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Abstract We construct a new family of homomorphisms from Specht modules into
Foulkes modules for the symmetric group. These homomorphisms are used to give a
combinatorial description of the minimal partitions (in the dominance order) which
label the irreducible characters appearing as summands of the characters of Foulkes
modules. The homomorphisms are defined using certain families of subsets of the
natural numbers. These families are of independent interest; we prove a number of
combinatorial results concerning them.

Keywords Foulkes’ conjecture · Specht module · Foulkes module · Module
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1 Introduction

The aim of this paper is to construct a new family of homomorphisms from Specht
modules into Foulkes modules, and to explore some of the consequences for the struc-
ture of Foulkes modules. Foulkes modules are the object of the longstanding Foulkes’
Conjecture, first made at the end of Sect. 1 of [4], which spans representation theory,
invariant theory and combinatorics. We shall discuss some of these connections in
this introduction.
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Let Sr denote the symmetric group of degree r . For m, n ∈ N, the Foulkes mod-
ule H(mn) is defined to be the permutation module for ZSmn given by the action of
the symmetric group Smn on the collection of set partitions of a set of size mn into
n sets each of size m. Let φ(mn) be the permutation character afforded by H(mn). We
shall refer to these characters as Foulkes characters. Foulkes’ Conjecture asserts that
if m, n are natural numbers with m < n, and χ is an irreducible character of Smn,
then the multiplicity of χ in φ(mn) is at least as great as the multiplicity of χ in φ(nm).

Foulkes’ Conjecture can be recast for GL(V )-modules, where V is a finite dimen-
sional complex vector space. Put in these terms, it claims that if m < n then there
is an embedding of GL(V )-modules Sn(SmV ) ↪→ Sm(SnV ), where Sm denotes the
mth symmetric power. In [1, page 352], Brion used this interpretation and ideas from
geometric invariant theory to show that Foulkes’ Conjecture is true provided n is
large compared to m.

Finally, we mention that taking formal characters of GL(V )-modules gives a
purely combinatorial formulation of Foulkes’ Conjecture in terms of symmetric func-
tions. In this setting it states that if m < n then the difference of plethysms of Schur
functions sn[sm] − sm[sn] is a sum of Schur functions with non-negative coefficients.
Understanding these plethysm coefficients was identified by Stanley in [10, Prob-
lem 9] as an important open positivity problem in algebraic combinatorics.

For a full outline of the results proved on Foulkes characters in this article see
Sect. 2 below. Our main result (see Theorem 2) gives a combinatorial description, in
terms of certain set families, of the minimal partitions which label irreducible charac-
ters appearing as summands of Foulkes characters. (Here minimality is with respect
to the dominance order on partitions.) This theorem gives the strongest general results
on Foulkes characters known to date.

Using Theorem 2, the authors have found all minimal constituents of the Foulkes
characters φ(mn) for m+n ≤ 20. The data, together with the associated computer soft-
ware, are available from the second author’s website: www.ma.rhul.ac.uk/~uvah099.

It is an important feature of our approach that Theorem 2 is proved using explicitly
defined maps between integral Specht and Foulkes modules for the symmetric group.
This ‘characteristic-free’ approach is well-suited to our results, and does not create
any significant extra difficulties in their proofs. For background on integral modules
the reader is referred to [2, Chap. 11]. A subsequent paper by the authors will apply
the results herein to study the behaviour of Foulkes modules over fields of prime
characteristic.

Although Foulkes’ Conjecture remains open, some progress has been made. Be-
sides the asymptotic result of Brion already mentioned, the conjecture is known to
hold when m ≤ 4. When Foulkes made his conjecture in 1950 it was already known
to hold by the work of Thrall (see [11, Theorems III and IV]) in the case m = 2. It
was proved when m = 3 by Dent and Siemons [3]. The most recent progress was
made in 2008 by McKay [8], who proved it when m = 3 and m = 4. McKay’s proof
uses a family of maps ψ(nm) : H(nm) → H(mn) which were first defined by Wagner
and Siemons1 in 1986. McKay’s main result is that if ψ(mm) is invertible then ψ(nm)

1See [8]. These maps were independently defined by Stanley: see the discussion following Problem 9 in
[10]. Both Wagner and Siemons, and Stanley formulated stronger versions of Foulkes’ Conjecture (and

http://www.ma.rhul.ac.uk/~uvah099
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is injective for any n > m. The maps ψ(mm) for m ≤ 4 were already known to be in-
vertible by the work of Müller and Neunhöffer [9], so Foulkes’ Conjecture is proved
in these cases.

The main contribution of [9] was to show that ψ(55) has a non-zero kernel. It is
however still possible that the maps ψ(nm) will have a role in proving or disproving
Foulkes’ Conjecture. In particular, a conjecture of Johannes Siemons2 implies that
if the kernel of ψ(nm) is non-zero, then the ordinary character of kerψ(nm) has one
of the minimal constituents of φ(nm) classified in our Theorem 2 as a summand. It
seems likely that any counterexample to Foulkes’ Conjecture will involve one of
these minimal constituents.

2 Outline

Our homomorphisms are defined using certain families of subsets of the natural num-
bers. We shall need the following combinatorial definitions.

Definition 1 Let X = {x1, . . . , xm} and Y = {y1, . . . , ym} be subsets of the natural
numbers, written so that x1 < x2 < · · · < xm and y1 < y2 < · · · < ym. We say that Y

majorizes X, and write X � Y , if xi ≤ yi for each i.

The reader may find it helpful to refer to Fig. 2 in Sect. 6.2 below, which shows
part of the lattice of 4-subsets of N under the majorization order.

Definition 2 A set family of shape (mn) is a collection of n distinct m-subsets of
the natural numbers. A set family P is closed if whenever Y ∈ P and X ≺ Y , then
X ∈ P .

In the following definition, λ′ denotes the conjugate of the partition λ.

Definition 3 Let λ be a partition with largest part of size a. A set family has type λ

if it has exactly λ′
i sets containing i for each i ∈ {1, . . . , a}.

It is easily seen that if P is a closed set family then for any i ∈ N, at least as many
sets in P contain i as contain i + 1. Closed set families therefore have well-defined
types. The reason for working with conjugate partitions will be seen in Theorem 1
below.

Recall that if λ and μ are partitions of n then we say that λ dominates μ, and write
λ � μ, if

∑j

i=1 λi ≥ ∑j

i=1 μi for all j ∈ N. (If i exceeds the number of parts of λ or
μ, then the corresponding part should be taken to be 0.)

Definition 4 Let P be a set family of shape (mn) and type λ. We say that P is
minimal if there is no set family Q of shape (mn) and type μ with μ � λ.

also of Howe’s Conjecture on GL(V )-modules; see [6, Sect. 2.5]) using these maps. A counterexample to
these stronger conjectures is given in [9].
2Seminar given at Castro Urdiales, October 2007.
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It is an important fact that minimal set families are always closed; we shall prove
this fact when we first need it, in Proposition 3 in Sect. 5.2 below.

Finally, if λ is a partition of r , we denote by Sλ the associated Specht module
for ZSr . The reader is referred to Sect. 3 of this paper for the definition of Specht
modules and our notational conventions for Foulkes modules.

We are now ready to state our main results. Let m be odd. In Sect. 3.2 we de-
fine for each closed set family P of shape (mn) and type λ, a homomorphism
fP : Sλ → H(mn). A critical result, which we prove in Sect. 4 below, is that these
homomorphisms are well-defined.

Theorem 1 Let m be odd and let n ∈ N. Let P be a closed set family of shape (mn)

and type λ. The map fP : Sλ → H(mn) defined in Sect. 3.2 is a well-defined injective
homomorphism from Sλ to H(mn).

Let χλ be the irreducible character afforded by the Specht module Sλ. (More
precisely, if λ is a partition of r , then χλ is the character of the QSr -module Sλ ⊗Z Q.)
It is well known that every irreducible character of a symmetric group is equal to a
χλ: see, for instance, [7, Theorem 4.12]. In terms of characters, Theorem 1 states that
if there is a closed set family of type (mn) and type λ then 〈φ(mn),χλ〉 ≥ 1.

If π is a character of Sr and λ is a partition of r , then we shall say that χλ is
a minimal constituent of π if 〈π,χλ〉 ≥ 1 and 〈π,χμ〉 = 0 if μ � λ. In Sect. 5 we
prove the following theorem which characterises minimal constituents of Foulkes
characters.

Theorem 2 Let m,n ∈ N.

(i) If m is even then the unique minimal constituent of φ(mn) is χ(mn).
(ii) If m is odd then χλ is a minimal constituent of φ(mn) if and only if there is a

minimal set family of shape (mn) and type λ.

We also show that if m is even then 〈φ(mn),χ(mn)〉 = 1, and that part (ii) of the
above theorem can be sharpened as follows.

Theorem 3 Let m be odd and let n ∈ N. Suppose that χλ is a minimal con-
stituent of φ(mn). If P1, . . . , Pd are the set families of shape (mn) and type λ, then
P1, . . . , Pd are closed, and the homomorphisms fP1 , . . . , fPd

are a Z-basis for
HomZSmn

(Sλ,H (mn)). In particular, 〈φ(mn),χλ〉 = d .

We pause to give a small example that will illustrate these theorems. We take
m = 3 and n = 4. The three closed set families of shape (34) are

{{1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}},
{{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}},
{{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}},
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of types (6,2,2,2), (5,4,2,1) and (4,4,4), respectively. Since these partitions are
incomparable in the dominance order, and (by Proposition 3 in Sect. 5.2) any min-
imal set family is closed, the set families above are minimal. It now follows from
Theorems 2 and 3 that φ(34) has χ(6,2,2,2), χ(5,4,2,1) and χ(4,4,4) as summands, each
with multiplicity 1. Moreover, if 〈φ(34), χμ〉 ≥ 1 then μ dominates one of these par-
titions. The presence of such larger constituents cannot be detected by the homomor-
phisms fP .

Small examples of this kind are apt to create the false impression that every closed
set family is minimal and is the unique set family of its type. In Sect. 6.1 we prove
the following theorem which clarifies the relationship between these properties.

Theorem 4 If P is the unique set family of its type, then P is minimal. If P is a min-
imal set family then P is closed. There exist closed set families that are not minimal,
and minimal set families that are not unique for their type.

The existence of minimal set families that are not unique for their type is of partic-
ular significance, since such families demonstrate that the multiplicity d in Theorem 3
can be strictly greater than 1.

Even with the help of Theorem 2, it appears to be a difficult matter to decide,
when m is odd, whether a given partition of mn labels a minimal constituent of the
Foulkes character φ(mn). In Sect. 6.2 we give a construction that gives some of these
partitions. We prove that this construction gives every such partition if and only if
n ≤ 5.

We end in Sect. 7 by defining the generalised Foulkes characters φμ considered
in [8] and showing how to obtain their minimal constituents from the minimal con-
stituents of the φ(mn). This section may be read independently of the rest of the paper.

3 Specht modules and homomorphisms

In this section we recall the definition of Specht modules as submodules of Young
permutation modules and define the homomorphisms fP .

The following notation simplifies these definitions and will be found very useful in
the proofs which follow. Given a partition λ of r with largest part of size a, let A(λ)

be the set consisting of the symbols ij for 1 ≤ i ≤ a and 1 ≤ j ≤ λ′
i . We say that i is

the number and j is the index of the symbol ij .

3.1 Specht modules

Let λ be a partition of r . A λ-tableau is an assignment of the elements of A(λ) to
the boxes of the Young diagram of λ. Given a λ-tableau t , we obtain the associated
tabloid t by disregarding the order of the elements within the rows of t . For exam-
ple, if

t =
41 22 32 11

21 12 31 42

13

then t =
41 22 32 11

21 12 31 42

13

=
11 22 32 41

12 21 31 42

13

= · · · etc.
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We may identify Sr with the symmetric group on A(λ). After this identification is
made, the natural permutation action of Sr on the set of λ-tableaux gives rise to a
well-defined action of Sr on the set of λ-tabloids. We denote the associated permu-
tation module for ZSr by Mλ; it is the Young permutation module corresponding
to λ. For example, M(r−1,1) affords the natural integral representation of Sr as r × r

permutation matrices.
Given a λ-tableau t , we let C(t) be the subgroup of Sr consisting of those elements

which fix setwise the columns of t . Define bt ∈ ZSr by

bt =
∑

τ∈C(t)

sgn(τ )τ.

The polytabloid corresponding to t is the element et ∈ Mλ defined by

et = tbt .

The Specht module Sλ is defined to be the submodule of Mλ spanned by the λ-
polytabloids. An easy calculation shows that if σ ∈ Sr then (et )σ = etσ , and so Sλ is
cyclic, generated by any single polytabloid.

It follows from Theorem 4.12 of [7] that the rational QSr -modules Sλ ⊗Z Q for
λ a partition of r are irreducible, and that they afford all the ordinary irreducible
characters of Sr .

Let tλ be the λ-tableau whose ith column is i1, . . . , iλ′
i

when read from top to
bottom. Note that the elements of C(tλ) permute the indices of symbols in A(λ)

while leaving the numbers unchanged.

3.2 Definition of the homomorphisms fP

Throughout this section, let m,n ∈ N and let λ be a partition of mn. After identi-
fying Smn with the symmetric group on the set A(λ), the elements of the canonical
permutation basis of H(mn) are given by the following definition.

Definition 5 An indexed set partition of shape (mn) and type λ is a set partition of
A(λ) into n sets each of size m.

Our notation allows us to pass easily from set families to indexed set partitions.

Definition 6 Let P be a set family of shape (mn) and type λ. Order the sets making
up P lexicographically, so that P = {X1, . . . ,Xn} where X1 < X2 < · · · < Xn. The
indexed set partition associated to P is the indexed set partition of type λ obtained by
appending indices to the elements of the sets X1, . . . ,Xn so that the elements of X1
all get the index 1, and an element i ∈ Xr is given the smallest index not appended to
any i appearing in X1, . . . ,Xr−1.

For example, the indexed set partition associated to the closed set family

Q = {{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}}
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of type (5,4,2,1) is

u = {{11,21,31}, {12,22,41}, {13,23,51}, {14,32,42}
} ∈ H(34).

Since Sλ is generated by the polytabloid etλ , any homomorphism from Sλ is de-
termined by its effect on etλ . Specifically, if f : Sλ → M is a homomorphism of
Smn-modules, t is a λ-tableau and σ ∈ Smn is such that tλσ = t , then etf = (etλf )σ .

Definition 7 Let P be a closed set family of shape (mn) and type λ where m is odd.
We define fP : Sλ → H(mn) by etλfP = ubtλ where u is the indexed set partition
associated to P .

If Q is as above then the homomorphism fQ : S(5,4,2,1) → H(34) is defined on the
generator et(5,4,2,1)

of S(5,4,2,1) by

et(5,4,2,1)
�→ {{11,21,31}, {12,22,41}, {13,23,51}, {14,32,42}

}
bt(5,4,2,1)

.

We remark that while we have, for definiteness, given an explicit scheme for pass-
ing from set families to indexed set partitions, a different choice will at most lead
to changes of sign in the maps fP . For example, if in our index appending scheme,
the lexicographic order on sets is replaced with the colexicographic order, then the
homomorphism above would instead be defined by

et(5,4,2,1)
�→ {{11,21,31}, {12,22,41}, {13,32,42}, {14,23,51}

}
bt(5,4,2,1)

= −{{11,21,31}, {12,22,41}, {13,23,51}, {14,32,42}
}
bt(5,4,2,1)

.

4 Proof of Theorem 1

For technical reasons it will be useful to deal with the case m = 1 separately. The
only closed set family of shape (1n) is P = {{1}, {2}, . . . , {n}}, which has type (n).
The homomorphism fP : S(n) → H(1n) is defined by

et(n)
�→ {{11}, {21}, . . . , {n1}

}
.

Since S(n) is the trivial ZSn-module, this map is clearly well-defined and injective.
To show that the homomorphisms fP are well-defined when m ≥ 3, we shall use

the description of the Specht module Sλ given by Garnir relations. The following
lemma states a suitable form of these relations in our numbers-and-indices notation.

Lemma 1 Let U be a Z-free ZSr -module, let λ be a partition of r and let t = tλ. If
u ∈ U is such that

ubt

∑

σ∈SX∪Y

σ sgn(σ ) = 0

for every pair of subsets

X ⊆ {ij : 1 ≤ j ≤ λ′
i},
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Y ⊆ {
(i + 1)j : 1 ≤ j ≤ λ′

i+1

}

such that |X| + |Y | > λ′
i , then there is a homomorphism of ZSr -modules f : Sλ → U

such that etf = ubt .

Proof It follows from the remark at the top of page 102 of [5] that the kernel of the
surjective map ZSr → Sλ defined by x �→ etx is generated, as a right ZSr -ideal, by
elements of the following two types:

• 1 − (ij , ik) for ij , ik ∈ A(λ).
• GX,Y = ∑

σ sgn(σ ), where X and Y are as in the statement of the lemma and the
sum is over a set of right-coset representatives for the cosets of SX × SY in SX∪Y .

Clearly ubt is killed by elements of the first type, so to prove the lemma, it will
suffice to show that ubtGX,Y = 0 for each GX,Y . As in the proof of Theorem 7.2
in [7], we set SZ = ∑

σ∈Z σ sgn(σ ) for a subset Z of Sr . Note that SXSY GX,Y =
SX∪Y . By hypothesis ubtSX∪Y = 0, so we have

|X|! |Y |!ubtGX,Y = 0.

Since U is assumed to be free as a Z-module, it follows that ubtGX,Y = 0, as re-
quired. �

To show that the homomorphisms fP are well-defined it suffices to check that
etλfP satisfies the relations in the previous lemma.

Proposition 1 Let m ≥ 3 be odd and let n ∈ N. Suppose that P is a closed set family
of shape (mn) and type λ and that u is the indexed set partition associated to P . Let
t = tλ. If X and Y are as in the statement of Lemma 1 then

ubt

∑

σ∈SX∪Y

σ sgn(σ ) = 0.

Proof Let τ ∈ C(t). Suppose that there exist ix ∈ X and (i +1)y ∈ Y which appear in
the same set in uτ . Then uτ(1 − (ix, (i + 1)y)) = 0, and, taking coset representatives
for 〈(ix, (i + 1)y)〉 in SX∪Y , we see that uτ

∑
σ∈SX∪Y

σ sgn(σ ) = 0.
It therefore suffices to show that

u
∑

τ∈C′
τ sgn(τ )

∑

σ∈SX∪Y

σ sgn(σ ) = 0 (1)

where C′ is the set of τ ∈ C(t) such that no set in uτ meets both X and Y . We may
assume that C′ is non-empty.

Let ϑ ∈ C′ and let v = uϑ . None of the |Y | sets in v meeting Y can contain an
element of X. At most λ′

i −|X| of them can contain an element of the complementary
set X′ = {ix′ : 1 ≤ x′ ≤ λ′

i , ix′ �∈ X}. By hypothesis λ′
i − |X| < |Y |. Hence if there are

s sets which meet both Y and X′ then, after casting out these sets, we are left with at
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least |Y | − s > |Y | + |X| − λ′
i sets which meet Y but not X′. Since P is closed, for

each such set

B = {
c(1)b(1), c(2)b(2), . . . , c(m − 1)b(m−1), (i + 1)y

}

in v, there is a corresponding set

A = {
c(1)a(1), c(2)a(2), . . . , c(m − 1)a(m−1), iz

}

which also appears in v. Note that the indices a(1), . . . , a(m − 1), z are determined
by the numbers c(1), . . . , c(m − 1), i. Since s of the elements of X′ appear in sets
which also meet Y , at most |X′| − s of the sets A can have iz ∈ X′. Hence at least
(|Y | − s) − (|X′| − s) = |Y | − |X′| = |Y | + |X| − λ′

i of the sets A have iz ∈ X.
Therefore we may find sets B and A in v so that

B = {
c(1)b(1), c(2)b(2), . . . , c(m − 1)b(m−1), (i + 1)y

}
,

A = {
c(1)a(1), c(2)a(2), . . . , c(m − 1)a(m−1), ix

}
,

where (i + 1)y ∈ Y and ix ∈ X.
Let

π = (
c(1)a(1), c(1)b(1)

) · · · (c(m − 1)a(m−1), c(m − 1)b(m−1)

)
.

Since B(ix, (i + 1)y) = Aπ we have

v
(
ix, (i + 1)y

) = vπ. (2)

No set in vπ meets both X and Y , so since vπ = uϑπ , we have ϑπ ∈ C′. Thus uϑ

and uϑπ are distinct summands of u
∑

τ∈C′ τ sgn(τ ), appearing with the same sign.
(This is the only point where we use our hypotheses on m.) If σ1, . . . , σs is a set of
right-coset representatives for the cosets of 〈(ix, (i + 1)y)〉 in SX∪Y then, by (2),

(uϑ + uϑπ)
∑

σ∈SX∪Y

σ sgn(σ ) = v(1 + π)
(
1 − (

ix, (i + 1)y
)) s∑

r=1

σr sgn(σr) = 0.

Let H be the subgroup of C(t) of elements that fix all the entries in columns i

and i + 1 of t . We have shown that given any ϑ ∈ C′, there exists a non-identity even
permutation πϑ ∈ H such that ϑπϑ ∈ C′ and the contributions to (1) from uϑ and
uϑπϑ cancel.

Let C′
i,i+1 be the subset of C′ of elements which only move entries in columns

i and i + 1 of t . Let ϑ,ϑ ′ ∈ C′
i,i+1. If ϑπϑ = ϑ ′ then ϑ−1ϑ ′ = πϑ ; since πϑ fixes

the entries in columns i and i + 1 of ϑ , this implies that ϑ ′ = ϑ . Hence if the sets
{ϑ,ϑπϑ }, {ϑ ′, ϑ ′πϑ ′ } meet then ϑ = ϑ ′. We may therefore pair up the elements of
C′

i,i+1 to show that

u
∑

ϑ∈C′
i,i+1

ϑ sgn(ϑ)
∑

σ∈SX∪Y

σ sgn(σ ) = 0.
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There exist τ1, . . . , τk ∈ H such that

C′ = τ1C
′
i,i+1 ∪ · · · ∪ τkC

′
i,i+1

where the union is disjoint. Hence the left-hand-side of (1) is

u

k∑

r=1

τr sgn(τr )
∑

ϑ∈C′
i,i+1

ϑ sgn(ϑ)
∑

σ∈SX∪Y

σ sgn(σ )

=
(

u
∑

ϑ∈C′
i,i+1

ϑ sgn(ϑ)
∑

σ∈SX∪Y

σ sgn(σ )

)
k∑

r=1

τr sgn(τr ) = 0,

as we required. �

To complete the proof of Theorem 1, we must show that the homomorphisms fP
are injective. This follows from the following general result.

Lemma 2 Let λ be a partition of r and let M be a Z-free ZSr -module. If f : Sλ → M

is a non-zero homomorphism of ZSr -modules then f is injective.

Proof The homomorphism f induces a non-zero homomorphism

f ′ : Sλ ⊗Z Q → M ⊗Z Q.

Since Sλ ⊗Z Q is irreducible (see [7, Theorem 4.12]), f ′ is injective. Hence the
original map f is also injective. �

5 Minimal constituents of Foulkes characters

In this section we prove Theorems 2 and 3 on the minimal constituents of the Foulkes
characters φ(mn).

5.1 Even case

Let m be even. To prove part (i) of Theorem 2, we must show that the unique minimal
constituent of the Foulkes character φ(mn) is χ(mn). We do this using properties of the
Young permutation modules defined in Sect. 3.1.

Let q : M(mn) → H(mn) be the map which sends an (mn)-tabloid to the indexed set
partition whose member sets are the rows of the tabloid. It is clear that q is a surjective
homomorphism of ZSmn-modules. It easily follows that if π(mn) is the character of
M(mn) then

〈
π(mn),χλ

〉 ≥ 〈
φ(mn),χλ

〉

for every partition λ of mn.
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The constituents of the character π(mn) are given by Young’s rule: see
[7, Chap. 14]. Young’s rule implies that χ(mn) is the unique minimal constituent of
π(mn), and that 〈π(mn),χ(mn)〉 = 1. The following lemma implies that there is a non-
zero homomorphism S(mn) → H(mn), and hence 〈φ(mn),χ(mn)〉 ≥ 1. Therefore χ(mn)

is the unique minimal constituent of φ(mn) and 〈φ(mn),χ(mn)〉 = 1, as required.

Lemma 3 The Specht module S(mn) is not contained in the kernel of q .

Proof Let t = t(mn) and let t ∈ M(mn) be the corresponding tabloid. By the definition
of q ,

tq = {{11,21, . . . ,m1}, . . . , {1n,2n, . . . ,mn}
}
.

Let H ≤ C(t) be the subgroup of the column permuting group of t that permutes
as blocks for its action the rows of t . (As an abstract group, H ∼= Sn.) For exam-
ple, if m = 4 and n = 3, then H is generated by (11,12)(21,22)(31,32)(41,42) and
(11,12,13)(21,22,23)(31,32,33)(41,42,43).

Note that since m is even, every element of H is an even permutation. Let K ≤
C(t) be the subgroup of permutations which fix the elements 11, . . . ,1n in the first
column of t . It is easy to see that C(t) = HK , and so

etq = (tq)
∑

τ∈C(t)

τ sgn(τ ) = (tq)
∑

π∈H

π
∑

σ∈K

σ sgn(σ ) = n! (tq)
∑

σ∈K

σ sgn(σ ).

The summands on the right-hand-side are distinct basis elements of H(mn), hence
etq �= 0. �

5.2 Odd case

We start with the following general form for a homomorphism from a Specht module
into a Foulkes module H(mn) when m is odd.

Proposition 2 Let m be odd and let n ∈ N. Let λ be a partition of mn and let
f : Sλ → H(mn) be a homomorphism of ZSmn-modules. Let t = tλ. There exist set
families P1, . . . , Pk of shape (mn) and type λ and integers a1, . . . , ak such that

etf = a1u1bt + · · · + akukbt

where ui is the indexed set partition associated to Pi .

Proof Let

etf =
∑

u

cuu

where the sum is over all indexed set partitions u of shape (mn) and type λ and
cu ∈ Z.
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Let u be such an indexed set partition. If the symbols ij and ik appear in the same
set in u then, since et (ij , ik) = −et and u(ij , ik) = u, we must have cu = 0. Now
suppose that u contains two sets

{
c(1)a(1), c(2)a(2), . . . , c(m)a(m)

}
,

{
c(1)b(1), c(2)b(2), . . . , c(m)b(m)

}

which become equal if the indices are removed. Let

τ = (
c(1)a(1), c(1)b(1)

) · · · (c(m)a(m), c(m)b(m)

)
.

Since m is odd, τ is an odd permutation in C(t). Hence et τ = −et and uτ = u, and
again we have cu = 0.

These remarks show that if cu �= 0 then removing indices from the symbols in
the sets making up u leaves a set family of shape (mn) and type λ. If removing
indices from u and v gives the same set family then v = uτ for some τ ∈ C(t). Since
et τ = sgn(τ )et we have cv = sgn(τ )cu. The proposition follows. �

We also need a corollary of the following combinatorial proposition, which will
be used again in Sect. 6 below.

Proposition 3 If P is a minimal set family then P is closed.

Proof It will be necessary in this proof to extend the definition of type so that it
applies to all set families. We define the conjugate type of a set family P of shape
(mn) to be the composition α such that αi is the number of sets in P containing i.
Note that if α is a partition, then α′ is the type (in the usual sense) of P .

Let P be a set family of shape (mn) and type (in the usual sense) λ. Suppose that
P is not closed. We may find A ∈ P and i ∈ N such that i + 1 ∈ A and the set

B = A\{i + 1} ∪ {i}
is not in P . Let Q be the set family obtained from P by removing A and adding B .
If α = λ′, then the conjugate type of Q is β where βi = αi + 1, βi+1 = αi+1 − 1 and
βj = αj if j �= i, i + 1. Hence β � α (where � now refers to the dominance order
on compositions). Iterating this construction, we will reach a closed set family R of
conjugate type γ where γ � α. Since R is closed, γ is a partition. If ν = γ ′ then,
ν′ � λ′, and so ν � λ. Thus R has smaller type than P and so P is not minimal. �

Corollary 1 If 〈φ(mn),χλ〉 ≥ 1 then there is a minimal set family of shape (mn) and
type μ where μ � λ, and this set family is closed.

Proof The hypothesis implies that there is an injective homomorphism of QSmn-
modules

f : Sλ ⊗Z Q → H(mn) ⊗Z Q.
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Let

etλf =
∑

u

cuu

where cu ∈ Q and the sum is over all indexed set partitions u of shape (mn) and
type λ. For each such u, let cu = au/bu where au, bu ∈ Z. Let m be the product of all
the bu. It is easy to see that the map g : Sλ → H(mn) defined by

etλg =
∑

u

mcuu

is a well-defined injective homomorphism of ZSmn-modules.
Applying Proposition 2 to g, we see that there is a set family P of shape (mn) and

type λ. Proposition 3 implies that if Q is a set family of minimal type μ � λ then Q
is closed. �

We are now ready to prove part (ii) of Theorem 2. Suppose that χλ is a mini-
mal constituent of φ(mn). By Corollary 1 there is a minimal set family Q of type μ

where μ � λ. Since Q is closed, it follows from Theorem 1 that there is a non-zero
homomorphism Sμ → H(mn), and so 〈φ(mn),χμ〉 ≥ 1. Therefore μ = λ and Q is a
minimal set family of type λ.

