ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Lattice polygons and families of curves on rational surfaces

Niels Lubbes and Josef Schicho

DOI: 10.1007/s10801-010-0268-y

Abstract

First we solve the problem of finding minimal degree families on toric surfaces by reducing it to lattice geometry. Then we describe how to find minimal degree families on, more generally, rational complex projective surfaces.

Pages: 213–236

Keywords: keywords algebraic geometry; toric geometry; lattice polygons; families of curves; surfaces

Full Text: PDF

References

1. Cox, D.: What is a toric variety. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 203-223. Am. Math. Soc., Providence (2003)
2. Draisma, J., McAllister, T.B., Nill B.: Lattice width directions and Minkowski's 3d -theorem. Technical Report, arXiv:[math.CO] (2009)
3. Günter, Ewald: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics, vol.
168. Springer, New York (1996). ISBN 0-387-94755-8
4. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol.
131. Princeton University Press, Princeton (1993)
5. Haase, C., Schicho, J.: Lattice polygons and the number 2i +
7. Math. Mon. (2009)
6. Halphen, G.H.: On plane curves of degree six through nine double points (in french). Bull. Soc. Math. Fr. 10, 162-172 (1882)
7. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol.
52. Springer, New York (1977). J Algebr Comb (2011) 34:213-236




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition