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Abstract For every prime p > 2 we exhibit a Cayley graph on Z
2p+3
p which is not

a CI-graph. This proves that an elementary abelian p-group of rank greater than or
equal to 2p + 3 is not a CI-group. The proof is elementary and uses only multivariate
polynomials and basic tools of linear algebra. Moreover, we apply our technique to
give a uniform explanation for the recent works of Muzychuk and Spiga concerning
the problem.

Keywords Cayley graph · CI-group · Elementary abelian p-group

1 Introduction

Let G be a finite group and S a subset of G. The Cayley graph Cay(G,S) is defined
by having the vertex set G and g is adjacent to h if and only if gh−1 ∈ S. The set S is
called the connection set of the Cayley graph Cay(G,S). A Cayley graph Cay(G,S)

is undirected if and only if S = S−1, where S−1 = {s−1 ∈ G | s ∈ S}. Every right
multiplication via elements of G is an automorphism of Cay(G,S), so the automor-
phism group of every Cayley graph on G contains a regular subgroup isomorphic
to G. Moreover, this property characterises the Cayley graphs on G.

It is clear that Cay(G,S) ∼= Cay(G,Sσ ) for every σ ∈ Aut(G). A Cayley graph
Cay(G,S) is said to be a CI-graph if, for each T ⊂ G, the Cayley graphs Cay(G,S)

and Cay(G,T ) are isomorphic if and only if there is an automorphism σ of G such
that Sσ = T . Furthermore, a group G is called a CI-group if every Cayley graph on
G is a CI-graph.
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For our discussion two previous results are relevant. It is easy to prove that if G is
a CI-group, then every subgroup of G is a CI-group. Babai and Frankl proved in [1]
that the Sylow subgroups of a CI-group can only be Z4, Z8, Z9, Z27, the quaternion
group of order 8 or an elementary abelian p-group. Also, they asked whether every
elementary abelian p-group is a CI-group.

Hirasaka and Muzychuk proved in [3] that Z
4
p is a CI-group for every prime p

and this was also proved by Morris [4]. On the other hand, Muzychuk [5] proved that
an elementary abelian p-group of rank 2p − 1 + (2p−1

p

)
is not a CI-group and most

recently as a strengthening of this result Spiga [7] showed that if n ≥ 4p − 2, then
Z

n
p is not a CI-group. Spiga [8] also proved that Z

5
3 is a CI-group but Z

8
3 is not a

CI-group. The problem of determining whether or not an elementary abelian group
Z

n
p is a CI-group is solved if p = 2 as the CI property holds for Z

5
2, see [2], and a

non-CI-graph for Z
6
2 was constructed by Nowitz [6].

Further improving the upper bounds in [5] and [7], we prove the following.

Theorem 1 For every prime p > 2, the group Z
2p+3
p has a Cayley graph of valency

(2p+3)pp+1 which is not a CI-graph. Consequently, an elementary abelian p-group
of rank greater than or equal to 2p + 3 is not a CI-group.

We can formulate a similar theorem for undirected Cayley graphs.

Theorem 2 For every prime p > 3, the group Z
2p+3
p has an undirected Cayley graph

which is not a CI-graph.

The problem of finding undirected non-CI-graphs of elementary abelian 3-groups
is still open.

The proof of Theorem 1 is elementary and uses only the definition of the CI prop-
erty. We will construct two isomorphic Cayley graphs in Sect. 2. The connection
sets in both graphs are the union of affine subspaces in Z

2p+3
p and the isomorphism

between the Cayley graphs is given in terms of polynomials. Finally, the proof in
Sect. 5 that our Cayley graphs are not CI-graphs uses only elementary tools of linear
algebra. Section 6 is devoted to prove Theorem 2. In addition, in Sect. 7 we will in-
dicate how the previous results of Muzychuk and Spiga can be obtained applying our
technique.

2 The construction

Let U ∼= Z
p+1
p and V ∼= Z

p+2
p , then the groups U and V can be regarded as vector

spaces over the field Zp with bases {e1, e2, . . . , ep+1} and {f0, f1, . . . , fp+1}, respec-
tively. We endow V with the natural bilinear form:

〈
p+1∑

j=0

αjfj ,

p+1∑

j=0

βjfj

〉

=
p+1∑

j=0

αjβj .
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Let us define the following affine subspaces of G = U ⊕ V :

Ai = ei + {
v ∈ V | 〈v,f0 + fi〉 = 0

}
, (i = 1, . . . , p + 1),

Bi =
∑

j 	=i

ej +
{

v ∈ V

∣∣∣∣∣

〈

v,fi +
p+1∑

j=0

fj

〉

= 0

}

, (i = 1, . . . , p + 1),

C0 =
p+1∑

i=1

ei +
{

v ∈ V

∣∣∣
∣∣

〈

v,

p+1∑

j=0

fj

〉

= 0

}

,

C1 =
p+1∑

i=1

ei +
{

v ∈ V

∣∣∣∣∣

〈

v,

p+1∑

j=0

fj

〉

= 1

}

.

Now

S =
p+1⋃

i=1

(Ai ∪ Bi) ∪ C0 and T =
p+1⋃

i=1

(Ai ∪ Bi) ∪ C1 (1)

will be the connection sets of two Cayley graphs defined on G = U ⊕V . Note that the
sets S and T are the union of affine subspaces of G. Namely, S and T are the union of
2p + 3 affine subspaces of dimension p + 1. Therefore, |S| = |T | = (2p + 3)pp+1,
as desired.

We are going to show in Sect. 4 that Cay(G,S) ∼= Cay(G,T ) but we will also
prove in Sect. 5 that there is no automorphism of G mapping S to T . Taken together,
these two facts establish Theorem 1.

3 Preliminary facts

In this section we introduce some notation concerning polynomials and we establish
certain equations over the field Zp . These will be used in the proof of the isomorphism
between the two Cayley graphs Cay(G,S) and Cay(G,T ).

For a sequence of integers n := (n1, . . . , np+1) we denote xn := x
n1
1 · · ·xnp+1

p+1 and
let k(xn) = |{i | ni > 0}| denote the number of variables occurring in xn. Let M
be the set of monomials of degree p involving at least two variables and for each
i = 1, . . . , p + 1 we divide it into two subsets M = M0

i ∪ M+
i , where M0

i = {xn |
ni = 0} and M+

i = {xn | ni > 0}. For a monomial xn ∈ M we define the number cn =
(p−1)!

n1!···np+1! . An obvious consequence of the Multinomial Theorem is that p!
n1!···np+1! is

an integer. If xn ∈ M, then k(xn) ≥ 2 so p does not divide the denominator of cn and
hence cn is an integer. Finally, for α ∈ Z

k
p and f (x) ∈ Zp[x1, . . . , xk] we denote

�αf (x) = f (x + α) − f (x).

Lemma 1 Let s = ∑p+1
i=1 xi and si = s − xi = ∑

j 	=i xj .
The following two equations hold over Z[x1, . . . , xp+1].
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(a)

sp =
p+1∑

j=1

xj
p +

∑

xn∈M
pcnx

n.

(b)

s
p
i =

∑

j 	=i

xj
p +

∑

xn∈M0
i

pcnx
n.

Proof These identities are obvious. �

Define the following polynomials in Zp[x1, . . . , xp+1]:

ri =
∑

xn∈M0
i

(
1 − k

(
xn

))
cnx

n +
∑

xn∈M+
i

(
2 − k

(
xn

))
cnx

n (2)

for i = 1, . . . , p + 1 and

r0 =
∑

xn∈M

(
k
(
xn

) − 2
)
cnx

n. (3)

Lemma 2
p+1∑

j=0

rj = psp − ∑p+1
j=1 s

p
j

p
. (4)

The polynomial
psp−∑p+1

j=1 s
p
j

p
is defined in Z[x1, . . . , xp+1], while (4) holds over

Zp .

Proof

p+1∑

j=0

rj =
∑

xn∈M

((
p + 1 − k

(
xn

))(
1 − k

(
xn

)) + (
k
(
xn

) − 1
)(

2 − k
(
xn

)))
cnx

n

= (1 − p)
∑

xn∈M

(
k
(
xn

) − 1
)
cnx

n =
∑

xn∈M

(
k
(
xn

) − 1
)
cnx

n (5)

and Lemma 1 gives

psp − ∑p+1
j=1 s

p
j

p
=

∑

xn∈M

(
k
(
xn

) − 1
)
cnx

n

as well. �
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4 Isomorphism

Proposition 1 Cay(G,S) ∼= Cay(G,T ).

Proof Let φ : Z
2p+3
p → Z

2p+3
p be defined by

φ(x1, . . . , xp+1, y0, y1, . . . , yp+1)

= (
x1, . . . , xp+1, y0 + r0(x1, . . . , xp+1), . . . , yp+1 + rp+1(x1, . . . , xp+1)

)
,

where ri ∈ Zp[x1, . . . , xp+1] are defined by (2) and (3).
We claim that φ is an isomorphism from Cay(G,S) to Cay(G,T ). Note that φ

acts by translation on u+ V for every u ∈ U so φ is bijective. It remains to show that
for a, b ∈ G if b − a ∈ S, then φ(b) − φ(a) ∈ T .

Since G is the direct sum of U and V , an element u + v ∈ G can be written as
(x, y), where x ∈ U and y ∈ V . We will also write u+v ∈ G as (x1, . . . , xp+1, y0, y1,

. . . , yp+1).
Assume first that b − a ∈ Ai for some 1 ≤ i ≤ p + 1 and write a = (x, y) with

x ∈ U and y ∈ V . Then we may set b = a + (ei + v), where v ∈ V such that 〈v,f0 +
fi〉 = 0. Clearly φ does not affect the first p + 1 coordinates hence we need to show
φ(b) − φ(a) ∈ Ai . Now we have

(
φ(b) − φ(a)

) − (b − a) = (
φ(b) − b

) − (
φ(a) − a

)

= (
0, . . . ,0,�ei

r0(x),�ei
r1(x), . . . ,�ei

rp+1(x)
)
.

Thus we have to check that 〈(�ei
r0(x),�ei

r1(x), . . . ,�ei
rp+1(x)), f0 + fi〉 = 0.

Now

〈(
�ei

r0(x),�ei
r1(x), . . . ,�ei

rp+1(x)
)
, f0 + fi

〉 = �ei
r0(x) + �ei

ri(x)

= �ei

(
r0(x) + ri(x)

) = 0,

since r0 + ri does not involve xi .
By the same argument if b − a ∈ C0, then using Lemma 2 we get

�∑p+1
j=1 ej

(
p+1∑

j=0

rj

)

= p(s + p + 1)p − ∑p+1
j=1 (sj + p)p

p
− psp − ∑p+1

j=1 s
p
j

p

= (s + 1)p − sp = 1.

These equations hold over Zp since (t + p)p ≡ tp (mod p2). Hence if b − a ∈ C0,
then φ(b) − φ(a) ∈ C1.

Finally, if b − a ∈ Bi we need a little more computation. Equation (5) shows that

p+1∑

j=0

rj =
∑

xn∈M

(
k
(
xn

) − 1
)
cnx

n.
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Hence

ri +
p+1∑

j=0

rj =
∑

xn∈M0
i

(
1 − k

(
xn

))
cnx

n +
∑

xn∈M+
i

(
2 − k

(
xn

))
cnx

n

+
∑

xn∈M

(
k
(
xn

) − 1
)
cnx

n

=
∑

xn∈M+
i

cnx
n,

which is, by Lemma 1, equal to

sp − x
p
i − s

p
i

p
.

Therefore,

�∑
j 	=i ej

(

ri +
p+1∑

j=0

rj

)

= (s + p)p − x
p
i − (si + p)p

p
− sp − x

p
i − s

p
i

p
= 0,

using again the fact that (t + p)p ≡ tp (mod p2). Hence if b − a ∈ Bi , then
φ(b) − φ(a) ∈ Bi and this finishes the proof of the fact that φ is indeed a graph
isomorphism. �

5 Checking the CI property

Now in order to show that Cay(G,S) is not a CI-graph we have to show that there is
no σ ∈ Aut(G) = GL(U ⊕ V ) such that σ(S) = T .