Conversely, suppose that there is a minimal set family P of type λ. By Proposi-
tion 3, P is closed, and so it follows from Theorem 1 that χλ is a summand of φ(mn).
If there is a summand χμ of φ(mn) with μ � λ, then by Proposition 2, there is a set
family of type μ; this contradicts the minimality of P . Therefore χλ is a minimal
constituent of φ(mn).

5.3 Proof of Theorem 3

Suppose that χλ is a minimal constituent of φ(mn). By Theorem 2, λ is the type
of a minimal set family of shape (mn). Let u1, . . . , ud be the indexed set partitions
associated to the set families P1, . . . , Pd of shape (mn) and type λ. Proposition 3
implies that the Pr are closed. By Proposition 2 we know that if f : Sλ → H(mn) is a
homomorphism of ZSmn-modules, then there exist a1, . . . , ad ∈ Z such that

etf = a1u1bt + · · · + adudbt

where t = tλ. Hence

f = a1fP1 + · · · + adfPd
.

To show that homomorphisms fP1, . . . , fPd
are linearly independent it suffices to

show that the images of et ,

etfPr
=

∑

τ∈C(t)

urτ sgn(τ )

are linearly independent. Given τ ∈ C(t) and r ∈ {1, . . . , d}, we can easily recover
Pr from urτ by removing the indices from the symbols in the sets making up urτ .
Therefore each etfPr

is a sum of different basis elements of H(mn); as such, they are
linearly independent.
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6 Set families and partitions

6.1 Minimal and unique set families

We proved in Proposition 3 that minimal set families are closed. The following propo-
sition implies that if P is the unique set family of its shape and type, then P is min-
imal. This establishes the following chain of implications on set families of a given
shape:

unique of its type =⇒ minimal =⇒ closed. (3)

Proposition 4 If P is a set family of shape (mn) and type λ and μ�λ then there are
two distinct set families of shape (mn) and type μ.

Proof We may assume that λ and μ are neighbours in the dominance order, so μ is
obtained from λ by moving a box upwards in its Young diagram. Suppose the box
is moved from column i to column j > i. We have μ′

i = λ′
i − 1, μ′

j = λ′
j + 1 and

μ′
k = λ′

k if k �= i, j .
The sets in P either contain both i and j , or i alone, or j alone, or neither. Since

λ′
i − λ′

j = μ′
i − μ′

j + 2, at least two more sets contain i alone than contain j alone.
Hence there are two sets

A = {
x(1), x(2), . . . , x(m − 1), i

} ∈ P ,

A′ = {
x′(1), x′(2), . . . , x′(m − 1), i

} ∈ P

such that

B = {
x(1), x(2), . . . , x(m − 1), j

} �∈ P ,

B ′ = {
x′(1), x′(2), . . . , x′(m − 1), j

} �∈ P .

Let Q be the set family obtained from P by removing A and adding B , and let Q′ be
the set family obtained from P by removing A′ and adding B ′. Then Q and Q′ are
two different set families of type μ. �

To complete the proof of Theorem 4, we must show that neither of the implications
in the chain (3) is reversible. We shall use the following definition throughout the
remainder of this section.

Definition 8 Let A be a subset of the natural numbers. The downset of A, denoted
A�, is the set family consisting of all subsets X such that X � A.

It is obvious that a set family is closed if and only if it is a union of downsets.
Our first example concerns the downset P = {2,4,6,8}�. This is a closed set

family of shape (442), but it is not unique for its type, since the set family

Q = P \{{2,4,6,8}, {1,3,5,7}} ∪ {{1,2,7,8}, {3,4,5,6}}
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Fig. 1 Construction of the
partition (58) � (4,2,1)

has the same shape and type as P . Neither is minimal. This is most easily seen by
noting that since Q contains {1,3,5,8} but not {1,3,5,7}, Q is not closed. Following
the proof of Proposition 3 leads one to (amongst others) the closed set family

R = Q\{{2,4,5,8}} ∪ {{1,3,5,7}}

= P \{{2,4,6,8}, {2,4,5,8}} ∪ {{1,2,7,8}, {3,4,5,6}}

= {1,2,7,8}� ∪ {1,4,6,8}� ∪ {2,3,6,8}� ∪ {2,4,6,7}� ∪ {3,4,5,6}�

which has smaller type than P and Q. (In fact, R is minimal.)
The following example of a minimal set family that is not unique for its type

was found by a computer search for minimal set families with prescribed shape and
maximum entry. (A description of the algorithm used and accompanying source code
is available from the second author’s website, www.ma.rhul.ac.uk/~uvah099/.) Let

S = {1,5,9}� ∪ {1,6,8}� ∪ {2,6,7}� ∪ {3,4,8}� ∪ {3,5,6}�,

S ′ = {1,4,9}� ∪ {1,7,8}� ∪ {2,3,9}� ∪ {2,4,8}�
∪ {2,5,7}� ∪ {3,4,7}� ∪ {4,5,6}�.

The set families S and S ′ both have type λ = (24,19,17,16,13,12,10,8,4)′ and
shape (341). Using the computer to enumerate all closed set families of shape (341)

with maximum entry ≤ 9 confirms that there are no set families of shape (341) with
type � λ.

6.2 Constructing types of minimal set families

Let m,n ∈ N. Given a partition ν of n − 1 with k ≤ m parts, we let (mn) � ν denote
the partition obtained from (mn) by deleting νi boxes from column m + 1 − i and
then adding νi boxes to row i, for each i such that 1 ≤ i ≤ k. This construction is
illustrated in Fig. 1. (If ν1 = a then we add boxes to rows 1,2, . . . , k, and remove
boxes from rows n − a + 1, . . . , n; since k + a ≤ n, the partition (mn) � ν is well-
defined.)

Our first object in this section is to prove the following proposition.

