname{pr}(C)|<$ $|C| \leq c_{k}^{B}\left(\mathbb{R}^{n} \oplus \mathbb{Z}^{m}\right)=c_{k}^{B}(H)$, which means that $\operatorname{pr}(C)$ is not k-centerpole for Borel colorings of H. Consequently, there is a Borel k-coloring $\chi: H \rightarrow k$ such that no monochromatic unbounded subset of H is symmetric with respect to a point $c \in \operatorname{pr}(C)$.

For a real number $\gamma \in \mathbb{R}$, consider the half-line $L_{\gamma}^{+}=\{t(a-b): t \geq \gamma\}$ of L. Since the subset $C \subset H \oplus L$ is finite, there is $\gamma \in \mathbb{R}$ such that $C \subset H+L_{\gamma}^{+}$.

Now define a Borel $(k+1)$-coloring $\tilde{\chi}: H \oplus L \rightarrow k+1$ by the formula

$$
\tilde{\chi}(x)= \begin{cases}\chi(\operatorname{pr}(x)), & \text { if } x \in H+L_{\gamma}^{+} \\ k, & \text { otherwise }\end{cases}
$$

It can be shown that this coloring witnesses that C is not $(k+1)$-centerpole for Borel colorings of $H \oplus L \supset \mathbb{R}^{n} \oplus \mathbb{Z}^{m+1}$.

After considering these three cases, we can conclude that $c_{k+1}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)>$ $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)$.

Deleting the adjective "Borel" from the above proof, we get the proof of the strict inequality

$$
c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)<c_{k+1}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m+1}\right)
$$

9 Proof of Theorem 2

In this section we prove Theorem 2. Let k, n, m be cardinals. We shall use known upper bounds for the numbers $c_{k}\left(\mathbb{Z}^{n}\right)$, lower bounds for $t\left(\mathbb{R}^{n}\right)$ and the inequality

$$
t\left(\mathbb{R}^{n+m}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n+m}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right) \leq c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right) \leq c_{k}\left(\mathbb{Z}^{m}\right)
$$

established in Proposition 3.

1. Assume that $n+m \geq 1$. Since each singleton is 1 -centerpole for (Borel) colorings of the group $\mathbb{R}^{n} \times \mathbb{Z}^{m}$, we conclude that $c_{1}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=c_{1}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=1$.
2. Assume that $n+m \geq 2$. The inequalities $3 \leq t\left(\mathbb{R}^{2}\right) \leq c_{2}^{B}\left(\mathbb{R}^{2}\right) \leq c_{2}\left(\mathbb{Z}^{2}\right) \leq 3$ follow from Theorem 5, 6(2) and Proposition 3.

We claim that $c_{2}^{B}\left(\mathbb{R}^{\omega}\right) \geq 3$. Assuming that $c_{2}^{B}\left(\mathbb{R}^{\omega}\right)<3$ we conclude that $r c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \leq c_{2}^{B}\left(\mathbb{R}^{\omega}\right)-1 \leq 1$. Then by the Stabilization Lemma 11 , we get that $c_{2}\left(\mathbb{R}^{1}\right)=c_{2}\left(\mathbb{R}^{\omega}\right)$ is finite. On the other hand, the real line has the 2 -coloring $\chi: \mathbb{R} \rightarrow 2, \chi^{-1}(1)=(0, \infty)$, without unbounded monochromatic symmetric subsets. This coloring witnesses that $c_{2}\left(\mathbb{R}^{1}\right)=\infty$ and this is a contradiction. Therefore,

$$
3 \leq c_{2}^{B}\left(\mathbb{R}^{\omega}\right) \leq c_{2}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{2}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{2}\left(\mathbb{Z}^{2}\right)=3
$$

