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Abstract A subset C ⊂ G of a group G is called k-centerpole if for each k-coloring
of G there is an infinite monochromatic subset G, which is symmetric with respect
to a point c ∈ C in the sense that S = cS−1c. By ck(G) we denote the smallest
cardinality ck(G) of a k-centerpole subset in G. We prove that ck(G) = ck(Z

m)

if G is an abelian group of free rank m ≥ k. Also we prove that c1(Z
n+1) = 1,

c2(Z
n+2) = 3, c3(Z

n+3) = 6, 8 ≤ c4(Z
n+4) ≤ c4(Z

4) = 12 for all n ∈ ω, and
1
2 (k2 + 3k − 4) ≤ ck(Z

n) ≤ 2k − 1 − maxs≤k−2
(
k−1
s−1

)
for all n ≥ k ≥ 4.

Keywords Abelian group · Centerpole set · Coloring · Symmetric subset ·
Monochromatic subset

1 Introduction

Answering a problem posed in [11], T. Banakh and I. Protasov [4] proved that for
any k-coloring χ : Z

k → k = {0, . . . , k−1} of the abelian group Z
k there is an infinite

monochromatic subset S ⊂ Z
k such that S −c = c−S for some point c ∈ {0,1}k . The

equality S − c = c − S means that the set S is symmetric with respect to the point c.
On the other hand, a suitable partition of R

k into k + 1 convex cones determines a
Borel (k + 1)-coloring of R

k without unbounded monochromatic symmetric subsets.
These two results motivate the following definition, cf. [1, 3].
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Definition 1 A subset C of a topological group G is called k-centerpole1 for (Borel)
colorings of G if for any (Borel) k-coloring χ : G → k of G there is an unbounded
monochromatic subset S ⊂ G, symmetric with respect to some point c ∈ C in the
sense that Sc−1 = cS−1.

The smallest cardinality |C| of such a k-centerpole set C ⊂ G is denoted by ck(G)

(resp. cB
k (G)). If no k-centerpole set C ⊂ G exists, then we write ck(G) = ∞ (resp.

cB
k (G) = ∞) and assume that ∞ is greater than any cardinal that appears in our

considerations.

Now we explain some terminology that appears in this definition. A subset B of a
topological group G is called totally bounded if B can be covered by finitely many
left shifts of any neighborhood U of the neutral element of X. In the opposite case
B is called unbounded. A subset of a discrete topological group is unbounded if and
only if it is infinite.

A cardinal number k is identified with the set {α : |α| < κ} of ordinals of smaller
cardinality and endowed with the discrete topology. By a (Borel) k-coloring of a
topological space X we mean a (Borel) function χ : X → k. A function χ : X → k is
Borel if for every color i ∈ k the set χ−1(i) of points of color i in X is Borel.

The definition of the numbers ck(G) and cB
k (G) implies that

cB
k (G) ≤ ck(G)

for any topological group G and any cardinal number k. If the topological group G is
discrete, then each coloring of G is Borel, so cB

k (G) = ck(G) for all k. In general, the
cardinal numbers ck(G) and cB

k (G) are different. For example, cB
ω (Rω) = ω while

cω(Rω) = ∞, see Theorem 2.
It follows from the definition that ck(G) and cB

k (G) considered as functions of k

and G are non-decreasing with respect to k and non-increasing with respect to G.
More precisely, for a number k ∈ N, a topological group G and its subgroup H we
have the inequalities

ck(H) ≥ ck(G), ck(G) ≤ ck+1(G) and

cB
k (H) ≥ cB

k (G), cB
k (G) ≤ cB

k+1(G).

In the sequel we shall use these monotonicity properties of ck(G) and cB
k (G) without

any special reference.
In this paper we investigate the problem of calculating the numbers ck(G) and

cB
k (G) for an abelian topological group G and show that in many cases this problem

reduces to calculating the numbers ck(R
n × Z

m−n) and cB
k (Rn × Z

m−n) where n =
rR(G) is the R-rank and m = rZ(G) is the Z-rank of the group G.

For topological groups G and H the H -rank rH (G) of G is defined as

rH (G) = sup
{
k ∈ ω : Hk ↪→ G

}

1So, a centerpole set can be thought as a set of poles of central symmetries that detects unbounded mono-
chromatic symmetric subsets.
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where Hk ↪→ G means that Hk is topologically isomorphic to a subgroup of the
topological group G. It is clear that rR(G) ≤ rZ(G) for each topological group G.

It is interesting to remark that the Z-rank appears in the formula for calculating
the value of the function

ν(G) = min
{
κ : ck(G) = ∞}

introduced and studied in [12] and [4]. By [4], for any discrete abelian group G

ν(G) =

⎧
⎪⎨

⎪⎩

max{|G[2]|, log |G|} if G is uncountable or G[2] is infinite,

rZ(G) + 1 if G is finitely generated,

rZ(G) + 2 otherwise.

Here G[2] = {x ∈ G : 2x = 0} is the Boolean subgroup of G and log |G| = min{κ :
|G| ≤ 2κ}.

A topological group G is called inductively locally compact (briefly, an ILC-group)
if each finitely generated subgroup H ⊂ G has locally compact closure in G. The
class of ILC-groups includes all locally compact groups and all closed subgroups of
topological vector spaces.

Our aim is to calculate the numbers ck(G) and cB
k (G) for an abelian ILC-group G.

First, let us exclude two cases in which these numbers can be found in a trivial way.
One of them happens if the number of colors is 1. In this case

cB
1 (G) = c1(G) =

{
1 if G is not totally bounded,

∞ if G is totally bounded.

The other trivial case happens if the Boolean subgroup G[2] = {x ∈ G : 2x = 0} ⊂ G

is unbounded in G. In this case, for each finite coloring χ : G → k there is a color
i ∈ k such that the set S = G[2] ∩ χ−1(i) is unbounded. Since S = −S, we conclude
that S is an unbounded monochromatic symmetric subset with respect to 0, which
means that the singleton {0} is k-centerpole in G and thus

ck(G) = cB
k (G) = 1 for all k ∈ N.

It remains to calculate the values of the cardinal numbers ck(G) and cB
k (G) for

k ≥ 2 and an abelian topological group G with totally bounded Boolean subgroup
G[2].

The following theorem reduces this problem of calculation of ck(G) to the case of
the group R

n ⊕ Z
m−n where n = rR(G) and m = rZ(G).

Theorem 1 Let k ∈ N and G be an abelian ILC-group G with totally bounded
Boolean subgroup G[2] and ranks n = rR(G) and m = rZ(G). Then

(1) ck(G) = ck(R
n × Z

m−n) if k ≤ m, and
(2) ck(G) ≥ ω if k > m.

If the topological group G is metrizable, then
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(3) cB
k (G) = cB

k (Rn × Z
m−n) if k ≤ m, and

(4) cB
k (G) ≥ ω if k > m.

Here we assume that ω − ω = 0 and ω − n = ω for each n ∈ ω.
Theorem 1 will be proved in Sect. 10. It reduces the problem of calculation of the

numbers ck(G) and cB
k (G) to calculating these numbers for the groups R

n × Z
m−n

where n ≤ m. The latter problem turned out to be highly non-trivial. In the following
theorem we collect all the available information on the precise values of the numbers
ck(R

n × Z
m) and cB

k (Rn × Z
m).

Theorem 2 Let k,n,m be cardinal numbers.

(1) If n + m ≥ 1, then cB
1 (Rn × Z

m) = c1(R
n × Z

m) = 1.
(2) If n + m ≥ 2, then cB

2 (Rn × Z
m) = c2(R

n × Z
m) = 3.

(3) If n + m ≥ 3, then cB
3 (Rn × Z

m) = c3(R
n × Z

m) = 6.
(4) If n + m = 4, then cB

4 (Rn × Z
m) = c4(R

n × Z
m) = 12.

(5) If k ≥ n + m + 1 < ω, then cB
k (Rn × Z

m) = ∞.
(6) If k ≥ n + m + 1, then ck(R

n × Z
m) = ∞.

(7) If n + m ≥ ω and ω ≤ k < cov(M), then cB
k (Rn × Z

m) = ω.

In the last item by cov(M) we denote the smallest cardinality of the cover of
the real line by meager subsets. It is known that ℵ1 ≤ cov(M) ≤ c and the equality
cov(M) = c is equivalent to the Martin Axiom for countable posets, see [9, 19.9].

The equality c4(Z
4) = 12 from the statement (4) of Theorem 2 answers the prob-

lem of the calculation of c4(Z
4) posed in [1] and then repeated in [5, Problem 2.4],

[6, Problem 12], and [2, Question 4.5].
Theorem 2 presents all cases in which the exact values of the cardinals cB

k (Rn ×
Z

m−n) and ck(R
n × Z

m−n) are known. In the remaining cases we have some upper
and lower bounds for these numbers. Because of the inequalities

cB
k

(
R

m
) ≤ cB

k

(
R

n × Z
m−n

) ≤ ck

(
R

n × Z
m−n

) ≤ ck

(
Z

m
)
,

we see that the upper bounds for the numbers cB
k (Rn × Z

m−n) and ck(R
n × Z

m−n)

would follow from the upper bounds for the numbers ck(Z
m) while lower bounds

from lower bounds on cB
k (Rm).

Theorem 3 For any numbers k ∈ N and n,m ∈ N ∪ {ω}, we get:

(1) ck(Z
m) ≤ 2k − 1 − maxs≤k−2

(
k−1
s−1

)
if k ≤ m,

(2) cB
k (Rk) ≥ 1

2 (k2 + 3k − 4) if k ≥ 4,
(3) cB

k (Rm) ≥ k + 4 if m ≥ k ≥ 4,
(4) cB

k (Rn) < cB
k+1(R

n+1) and ck(R
n) < ck+1(R

n+1) if k ≤ n,
(5) cB

k (Rn × Z
m) < cB

k+1(R
n × Z

m+1) and ck(R
n × Z

m) < ck+1(R
n × Z

m+1) if k ≤
n + m.

The binomial coefficient
(
k
i

)
in statement (1) equals k!

i! (k−i)! if i ∈ {0, . . . , k} and
zero otherwise. The upper bound from this statement improves the previously known
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upper bound ck(Z
n) ≤ 2k − 1 proved in [1]. For k = m ≤ 4 it yields the upper bounds

which coincide with the values of ck(Z
m) given in Theorem 2.

The lower bound cB
n (Rn) ≥ 1

2 (n2 + 3n − 4) from the item (2) improves the previ-
ously known lower bound cB

n (Rn) ≥ 1
2 (n2 + n), proved in [1]. For n = 4 it gives the

lower bound 12 ≤ cB
4 (R4), which coincides with the value of cB

4 (R4) = c4(Z
4).

The statement (5) implies that the sequence (ck(Z
k))∞k=1 is strictly increasing,

which answers Question 2 posed in [1]. Theorem 3 will be proved in Sect. 8 after
some preparatory work done in Sect. 2.

For every k ∈ N the sequence (ck(Z
n))∞n=k is non-increasing and thus it stabilizes

starting from some n. The value of this number n is upper bounded by the cardinal
number rcB

k (Zn) defined as follows.
For a topological group G and a number k ∈ N let rcB

k (G) be the minimal possible
Z-rank rZ(〈C〉) of a subgroup 〈C〉 of G generated by a k-centerpole subset C ⊂ G of
cardinality |C| = cB

k (G). If such a set C does not exist (which happens if cB
k (G) =

∞), then we put rcB
k (G) = ∞.

Theorem 4 (Stabilization) Let k ≥ 2 be an integer and G be an abelian ILC-group
with totally bounded Boolean subgroup G[2] and R-rank n = rR(G). Then

(1) ck(G) = cB
k (Zω) if rZ(G) ≥ rcB

k (Zω),
(2) cB

k (G) = cB
k (Rn × Z

ω) if G is metrizable and rZ(G) ≥ rcB
k (Rn × Z

ω),
(3) cB

k (G) = cB
k (Rω) if G is metrizable and rR(R) ≥ rcB

k (Rω).

In light of Theorem 4 it is important to have lower and upper bounds for the
numbers rck(G).

Proposition 1 For any metrizable abelian ILC-group G with totally bounded
Boolean subgroup G[2], and a natural number 2 ≤ k ≤ rZ(G) we get

(1) rcB
k (G) = k if k ≤ 3, and

(2) k ≤ rcB
k (G) ≤ cB

k (G) − 3 if k ≥ 3.

Finally, let us present the (k + 1)-centerpole subset Ξk
s of R

1+k that contains
2k − 1 − (

k
s

)
elements and gives the upper bound from Theorem 3(1). This (k + 1)-

centerpole set Ξk is called the
(
k
s

)
-sandwich.