Proposition 5 Let ν be a partition of n − 1 with at most m parts. There is a unique
set family of shape (mn) and type (mn) � ν.

http://www.ma.rhul.ac.uk/~uvah099/
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Proof Suppose that ν has exactly k parts. Let A = {1,2, . . . ,m}. It is easily checked
that

P = {A} ∪ {
A\{m − i + 1} ∪ {m + j} : 1 ≤ i ≤ k,1 ≤ j ≤ νi

}

is a set family of shape (mn) and type (mn) � ν.
Now suppose that Q is a set family of this shape and type. We may write

Q = {A\Br ∪ Cr : 1 ≤ r ≤ n}
for some subsets Br,Cr ⊆ N such that Br ∩ Cr = ∅ for 1 ≤ r ≤ n. For each i such
that 1 ≤ i ≤ k, exactly νi of the sets B1, . . . ,Bn contain m − i + 1. It follows that
|B1|+ · · ·+ |Bn| = n− 1, and so one of the sets Br is empty, and the remaining n− 1
are singletons. Hence A ∈ Q, and for each i such that 1 ≤ i ≤ k, there are exactly νi

sets in Q of the form A\{m− i+1}∪{c} where c ∈ {m+1, . . . ,m+ν1}. Looking first
at the case i = 1, we see that A\{m} ∪ {m + j} ∈ Q for each j such that 1 ≤ j ≤ ν1.
Iterating this argument for i = 2, . . . , k shows that Q = P . �

We isolate the following corollary of Proposition 5.

Corollary 2 Let m be odd and let n ∈ N. If ν is a partition of n − 1 with at most m

parts then
〈
φ(mn),χ(mn)�ν

〉 = 1.

Moreover 〈φ(mn),χμ〉 = 0 if μ � χ(mn)�ν .

Proof By Theorem 4, (mn) � ν is the type of a minimal set family of shape (mn). The
result now follows from Theorem 3. �

It is natural to ask when every minimal constituent φ(mn) arises from this construc-
tion. We shall show in Proposition 6 below that this is the case if and only if n ≤ 5 or
m = 1. We begin with the following straightforward lemma.

Lemma 4 Let P be a closed set family of shape (mn) where m ≥ n. If X ∈ P then
X ⊇ {1,2, . . . ,m − n + 1}.

Proof Suppose that the smallest number not present in X is m − t + 1, so X =
{1,2, . . . ,m − t, x(1), . . . , x(t)} for some x(r) > m − t + 1. For each r such that
1 ≤ r ≤ t , the set X\{x(r)} ∪ {m − t + 1} is majorized by X, so must lie in P . Hence
|P | ≥ t + 1, and so t ≤ n − 1. It follows that m − t ≥ m − n + 1, as required. �

In the proof of the following lemma, a further construction on partitions will be
found useful: given a partition λ with exactly k parts, each of size ≥ c, let λ − (ck)

denote the partition obtained from (λ1 − c, . . . , λk − c) by removing any final parts
of size zero.

Lemma 5 Let m ∈ N and let n ≤ 5. If P is a closed set family of shape (mn) then P
has type (mn) � ν for some partition ν of n − 1 with at most m parts.



J Algebr Comb (2011) 34:525–544 541

Fig. 2 The first five levels of the lattice of 4-subsets of N under the majorization order

Proof If m < n then the result can be checked directly. For example, when m = 4
and n = 5, the set family P must consist of 5 sets taken from the first 5 levels of the
lattice of 4-subsets of N under the majorization order. It is easily seen from Fig. 2
that there are 5 possibilities for P , namely {1,2,3,8}�, {1,2,3,7}� ∪ {{1,2,4,5}},
{1,2,4,6}�, {1,3,4,5}� ∪ {{1,2,3,6}} and {2,3,4,5}�. The types of these set fam-
ilies are (45) � ν where ν = (4), (3,1), (2,2), (2,1,1) and (14), respectively.

Now suppose that m ≥ n. By Lemma 4, we know that every set in P contains
{1,2, . . . ,m − n + 1}. Let Q be the set family obtained by removing the elements
1, 2, . . . , m − n + 1 from every set in P , and then subtracting m − n + 1 from each
remaining element. The shape of Q is ((n−1)n). If P has type λ, where λ has exactly
k parts, then Q has type λ − ((m − n + 1)k). By the result already proved, we know
that

λ − (
(m − n + 1)k

) = (
(n − 1)n

)
� ν

for some partition ν of n − 1. Since λ − ((m − n + 1)k) is a partition of (n − 1)k, we
must have k = n. It is now easy to see that λ = (mn) � ν, as required. �

We now show that Lemma 5 is false when n ≥ 6 and m ≥ 2.

Lemma 6 Let n ≥ 6 and let m ≥ 2. The unique set family of shape (mn) and type
(m + n − 4,m + 2,m + 2, (m − 1)n−6, (m − 2)3) is

{1,2, . . . ,m − 2,m + 1,m + 2}� ∪ {1,2, . . . ,m − 2,m − 1,m + n − 4}�.

This type is not of the form (mn) � ν for any partition ν of n− 1 with at most m parts.

Proof It is routine to check that this set family does have the claimed type. Suppose
that P is a set family of this type. Every set in P contains {1,2, . . . ,m − 2}, so, as
in the proof of Lemma 5, we may pass to a set family Q of shape (2n) and type
(n − 2,4,4,1n−6) by removing the elements 1,2, . . . ,m − 2 from every set, and
then subtracting m − 2 from every remaining element. It suffices to show that Q =
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{3,4}� ∪ {1, n− 2}�. Of the n− 3 sets in Q which contain 1, at most one can contain
2, so 2 must appear in two of the three remaining sets in Q. A similar argument with
3 and 4 shows that {2,3}, {2,4}, {3,4} ∈ Q. It is now clear that Q is as claimed.

If the final assertion in the lemma is false, then the type of Q is (2n) � ν where ν is
a partition of n − 1 with at most 2 parts. However, (n − 2,4,4,1n−6) has three parts
of size > 2, so this is impossible. �

We now use Lemmas 5 and 6 to prove the following proposition.