Proposition 2 There is no linear transformation σ ∈ GL(U ⊕ V ) such that
σ(S) = T .

Proof Assume by way of contradiction that σ ∈ GL(U ⊕ V ) with σ(S) = T .
Let M denote the matrix of the linear transformation σ with respect to the basis
{e1, . . . , ep+1, f0, f1, . . . , fp+1} and write M = [ M1,1 M1,2

M2,1 M2,2

]
as a block matrix, where

M1,1 ∈ Z
(p+1)×(p+1)
p and M2,2 ∈ Z

(p+2)×(p+2)
p .

For the purpose of the following we modify our notation as follows. Let S =
⋃2p+3

i=1 Si and T = ⋃2p+3
i=1 Ti , where Si = Ti = Ai , Si+p+1 = Ti+p+1 = Bi for i =

1, . . . , p + 1 and S2p+3 = C0, T2p+3 = C1.
Now we prove two lemmas from which the proof of Proposition 2 will follow.

Lemma 3 V is an invariant subspace of σ , i.e., M1,2 = 0.
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Proof Considering only the first p + 1 coordinates it is easy to see using the assump-
tion p > 2 that for i 	= j if a ∈ Si and b ∈ Sj , then 2a − b 	∈ S and similarly for T .
This implies that both S and T contain exactly 2p + 3 affine subspaces of dimension
p + 1. Hence for 1 ≤ i ≤ 2p + 3 we must have σ(Si) = Tj for some j and if a, b

∈ Si , then σ(a) − σ(b) ∈ V . Now

Span

(
p+1⋃

i=1

{a − b | a, b ∈ Si}
)

= V,

so σ(V ) ⊆ V and this finishes the proof of the fact that V is an invariant subspace
of σ . �

It is immediate from Lemma 3 that σ induces a linear transformation of (U ⊕
V )/V, which we also denote by σ . Set

Ŝ =
{
ei,

∑

j 	=i

ej | 1 ≤ i ≤ p + 1

}
∪

{
p+1∑

j=1

ej

}

⊂ U. (6)

In the following, Lemma 4, we shall identify the elements in Ŝ + V ⊂ (U ⊕ V )/V

with those in Ŝ. As σ(S) = σ(T ) and S + V = T + V , we have σ(Ŝ) = Ŝ.

Lemma 4 M1,1 is a permutation matrix.

Proof In this proof we will use the natural bilinear form on U defined as follows:

[
p+1∑

i=1

αiei,

p+1∑

i=1

βiei

]

=
p+1∑

i=1

αiβi .

Let e := ∑p+1
i=1 ei . Note that e is the unique element of Ŝ which is the sum of two

others within Ŝ, hence σ(e) = e. The rest of the points can be paired such that the
sum of every pair is e and by the linearity of σ the set H = {σ(ei) | 1 ≤ i ≤ p + 1}
contains exactly one element of each pair. Furthermore,

∑
h∈H h = ∑p+1

i=1 σ(ei) =
σ(

∑p+1
i=1 ei) = σ(e) = e.

For every s ∈ Ŝ we have [s, e] = 0 or 1, hence if H contains an element x such
that [x, e] = 0, then H contains p elements with the same property as [∑h∈H h, e] =
[e, e] = 1. By permuting the coordinates we obtain that if H contains an element
x such that [x, e] = 0, then H = {e1} ∪ {∑j 	=i ej | 2 ≤ i ≤ p + 1} but