Definition 2 Let k be a non-negative integer and s be a real number. The subsets

2k
<s =

{

(xi) ∈ 2k :
k∑

i=1

xi < s

}

and 2k
>s =

{

(xi) ∈ 2k :
k∑

i=1

xi > s

}

are called the s-slices of the k-cube 2k where 2 = {0,1} is the doubleton. For s ∈
{0, . . . , k} the union of such slices has cardinality

∣∣2k
<s ∪ 2k

>s

∣∣ = 2k −
(

k

s

)
= 2k − k!

s! (k − s)! .
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The subset

Ξk
s = ({−1} × 2k

<s

) ∪ ({0} × 2k
<k

) ∪ ({1} × 2k
>s

)

of the group Z × Z
k is called the

(
k
s

)
-sandwich. For s ∈ {0, . . . , k} it has cardinality

∣∣Ξk
s

∣∣ = ∣∣2k
<k

∣∣ ∪ ∣∣2k
<s ∪ 2k

>s

∣∣ = 2k+1 − 1 −
(

k

s

)
.

The following theorem implies the upper bound in Theorem 3(1). The proof of
this theorem (given in Sect. 3) is not trivial and uses some elements of Algebraic
Topology.

Theorem 5 For every k ∈ N and s ≤ k − 2 the
(
k
s

)
-sandwich Ξk

s is a (k + 1)-
centerpole set in the group Z × Z

k .

In light of this theorem it is important to know the geometric structure of
(
k
s

)
-

sandwiches Ξk
s for s ≤ k − 2. For k ≤ 3 those sandwiches are written below:

– Ξ0
−2 = {(1,0)} is a singleton in Z × Z

0 = Z × {0};
– Ξ1−1 = {(0,1), (1,0), (1,1)} is the unit square without a vertex in Z

2;
– Ξ2

0 = {(0,0,0), (0,0,1), (0,1,0), (1,0,1), (1,1,0), (1,1,1)} is the unit cube
without two opposite vertices in Z

3;
– Ξ3

0 is the unit cube without two opposite vertices in Z
4, so |Ξ3

0 | = 14;
– Ξ3

1 is a 12-element subset in Z
4 whose slices {−1}×23

<1, {0}×23
<3, and {1}×23

>1
have one, seven, and four points, respectively.

By a triangle (centered at the origin) we shall understand any affinely independent
subset {a, b, c} in R

n (such that a +b+c = 0). A tetrahedron (centered at the origin)
is any affinely independent subset {a, b, c, d} ⊂ R

n (with a + b + c + d = 0).
Let us observe that the sandwich

– Ξ0
−2 has cardinality c1(R

1) = 1 and is affinely equivalent to any singleton {a} in
R

1;
– Ξ1−1 has cardinality c2(R

2) = 3 and is affinely equivalent to any triangle Δ =
{a, b, c} in R

2;
– Ξ2

0 has cardinality c3(R
3) = 6 and is affinely equivalent to Δ ∪ (x − Δ) where

Δ ⊂ R
3 is a triangle centered at zero and x ∈ R

3 does not belong to the linear span
of Δ;

– Ξ3
1 has cardinality c4(R

4) = 12 and is affinely equivalent to (x − Δ) ∪ Δ ∪ (−x −
Δ) where Δ ⊂ R

4 is a tetrahedron centered at zero and x ∈ R
4 does not belong to

the linear span of Δ.

To see that Ξ3
1 is of this form, observe that c = ( 1

4 , 1
2 , 1

2 , 1
2 ) is the barycenter of Ξ3

1
and Ξ3

1 − c = (x − Δ) ∪ Δ ∪ (−x − Δ) for the tetrahedron

Δ = {
(0,0,0,1), (0,0,1,0), (0,1,0,0), (1,1,1,1)

} − c

and the point x = ( 1
2 ,0,0,0).
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Now we briefly describe the structure of this paper. In Sect. 2 we establish a cover-
ing property of sandwiches, which will be essentially used in the proof of Theorem 5,
given in Sect. 3. Section 4 is devoted to T-shaped sets which will give us lower bounds
for the numbers cB

k (Rk). In Sect. 5 we prove some lemmas that will help us to an-
alyze the geometric structure of centerpole sets in Euclidean spaces. In Sect. 6 we
study the interplay between centerpole properties of subsets in a group and those of
its subgroups. In Sect. 7 we prove a particular case of the Stability Theorem 4 for
the groups R

n × Z
m−n. In Sects. 8, 9, and 10 we give the proofs of Theorems 3, 2,

and 1, respectively. Sections 11 and 12 are devoted to the proofs of Proposition 1 and
Theorem 4. The final Sect. 13 contains selected open problems.

2 Covering Σ0-sets by shifts of the sandwich Ξk
s

In this section we shall prove a crucial covering property of the
(
k
s

)
-sandwich Ξk

s . In
the next section this property will be used in the proof of Theorem 5. We assume that
k ∈ ω and s ≤ k − 2 is an integer.

First we introduce the notion of a Σ0-subset of the cube 2k+1 = {0,1}k+1. For
i ∈ {0, . . . , k} consider the ith coordinate projection

pri : R
k+1 → R, pri : (xj )

k
j=0 �→ xi.

The subsets of the form 2k+1 ∩ pr−1
i (l) for l ∈ {0,1} are called the facets of the cube

2k+1.
Next, consider the function

Σ : R
k+1 → R, Σ : (xi)

k
i=0 �→

k∑

i=1

xi,

and observe that Σ(2k+1) = {0, . . . , k}.
Taking the diagonal product of the functions pr0 and Σ , we obtain the linear op-

erator

Σ0 : R
k+1 → R

2, Σ0 : (xi)
k
i=0 �→

(

x0,

k∑

i=1

xi

)

.

Definition 3 A subset τ ⊂ 2k+1 will be called a Σ0-set if

– τ lies in a facet of 2k+1;
– there exists a ∈ {0, . . . , k − 1} such that Σ0(τ ) ⊂ {(0, a), (0, a + 1), (1, a + 1)} or

Σ0(τ ) ⊂ {(0, a), (1, a), (1, a + 1)}.

Lemma 1 Each Σ0-set τ ⊂ 2k+1 is covered by a suitable shift x + Ξk
s of the

(
k
s

)
-

sandwich Ξk
s .
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Proof Decompose the Σ0-set τ into the union τ = τ0 ∪ τ1 where τi = τ ∩ pr−1
0 (i) for

i ∈ {0,1}. By our hypothesis τ lies in a facet of the cube 2k+1. Consequently, there
are numbers γ ∈ {0, . . . , k} and l ∈ {0,1} such that τ ⊂ pr−1

γ (l). If τ0 or τ1 is empty,
then we can change the facet and assume that γ = 0.

Since τ is a Σ0-set, the image Σ0(τ ) lies in one of the triangles: {(0, a), (0, a+1),

(1, a+1)} or ({(0, a), (1, a), (1, a+1)} for some a ∈ {0, . . . , k−1}. This implies that
Σ(τ) ⊂ {a, a + 1}.

Identify the cube 2k with the subcube {0} × 2k of Ξk
s and let e0 = (1,0, . . . ,0) ∈

2k+1. Then

Ξk
s = 2k

<k ∪ (
e0 + 2k

>s

) ∪ (−e0 + 2k
<s

)
.

Depending on the value of γ , two cases are possible.

0. γ = 0. This case has four subcases.
0.1. If l = 0 and a < k − 1 then Σ0(τ ) ⊂ {(0, a), (0, a + 1)} ⊂ {0, . . . , k − 1} and

τ ⊂ 2k
<k ⊂ Ξk

s .
0.2. If l = 0 and a ≥ k − 1, then a > k − 2 ≥ s and τ ⊂ 2k

>s ⊂ −e0 + Ξk
s .

0.3. If l = 1 and a < k − 1, then Σ0(τ ) ⊂ {(1, a), (1, a + 1)} ⊂ {0, . . . , k − 1} and
hence τ ⊂ e0 + 2k

<k ⊂ e0 + Ξk
s .

0.4. If l = 1 and a ≥ k − 1, then a > k − 2 ≥ s and then τ ⊂ e0 + 2k
>s ⊂ Ξk

s .
I. γ �= 0. In this case τ0 and τ1 are not empty. Let eγ be the basic vector whose

γ th coordinate is 1 and the others are zero. By our assumption, Σ0(τ ) ⊂
{(0, a), (1, a), (1, a + 1)} or Σ0(τ ) ⊂ {(0, a), (0, a + 1), (1, a + 1)} for some
a ∈ {0, . . . , k − 1}. So, we consider two subcases.
I.1. Σ0(τ ) ⊂ {(0, a), (1, a), (1, a + 1)}. This case has two subcases.

I.1.0. l = 0. In this subcase Σ(τ) = Σ(τ0) ∪ Σ(τ1) = {a, a + 1} ⊂ {0, . . . ,

k−1} and hence a ≤ k−2. Depending on the value of a, we have three
possibilities.

If a > s, then τ = τ0 ∪ τ1 ⊂ 2k
<k ∪ (e0 + 2k

>s) ⊂ Ξk
s .

If a = s, then for the shifted set eγ + τ we get

Σ0(eγ + τ) ⊂ {
(0, a + 1), (1, a + 1), (1, a + 2)

}
.

Since a = s ≤ k − 2, we conclude that eγ + τ0 ⊂ 2k
<k ⊂ Ξk

s . On the
other hand, eγ + τ1 ⊂ e1 + 2k

>s ⊂ Ξk
s . Then τ ⊂ −eγ + Ξk

s .
If a < s, then a +1 ≤ s ≤ k−2 and hence τ = τ0 ∪τ1 ⊂ 2k

<s ∪ (e0 +
2k
<k) ⊂ e0 + Ξk

s .
I.1.1. l = 1. In this subcase three possibilities can occur:

If a > s, then τ = τ0 ∪ τ1 ⊂ 2k
<k + (e0 + 2k

>s) ⊂ Ξk
s ;

If a < s, then a + 1 ≤ s ≤ k − 2 and then τ = τ0 ∪ τ1 ⊂ 2k
<s ∪ (e0 +

2k
<k) ⊂ e0 + Ξk

s .
If a = s, then for the shift −eγ + τ we get Σ0(−eγ +τ) ⊂

{(0, a−1), (1, a−1), (1, a)} and hence −eγ + τ ⊂ 2k
<s ∪ (e0 + 2k

<k) ⊂
e0 + Ξk

s . Consequently, τ ⊂ eγ + e0 + Ξk
s .

I.2. Σ0(τ ) ⊂ {(0, a), (0, a + 1), (1, a + 1)}. Depending on the value of l ∈ {0,1},
consider two subcases.
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I.2.0. l = 0. In this case {0, . . . , k − 1} ⊃ Σ(τ) = Σ(τ0) ∪ Σ(τ1) = {a,

a + 1} ∪ {a + 1} and consequently, a + 1 ≤ k − 1.
If a ≥ s, then τ = τ0 ∪ τ1 ⊂ 2k

<k ∪ (e0 + 2k
>s) ⊂ Ξk

s .

If a = s − 1, then we can consider the shift eγ + τ and repeating
the preceding argument, show that eγ + τ ⊂ Ξk

s . Consequently, τ ⊂
−eγ + Ξk

s .
If a < s − 1, then τ = τ0 ∪ τ1 ⊂ 2k

<s ∪ (e0 + 2k
<k) ⊂ e0 + Ξk

s .
I.2.1. l = 1. In this case we have four subcases.

If a = k −1, then for the shifted set −eγ + τ we get Σ0(−eγ + τ) ⊂
{(0, a −1), (0, a), (1, a)} and −eγ + τ ⊂ 2k

<k ∪ (e0 +2k
>s) = Ξk

s . Then
τ ⊂ eγ + Ξk

s .
If s ≤ a < k − 1, then τ = τ0 ∪ τ1 ⊂ 2k

<k ∪ (e0 + 2k
>s) = Ξk

s .
If a = s −1, then for the shifted set −eγ + τ we get Σ0(−eγ + τ) ⊂

{(0, a −1), (0, a), (1, a)} and then −eγ + τ ⊂ 2k
<s ∪ (e0 +2k

<k) = e0 +
Ξk

s and τ ⊂ eγ + e0 + Ξk
s .

If a < s − 1, then τ = τ0 ∪ τ1 ⊂ 2k
<s ∪ (e0 + 2k

<k) = e0 + Ξk
s .

This was the last of the 17 cases we have considered.
�

3 Proof of Theorem 5

The proof of Theorem 5 uses the idea of the proof of Lemma 6 in [1] (which estab-
lished the upper bound c3(Z

3) ≤ 6).
We need to prove that for every k ≤ n and s ≤ k − 2 the

(
k
s

)
-sandwich Ξk

s is
(k+1)-centerpole in Z×Z

k = Z
1+k . Assuming that this is not true, find a coloring χ :

Z
1+k → k + 1 = {0, . . . , k} such that Z

1+k contains no unbounded monochromatic
subset, symmetric with respect to some point c ∈ Ξk

s . Observe that for each color
i ∈ {0, . . . , k} the intersection Ai ∩ (2c − Ai) is the largest subset of Ai , symmetric
with respect to the point c. By our assumption, the (maximal i-colored c-symmetric)
set Ai ∩ (2c − Ai) is bounded and so is the union

B =
k⋃

i=0

⋃

c∈Ξk
s

Ai ∩ (2c − Ai)

of all such maximal symmetric monochromatic subsets.

Claim 1 χ(x) /∈ χ(−x + 2Ξk
s ) for any x /∈ B .