Proposition 6 Let m be odd and let n ∈ N. Every minimal constituent of φ(mn) is of
the form χ(mn)�ν for some partition ν of n − 1 with at most m parts if and only if
m = 1 or n ≤ 5. �

Proof Since φ(1n) = χ(n) and (n) = (1n)�(n−1), the proposition holds when m = 1.
When n ≤ 5 it follows from Lemma 5, Theorem 2 and Theorem 4. If n ≥ 6 then, since
the unique set family constructed in Lemma 6 is minimal by Theorem 4, there is a
minimal constituent of φ(mn) not of the form χ(mn)�ν for any partition ν of n − 1. �

7 Minimal constituents of generalised Foulkes characters

We end by showing how to construct the minimal constituents of a wider class of
permutation characters. Let μ be a partition of N with largest part of size a. If μ has
exactly n(i) parts of length i for each i such that 1 ≤ i ≤ a, we define the generalised
Foulkes character φμ to be the induced character

φμ = (
φ(1n(1)) × φ(2n(2)) × · · · × φ(an(a))

)�
⏐SN

Sn(1)×S2n(2)×···×San(a)
.

If μ = (mn) for some m,n ∈ N then this definition agrees with the one given earlier.
Our main aim in this section is to prove Proposition 7 below describing the min-

imal constituents of generalised Foulkes characters. To state this result we need one
final construction on partitions.

Definition 9 Given λ a partition of r and μ a partition of s, we denote by λ ∪ μ the
partition of r + s whose multiset of parts is the union of the multisets of parts of λ

and μ.

For example, (5,2) ∪ (3,2,2,1,1) = (5,3,2,2,2,1,1).

Proposition 7 Let μ = (m(1)n(1)) ∪ · · · ∪ (m(t)n(t)) where the m(k) are distinct. If
χλ is a minimal constituent of φμ then

λ = ν(1) ∪ ν(2) ∪ · · · ∪ ν(t)

where ν(k) is a partition of m(k)n(k) and χν(k) is a minimal constituent of φ(m(k)n(k))

for each k such that 1 ≤ k ≤ t .
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Fig. 3 Use of the
Littlewood–Richardson rule to
show that
(χ(6,3,2) × χ(4,3,1))

�
⏐S18

S10×S8
has
χ(6,3,2)∪(4,3,1) = χ(6,4,3,3,2,1)

as a summand

Our proof of Proposition 7 uses the following two general lemmas.

Lemma 7 Let λ be a partition of r and let μ be a partition of s. The unique minimal
constituent of (χλ × χμ)↑Sr+s

Sr×Ss
is χλ∪μ.

Proof Let ϑ = (χλ × χμ)↑Sr+s

Sr×Ss
. It follows from the description of the Littlewood–

Richardson rule given in [7, Chap. 16] that χλ∪μ is a constituent of the character ϑ .
A typical example, which shows how the parts of λ ∪ μ may be obtained by adding
numbers to λ, is given in Fig. 3. Note that at step j , the lowest μj positions that are
eligible to be filled receive a j . For an explanation of the notation and method used,
the reader is referred to [7, Chap. 16].

The remainder of the proof can be completed using the easier Young’s rule. The
character

ψ = (
χλ × (

1Sμ↑Ss
))�

⏐Sr+s

Sr×Ss

certainly contains all the constituents of ϑ , so to prove the lemma, it suffices to show
that ψ has χλ∪μ as its least constituent. This follows by induction on the number of
parts of μ if we rewrite ψ as

(
χλ × 1μ1 × · · · × 1μk

)�
⏐Sr+s

Sr×Sμ1 ×···×Sμk

and then repeatedly apply Young’s rule (see [7, Chap. 14]). �

Lemma 8 Let π be a character of Sr and let ϑ be a character of Ss . If χν is a mini-
mal constituent of (π × ϑ)↑Sr+s

Sr×Ss
then ν = λ ∪ μ where χλ is a minimal constituent

of π and χμ is a minimal constituent of ϑ .

Proof Let ψ = (π × ϑ)↑Sr+s

Sr×Ss
. It follows from Lemma 7 that if χν is a minimal

constituent of ψ then there are partitions λ and μ such that 〈π,χλ〉 ≥ 1, 〈ϑ,χμ〉 ≥ 1
and ν = λ ∪ μ.

Suppose that χλ is not a minimal constituent of π . Then there exists a partition λ�

such that λ� � λ and 〈π,χλ�〉 ≥ 1. By Lemma 7 we have
〈
ψ,χλ�∪μ

〉 ≥ 1.

It is easily seen that λ� ∪ μ � λ ∪ μ; this contradicts the minimality of χν . Therefore
χλ is a minimal constituent of π and similarly, χμ is a minimal constituent of ϑ . �
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We are now ready to prove Proposition 7. Let N = m(1)n(1) + · · · + m(t)n(t).
Since the m(r) are distinct,

φμ =(
φ(m(1)n(1)) × · · · × φ(m(t)n(t))

)�
⏐SN

Sm(1)n(1)×···×Sm(t)n(t)
.

The proposition now follows by repeated applications of Lemma 8.
We finish with the observation that the converse to Proposition 7 (and to Lemma 8)

is false. This can be demonstrated using Corollary 2 in Sect. 6.2. It follows from this
corollary that φ(55) has

χ(55)�(2,1,1) = χ(7,6,6,4,2) and χ(55)�(14) = χ(6,6,6,6,1)

as minimal constituents. Similarly, φ(35) has

χ(35)�(4) = χ(7,2,2,2,2) and χ(35)�(3,1) = χ(6,4,2,2,1)

as minimal constituents. It is clear that

(6,6,6,6,1) ∪ (7,2,2,2,2) � (7,6,6,4,2) ∪ (6,4,2,2,1).

Hence χ(6,6,6,6,1)∪(7,2,2,2,2) is not a minimal constituent of φ(55,35), even though it
arises from the ∪-construction applied to a minimal constituent of φ(55) and a mini-
mal constituent of φ(35).
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