∑
h∈H h =

e1 − e2 − · · · − ep+1 	= ∑p+1
i=1 ei = e in this case, a contradiction. �

Now we continue the proof of Proposition 2.
For every permutation of {e1, . . . , ep+1} if we apply the same permutation to the

indices of {f1, . . . , fp+1} and fix f0 we obtain an automorphism of Cay(G,S). Hence
we may assume for the rest of the proof that M1,1 = I .
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This assumption implies that σ(ei) ∈ Ai and σ(
∑

j 	=i ej ) ∈ Bi for 1 ≤ i ≤ p + 1.
From this we get

〈M2,1ei, f0 + fi〉 = 0,

〈

M2,1

∑

j 	=i

ej , fi +
p+1∑

j=0

fj

〉

= 0

for 1 ≤ i ≤ p + 1.
The sum of these 2p + 2 equations over Zp is

p+1∑

i=1

〈M2,1ei, f0 + fi〉 +
p+1∑

i=1

〈

M2,1

∑

j 	=i

ej , fi +
p+1∑

j=0

fj

〉

= 0,

so using bilinearity
〈

M2,1

p+1∑

i=1

ei,

p+1∑

j=0

fj

〉

= 0.

We also have σ(
∑p+1

j=1 ej ) ∈ C1, which gives

〈

M2,1

p+1∑

i=1

ei,

p+1∑

j=0

fj

〉

= 1.

This contradiction finishes the proof of Proposition 2. �

Finally, Proposition 1 and Proposition 2 prove Theorem 1.

6 Undirected graphs

In this section we study undirected Cayley graphs and we will prove Theorem 2.
If G is an abelian group we write −S = {−s ∈ G | s ∈ G} instead of S−1. For a

subset S of G we define S̄ = S ∪ −S. It is also clear that if φ is an isomorphism
between Cay(G,S) and Cay(G,T ), then φ is an isomorphism between Cay(G, S̄)

and Cay(G, T̄ ) as well.
In Sect. 2 we defined two isomorphic directed Cayley graphs Cay(Z

2p+3
p ,S) and

Cay(Z
2p+3
p ,T ) of Z

2p+3
p , where S and T were defined in (1). Therefore, we have a

pair of isomorphic undirected Cayley graphs: Cay(Z
2p+3
p , S̄) and Cay(Z

2p+3
p , T̄ ).

Proposition 3 For every prime p > 3, the graph Cay(Z
2p+3
p , S̄) is an undirected

Cayley graph on the group Z
2p+3
p which is not a CI-graph.
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Proof It is enough to show that there is no linear transformation σ such that σ(S̄) =
T̄ . Seeking a contradiction, let us assume that σ ∈ GL(U ⊕ V ) with σ(S̄) = T̄ .

The same kind of reasoning as in Lemma 3 shows that V is an invariant subspace
of σ , but here we have to use the extra condition that p > 3. Hence σ induces a linear
transformation of (U ⊕ V )/V, which we also denote by σ . Set

S̃ =
{
ei,−ei,

∑

j 	=i

ej ,−
∑

j 	=i

ej

∣∣∣∣1 ≤ i ≤ p + 1

}
∪

{
p+1∑

j=1

ej ,−
p+1∑

j=1

ej

}

,

which is a subset of U . We shall identify the elements in S̃ + V ⊂ (U ⊕ V )/V with
those in S̃. As σ(S̄) = σ(T̄ ) and S̄ + V = T̄ + V , we have σ(S̃) = S̃. Note that we
can write S̃ = Ŝ ∪ −Ŝ with Ŝ ∩ −Ŝ = ∅, where Ŝ is defined in (6).

Now we prove a lemma from which the proof of Proposition 3 will follow.

Lemma 5 One of the two linear transformations σ and −σ permutes the elements
of Ŝ.

Proof Since σ induces an automorphism of Cay(U, S̃) and σ(0) = 0, it gives an au-
tomorphism of the induced subgraph on the neighbourhood of 0 as well. In this sub-
graph the vertices e and −e have degree 2p+2, the other vertices have degree 2. This
implies that σ(e) = e or σ(e) = −e. So either σ or −σ fixes e. The neighbourhood
of e in S̃ is Ŝ, hence the proof of Lemma 4 yields the result. �

As a consequence of Lemma 5 we get a linear transformation (σ or −σ ) which
maps S onto T . This contradicts Proposition 2, finishing the proof of Theorem 2. �

7 Connection to previous results

In this section, we modify our construction a little bit to get non-CI-graphs of the

groups Z
4p−2
p and Z

2p−1+(2p−1
p )

p . These results provide a uniform explanation for the
recent work of Spiga [7] and Muzychuk [5], respectively. The proof of these results
only simplifies the heavy machinery used in [5] and [7].