Proof Assuming conversely that χ(x) = χ(−x + 2c) for some c ∈ Ξk
s , we get

1
2 (x + (−x + 2c)) = c and hence x and −x + 2c are two points symmetric with
respect to the center c ∈ Ξk

s and colored by the same color. Consequently, x ∈ B by
the definition of B . �

Fix a number n ∈ N so big that the cube K = [−2n,2n]1+k ⊂ R
1+k contains the

bounded set B in its interior and let ∂K be the topological boundary ∂K of the cube
K in R

1+k . Observe that Claim 1 implies:
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Claim 2 χ(−x) /∈ χ(x + 2Ξk
s ) for each point x ∈ Z

1+k ∩ ∂K .

We recall that for every i ∈ k + 1 = {0, . . . , k}
pri : R

1+k → R, pri : (xj )
k
j=0 �→ xi,

denotes the ith coordinate projection and ei is the unit vector along the ith coordinate
axis, that is, prj (ei ) = 1 if i = j , and 0 otherwise.

For a subset J ⊂ {0, . . . , k} let eJ = ∑
j∈J ej ∈ R

1+k be the vector of the principal

diagonal of the cube 2J = {(xi)
k
i=0 ∈ 21+k : ∀i /∈ J (xi = 0)} ⊂ 21+k .

For a point x ∈ R
1+k let Jx = {i ∈ k + 1 : xi /∈ 2Z} and let �x� be the unique point

in (2Z)1+k such that x ∈ �x� + 2 · 2Jx . So, �x� ≤ x ≤ �x� + 2 eJx .
Consider the function Σ : R

k+1 → R assigning to each sequence x = (xi)
k
i=0 the

sum Σ(x) = ∑k
i=1 xi . The map Σ combined with the 0th coordinate projection pr0

compose the linear operator

Σ0 : R
1+k → R

2, Σ0 : (xi)
k
i=0 �→ (

x0,Σ(x)
) =

(

x0,

k∑

i=1

xi

)

.

Choose a triangulation T of the boundary ∂K of the cube K = [−2n,2n]1+k such
that for each simplex τ of the triangulation there is a point τ̇ ∈ (2Z)1+k such that
1
2 (τ − τ̇ ) is a Σ0-subset of 21+k . The reader can easily check that such a triangulation
T always exists. The choice of the triangulation T combined with Lemma 1 implies

Claim 3 Each simplex τ of the triangulation T is covered by a suitable shift x +2Ξk
s

of the homothetic copy 2Ξk
s of the

(
k
s

)
-sandwich Ξk

s .

Let Δ be (the geometric realization of) a simplex in R
k with vertices w0, . . . ,wk

such that w0 +· · ·+wk = 0. The latter equality means that Δ is centered at the origin
(which lies in the interior of Δ). By Δ(0) = {w0, . . . ,wk} we denote the set of vertices
of the simplex Δ.

Each point y ∈ Δ can be uniquely written as the convex combination y =∑k
i=0 yiwi for some non-negative real numbers y0, . . . , yk with

∑k
i=0 yi = 1. The

set

supp(y) = {
i ∈ {0, . . . , k} : yi �= 0

}

is called the support of y. It is clear that supp(y) is the smallest subset of Δ(0) whose
convex hull contains the point y.

Identifying each number i ∈ {0, . . . , k} with the vertex wi of Δ, we can think of
the coloring χ : Z

1+k → {0, . . . , k} as a function χ : Z
1+k → Δ(0) = {w0, . . . ,wk}.

Now extend the restriction χ |∂K ∩ (2Z)1+k of χ to a simplicial map f : ∂K → Δ

(which is affine on the convex hull of each simplex τ ∈ T ). The simpliciality of f

implies

Claim 4 For each simplex τ ∈ T and a point x ∈ conv(τ )

supp
(
f (x)

) ⊂ χ(τ) ⊂ χ
(�x� + 2 · 2Jx

)
.
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This claim has the following corollary.

Claim 5 f (∂K) ⊂ ∂Δ.

Proof Given any point x ∈ ∂K , find a simplex τ ∈ T whose convex hull contains x.
By the choice of the triangulation T and Lemma 1, τ ⊂ −y + 2Ξk

s for some point
y ∈ Z

1+k . By Claim 2, χ(−y) /∈ χ(τ) and thus

f (x) ∈ conv
(
f (τ)

) = conv
(
χ(τ)

) ⊂ conv
(
Δ(0) \ χ(−y)

) ⊂ ∂Δ. �

Now consider the intersection K0 = {0} × [−2n,2n]k of the cube K with the
hyperplane {0} × R

k , which will be identified with the space R
k , and let ∂K0 =

∂K ∩ R
k be the boundary of K0.

For each subset J ⊂ k + 1 = {0, . . . , k} consider the map

pJ : R
1+k → R, pJ : (xi)

k
i=0 �→ 1 ·

∏

j∈J

xj .

Here we assume that p∅(x) = 1. It follows that
∑

J⊂k+1 pJ (x) > 0 for all x ∈
[0,2]k+1.

We remind that for a point x ∈ R
1+k , Jx = {i ∈ {0, . . . , k} : xi /∈ 2Z} and �x�

stands for the unique point in (2Z)1+k such that x ∈ �x�+2Jx where 2J = {(xi)
k
i=0 ∈

2k+1 : ∀i /∈ J (xi = 0)}.
Now consider the map ϕ : ∂K0 → Δ defined by the formula

ϕ(x) =
∑

J⊂k+1 pJ (x − �x�) · χ(�x� + eJ )
∑

J⊂k+1 pJ (x − �x�) .

It can be shown that the map ϕ is well-defined and continuous.

Claim 6 supp(ϕ(x)) = χ(�x� + 2 · 2Jx ) ⊂ χ(�x� + 2Ξk
s ) for all x ∈ ∂K0.

Proof Let x ∈ ∂K0 be any point. The definition of ϕ implies that supp(ϕ(x)) =
χ(�x� + 2Jx ). The inclusion x ∈ ∂K0 implies that the set Jx = {j ∈ {0, . . . , k} :
prj (x) /∈ 2Z} has cardinality |Jx | < k and thus 2Jx ⊂ {0} × 2k

<k ⊂ Ξk
s . Consequently,

�x� + 2 · 2Jx ⊂ �x� + 2Ξk
s and χ(�x� + 2 · 2Jx ) ⊂ χ(�x� + 2Ξk

s ). �

Claim 7 ϕ(x) �= ϕ(−x) for all x ∈ ∂K0.

Proof Observe that Jx = J−x and �−x� = −�x� − 2eJx . By Claim 6,

χ
(−�x�) = χ

(�−x� + 2 · e−Jx

) ∈ χ
([−x] + 2 · 2J−x

) = supp
(
ϕ(−x)

)
.

On the other hand, Claim 1 guarantees that

χ
(−�x�) �� χ

(�x� + 2Ξk
s

) ⊃ χ
(�x� + 2 · 2Jx

) = supp
(
ϕ(x)

)
.

Consequently, supp(ϕ(−x)) �= supp(ϕ(x)) and ϕ(x) �= ϕ(−x).
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Finally, consider the homotopy

(ft ) : ∂K0 × [0,1] → Δ, ft : x �→ tϕ(x) + (1 − t)f (x),

connecting the map f = f0 with the map ϕ = f1. �

Claim 8 supp(ft (x)) ⊂ χ(�x� + 2 · 2Jx ) ⊂ ∂Δ for all x ∈ ∂K0 and t ∈ [0,1].

Proof The inclusion supp(ft (x)) ⊂ χ(�x� + 2 · 2Jx ) follows from Claims 4 and 6.
The inclusion x ∈ ∂K0 implies that the set Jx = {j ∈ {0, . . . , k} : prj (x) /∈ 2Z}

has cardinality |Jx | < k and thus 2Jx ⊂ {0} × 2k
<k ⊂ Ξk

s . By Claim 1, χ(−�x�) /∈
χ(�x� + 2Ξk

s ) and then

ft (x) ∈ conv
(
supp

(
ft (x)

) ⊂ conv
(
χ

(�x� + 2 · 2Jx
))

⊂ conv
(
χ

(�x� + 2Ξk
s

)) ⊂ conv
(
Δ(0) \ χ

(−�x�)) ⊂ ∂Δ. �

Let Sk−1 = {x ∈ R
k : ‖x‖ = 1} be the unit sphere in R

k with respect to the Euclid-
ean norm ‖ · ‖ and r : R

k \ {0} → Sk−1, r : x �→ x/‖x‖, be the radial retraction.
Observe that its restriction r|∂Δ to the boundary of the geometric simplex Δ is a
homeomorphism.

By Claim 5, f (∂K) ⊂ ∂Δ ⊂ R
k \ {0}, so we can consider the map g0 : ∂K →

Sk−1 defined by g0(x) �→ r ◦ f (x) = f (x)/‖f (x)‖. By Claim 8, the map g0|∂K0 is
homotopic to the map

g1 : ∂K0 → Sk−1, g1(x) �→ r ◦ f1(x) = r ◦ ϕ(x).

It follows from Claim 7 that g1(x) �= g1(−x) for all x ∈ ∂K0. This implies that the
formula

ht (x) = g1(x) − tg1(−x)

‖g1(x) − tg1(−x)‖ , x ∈ ∂K0, t ∈ [0,1],

determines a well-defined homotopy (ht ) : ∂K0 → Sk−1 connecting the map g1 with
the map

h1(x) = g1(x) − g1(−x)

‖g1(x) − g1(−x)‖ ,

which is antipodal in the sense that h1(−x) = −h1(x). By [13, Chap. 4, Sect. 7.10],
each antipodal map between spheres of the same dimension is not homotopically
trivial. Consequently, the antipodal map h1 : ∂K0 → Sk−1 is not homotopically triv-
ial. On the other hand, h1 is homotopic to the map h0 = g1, which is homotopic to
g0|∂K0 and the latter map is homotopically trivial since the boundary ∂K0 of the
cube K0 is contractible in the boundary ∂K of K . This contradiction completes the
proof of Theorem 5. �
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4 T -shaped sets in R
n

Theorem 5, proved in the preceding section, yields an upper bound for the numbers
ck(Z

k). A lower bound for the numbers cB
k (Rk) will be obtained by the technique of

T -shaped sets created in [1].
Let R+ = [0,∞) be the closed half-line. For every n ≥ 0 consider the subset

T0 ⊂ R
0 defined inductively:

T0 = ∅ ⊂ R
0 = {0}, T1 = {0} ⊂ R

1, and

Tn = (
R

n−1 × {0}) ∪ (Tn−1 × R+) ⊂ R
n

for n > 1.

Definition 4 A subset C ⊂ R
n is called T -shaped if f (C) ⊂ R × Tn−1 for some

affine transformation f : R
n → R × R

n−1. The smallest cardinality of a subset A ⊂
R

n, which is not T -shaped is denoted by t (Rn).

Let us describe the geometric structure of T -shaped sets.
We say that for k ≤ n, hyperplanes H1, . . . ,Hk in R

n are in general position if
they are pairwise distinct and their normal vectors are linearly independent. This
happens if and only if there is an affine transformation f : R

n → R
n that maps the

ith hyperplane onto the hyperplane R
i−1 × {0} × R

n−i for all i ∈ {1, . . . , k}.
We shall say that a hyperplane H ⊂ R

n does not separate a subset S ⊂ R
n+1

if S lies in one of two closed half-spaces bounded by the hyperplane H . Such a
hyperplane H will be called non-separating for S. A hyperplane H is called a support
hyperplane for S if H ∩ S �= ∅ and H does not separate S.

Proposition 2 Let n ∈ N. A subset S ⊂ R
n+1 is T -shaped if and only if

S ⊂ H1 ∪ · · · ∪ Hn

for some hyperplanes H1, . . . ,Hn in general position such that each hyperplane Hi ,
1 ≤ i ≤ n, does not separate the set S \ (H1 ∪ · · · ∪ Hi−1).

Proof This proposition can be easily derived from the equality

R × Tn =
n−1⋃

i=0

R
n−i × {0} × R

i+

that can be easily proved by induction on n. �

By Lemma 7 of [1], T -shaped subsets of Euclidean spaces R
k are k-centerpole for

Borel colorings. Consequently, t (Rn) ≤ cB
n (Rn). This gives us a lower bound for the

numbers cB
k (Rn) and ck(R

n):

Proposition 3 t (Rk) ≤ cB
k (Rk) ≤ cB

k (Rn) ≤ ck(R
n) for any finite k ≤ n.
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In the following theorem we collect all the available information on the numbers
t (Rn).

Theorem 6

1. t (R1) = 1,
2. t (R2) = 3,
3. t (R3) = 6,
4. t (R4) = 12,
5. t (Rn) ≤ n2 − n + 1 for every n ≥ 1,
6. t (Rn) ≥ t (Rn−1) + n + 1 for any n ≥ 4,
7. t (Rn) ≥ 1

2 (n2 + 3n − 4) for any n ≥ 4.