3. Assume that $n+m \geq 3$. Lemma 5 and Theorem 5 imply the inequalities

$$
6 \leq c_{3}^{B}\left(\mathbb{R}^{m}\right) \leq c_{3}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{3}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{3}\left(\mathbb{Z}^{3}\right)=6
$$

that turn into equalities.
4. Assume that $n+m=4$. Theorem 5, 6(4) and Proposition 3 imply the inequalities

$$
12 \leq t\left(\mathbb{R}^{4}\right) \leq c_{4}^{B}\left(\mathbb{R}^{4}\right) \leq c_{4}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right) \leq c_{4}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right) \leq c_{4}\left(\mathbb{Z}^{4}\right) \leq 12
$$

which actually are equalities.
5. We need to prove that $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=\infty$ if $k \geq n+m+1<\omega$. This equality will follow as soon as we check that $c_{k}^{B}\left(\mathbb{R}^{n+m}\right)=\infty$. Let Δ be a simplex in \mathbb{R}^{n+m} centered at the origin. Write the boundary $\partial \Delta$ as the union $\partial \Delta=\bigcup_{i=0}^{n+m} \Delta_{i}$ of its facets. Define a Borel k-coloring $\chi: \mathbb{R}^{n} \rightarrow\{0, \ldots, n+m\} \subset k$ assigning to each point $x \in \mathbb{R}^{n} \backslash\{0\}$ the smallest number $i \leq n+m$ such that the ray $\mathbb{R}_{+} \cdot x$ meets the facet Δ_{i}. Also put $\chi(0)=0$. It is easy to check that the coloring χ witnesses that the set \mathbb{R}^{n+m} is not k-centerpole for Borel colorings of \mathbb{R}^{n+m} and consequently, $c_{k}^{B}\left(\mathbb{R}^{n+m}\right)=\infty$.
6. Assuming that $k \geq n+m+1$, we shall show that $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m}\right)=\infty$. If $n+m$ is finite, then this follows from the preceding item. So, we assume that $n+m$ is infinite. Then the group $G=\mathbb{R}^{n} \times \mathbb{Z}^{m}$ has cardinality 2^{n+m}. By Theorem 4 of [4], for the group G endowed with the discrete topology, we get $v(G)=\log |G|=$ $\min \left\{\gamma: 2^{\gamma} \geq|G|\right\} \leq n+m \leq k$, which means that G admits a k-coloring without infinite monochromatic symmetric subset. This implies that the set G is not k centerpole in G and thus $c_{k}(G)=\infty$.
7. Assume that $n+m \geq \omega$ and $\omega \leq k<\operatorname{cov}(\mathcal{M})$. The lower bound from Theorem 3(3) implies that $\omega \leq c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \leq c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$. The upper bound $c_{\kappa}^{B}\left(\mathbb{Z}^{\omega}\right) \leq \omega$ will follow as soon as we check that each countable dense subset $C \subset \mathbb{Z}^{\omega}$ is κ-centerpole for Borel colorings of \mathbb{Z}^{ω}. Let $\chi: \mathbb{Z}^{\omega} \rightarrow \kappa$ be a Borel κ-coloring of \mathbb{Z}^{ω}. Taking into account that $\mathbb{Z}^{\omega}=\bigcup_{i \in \kappa} \chi^{-1}(i)$ is homeomorphic to a dense G_{δ}-subset of the real line, we conclude that for some color $i \in \kappa$ the preimage $A=\chi^{-1}(i)$ is not meager in \mathbb{Z}^{ω}. Being a Borel subset of \mathbb{Z}^{ω}, the set A has the Baire property, which means that for some open subset $U \subset \mathbb{Z}^{\omega}$ the symmetric difference $A \triangle U$ is meager in \mathbb{Z}^{ω}. Since A is not meager, the set U is not empty. Take any point $c \in U \cap C$ and observe that $V=U \cap(2 c-U)$ is an open symmetric
neighborhood of c. It follows that for the set $B=A \cap(2 c-A)$ the symmetric difference $B \Delta V$ is meager. Since V is not meager in \mathbb{Z}^{ω}, the set B is not meager and hence is unbounded in \mathbb{Z}^{ω} (since totally bounded subsets of \mathbb{Z}^{ω} are nowhere dense in $\left.\mathbb{Z}^{\omega}\right)$. Now we see that $B=A \cap(2 c-A)$ is a monochromatic unbounded subset, symmetric with respect to the point c, witnessing that the set C is ω-centerpole for Borel coloring of \mathbb{Z}^{ω}.