7.1 Rank 4p − 2

Let U ′ ∼= V ′ ∼= Z
2p−1
p and W ′ = U ′ ⊕ V ′ with the bases {e′

1, . . . , e
′
2p−1} and

{f ′
1, . . . , f

′
2p−1}, respectively. We denote by L the set of multilinear monomials of

degree p in 2p −1 variables. Let L0
i = {xn ∈ L | ni = 0} and L+

i = L \ L0
i . If xn ∈ L,

then the exponent vector n can be treated as a p-element subset of {1, . . . ,2p − 1}.
Let

A′
i = e′

i + {
v′ ∈ V ′ | 〈v′, f ′

i 〉 = 0
}
,
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B ′
i =

∑

j 	=i

e′
j +

{

v′ ∈ V ′
∣∣∣∣

〈

v′, f ′
i +

2p−1∑

j=1

f ′
j

〉

= 0

}

,

C′
0 =

2p−1∑

j=1

e′
j +

{

v′ ∈ V ′
∣∣∣∣

〈

v′,
2p−1∑

j=1

f ′
j

〉

= 0

}

,

C′
1 =

2p−1∑

j=1

e′
j +

{

v′ ∈ V ′
∣∣∣∣

〈

v′,
2p−1∑

j=1

f ′
j

〉

= −1

}

.

Similarly to the construction in Sect. 2 let S′ = ⋃2p−1
i=1 (A′

i ∪ B ′
i ) ∪ C′

0 and T ′ =
⋃2p−1

i=1 (A′
i ∪ B ′

i ) ∪ C′
1. We claim that Cay(W ′, S′) ∼= Cay(W ′, T ′) and the isomor-

phism is given in the same manner:

φ′(x1, . . . , x2p−1, y1, . . . , y2p−1)

= (
x1, . . . , x2p−1, y1 + l1(x1, . . . , x2p−1), . . . , y2p−1 + l2p−1(x1, . . . , x2p−1)

)
,

where li denotes the sum of the monomials in L0
i for i = 1, . . . ,2p − 1.

In this case the computations needed to show that φ′ is an isomorphism of the two
Cayley graphs are easier.

Lemma 6 Assume that xn ∈ L and m ∈ {0,1}2p−1 ⊆ U ′

(a)
(
�mxn

)
(x) = xn\m ∑

k�n∩m

xk.

(b)
(
�∑

j=1 e′
j
xn

)
(x) =

∑

k�n

xk.

Proof (a) is obvious and (b) is just a particular case of (a). �

The proof that φ′ is an isomorphism is similar to the proof of Proposition 1. We
leave it to the reader to prove, using Lemma 7(a), that if b − a ∈ A′

i , then φ′(b) −
φ′(a) ∈ A′

i , to prove, using Lemma 7(c), that if b − a ∈ B ′
i , then φ′(b) − φ′(a) ∈ B ′

i ,
and finally to prove, using Lemma 7(b), that if b − a ∈ C′

0, then φ′(b) − φ′(a) ∈ C′
1.

Lemma 7

(a)

�e′
i
li = 0.
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(b)

�∑2p−1
j=1 e′

j

(2p−1∑

j=1

lj

)

= −1.

(c)

�∑
j 	=i e′

j

(

li +
2p−1∑

j=0

lj

)

= 0.

Proof (a) Obvious, since li does not involve xi .
(b) We have

2p−1∑

j=1

lj =
2p−1∑

j=1

∑

xn∈L0
i

xn =
∑

xn∈L
(p − 1)xn = −

∑

xn∈L
xn (7)

and hence

�∑2p−1
j=1 e′

j

(2p−1∑

j=1

lj

)

= −�∑2p−1
j=1 e′

j

∑

xn∈L
xn = −

∑

xn∈L
�∑2p−1

j=1 e′
j

xn

applying Lemma 6(b)

= −
∑

n∈{0,1}2p−1

|n|=p

∑

k�n

xk = −
∑

|k|<p

xk
∑

k⊆n
|n|=p

1

= −
∑

|k|<p

(
2p − 1 − |k|

p − |k|
)

xk.