Proof

1. Since T0 = ∅, a subset of R
1 is T -shaped if and only if it is empty. Consequently,

t (R1) = 1.
2. Since T1 = {0} ⊂ R

1, a subset C ⊂ R
2 is T -shaped if and only if C lies in an affine

line. Consequently, t (R2) = 3.
3. By Theorem 5, the 6-element

(2
0

)
-sandwich Ξ2

0 is 3-centerpole in R
3. Conse-

quently, c3(R
3) ≤ 6. By Proposition 3, t (R3) ≤ c3(R

3) ≤ 6. To see that t (R3) ≥ 6,
we need to check that a subset C ⊂ R

3 of cardinality |C| ≤ 5 is T -shaped, which
means that after a suitable affine transformation of R

3, C can be embedded into
R × T2. By the definition, T2 = R × {0} ∪ {0} × R+.

Consider the convex hull conv(C) of C in R
3. If C lies in an affine plane H ,

then applying to R
3 a suitable affine transformation, we can assume that C ⊂ H =

R × R × {0} ⊂ R × T2. If C does not lie in a plane, then the convex polyhedron
conv(C) has a supporting plane H1 such that |H1 ∩ C| ≥ 3. So, C \ H1 lies in
one of the closed half-spaces with respect to the plane H1. Denote this subspace
by H+

1 . The set C \ H1 has cardinality |C \ H1| ≤ 2 and hence it lies in an affine
plane H2 ⊂ R

3 that meets H1. Find an affine transformation f : R
3 → R

3 such
that f (H1) = R×R×{0}, f (H+

1 ) = R×R×R+ and f (H2) = {R}× {0}× {R}.
Then

f (C) ⊂ R × R × {0} ∪ R × {0} × R+ = R × T2

and hence C is T -shaped.
4. By Theorem 5, the

(3
1

)
-sandwich Ξ3

1 is 4-centerpole in Z
4. Consequently,

t
(
R

4) ≤ c4
(
R

4) ≤ c4
(
Z

4) ≤ ∣∣Ξ3
1

∣∣ = 24 − 1 −
(

3

1

)
= 12.

The reverse inequality t (R4) ≥ 12 will be proved in Lemma 2 below.
5. Let C ⊂ R

n be a set consisting of n2 − n + 1 = n(n − 1) + 1 points in general
position. This means that no (n + 1)-element subset of C lies in a hyperplane.
Then C cannot be covered by less than n hyperplanes and consequently C is not
T -shaped (because the set R × Tn−1 lies in the union of (n − 1) hyperplanes).
Then t (Rn) ≤ |C| = n2 − n + 1.
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6. First we prove the inequality

t
(
R

n
) ≥ min

{
2t

(
R

n−1), t
(
R

n−1) + n + 1
}

(1)

for every n ≥ 2. Take any subset C ⊂ R
n of cardinality |C| < min{2t (Rn−1),

t (Rn−1) + n + 1}. We need to show that C is T -shaped.
Consider the convex hull conv(C) of C in R

n. If conv(C) lies in some hyper-
plane, then C is T -shaped by the definition. So, we assume that conv(C) does not
lie in a hyperplane and then conv(C) is a compact convex body in R

n. Let H be
a supporting hyperplane of conv(C) having maximal possible cardinality of the
intersection C ∩ H . It is clear that |C ∩ H | ≥ n.

Now two cases are possible:
(a) The set C \H lies in a hyperplane H1, parallel to H . Then H1 is a supporting

hyperplane of conv(C) and then |C ∩ H1| ≤ |C ∩ H | by the choice of H . Now we
see that |C ∩ H1| ≤ 1

2 |C| < t(Rn−1).
Applying to R

n = R
n−1 × R a suitable affine transformation, we can assume

that H = R
n−1 × {0} and C \ H ⊂ R

n−1 × R+. Let pr : R
n → R

n−1 be the coor-
dinate projection. Since |prn(C \ H)| < t(Rn−1), the set C′ = prn(C \ H) is T -
shaped. This means that there is an affine transformation f : R

n−1 → R
n−1 such

that f (C′) ⊂ R × Tn−2. This affine transformation f induces the affine transfor-
mation

Φ : R
n−1 × R → R

n−1 × R, Φ(x, y) = (
f (x), y

)
,

such that

Φ(C) = Φ(C ∩ H) ∪ Φ(C \ H) ⊂ (
R × R

n−2 × {0}) ∪ (R × Tn−2 × R+)

= R × Tn−1.

The affine transformation Φ witnesses that the set C is T -shaped.
(b) The set C \ H does not lie in a hyperplane parallel to H . Then C \ H con-

tains two distinct points x, y such that the vector �xy is not parallel to H . Apply-
ing to R

n = R
n−1 × R a suitable affine transformation, we can assume that H =

R
n−1 ×{0}, C \H ⊂ R

n−1 ×R+, and under the projection pr : R
n−1 ×R → R

n−1

the images of the points x and y coincide. Then the projection C′ = pr(C \H) has
cardinality |C′| ≤ |C \ H | − 1 < |C| − |C ∩ H | − 1 < t(Rn−1) + n + 1 − n − 1 =
t (Rn−1). Continuing as in the preceding case, we can find an affine transformation
Φ , witnessing that C is a T -shaped set in R

n.
This proves the inequality (1). By analogy we can prove that t (Rn) ≥

t (Rn−1)+ n. Since t (R1) = 1, by induction we can show that t (Rn) ≥ 1
2n(n+ 1).

In particular, t (Rn−1) ≥ 1
2n(n − 1) ≥ n + 1 for all n ≥ 4. In this case

t
(
R

n
) ≥ min

{
2t

(
R

n−1), t
(
R

n−1) + n + 1
} = t

(
R

n−1) + n + 1.

7. The lower bound t (Rn) ≥ 1
2 (n2 + 3n− 4), n ≥ 4, will be proved by induction. For

n = 4 it is true according to the statement (4). Assuming that it is true for some
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n > 4 and applying the lower bound (6), we get

t
(
R

n+1) ≥ t
(
R

n
) + (n + 1) + 1 ≥ 1

2

(
n2 + 3n − 4

) + n + 2

= 1

2

(
(n + 1)2 + 3(n + 1) − 4

)
.

To finish the proof of Theorem 6, it remains to prove the promised:

Lemma 2 Each subset C ⊂ R
4 of cardinality |C| < 12 is T -shaped.

Proof Assume that some subset C ⊂ R
4 of cardinality |C| < 12 is not T -shaped.

Without loss of generality, |C| = 11.
We recall that a hyperplane H ⊂ R

4 is called a support hyperplane for C if C ∩
H �= ∅ and H does not separate C (which means that C lies in a closed half-space
H+ bounded by the hyperplane). �

Claim 9 Each support hyperplane H ⊂ R
4 for C has at most five common points

with C.

Proof Assume that H is a support hyperplane for C with |H ∩ C| > 5. After a suit-
able affine transformation of R

4, we can assume that H = R
3 ×{0} and C ⊂ R

3 ×R+.
Let pr : R

4 → R
3 be the coordinate projection. Since |C \ H | = |C| − |C ∩ H | <

11 − 5 = 6 and t (R3) = 6 (by Theorem 6(3)), pr(C \ H) is T -shaped in H and so C

is T -shaped R
4. �

Claim 10 For any two parallel hyperplanes H1 and H2 in R
4 the set C \ (H1 ∪ H2)

is non-empty.

Proof Otherwise one of these hyperplanes contains more than six points, which con-
tradicts Claim 9. �

Claim 11 Each support hyperplane H for the set C has less than five common points
with C.

Proof Previous claim guarantees the existence of two distinct points a, b ∈ C that lie
in an affine line L that meets H . After a suitable affine transformation of R

4, we can
assume that H = R

3 × {0}, C ⊂ R
3 × R+, and L = {0}3 × R. Let pr : R

4 → R
3 be

the coordinate projection. Assuming that |H ∩ C| ≥ 5 and taking into account that
pr(a) = pr(b), we conclude that

∣∣pr(C \ H)
∣∣ ≤ |C \ H | − 1 = |C| − |C ∩ H | − 1 ≤ 5 < 6 = t

(
R

3).

It follows that pr(C \ H) is T -shaped in R
3 and then C is T -shaped in R

4. �

The characterization of T -shaped sets given in Proposition 2 implies:
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Claim 12 If H1 is a support hyperplane for C, H2 is a support hyperplane for C \H1
and H1,H2 are not parallel, then |C \ (H1 ∪H2)| ≥ 3 and if |C \ (H1 ∪H2)| = 3, then
the set C \ (H1 ∪ H2) does not lie in a line but lies in a plane, parallel to H1 ∩ H2.

Claim 13 If H1 and P2 are parallel support hyperplanes for C and |H1 ∩ C| = 4,
then |P2 ∩ C| = 1.

Proof By Claim 11, C \ H1 does not lie in a hyperplane. Now consider four cases.

(1) |P2 ∩ C| > 4. In this case C is T -shaped by Claim 11.
(2) |P2 ∩ C| = 4. We claim that the set P2 ∩ C does not lie in a plane P . Otherwise

P can be enlarged to a support hyperplane that contains ≥ 5 points of C, which
is forbidden by Claim 11. Therefore, the convex hull of P2 ∩ C is a convex body
in P2 and we can find a support hyperplane H2 for C \ H1 that meets H1, has
at least four common points with C \ H1 and exactly three common points with
the set C ∩ P2. In this case the unique point c2 of the set C ∩ P2 \ H2 lies in
C \ (H1 ∪ H2). By Proposition 2, the set C \ (H1 ∪ H2) contains exactly three
points that lie in a plane parallel to H1 ∩ H2. Since this set contains the point
c2 ∈ C ∩ P2, we conclude that C \ (H1 ∪ H2) ⊂ P2 and hence |C ∩ P2| = 6,
which is a contradiction.

(3) |P2 ∩C| = 3. Let P l be a plane which contains P2 ∩C and lies in the hyperplane
P2. We claim that the set C \ (H1 ∪ P l) lies in a plane P l1 that is parallel to P l.
Let S be the set of all points x ∈ C \(H1 ∪P l) that belong to a support hyperplane
Hx to C \ H1 that has at least four common points with C \ H1 and contains
the plane P l. Claim 12 guarantees that the set C \ (H1 ∪ Hx) contains exactly
three elements and lies in a plane that is parallel to the intersection H1 ∩ Hx

(which is parallel to P l). Since the set C \ H1 does not lie in a hyperplane, the
set S contains more that one point, which implies that the set C \ (H1 ∪ P l) =⋃

x∈S C \ (H1 ∪Hx) lies in a plane P l1 that is parallel to the plane P l. Let H2 be
the hyperplane that contains the parallel planes P l and P l1. Since H2 meets H1,
we see that C ⊂ H1 ∪H2 is T -shaped by Proposition 2 and this is a contradiction.

(4) |P2 ∩ C| = 2. Since C \ H1 does not lie in a hyperplane, there is a support hy-
perplane H2 to C \ H1 such that |H2 ∩ (C \ H1)| ≥ 4 and |H2 ∩ P2 ∩ C| = 1. It
follows that the hyperplane H2 does not coincide with P2 and hence meets the
hyperplane H1. By Claim 12, the complement C \ (H1 ∪ H2) contains exactly
three points that lie in a plane, parallel to H1 ∩ H2. Since C \ (H1 ∪ H2) meets
the hyperplane P2 we conclude that C \ (H1 ∪H2) ⊂ P2 and |C ∩P2| ≥ 4, which
is a contradiction.

�

Claim 14 If P1 and P2 are parallel support hyperplanes for C and |P1 ∩ C| = 4,
then the set C \ (P1 ∪ P2) lies in a hyperplane P3 that is parallel to P1 and P2.

Proof By Claim 13, |P2 ∩C| = 1 and hence |C \ (P1 ∪P2)| = 6. Let x be the unique
point of P2 ∩ C. Take any support hyperplane H � x for the set C \ P1 such that
|H ∩ C| ≥ 4. Since H meets P1, Proposition 2 guarantees that the set C′ = C \
(P1 ∪ H) contains exactly three points that lie in a plane parallel to the intersection
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P1 ∩ H and hence parallel to P1. The hyperplane H ′ containing the set C′ ∪ {x} is a
support hyperplane for the set C \ P1. Applying Proposition 2, we conclude that the
set C′′ = C \ (P1 ∪ H ′) = C ∩ H \ P2 contains exactly three points lying in a plane
parallel to P1 ∩ H ′. Thus C \ (P1 ∪ P2) lies in two planes parallel to P1 and hence
it lies in a hyperplane P3. Proposition 2 implies that the hyperplane P3 is parallel
to P1. �

By an octahedron in a linear space L we understand a set of the form

c + {ei ,−ei : 1 ≤ i ≤ 3}
where e1, e2, e3 are linearly independent vectors in L and c ∈ L is the center of
the octahedron. Up to an affine equivalence an octahedron is a unique 6-element set
Xwith 3-dimensional affine hull A such that for each support plane P ⊂ A of X with
|P ∩ X| ≥ 3 the set X \ P contains three points and lies in a plane P ′, parallel to P .

Claim 15 If P1 and P2 are parallel support hyperplanes for X and |P1 ∩ C| = 4,
then the set C \ (P1 ∪ P2) is an octahedron that lies in a hyperplane P3, parallel
to P1.