10 Proof of Theorem 1

Let $k \geq 2$ be a finite cardinal number and G be an abelian ILC-group with totally bounded Boolean subgroup $G[2]$ and ranks $n=r_{\mathbb{R}}(G)$ and $m=r_{\mathbb{Z}}(G)$. Let \bar{G} be the completion of the group with respect to its (two-sided) uniformity.

We shall give the detailed proofs of the statements (3) and (4) of Theorem 1 holding under the additional assumption of the metrizability of the group G and indicate the changes which should be made for the proof of the statements (1) and (2).

Since $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)<\omega$ iff $k \leq m$, the statements (3), (4) of Theorem 1 will follow as soon as we prove two inequalities:
(1) $c_{k}^{B}(G) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ if $k \leq m$, and
(2) $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}^{B}(G)$ if $c_{k}^{B}(G)$ is finite.

1. Assume that $k \leq m$. If the \mathbb{Z}-rank $m=r_{\mathbb{Z}}(G)$ is finite, then so is the \mathbb{R}-rank $n=r_{\mathbb{R}}(G)$ and we can find copies of the topological groups \mathbb{R}^{n} and \mathbb{Z}^{m} in G. Now consider the closure H of the subgroup $\mathbb{R}^{n}+\mathbb{Z}^{m}$ in G. Since G is an ILC-group and $\mathbb{R}^{n}+\mathbb{Z}^{m}$ contains a dense finitely generated subgroup, the group H is locally compact. By the structure theorem of locally compact abelian groups [10, Theorem 25], H is topologically isomorphic to $\mathbb{R}^{r} \oplus Z$ for some $r \in \omega$ and a closed subgroup $Z \subset H$ that contains an open compact subgroup K. It follows from the inclusion $\mathbb{R}^{n} \subset H$ that $n \leq r$. On the other hand, $r \leq r_{\mathbb{Z}}(G)=n$. By the same reason, $r_{\mathbb{Z}}(H)=$ $m=r_{\mathbb{Z}}(G)$. In particular, $r_{\mathbb{Z}}(Z)=m-n$ and hence H contains an isomorphic copy of the group $\mathbb{R}^{n} \times \mathbb{Z}^{m-n}$. Now we see that $r_{k}^{B}(G) \leq r_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$.

Next, assume that the \mathbb{Z}-rank $m=r_{\mathbb{Z}}(G)$ is infinite but $n=r_{\mathbb{R}}(G)$ is finite. By the Stabilization Lemma 11, $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{r-n}\right)$ for $r=r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)<\infty$. Repeating the above argument we can find a copy of the group $\mathbb{R}^{n} \oplus \mathbb{Z}^{s-n}$ in G for some finite $s \geq r$ and conclude that $c_{k}^{B}(G) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{s-n}\right) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{r-s}\right)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$.

Finally, assume that the \mathbb{R}-rank $n=r_{\mathbb{R}}(G)$ is infinite. Then $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=$ $c_{k}^{B}\left(\mathbb{R}^{\omega}\right)=c_{k}^{B}\left(\mathbb{R}^{r}\right)$ for $r=r c_{k}^{B}\left(\mathbb{R}^{\omega}\right) \leq c_{k}^{B}\left(\mathbb{R}^{\omega}\right)<\omega$. By the definition of the \mathbb{R} rank $r_{\mathbb{R}}(G)=n=\omega$, we can find a copy of the group \mathbb{R}^{r} in G and conclude that $c_{k}^{B}(G) \leq c_{k}^{B}\left(\mathbb{R}^{r}\right)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$. This completes the proof of the inequality $c_{k}^{B}(G) \leq c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$.

Deleting the adjective "Borel" from the above proof we get the proof of the inequality $c_{k}(G) \leq c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ holding for each $k \leq m$.
2. Now assuming that $c_{k}^{B}(G)$ is finite and the group G is metrizable, we prove the inequality $c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}^{B}(G)$.

Fix a k-centerpole subset $C \subset G$ for Borel colorings of G with cardinality $|C|=$ $c_{k}^{B}(G)$. The subgroup $G[2]$ is totally bounded and hence has compact closure K_{2} in the completion \bar{G} of the group G. It follows that $K_{2} \subset \bar{G}[2]$. Since G is an ILC-group, the finitely generated subgroup $\langle C\rangle$ has locally compact closure $\overline{\langle C\rangle}$ in G. It follows from the compactness of the subgroup K_{2} that the sum $H=\overline{\langle C\rangle}+K_{2}$ is a locally compact subgroup of \bar{G}. This subgroup is compactly generated because it contains a dense subgroup generated by the compact set $C+K_{2}$.