The binomial coefficient
(2p−1−|k|

p−|k|
)

is divisible by p if 1 ≤ |k| < p and this implies

that the remaining polynomial is just the constant polynomial −(2p−1
p

)
over Zp . Tak-

ing into account that
(2p−1

p

) ≡ 1 (mod p), we obtain (b).
(c) Making use of (7) we get

li +
2p−1∑

j=1

lj =
∑

xn∈L0
i

xn −
∑

xn∈L
xn = −

∑

xn∈L+
i

xn.

Now

�∑
j 	=i e′

j

(
−

∑

xn∈L+
i

xn

)
= −

∑

xn∈L+
i

�∑
j 	=i e′

j
xn
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and by Lemma 6(a)

= −
∑

xn∈L+
i

xi

∑

k�n\{i}
xk = −xi

∑

i /∈k
|k|<p−1

xk
∑

{i}∪k�n

|n|=p

1

= −xi

∑

i /∈k
|k|<p−1

(
2p − 1 − |k| − 1

p − |k| − 1

)
xk.

Now if |k| < p − 1, then
(2p−1−|k|−1

p−|k|−1

) ≡ 0 (mod p) and this proves the result. �

The proof of the fact that there is no linear transformation which maps S′ to T ′ is
nearly the same as in Proposition 2 provided p > 3. We leave it to the reader to work
out the details and we will do so in the next case as well. If p = 3, then the statement
analogous to Lemma 4 does not hold.

7.2 Rank 2p − 1 + (2p−1
p

)

Here we only give the connection sets and the isomorphism of the Cayley graphs.
The proof goes along the same lines as in the previous cases.

Let O = {k ⊂ {1, . . . ,2p − 1} | |k| = p} and let U ′′ ∼= Z
2p−1
p and V ′′ ∼= Z

(2p−1
p )

p

with the bases {e′′
1, e′′

2 , . . . , e′′
2p−1} and {f ′′

k | k ∈ O}, respectively. Since |O| equals
to the dimension of V ′′, for every y′′ ∈ V ′′ we can write y′′ = (. . . , y′′

k , . . .), where
k ∈ O. For (x′′, y′′) ∈ U ′′ ⊕ V ′′ we define

φ′′(x′′, y′′) = (
x′′, . . . , y′′

k + x′′k, . . .
)
.

For each 1 ≤ i ≤ 2p − 1 we define the set

A′′
i = e′′

i +
{
v′′ ∈ V ′′

∣∣∣∣

〈
v′′,

∑

i /∈k

f ′′
k

〉
= 0

}
.

For every k ∈ O there are exactly p elements k1, . . . , kp of O such that |k ∩ ki | = 1
and hence we can define

B ′′
k =

∑

j∈k

e′′
j + {

v′′ ∈ V ′′∣∣〈v′′, f ′′
k1

+ · · · + f ′′
kp

〉 = 0
}
.

The third type of affine subspaces are defined by

C′′
0 =

2p−1∑

j=1

e′′
j +

{
v′′ ∈ V ′′

∣
∣∣∣

〈
v′′,

∑

k∈O
f ′′

k

〉
= 0

}
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and

C′′
1 =

2p−1∑

j=1

e′′
j +

{
v′′ ∈ V ′′

∣∣∣∣

〈
v′′,

∑

k∈O
f ′′

k

〉
= 1

}
.

Finally, the connection sets are given similarly to the previous cases:

S′′ =
(⋃

i

A′′
i

)
∪

( ⋃

k∈O
B ′′

k

)
∪ C′′

0

and

T ′′ =
(⋃

i

A′′
i

)
∪

( ⋃

k∈O
B ′′

k

)
∪ C′′

1

and φ′′ gives the isomorphism between the two Cayley graphs.
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