Proof By the preceding claim, the set K = C \ (P1 ∪ P2) lies in a hyperplane P3,
parallel to P1. Let us show that K does not lie in a plane. In the opposite case, we
could find a hyperplane H2 that contains the set K and meets the hyperplane P1.
Then for each hyperplane H3 that contains the unique point C ∩ P2 and has one-
dimensional intersection with P1 ∩ H2, we get C ⊂ P1 ∪ H2 ∪ H3 witnessing that C

is T -shaped.
Thus the affine hull of K is 3-dimensional. To see that K is an octahedron, it

suffices to check that for each support plane P ⊂ P3 of K with |P ∩ K| ≥ 3 the set
K \ P contains exactly three points and lies in a plane parallel to P .

Let x be the unique point of the set C ∩ P2 and H2 be the hyperplane containing
the plane P and passing through x. It follows that H2 is a support hyperplane for
the set C \ P1. By Claim 12, the set C \ (P1 ∪ H2) = K \ P contains exactly three
elements and lies in a plane P ′ parallel to the intersection H1 ∩ H2.

Now let H ′
2 be the hyperplane that contains the support plane P ′ and passes

through the point x. Since P ′ is a support plane for K in the hyperplane P3, H3
is a support hyperplane for K ∪{x} = C \P1 in R

4. Since H ′
3 intersects P1, Claim 12

guarantees that the set C \ (P1 ∪ H ′
2) = K \ P ′ contains exactly three points and the

plane P containing these three points is parallel to P1 ∩ H ′
2 which is parallel to the

plane P ′. �

After this preparatory work we are ready to finish the proof of Lemma 2. As C is
not T -shaped, it does not lie in a hyperplane. So, we can find a support hyperplane P1
for C such that |P1 ∩ C| ≥ 4. Let P2 be a support hyperplane for C, which is parallel
to P1. By Claim 13, |P1 ∩ C| = 4 and |P2 ∩ C| = 1. Let p2 be the unique point of
the set P2 ∩ C. By Claim 15, C \ (P1 ∪ P2) is an octahedron that lies in a hyperplane
P3, parallel to the hyperplanes P1 and P2. Let c be the center of this octahedron and
2c − p2 be the point, symmetric to p2 with respect to c.
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Fix any 3-element subset F of P1 ∩ C such that 2c − p2 ∈ F if 2c − p2 ∈ C ∩ P1.
Next, find a hyperplane H1 for C that contains F and meets C \ H1 at some point a.
If a = p2, then the set C ⊂ H1 ∪ P3 ∪ (C ∩ P1 \ F) is T -shaped by Proposition 2.

Consequently, a is a point of the octahedron C ∩ P3 with center c. Let H2 be a
support hyperplane for C that is parallel to the hyperplane H1. By Claims 13 and 15,
|C ∩ H1| = 4, |C ∩ H2| = 1 and C \ (H1 ∪ H2) is an octahedron that lies in a hyper-
plane H3, parallel to H1 and H2. If H3 does not meet the octahedron C ∩ P3, then
(C ∩P3)∩ (C ∩H3) = (C ∩P3)\H1 = C ∩P3 \{a}. In this case the octahedra C ∩P3
and C ∩ H3 have five common points and hence lie in the same hyperplane P3 = H3,
which is not possible. So, the support hyperplane H3 meets the octahedron C ∩ P3 at
a single point and this point is 2c − a. In this case the octahedra C ∩ P3 and C ∩ H3
have four common points which belong to the set C ∩ P3 \ {a,2c − a} and lie in the
2-dimensional plane P3 ∩H3. This implies that the octahedra C ∩P3 and C ∩H3 have
the common center c. Since p2 ∈ C ∩H3, the point 2c−p2 belongs to the octahedron
C∩H3 ⊂ C. It follows from p2 ∈ P2 and c ∈ P3 that 2c−p2 ∈ C \(P2 ∪P3) = C∩P1
and hence 2c − p2 ⊂ F ⊂ H1 by the choice of the set F . On the other hand, 2c − p2
belongs to the hyperplane H3, which is disjoint with H1 and this is a desired contra-
diction. �

5 Enlarging non-centerpole sets

In this section we prove several lemmas on enlarging non-centerpole subsets. Namely,
we show that under certain conditions, a non-k-centerpole subset C of a topological
group X (possibly enlarged by one or two points) remains not k-centerpole in the
direct sum X ⊕ R. The group X ⊕ R can be identified with the direct product X × R

so that X is identified with the subgroup X × {0} ⊂ X × R, while the real line R is
identified with the subgroup {e} × R ⊂ X × R where e is the neutral element of the
group X.

Lemma 3 If for k ≥ 2 a subset C ⊂ X of a topological group X is not k-centerpole
(for Borel colorings), then set C is not k-centerpole in X ⊕ R.

Proof Since the set C ⊂ X is not k-centerpole (for Borel colorings), there exists
a (Borel) coloring χ : X → k such that X contains no monochromatic unbounded
subset, which is symmetric with respect to a point c ∈ C. Extend χ to a (Borel)
coloring χ̃ : X × R → k letting

χ̃ (x, t) =

⎧
⎪⎨

⎪⎩

χ(x) if t = 0,

0 if t < 0,

1 if t > 0.

This coloring witnesses that C is not k-centerpole in X ⊕ R (for Borel colorings). �

Lemma 4 If for k ≥ 3 a subset C ⊂ X of a topological group X with cB
2 (X) ≥ 2 is

not k-centerpole (for Borel colorings), then for each x ∈ X × (0,∞) the set C ∪ {x}
is not k-centerpole for (Borel) colorings of the topological group X ⊕ R.
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Proof Without loss of generality we may assume that x = (e,1) where e is the neutral
element of topological group X. Fix a (Borel) coloring χ : X → k witnessing that the
subset C ⊂ X is not k-centerpole (for Borel colorings).

This coloring induces a (Borel) 2-coloring χ2 : X → 2 defined by

χ2(x) = min
({0,1} \ χ

(
x−1)) for x ∈ X.

Since cB
2 (X) ≥ 2, there exists a Borel coloring χ1 : X → 2 witnessing that the

singleton {e} is not 2-centerpole for Borel colorings of X.
It is easy to see that the (Borel) coloring χ̃ : X × R → k defined by

χ̃ (x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(x), if t = 0,

χ1(x), if t = 1,

χ2(x), if t = 2,

0, if 1 < t �= 2,

1, if 0 < t < 1,

2 if t < 0

witnesses that the set C ∪ {(e,1)} fails to be k-centerpole for (Borel) colorings of the
topological group X ⊕ R. �

Lemma 5 cB
3 (Rm) ≥ 6 for all m ≥ 3.

Proof By Theorem 6(3) and Proposition 3, cB
3 (R3) ≥ t (R3) = 6.

Next, we check that cB
3 (R4) ≥ 6. Assuming that cB

3 (R4) < 6 find a subset C ⊂ R
4

of cardinality |C| ≤ 5, which is 3-centerpole for Borel colorings of R
4.

Since |C| ≤ 5, there is a 3-dimensional hyperplane H3 ⊂ R
4 such that

|C \ H3| ≤ 1. Since |C ∩H3| ≤ |C| < 6 = cB
3 (R3), the set C ∩H3 is not 3-centerpole

for Borel colorings of H3. By (the proof of) Proposition 4.1 of [3], cB
2 (R3) = 3 ≥ 2.

By Lemma 4, the set C is not 3-centerpole for Borel colorings of H3 ⊕ R (which can
be identified with R

4).
Now assume that the inequality cB

3 (Rm−1) ≥ 6 has been proved for some m ≥
4. Assuming that cB

3 (Rm) ≤ 5 find a subset C ⊂ R
m of cardinality |C| ≤ 5 which

is 3-centerpole for Borel colorings of R
m. This set lies in an (m − 1)-dimensional

hyperplane and according to Lemma 3, is 3-centerpole for Borel colorings of R
m−1.

Then cB
3 (Rm−1) ≤ |C| ≤ 5, which contradicts the inductive assumption. �

Lemma 6 If for k ≥ 4 a subset C ⊂ X of a topological group X with cB
2 (X) ≥ 3 is

not k-centerpole (for Borel colorings), then for any 2-element set A ⊂ X× (0,∞) the
set C ∪ A is not k-centerpole for (Borel) colorings of the topological group X ⊕ R.

Proof Let (a, v) and (b,w) be the points of the 2-element set A ⊂ X × (0,∞). We
can assume that v ≤ w. Let χ0 : X → k be a (Borel) coloring witnessing that the set
C is not k-centerpole for (Borel) colorings of the group X.



J Algebr Comb (2011) 34:267–300 287

Consider the Borel 4-coloring ψ : R → 4 of the real line defined by

ψ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 if t ≤ 0

0 if 0 < t ≤ v

1 if v < t ≤ w

2 if w < t

and observe that for each c ∈ {0, v,w} and t ∈ R \ {c} we get ψ(t) �= ψ(2c − t).
We consider two cases.

(1) v = w. In this case we can assume that v = w = 1. Since cB
2 (X) ≥ 3, there exists

a Borel coloring χ1 : X → 2 witnessing that the 2-element set {a, b} ⊂ X is not 2-
centerpole for Borel colorings of X. The (Borel) coloring χ0 induces the (Borel)
coloring χ2 : X → 3 defined by the formula

χ2(x) = min
({0,1,2} \ {

χ0
(
ax−1a

)
, χ0

(
bx−1b

)})
.

Now we see that the (Borel) coloring χ̃ : X × R → k defined by

χ̃ (x, t) =
{

χt (x), if t ∈ {0,1,2},
ψ(t), otherwise

witnesses that the set C ∪ A is not k-centerpole for (Borel) colorings of the topo-
logical group X ⊕ R.

(2) The second case occurs when v �= w. Without loss of generality, v < w and w −
v = 1. This case has three subcases.
(2a) v = 1 and w = 2. In this case we can assume that b = e is the neutral ele-

ment of the group X.
Since cB

2 (X) ≥ 3, there is a Borel 2-coloring χ1 : X → 2 witnessing that
the singleton {a} is not 2-centerpole in X. By the same reason, there is a
Borel 2-coloring φ : X → 2 witnessing that the singleton {b} = {e} is not
2-centerpole for Borel colorings of X. Using the colorings φ and χ0 one
can define a (Borel) 3-coloring χ2 : X → 3 such that χ2(x) �= χ0(ax−1a)

for all x ∈ X and χ2(x) �= χ2(x
−1) if and only if φ(x) �= φ(x−1).

Such a coloring χ2 : X → 3 can be defined by the formula

χ2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(3 \ {χ0(axa),χ0(ax−1a)}), if φ(x) = φ(x−1);
φ(x),

if χ0(ax−1a)�=φ(x)�=φ(x−1)�=χ0(axa);
min(3 \ {φ(x−1),χ0(ax−1a)}),

if χ0(ax−1a) = φ(x)�=φ(x−1)�=χ0(axa);
φ(x),

if χ0(ax−1a)�=φ(x)�=φ(x−1) = χ0(axa);
φ(x−1),

if χ0(ax−1a) = φ(x)�=φ(x−1) = χ0(axa).
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Let χ3 : X → 2 be the Borel 2-coloring defined by χ3(x) = 1 − χ1(x
−1)

for x ∈ X. It is clear that χ3(x
−1) �= χ1(x) for all x ∈ X. Finally, consider

the Borel 2-coloring χ4 : X → 2 defined by

χ4(x) = min
({0,1} \ {

χ0
(
x−1)}) for x ∈ X.

The (Borel) colorings ψ,χ0, χ1, χ2, χ3, χ4 compose a (Borel) k-coloring
χ̃ : X × R → k,

χ̃ (x, t) =
{

χt (x), if t ∈ {0,1,2,3,4},
ψ(t), otherwise,

witnessing that the set C ∪ A is not k-centerpole for (Borel) colorings of
X ⊕ R.

(2b) v = 2 and w = 3. Since cB
2 (X) ≥ 3 > 1, there is a Borel 2-coloring

χ2 : X → 2 witnessing that the singleton {a} is not 2-centerpole for Borel
colorings of X. By the same reason, there is a Borel 2-coloring χ3 : X → 2
witnessing that the singleton {b} is not 2-centerpole for Borel colorings
of X.

Next consider the (Borel) colorings χ1 : X → 2, χ4 : X → 3, and χ6 :
X → 2 defined by the formulas

χ1(x) = 1 − χ3
(
ax−1a

)
,

χ4(x) = min
(
3 \ {

χ0
(
ax−1a

)
, χ2

(
bx−1b

)})
,

χ6(x) = min
(
2 \ {

χ0
(
bx−1b

)}
).

The (Borel) colorings ψ and χt , t ∈ {0,1,2,3,4,6}, compose the (Borel)
coloring χ̃ : X × R → k defined by

χ̃ (x, t) =
{

χt (x), if t ∈ {0,1,2,3,4,6},
ψ(t), otherwise.

This coloring χ̃ witnesses that the set C ∪ A is not k-centerpole for (Borel)
colorings of X ⊕ R.