By the Structure Theorem for compactly generated locally compact abelian groups [10, Theorem 24], H is topologically isomorphic to $\mathbb{R}^{r} \oplus \mathbb{Z}^{s-r} \oplus K$ for some compact subgroup K that contains all torsion elements of H. In particular, $K_{2} \subset K$. Now we see that the subgroup $2 H=\{2 x: x \in H\}$ is closed in H and consequently, the subgroup $2 H \cap G$ is closed in G. The group G is metrizable and so is the quotient group $G / 2 H$. Then the subspace $X=(G / 2 H) \backslash(H / 2 H)$ is metrizable and thus paracompact. Since $H \supset G[2]$ we can apply Lemma 9 and conclude that the set C is k-centerpole for Borel colorings of the subgroup $H \cap G$. Since $H \cap G \subset H$, the set C is k-centerpole for Borel colorings of the group H.

The compactness of the subgroup $K \subset H$ implies that the image $q(C)$ of C under the quotient map $q: H \rightarrow H / K$ is a k-centerpole set for Borel colorings of the quotient group $H / K=\mathbb{R}^{r} \times \mathbb{Z}^{s-r}$. Since $H=\overline{\langle C\rangle}+K_{2}$ and $K_{2} \subset K$, we conclude that $\overline{\langle C\rangle} /(\overline{\langle C\rangle} \cap K)=q(\overline{\langle C\rangle})=H / K=\mathbb{R}^{r} \times \mathbb{Z}^{s-r}$ and hence $r \leq n$ and $s \leq m$. Consequently, $\mathbb{R}^{r} \times \mathbb{Z}^{s-r} \hookrightarrow \mathbb{R}^{n} \times \mathbb{Z}^{m-n}$ and

$$
c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \subset c_{k}^{B}\left(\mathbb{R}^{r} \times \mathbb{Z}^{s-r}\right)=c_{k}^{B}(H / K) \leq|C|=c_{k}^{B}(G) .
$$

This proves the statements (3) and (4) of Theorem 1. Deleting the adjective "Borel" from the above proof and applying Lemma 8 instead of Lemma 9, we get the proof of the inequality $c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \leq c_{k}(G)$ under the assumption that the number $c_{k}(G)$ is finite. Since Lemma 8 does not require the metrizability of G, this upper bound holds without this assumption. In such a way, we prove the statements (1) and (2) of Theorem 1.

11 Proof of Proposition 1

Let G be a metrizable abelian ILC-group with totally bounded Boolean subgroup $G[2]$ and $k \in \mathbb{N}$ be such that $2 \leq k \leq r_{\mathbb{Z}}(G)$. Theorems 1 and 3 guarantee that $c_{k}^{B}(G)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)<\infty$ where $n=r_{\mathbb{Z}}(G)$ and $m=r_{\mathbb{Z}}(G)$.

Let $r=r c_{k}(G)$ and $C \subset G$ be a subset of cardinality $|C|=c_{k}^{B}(G)$ such that $r_{\mathbb{Z}}(\langle C\rangle)=r$. Without loss of generality, $0 \in C$. Since G is an ILC-group, the finitely generated subgroup $\langle C\rangle$ has locally compact closure in G.

The totally bounded Boolean subgroup $G[2]$ has compact closure K_{2} in the completion \bar{G} of the abelian topological group G. It follows that the subgroup $H=\overline{\langle C\rangle}+K_{2}$ of \bar{G} is locally compact and compactly generated. Consequently, it contains a compact subgroup $K \supset K_{2}$ such that the quotient group H / K is topologically isomorphic to $\mathbb{R}^{s} \times \mathbb{Z}^{r-s}$ for some $r \leq s$. It follows from Lemma 8 that the set C is k-centerpole for Borel colorings of the group H. The compactness of the subgroup
$K \subset H$ implies that the image $q(C) \subset H / K$ of C under the quotient homomorphism $q: H \rightarrow H / K$ is a k-centerpole set for Borel colorings of H / K. Consequently,