(2c) v /∈ {1,2}. Since cB
2 (X) > 1 there is a Borel 2-coloring χv : X → 2 witness-

ing that the singleton {a} is not 2-centerpole for Borel colorings of X. By
the same reason, there is a Borel 2-coloring χw : X → {1,2} witnessing that
the singleton {b} is not 2-centerpole for Borel colorings of X.

Next, define the (Borel) colorings χ2v,χ2w : X → 3 by the formula

χ2v(x) = min
(
3 \ {

χ0
(
ax−1a

)
,ψ(2)

})
and

χ2w(x) = min
(
2 \ {

χ0
(
bx−1b

)})
.

Here let us note that the points 2v and 2 are symmetric with respect to w in
the group R.



J Algebr Comb (2011) 34:267–300 289

Finally, define a (Borel) k-coloring χ̃ : X ⊕ R → k letting

χ̃ (x, t) =
{

χt (x) if t ∈ {0, v,w,2v,2w}
ψ(t) otherwise.

This coloring witnesses that the set C ∪ A is not k-centerpole for (Borel)
colorings of the topological group X ⊕ R.

�

Lemma 7 cB
4 (Rm) ≥ 8 for all m ≥ 4.

Proof This lemma will be proved by induction on m ≥ 4. For m = 4 the inequality
cB

4 (R4) ≥ t (R4) = 12 ≥ 8 follows from Lemma 2. Assume that for some m ≥ 4 we
know that cB

4 (Rm) ≥ 8. The inequality cB
4 (Rm+1) ≥ 8 will follow as soon as we

check that each 7-element subset C ⊂ R
m+1 is not 4-centerpole for Borel colorings

of R
m+1.

Given a 7-element subset C ⊂ R
m+1, find a support m-dimensional hyperplane

H ⊂ R
m+1 that has at least min{m+1, |C|} ≥ 5 common points with the set C. After

a suitable shift, we can assume that the intersection C ∩ H contains the origin of
R

m+1. In this case H is a linear subspace of R
m+1 and R

m+1 can be written as the
direct sum R

m+1 = H ⊕ R.
Since |H ∩ C| ≤ |C| ≤ 7, the inductive assumption guarantees that H ∩ C is not

4-centerpole for Borel colorings of H . By Lemma 5, cB
3 (Rm) ≥ 3. Since |C \H | ≤ 2,

we can apply Lemma 6 and conclude that C is not 4-centerpole for Borel colorings
of the topological group H ⊕ R = R

m+1. �

6 Centerpole sets in subgroups and groups

It is clear that each k-centerpole subset C ⊂ H in a subgroup H of a topological
group G is k-centerpole in G. In some cases the converse statement also is true.

Lemma 8 If a subset C of an abelian topological group G is k-centerpole in G for
some k ≥ 2, then it is k-centerpole in the subgroup H = 〈C〉 + G[2].

Proof Observe that for each x ∈ G \ H the cosets c + 2〈C〉 and −x + 2〈C〉 are
disjoint. Assuming the opposite, we would conclude that 2x ∈ 2〈C〉 and hence x ∈
〈C〉 + G[2] = H , which contradicts the choice of x.

Now we are able to prove that the set C is k-centerpole in the group H . Given
any k-coloring χ : H → k, extend χ to a k-coloring χ̃ : G → k such that for each
x ∈ G \ H the coset x + 2〈C〉 is monochromatic and its color is different from the
color of the coset −x + 2〈C〉.

Since C is k-centerpole in the group G, there is an unbounded monochromatic
subset S ⊂ G such that S = 2c − S for some c ∈ C. We claim that S ⊂ H . Assuming
the converse, we would find a point x ∈ S \ H and conclude that the coset x + 2〈C〉
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has the same color as the coset 2c − x + 2〈C〉 = −x + 2〈C〉, which contradicts the
choice of the coloring χ̃ . �

The Borel version of this result is a bit more difficult.

Lemma 9 Let k ≥ 2 and H be a Borel subgroup of an abelian topological group G

such that G[2] ⊂ H . A subset C ⊂ H is k-centerpole for Borel colorings of H if C

is k-centerpole for Borel colorings of G, the subgroup 2H = {2x : x ∈ H } is closed
in G, and the subspace X = (G/2H) \ (H/2H) contains a Borel subset B that has
one-point intersection with each set {x,−x}, x ∈ X. Such a Borel set B ⊂ X exists if
the space X is paracompact.

Proof Given any Borel k-coloring χ : H → k, extend χ to a Borel k-coloring χ̃ :
G → k defined by

χ̃(x) =

⎧
⎪⎨

⎪⎩

χ(x), if x ∈ H,

0, if x ∈ G \ H and x + 2H ∈ B,

1, if x ∈ G \ H and x + 2H /∈ B.

Since C is k-centerpole for Borel colorings of the group G, there is an unbounded
monochromatic subset S ⊂ G, symmetric with respect to some point c ∈ C. We claim
that S ⊂ H , witnessing that C is k-centerpole for Borel colorings of H .

Assuming conversely that S �⊂ H , find a point x ∈ S \ H . It follows that x and
2c − x have the same color. If this color is 0, then the cosets x + 2H and 2c − x +
2H = −x + 2H = −(x + 2H) both belong to the set B ⊂ G/2H . By our hypothesis
B has one-point intersection with the set {x + 2H,−(x + 2H)}. Consequently, x +
2H = −(x + 2H) and hence 2x ∈ 2H and x ∈ H +G[2] = H , which contradicts the
choice of the point x. If the color of the cosets x +2H and 2c−x +2H = −(x +2H)

is 1, then (x + 2H),−(x + 2H) /∈ B and then x + 2H = −(x + 2H) because B

has one-point intersection with the set {x + 2H,−(x + 2H)}. This again leads to a
contradiction. �

Claim 16 If the space X = (G/2H) \ (H/2H) is paracompact, then X contains a
Borel subset B ⊂ X that has one-point intersection with each set {x,−x}, x ∈ X.

Consider the action

α : C2 × X → X, α : (ε, x) �→ ε · x,

of the cyclic group C2 = {1,−1} on the space X and let X/C2 = {{x,−x} : x ∈ X} be
the orbit space of this action. It is easy to check that the orbit map q : X → X/C2 is
closed and then the orbit space X/C2 is paracompact as the image of a paracompact
space under a closed map, see Michael, Theorem 5.1.33 in [7].

Since H ⊃ 2H + G[2], for every x ∈ G \ H the cosets x + 2H and −x + 2H

are disjoint, which implies that each point x ∈ X is distinct from −x. Then each
point x ∈ X has a neighborhood Ux ⊂ X such that Ux ∩ −Ux = ∅. Replacing Ux
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by Ux ∩ (−U−x) we can additionally assume that Ux = −U−x . Now consider the
open neighborhood U±x = q(Ux) = q(U−x) ⊂ X/C2 of the orbit {x,−x} ∈ X/C2 of
the point x ∈ X. By the paracompactness of X/C2 the open cover {U±x : x ∈ X} of
X/C2 has a Σ -discrete refinement U = ⋃

n∈ω Un. This means that each family Un,
n ∈ ω, is discrete in X/C2. For each U ∈ U find a point xU ∈ X such that U ⊂ U±xU

.
For every n ∈ ω consider the open subset Wn = ⋃

U∈Un
q−1(U) ∩ UxU

of the space
X and let ±Wn = −Wn ∪ Wn. One can check that the Borel subset

B =
⋃

n∈ω

(

Wn

∖ ⋃

i<n

±Wi

)

of X has one-point intersection with each orbit {x,−x}, x ∈ X.
The following lemma will be helpful in the proof of the upper bound rcB

k (G) ≤
cB
k (G) − 2 from Proposition 1.

Lemma 10 Let k ≥ 4 and C ⊂ R
ω be a finite k-centerpole subset for Borel colorings

of R
ω. Then the affine hull of C in R

ω has dimension ≤ |C| − 3.

Proof This lemma will be proved by induction on the cardinality |C|.
First observe that |C| ≥ cB

k (Rω) ≥ cB
3 (Rω) ≥ 6 by Lemma 5. So, we start the

induction with |C| = 6.
Suppose that either m = 6 or m > 6 and the lemma is true for all C with 6 ≤ |C| <

m. Fix a k-centerpole subset C ⊂ R
ω for Borel colorings of cardinality |C| = m. We

need to show that the affine hull A of C has dimension dimA ≤ m − 3. Assuming
the opposite, we can find a support hyperplane H ⊂ A for C such that |H ∩ C| ≥
dimH + 1 = dimA ≥ |C| − 2 and hence 0 < |C \ H | ≤ 2. After a suitable shift, we
can assume that H contains the origin of R

ω and hence is a subgroup of R
ω. In this

case the affine hull A is a linear subspace in R
ω that can be identified with the direct

sum H ⊕ R. It follows that dimH = dimA − 1 ≥ |C| − 2 − 1 ≥ |C ∩ H | − 2.
We claim that the set H ∩ C is not k-centerpole for Borel colorings of the topo-

logical group H .
If 6 ≤ |C ∩ H | < |C| = m, then by the inductive assumption, the set C ∩ H is

not k-centerpole for Borel colorings of R
ω because its affine hull H has dimension

dimH ≥ |C∩H |−2. If |C∩H | < 6 (which happens for m = 6), then the inequalities
cB
k (H) ≥ cB

3 (H) ≥ 6 = m = |C| > |H ∩ C| given by Lemma 5 guarantee that C ∩ H

is not k-centerpole for Borel colorings of R
ω.

By (the proof) of Proposition 1 in [3], cB
2 (H) = 3. Since H is a support hyperplane

for C and |C \H | ≤ 2, we can apply Lemma 6 and conclude that C is not k-centerpole
for Borel colorings of H ⊕ R = A. Since the subgroup 2A is closed in the metrizable
group R

ω, by Lemma 9, C is not k-centerpole for Borel colorings of R
ω and this is

a desired contradiction that completes the proof of the inductive step and base of the
induction. �

7 Stability properties

In this section we shall prove some particular cases of the Stability Theorem 4.
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Lemma 11 For any numbers k ≥ 2 and n ≤ m

cB
k

(
R

n × Z
m−n

) =
{

cB
k (Rn × Z

ω), if m ≥ rcB
k (Rn × Z

ω),

cB
k (Rω), if n ≥ rcB

k (Rω).

Proof First assume that m ≥ rcB
k (Rn × Z

ω). By the definition of the number r =
rcB

k (Rn × Z
ω), the topological group G = R

n × Z
ω contains a k-centerpole subset

C ⊂ G of cardinality |C| = cB
k (G) that generates a subgroup 〈C〉 ⊂ Z

ω of Z-rank r .
It follows that the linear subspace L ⊂ R

n × R
ω generated by the set C has dimen-

sion r . Then H = L ∩ G, being a closed subgroup of Z-rank r in the r-dimensional
vector space L is topologically isomorphic to R

s × Z
r−s for some s ≤ r ≤ m, see

Theorem 6 in [10]. Taking into account that H is a closed subgroup of G = R
n ×Z

ω,
we conclude that s ≤ n. By Lemma 9, the set C is k-centerpole in H for Borel color-
ings. Consequently,

cB
k

(
R

n × Z
ω
) ≤ cB

k

(
R

n × Z
m−n

) ≤ cB
k

(
R

s × Z
r−s

) = cB
k (H) ≤ |C| = cB

k (G)

= cB
k

(
R

n × Z
ω
)

implies the desired equality cB
k (Rn × Z

m−n) = cB
k (Rn × Z

ω).
Now assume that n ≥ rcB

k (Rω). In this case we can repeat the above argument
for a set C ⊂ R

ω of cardinality |C| = cB
k (Rω) that generates a subgroup 〈C〉 ⊂ R

ω

of Z-rank r = rcB
k (Rω). Then the linear subspace L ⊂ R

ω generated by the set C

is topologically isomorphic to R
r . By Lemma 9, the set C is k-centerpole for Borel

colorings of L. Since R
r ↪→ R

n × Z
m−n ↪→ R

ω, we get

cB
k

(
R

ω
) ≤ cB

k

(
R

n × Z
m−n

) ≤ cB
k

(
R

r
) = cB

k (L) ≤ |C| = cB
k

(
R

ω
)

and hence cB
k (Rn × Z

m−n) = cB
k (Rω). �

Lemma 12 ck(R
n × Z

m−n) = cB
k (Zω) for any numbers k ∈ N and n ≤ m with m ≥

cB
k (Zω).

Proof For k = 1 the equality ck(R
n × Z

m−n) = 1 = cB
k (Zω) is trivial. So we assume

that k ≥ 2.
We claim that cB

k (Zω) ≤ ck(R
m). Indeed, take any k-centerpole subset C ⊂ R

ω

of cardinality |C| = ck(R
m). By Lemma 8, the set C is k-centerpole in the subgroup

〈C〉 ⊂ R
ω generated by C. Being a torsion-free finitely generated abelian group, 〈C〉

is algebraically isomorphic to Z
r for some r ∈ ω. Then

ck

(
Z

r
) ≤ ck

(〈C〉) ≤ |C| = ck

(
R

m
)
.

On the other hand, Lemma 11 ensures that

ck

(
R

m
) ≤ ck

(
Z

m
) = cB

k

(
Z

m
) = cB

k

(
Z

ω
)
.
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Unifying these inequalities we get

cB
k

(
Z

ω
) ≤ cB

k

(
Z

r
) = ck

(
Z

r
) ≤ ck

(
R

m
)≤ck

(
R

n × Z
m−n

) ≤ ck

(
Z

m
) = cB

k

(
Z

m
)

= cB
k

(
Z

ω
)
,

which implies the desired equality ck(R
n × Z

m−n) = cB
k (Zω). �

8 Proof of Theorem 3

1. The upper bound ck(Z
n) ≤ ck(Z

k) ≤ 2k −1−maxs≤k−2
(
k−1
s−1

)
for k ≤ n follows

from Theorem 5.
2. By Proposition 3 and Theorem 6(7), cn(Z

n) ≥ cn(R
n) ≥ cB

n (Rn) ≥ t (Rn) ≥
1
2 (n2 + 3n − 4).

For technical reasons, first we prove the statement (4) of Theorem 3 and after that
return back to the statement (3).

4. Let 1 ≤ k ≤ m ≤ ω be two numbers. We need to prove that cB
k (Rm) <

cB
k+1(R

m+1) and ck(R
m) < ck+1(R

m+1).
First we assume that m is finite. The strict inequality cB

k (Rm) < cB
k+1(R

m+1) will
follow as soon as we show that any subset C ⊂ R

m+1 of cardinality |C| ≤ cB
k (Rm)

fails to be (k + 1)-centerpole for Borel colorings of R
m+1. If C is a singleton, then

it is not (k + 1)-centerpole since cB
k+1(R

m+1) ≥ cB
2 (Rm+1) ≥ 3 by (the proof of)

Proposition 4.1 in [3]. So, C contains two distinct points a, b. Let L = R · (a −
b) ⊂ R

m+1 be the linear subspace generated by the vector a − b. Write the space
R

m+1 as the direct sum R
m+1 = H ⊕L where H is a linear m-dimensional subspace

of R
m+1 and consider the projection pr : R

m+1 → H whose kernel is equal to L.
Since pr(a) = pr(b), the projection of the set C onto the subspace H has cardinality
|pr(C)| < |C| ≤ cB

k (Rm) = cB
k (H) and hence prH (C) is not k-centerpole for Borel

k-colorings of the group H . Consequently, there is a Borel k-coloring χ : H → k

such that no monochromatic unbounded subset of H is symmetric with respect to a
point c ∈ pr(C).

For a real number γ ∈ R, consider the half-line L+
γ = {t (a − b) : t ≥ γ } of L.

Since the subset C ⊂ R
m+1 is finite, there is γ ∈ R such that C ⊂ H + L+

γ .
Now define a Borel (k + 1)-coloring χ̃ : H ⊕ L → k + 1 = {0, . . . , k} by the

formula

χ̃ (x) =
{

χ(pr(x)), if x ∈ H + L+
γ ,

k, otherwise.

It can be shown that this coloring witnesses that C is not (k + 1)-centerpole for Borel
colorings of R

m+1 = H ⊕ L.
Now assume that the number m is infinite. Then for the finite number r =

max{rcB
k (Rω), rcB

k+1(R
ω)} we get cB

k (Rr ) = cB
k (Rω) and cB

k+1(R
r+1) = cB

k+1(R
ω)

by the stabilization Lemma 11. Since r is finite, the case considered above guaran-
tees that

cB
k

(
R

m
) = cB

k

(
R

m
) = cB

k

(
R

r
)
< cB

k+1

(
R

r+1) = cB
k+1

(
R

ω
) = ck+1

(
R

m+1).
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By analogy we can prove the strict inequality ck(R
m) < ck(R

m+1).
3. Now we are able to prove the lower bound cB

k (Rω) ≥ k + 4 from the statement
(3) of Theorem 3. By the preceding item, cB

k+1(R
ω) ≥ 1 + cB

k (Rω) for all k ∈ N. By
induction, we shall show that cB

k (Rω) ≥ k + 4 for all k ≥ 4. For k = 4 the inequality
cB

4 (Rω) ≥ 8 ≥ 4 + 4 was proved in Lemma 7. Assuming that cB
k (Rω) ≥ k + 4 for

some k ≥ 4, we conclude that cB
k+1(R

ω) > cB
k (Rω) ≥ k + 4 and hence cB

k+1(R
ω) ≥

(k + 1) + 4.
Now we see that for every n ≥ k ≥ 4 we have the desired lower bound:

cB
k

(
R

n
) ≥ cB

k

(
R

ω
) ≥ k + 4.

5. Let k ∈ N and n,m ∈ ω ∪ {ω} be numbers with 1 ≤ k ≤ n + m. We need to
prove that cB

k (Rn × Z
m) < cB

k+1(R
n × Z

m+1) and ck(R
n × Z

m) < ck+1(R
n × Z

m+1).
According to the Stabilization Lemma 11, it suffices to consider the case of finite
numbers n,m.

First we prove the inequality cB
k (Rn ×Z

m) < cB
k+1(R

n ×Z
m+1). We need to show

that each subset C ⊂ R
n × Z

m+1 of cardinality |C| ≤ cB
k (Rn × Z

m) is not (k + 1)-
centerpole in R

n × Z
m+1 for Borel colorings. We shall identify R

n × Z
m+1 with

the direct sum R
n ⊕ Z

m+1. Since k ≤ n + m, Theorem 5 implies that the numbers
|C| ≤ cB

k (Rn × Z
m) ≤ ck(Z

n+m) ≤ ck(Z
k) all are finite.

Three cases are possible.

(i) |C| ≤ 1. In this case we can assume that C = {0} and take any coloring χ :
R

n⊕Z
m+1 → k+1 such that the color of each non-zero element x ∈ R

n ×Z
m+1

differs from the color of −x. This coloring witnesses that C is not (k + 1)-
centerpole in R

n × Z
m+1.

(ii) |C| > 1 and C ⊂ z + R
n for some z ∈ Z

m+1. Without lose of generality, z =
0 and hence C ⊂ R

n. Take two distinct points a, b ∈ C and consider the 1-
dimensional linear subspace L = R · (a −b) ⊂ R

n generated by the vector a −b.
Write the space R

n as the direct sum R
n = L ⊕ H where H is a linear (n − 1)-

dimensional subspace of R
n and consider the projection pr : R

n ⊕Z
m+1 → H ⊕

Z
m+1 whose kernel is equal to L. Since pr(a) = pr(b), the projection of the set

C onto the subgroup H ⊕ Z
m+1 of R

n ⊕ Z
m+1 has cardinality

∣∣pr(C)
∣∣ < |C| ≤ cB

k

(
R

n × Z
m
) ≤ cB

k

(
R

n−1 × Z
m+1) = cB

k

(
H ⊕ Z

m+1)

and hence prH (C) is not k-centerpole for Borel colorings of the group H ⊕
Z

m+1. Consequently, there is a Borel k-coloring χ : H ⊕ Z
m+1 → k such that

no monochromatic unbounded subset of H ⊕ Z
m+1 is symmetric with respect

to a point c ∈ pr(C).
For a real number γ ∈ R, consider the half-line L+

γ = {t (a − b) : t ≥ γ } of L.

Since the subset C ⊂ R
n ⊕Z

m+1 = H ⊕L⊕Z
m+1 is finite, there is γ ∈ R such

that C ⊂ H + L+
γ + Z

m+1.

Now define a Borel (k+1)-coloring χ̃ : H ⊕L⊕Z
m+1 → k+1 = {0, . . . , k}

by the formula

χ̃ (x) =
{

χ(pr(x)), if x ∈ H + L+
γ + Z

m+1,

k, otherwise.
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It can be shown that this coloring witnesses that C is not (k + 1)-centerpole for
Borel colorings of R

n ⊕ Z
m+1 = H ⊕ L ⊕ Z

m+1.
(iii) The set C ⊂ R

n ⊕ Z
m+1 contains two points a, b whose projections on the sub-

space Z
m+1 are distinct. Without loss of generality, the projections of a, b on the

last coordinate are distinct. Then the 1-dimensional subspace L = R · (a − b) of
R

n × R
m+1 meets the subspace R

n ⊕ R
m and hence R

n ⊕ R
m+1 can be iden-

tified with the direct sum R
n ⊕ R

m ⊕ L. Let pr : R
n × R

m+1 → R
n × R

m be
the projection whose kernel coincides with L. Since pr is an open map, the im-
age H = pr(Rn × Z

m+1) is a locally compact (and hence closed) subgroup of
R

n × R
m, which can be written as the countable union of shifted copies of the

space R
n. By Theorem 6 of [10], H is topologically isomorphic to R

n × Z
m. It

follows from the definition of H that R
n ⊕ Z

m+1 ⊂ H ⊕ L.
Since pr(a) = pr(b), the projection of the set C has cardinality |pr(C)| <

|C| ≤ cB
k (Rn ⊕ Z

m) = cB
k (H), which means that pr(C) is not k-centerpole for

Borel colorings of H . Consequently, there is a Borel k-coloring χ : H → k such
that no monochromatic unbounded subset of H is symmetric with respect to a
point c ∈ pr(C).

For a real number γ ∈ R, consider the half-line L+
γ = {t (a − b) : t ≥ γ } of L.

Since the subset C ⊂ H ⊕ L is finite, there is γ ∈ R such that C ⊂ H + L+
γ .

Now define a Borel (k + 1)-coloring χ̃ : H ⊕ L → k + 1 by the formula

χ̃(x) =
{

χ(pr(x)), if x ∈ H + L+
γ ,

k, otherwise.

It can be shown that this coloring witnesses that C is not (k + 1)-centerpole for
Borel colorings of H ⊕ L ⊃ R

n ⊕ Z
m+1.

After considering these three cases, we can conclude that cB
k+1(R

n × Z
m+1) >

cB
k (Rn × Z

m).
Deleting the adjective “Borel” from the above proof, we get the proof of the strict

inequality

ck

(
R

n × Z
m
)
< ck+1

(
R

n × Z
m+1).

9 Proof of Theorem 2

In this section we prove Theorem 2. Let k,n,m be cardinals. We shall use known
upper bounds for the numbers ck(Z

n), lower bounds for t (Rn) and the inequality

t
(
R

n+m
) ≤ cB

k

(
R

n+m
) ≤ cB

k

(
R

n × Z
m
) ≤ ck

(
R

n × Z
m
) ≤ ck

(
Z

m
)

established in Proposition 3.

1. Assume that n+m ≥ 1. Since each singleton is 1-centerpole for (Borel) colorings
of the group R

n × Z
m, we conclude that c1(R

n × Z
m) = cB

1 (Rn × Z
m) = 1.
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2. Assume that n+m ≥ 2. The inequalities 3 ≤ t (R2) ≤ cB
2 (R2) ≤ c2(Z

2) ≤ 3 follow
from Theorem 5, 6(2) and Proposition 3.

We claim that cB
2 (Rω) ≥ 3. Assuming that cB

2 (Rω) < 3 we conclude that
rcB

k (Rω) ≤ cB
2 (Rω) − 1 ≤ 1. Then by the Stabilization Lemma 11, we get that

c2(R
1) = c2(R

ω) is finite. On the other hand, the real line has the 2-coloring
χ : R → 2, χ−1(1) = (0,∞), without unbounded monochromatic symmetric sub-
sets. This coloring witnesses that c2(R

1) = ∞ and this is a contradiction. There-
fore,

3 ≤ cB
2

(
R

ω
) ≤ cB

2

(
R

n × Z
m−n

) ≤ cB
2

(
R

n × Z
m−n

) ≤ c2
(
Z

2) = 3.

3. Assume that n + m ≥ 3. Lemma 5 and Theorem 5 imply the inequalities

6 ≤ cB
3

(
R

m
) ≤ cB

3

(
R

n × Z
m−n

) ≤ cB
3

(
R

n × Z
m−n

) ≤ c3
(
Z

3) = 6

that turn into equalities.
4. Assume that n + m = 4. Theorem 5, 6(4) and Proposition 3 imply the inequalities

12 ≤ t
(
R

4) ≤ cB
4

(
R

4) ≤ cB
4

(
R

n × Z
m
) ≤ c4

(
R

n × Z
m
) ≤ c4

(
Z

4) ≤ 12,

which actually are equalities.
5. We need to prove that cB

k (Rn × Z
m) = ∞ if k ≥ n + m + 1 < ω. This equality

will follow as soon as we check that cB
k (Rn+m) = ∞. Let Δ be a simplex in R

n+m

centered at the origin. Write the boundary ∂Δ as the union ∂Δ = ⋃n+m
i=0 Δi of its

facets. Define a Borel k-coloring χ : R
n → {0, . . . , n + m} ⊂ k assigning to each

point x ∈ R
n \{0} the smallest number i ≤ n+m such that the ray R+ ·x meets the

facet Δi . Also put χ(0) = 0. It is easy to check that the coloring χ witnesses that
the set R

n+m is not k-centerpole for Borel colorings of R
n+m and consequently,

cB
k (Rn+m) = ∞.