$$
c_{k}^{B}\left(\mathbb{R}^{r}\right) \leq c_{k}^{B}\left(\mathbb{R}^{s} \times \mathbb{Z}^{r-s}\right)=c_{k}^{B}(H / K) \leq|q(C)| \leq|C|=c_{k}^{B}(G)<\infty
$$

and hence $r \geq k$ by Theorem 3(5).
Now assume that $k \geq 4$. Since the set $q(C)$ is k-centerpole for Borel colorings of $H / K=\mathbb{R}^{s} \times \mathbb{Z}^{r-s} \subset \mathbb{R}^{r}$, Lemma 10 implies that the affine hull of $q(C)$ in the linear space \mathbb{R}^{r} has dimension $\leq|q(C)|-3$. Since $0 \in q(C)$, the affine hull of the set $q(C)$ coincides with its linear hull. Consequently, $r=r_{\mathbb{Z}}(\langle C\rangle)=r_{\mathbb{Z}}(\langle q(C)\rangle) \leq$ $|q(C)|-3 \leq|C|-3=c_{k}^{B}(G)-3$. This completes the proof of the lower and upper bounds

$$
k \leq r c_{k}(G) \leq c_{k}^{B}(G)-3
$$

for all $k \geq 3$.
Next, we show that $r c_{k}(G)=k$ for $k \in\{2,3\}$. In this case $c_{k}^{B}(G)=c_{k}\left(\mathbb{Z}^{k}\right)$ by Theorems 1 and 2 . Since $r_{\mathbb{Z}}(G) \geq k$, the group G contains an isomorphic copy of the group \mathbb{Z}^{k}. Then each k-centerpole subset $C \subset \mathbb{Z}^{k} \subset G$ with $|C|=c_{k}\left(\mathbb{Z}^{k}\right)$ is k centerpole for Borel colorings of G and thus $k \leq r c_{k}^{B}(G) \leq r_{\mathbb{Z}}(\langle C\rangle) \leq k$, which implies the desired equality $r c_{k}^{B}(G)=k$.

12 Proof of Stabilization Theorem 4

Let $k \geq 2$ and G be an abelian ILC-group with totally bounded Boolean subgroup $G[2]$. Let $n=r_{\mathbb{R}}(G)$ and $m=r_{\mathbb{Z}}(G)$.

1. Assume that $m=r_{\mathbb{Z}}(G) \geq r c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$. By Proposition $1, k \leq r c_{k}^{B}\left(\mathbb{Z}^{\omega}\right) \leq r_{\mathbb{Z}}(G)$ and then $c_{k}(G)=c_{k}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ by Theorem 1 . Since $m=r_{\mathbb{Z}}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \geq$ $r c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$, Lemma 12 guarantees that $c_{k}(G)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{Z}^{\omega}\right)$.
2. Assume that the group G is metrizable and $r_{\mathbb{Z}}(G) \geq r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$. By Proposition $1, k \leq r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right) \leq r_{\mathbb{Z}}(G)=m$ and hence $c_{k}^{B}(G)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)$ by Theorem 1. Since $m=r_{\mathbb{Z}}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right) \geq r c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$, Lemma 11 guarantees that $c_{k}^{B}(G)=c_{\mathbb{Z}}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{m-n}\right)=c_{k}^{B}\left(\mathbb{R}^{n} \times \mathbb{Z}^{\omega}\right)$.
3. By analogy with the preceding case we can prove that $c_{k}^{B}(G)=c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$ if G is metrizable and $r_{\mathbb{R}}(G) \geq r c_{k}^{B}\left(\mathbb{R}^{\omega}\right)$.

13 Selected open problems

By Theorem $2, c_{k}^{B}\left(\mathbb{R}^{\omega}\right)=c_{k}\left(\mathbb{Z}^{\omega}\right)=c_{k}\left(\mathbb{Z}^{k}\right)$ for all $k \leq 4$.
Problem 1 Is $c_{k}\left(\mathbb{Z}^{\omega}\right)=c_{k}\left(\mathbb{Z}^{k}\right)$ for all $k \in \mathbb{N}$? In particular, is $c_{4}\left(\mathbb{Z}^{n}\right)=12$ for every $n \geq 4$?