6. Assuming that k ≥ n + m + 1, we shall show that ck(R
n × Z

m) = ∞. If n + m

is finite, then this follows from the preceding item. So, we assume that n + m is
infinite. Then the group G = R

n × Z
m has cardinality 2n+m. By Theorem 4 of

[4], for the group G endowed with the discrete topology, we get ν(G) = log |G| =
min{γ : 2γ ≥ |G|} ≤ n + m ≤ k, which means that G admits a k-coloring without
infinite monochromatic symmetric subset. This implies that the set G is not k-
centerpole in G and thus ck(G) = ∞.

7. Assume that n + m ≥ ω and ω ≤ k < cov(M). The lower bound from The-
orem 3(3) implies that ω ≤ cB

k (Rω) ≤ cB
k (Zω). The upper bound cB

κ (Zω) ≤ ω

will follow as soon as we check that each countable dense subset C ⊂ Z
ω is

κ-centerpole for Borel colorings of Z
ω. Let χ : Z

ω → κ be a Borel κ-coloring
of Z

ω . Taking into account that Z
ω = ⋃

i∈κ χ−1(i) is homeomorphic to a dense
Gδ-subset of the real line, we conclude that for some color i ∈ κ the preimage
A = χ−1(i) is not meager in Z

ω. Being a Borel subset of Z
ω , the set A has the

Baire property, which means that for some open subset U ⊂ Z
ω the symmetric

difference A�U is meager in Z
ω. Since A is not meager, the set U is not empty.

Take any point c ∈ U ∩C and observe that V = U ∩(2c−U) is an open symmetric
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neighborhood of c. It follows that for the set B = A∩ (2c −A) the symmetric dif-
ference B�V is meager. Since V is not meager in Z

ω, the set B is not meager and
hence is unbounded in Z

ω (since totally bounded subsets of Z
ω are nowhere dense

in Z
ω). Now we see that B = A∩ (2c−A) is a monochromatic unbounded subset,

symmetric with respect to the point c, witnessing that the set C is ω-centerpole
for Borel coloring of Z

ω.

10 Proof of Theorem 1

Let k ≥ 2 be a finite cardinal number and G be an abelian ILC-group with totally
bounded Boolean subgroup G[2] and ranks n = rR(G) and m = rZ(G). Let Ḡ be the
completion of the group with respect to its (two-sided) uniformity.

We shall give the detailed proofs of the statements (3) and (4) of Theorem 1 hold-
ing under the additional assumption of the metrizability of the group G and indicate
the changes which should be made for the proof of the statements (1) and (2).

Since cB
k (Rn × Z

m−n) < ω iff k ≤ m, the statements (3), (4) of Theorem 1 will
follow as soon as we prove two inequalities:

(1) cB
k (G) ≤ cB

k (Rn × Z
m−n) if k ≤ m, and

(2) cB
k (Rn × Z

m−n) ≤ cB
k (G) if cB

k (G) is finite.

1. Assume that k ≤ m. If the Z-rank m = rZ(G) is finite, then so is the R-rank
n = rR(G) and we can find copies of the topological groups R

n and Z
m in G. Now

consider the closure H of the subgroup R
n + Z

m in G. Since G is an ILC-group
and R

n + Z
m contains a dense finitely generated subgroup, the group H is locally

compact. By the structure theorem of locally compact abelian groups [10, Theorem
25], H is topologically isomorphic to R

r ⊕ Z for some r ∈ ω and a closed subgroup
Z ⊂ H that contains an open compact subgroup K . It follows from the inclusion
R

n ⊂ H that n ≤ r . On the other hand, r ≤ rZ(G) = n. By the same reason, rZ(H) =
m = rZ(G). In particular, rZ(Z) = m − n and hence H contains an isomorphic copy
of the group R

n × Z
m−n. Now we see that rB

k (G) ≤ rB
k (Rn × Z

m−n).
Next, assume that the Z-rank m = rZ(G) is infinite but n = rR(G) is finite. By

the Stabilization Lemma 11, cB
k (Rn × Z

m−n) = cB
k (Rn × Z

ω) = cB
k (Rn × Z

r−n) for
r = rcB

k (Rn × Z
ω) ≤ cB

k (Rn × Z
ω) < ∞. Repeating the above argument we can

find a copy of the group R
n ⊕ Z

s−n in G for some finite s ≥ r and conclude that
cB
k (G) ≤ cB

k (Rn × Z
s−n) ≤ cB

k (Rn × Z
r−s) = cB

k (Rn × Z
m−n).

Finally, assume that the R-rank n = rR(G) is infinite. Then cB
k (Rn × Z

m−n) =
cB
k (Rω) = cB

k (Rr ) for r = rcB
k (Rω) ≤ cB

k (Rω) < ω. By the definition of the R-
rank rR(G) = n = ω, we can find a copy of the group R

r in G and conclude that
cB
k (G) ≤ cB

k (Rr ) = cB
k (Rn × Z

m−n). This completes the proof of the inequality
cB
k (G) ≤ cB

k (Rn × Z
m−n).

Deleting the adjective “Borel” from the above proof we get the proof of the in-
equality ck(G) ≤ ck(R

n × Z
m−n) holding for each k ≤ m.

2. Now assuming that cB
k (G) is finite and the group G is metrizable, we prove the

inequality cB
k (Rn × Z

m−n) ≤ cB
k (G).
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Fix a k-centerpole subset C ⊂ G for Borel colorings of G with cardinality |C| =
cB
k (G). The subgroup G[2] is totally bounded and hence has compact closure K2 in

the completion Ḡ of the group G. It follows that K2 ⊂ Ḡ[2]. Since G is an ILC-group,
the finitely generated subgroup 〈C〉 has locally compact closure 〈C〉 in G. It follows
from the compactness of the subgroup K2 that the sum H = 〈C〉 + K2 is a locally
compact subgroup of Ḡ. This subgroup is compactly generated because it contains a
dense subgroup generated by the compact set C + K2.

By the Structure Theorem for compactly generated locally compact abelian groups
[10, Theorem 24], H is topologically isomorphic to R

r ⊕Z
s−r ⊕K for some compact

subgroup K that contains all torsion elements of H . In particular, K2 ⊂ K . Now
we see that the subgroup 2H = {2x : x ∈ H } is closed in H and consequently, the
subgroup 2H ∩ G is closed in G. The group G is metrizable and so is the quotient
group G/2H . Then the subspace X = (G/2H) \ (H/2H) is metrizable and thus
paracompact. Since H ⊃ G[2] we can apply Lemma 9 and conclude that the set C is
k-centerpole for Borel colorings of the subgroup H ∩ G. Since H ∩ G ⊂ H , the set
C is k-centerpole for Borel colorings of the group H .

The compactness of the subgroup K ⊂ H implies that the image q(C) of C un-
der the quotient map q : H → H/K is a k-centerpole set for Borel colorings of the
quotient group H/K = R

r × Z
s−r . Since H = 〈C〉 + K2 and K2 ⊂ K , we conclude

that 〈C〉/(〈C〉 ∩ K) = q(〈C〉) = H/K = R
r × Z

s−r and hence r ≤ n and s ≤ m.
Consequently, R

r × Z
s−r ↪→ R

n × Z
m−n and

cB
k

(
R

n × Z
m−n

) ⊂ cB
k

(
R

r × Z
s−r

) = cB
k (H/K) ≤ |C| = cB

k (G).

This proves the statements (3) and (4) of Theorem 1. Deleting the adjective
“Borel” from the above proof and applying Lemma 8 instead of Lemma 9, we get the
proof of the inequality ck(R

n × Z
m−n) ≤ ck(G) under the assumption that the num-

ber ck(G) is finite. Since Lemma 8 does not require the metrizability of G, this upper
bound holds without this assumption. In such a way, we prove the statements (1)
and (2) of Theorem 1.

11 Proof of Proposition 1

Let G be a metrizable abelian ILC-group with totally bounded Boolean subgroup
G[2] and k ∈ N be such that 2 ≤ k ≤ rZ(G). Theorems 1 and 3 guarantee that
cB
k (G) = cB

k (Rn × Z
m−n) < ∞ where n = rZ(G) and m = rZ(G).

Let r = rck(G) and C ⊂ G be a subset of cardinality |C| = cB
k (G) such that

rZ(〈C〉) = r . Without loss of generality, 0 ∈ C. Since G is an ILC-group, the finitely
generated subgroup 〈C〉 has locally compact closure in G.

The totally bounded Boolean subgroup G[2] has compact closure K2 in the
completion Ḡ of the abelian topological group G. It follows that the subgroup
H = 〈C〉 + K2 of Ḡ is locally compact and compactly generated. Consequently, it
contains a compact subgroup K ⊃ K2 such that the quotient group H/K is topologi-
cally isomorphic to R

s ×Z
r−s for some r ≤ s. It follows from Lemma 8 that the set C

is k-centerpole for Borel colorings of the group H . The compactness of the subgroup
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K ⊂ H implies that the image q(C) ⊂ H/K of C under the quotient homomorphism
q : H → H/K is a k-centerpole set for Borel colorings of H/K . Consequently,

cB
k

(
R

r
) ≤ cB

k

(
R

s × Z
r−s

) = cB
k (H/K) ≤ |q(C)| ≤ |C| = cB

k (G) < ∞
and hence r ≥ k by Theorem 3(5).

Now assume that k ≥ 4. Since the set q(C) is k-centerpole for Borel colorings
of H/K = R

s × Z
r−s ⊂ R

r , Lemma 10 implies that the affine hull of q(C) in the
linear space R

r has dimension ≤ |q(C)| − 3. Since 0 ∈ q(C), the affine hull of the
set q(C) coincides with its linear hull. Consequently, r = rZ(〈C〉) = rZ(〈q(C)〉) ≤
|q(C)| − 3 ≤ |C| − 3 = cB

k (G) − 3. This completes the proof of the lower and upper
bounds

k ≤ rck(G) ≤ cB
k (G) − 3

for all k ≥ 3.
Next, we show that rck(G) = k for k ∈ {2,3}. In this case cB

k (G) = ck(Z
k) by

Theorems 1 and 2. Since rZ(G) ≥ k, the group G contains an isomorphic copy of
the group Z

k . Then each k-centerpole subset C ⊂ Z
k ⊂ G with |C| = ck(Z

k) is k-
centerpole for Borel colorings of G and thus k ≤ rcB

k (G) ≤ rZ(〈C〉) ≤ k, which im-
plies the desired equality rcB

k (G) = k.

12 Proof of Stabilization Theorem 4

Let k ≥ 2 and G be an abelian ILC-group with totally bounded Boolean subgroup
G[2]. Let n = rR(G) and m = rZ(G).

1. Assume that m = rZ(G) ≥ rcB
k (Zω). By Proposition 1, k ≤ rcB

k (Zω) ≤ rZ(G)

and then ck(G) = ck(R
n × Z

m−n) by Theorem 1. Since m = rZ(Rn × Z
m−n) ≥

rcB
k (Zω), Lemma 12 guarantees that ck(G) = cB

k (Rn × Z
m−n) = cB

k (Zω).
2. Assume that the group G is metrizable and rZ(G) ≥ rcB

k (Rn × Z
ω). By Proposi-

tion 1, k ≤ rcB
k (Rn × Z

ω) ≤ rZ(G) = m and hence cB
k (G) = cB

k (Rn × Z
m−n) by

Theorem 1. Since m = rZ(Rn × Z
m−n) ≥ rcB

k (Rn × Z
ω), Lemma 11 guarantees

that cB
k (G) = cB

Z
(Rn × Z

m−n) = cB
k (Rn × Z

ω).
3. By analogy with the preceding case we can prove that cB

k (G) = cB
k (Rω) if G is

metrizable and rR(G) ≥ rcB
k (Rω).

13 Selected open problems

By Theorem 2, cB
k (Rω) = ck(Z

ω) = ck(Z
k) for all k ≤ 4.

Problem 1 Is ck(Z
ω) = ck(Z

k) for all k ∈ N? In particular, is c4(Z
n) = 12 for every

n ≥ 4?

Problem 2 Is cB
k (Rn) = ck(R

n) for every k ≤ n?
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Theorem 3 gives upper and lower bounds for the numbers ck(Z
k) that have expo-

nential and polynomial growths, respectively.

Problem 3 Is the growth of the sequence (cn(Z
n))n∈N exponential?

By [1], for every k ∈ {1,2,3} any k-centerpole subset C ⊂ Z
k of cardinality |C| =

ck(Z
k) is affinely equivalent to the

(
k−1
k−3

)
-sandwich Ξk−1

k−3 .

Problem 4 Is each 12-element 4-centerpole subset of Z
4 affinely equivalent to the(3

1

)
-sandwich Ξ3

1 ?

It follows from the proof of Theorem 1 in [8] that the free group F2 with two
generators and discrete topology has c2(F2) ≤ 13.

Problem 5 What is the value of the cardinal c2(F2)? Is c3(F2) finite?

The last problem can be posed in a more general context.

Problem 6 Investigate the cardinal characteristics ck(G) and cB
k (G) for non-

commutative topological groups G.
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