Problem 2 Is $c_{k}^{B}\left(\mathbb{R}^{n}\right)=c_{k}\left(\mathbb{R}^{n}\right)$ for every $k \leq n$?

Theorem 3 gives upper and lower bounds for the numbers $c_{k}\left(\mathbb{Z}^{k}\right)$ that have exponential and polynomial growths, respectively.

Problem 3 Is the growth of the sequence $\left(c_{n}\left(\mathbb{Z}^{n}\right)\right)_{n \in \mathbb{N}}$ exponential?
By [1], for every $k \in\{1,2,3\}$ any k-centerpole subset $C \subset \mathbb{Z}^{k}$ of cardinality $|C|=$ $c_{k}\left(\mathbb{Z}^{k}\right)$ is affinely equivalent to the $\binom{k-1}{k-3}$-sandwich Ξ_{k-3}^{k-1}.

Problem 4 Is each 12-element 4-centerpole subset of \mathbb{Z}^{4} affinely equivalent to the $\binom{3}{1}$-sandwich Ξ_{1}^{3} ?

It follows from the proof of Theorem 1 in [8] that the free group F_{2} with two generators and discrete topology has $c_{2}\left(F_{2}\right) \leq 13$.

Problem 5 What is the value of the cardinal $c_{2}\left(F_{2}\right)$? Is $c_{3}\left(F_{2}\right)$ finite?
The last problem can be posed in a more general context.
Problem 6 Investigate the cardinal characteristics $c_{k}(G)$ and $c_{k}^{B}(G)$ for noncommutative topological groups G.

References

1. Banakh, T.: On a cardinal group invariant related to partition of abelian groups. Mat. Zametki 64(3), 341-350 (1998)
2. Banakh, T., Bokalo, B., Guran, I., Radul, T., Zarichnyi, M.: Problems from the Lviv topological seminar. In: Pearl, E. (ed.) Open Problems in Topology, vol. II, pp. 655-667. Elsevier, Amsterdam (2007)
3. Banakh, T., Dudko, A., Repovs, D.: Symmetric monochromatic subsets in colorings of the Lobachevsky plane. Discrete Math. Theor. Comput. Sci. 12(1), 12-20 (2010)
4. Banakh, T., Protasov, I.V.: Asymmetric partitions of Abelian groups. Mat. Zametki 66(1), 17-30 (1999)
5. Banakh, T., Protasov, I.: Symmetry and colorings: some results and open problems. Izv. Gomel Univ. Vopr. Algebry 4(17), 5-16 (2001)
6. Banakh, T., Verbitski, O., Vorobets, Ya.: Ramsey treatment of symmetry. Electron. J. Comb. 7(1), R52 (2000), 25 pp .
7. Engelking, R.: General topology. Sigma Series in Pure Mathematics, vol. 6. Heldermann Verlag, Berlin (1989)
8. Gryshko, Yu.: Monochrome symmetric subsets in 2-colorings of groups. Electron. J. Comb. 10, R28 (2003), 8 pp.
9. Just, W., Weese, M.: Discovering Modern Set Theory. II. Set-Theoretic Tools for Every Mathematician. GSM, vol. 18. Am. Math. Soc., Providence (1997)
10. Morris, S.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups. London Mathematical Society Lecture Note Series, vol. 29. Cambridge University Press, Cambridge (1977)
11. Protasov, I.V.: Some problems in combinatorics of colorings. U Svìt̀ Mat. 1, 61 (1995) (in Ukrainian)
12. Protasov, I.V.: Asymmetrically decomposable abelian groups. Mat. Zametki 59(3), 468-471 (1996)
13. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)

[^0]: T. Banakh ($\boxtimes) \cdot$ O. Chervak

 Ivan Franko National University of Lviv, Lviv, Ukraine
 e-mail: t.o.banakh@gmail.com
 O. Chervak
 e-mail: oschervak@gmail.com
 T. Banakh

 Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego, Kielce, Poland

[^1]: ${ }^{1}$ So, a centerpole set can be thought as a set of poles of central symmetries that detects unbounded monochromatic symmetric subsets.

