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Abstract In this paper, we prove that a refinement of the Alperin–McKay Conjecture
for p-blocks of finite groups, formulated by I.M. Isaacs and G. Navarro in 2002, holds
for all covering groups of the symmetric and alternating groups, whenever p is an odd
prime.
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1 Introduction

In order to understand properties of the p-modular representation theory of a finite
group G, one often tries to reduce to a problem about the p-local subgroups of G,
i.e., the normalizers of its p-subgroups. This is illustrated by many results, such as
Brauer’s three Main Theorems, and several conjectures, such as Broué’s Abelian De-
fect Conjecture, Dade’s Conjecture or the Alperin–McKay Conjecture.

I.M. Isaacs and G. Navarro have formulated in [5] some refinements of the
McKay and Alperin–McKay Conjectures for arbitrary finite groups. Consider a fi-
nite group G and a prime p. Let B be a p-block of G, with defect group D, and
let b be the Brauer correspondent of B in NG(D). Throughout this paper, we will
use a p-valuation ν on Z, given by ν(n) = a if n = paq with (p, q) = 1. The
height h(χ) ∈ Z≥0 of an irreducible (complex) character χ ∈ B is then defined by
the equality ν(χ(1)) = ν(|G|)− ν(|D|)+ h(χ). We denote by M(B) and M(b) the
sets of characters of height 0 of B and b, respectively. The Alperin–McKay Con-
jecture then asserts that |M(B)| = |M(b)| (while the McKay Conjecture states that
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|M(G)| = |M(NG(P ))|, where P ∈ Sylp(G), and M(G) and M(NG(P )) denote the
sets of irreducible characters of p′-degree of G and NG(P ), respectively).

In [5], Isaacs and Navarro predicted that something stronger must happen, namely
that this equality can be refined when considering the p′-parts of the character de-
grees. For any n ∈ N, we write n = npnp′ , with np = pν(n). For any 1 ≤ k ≤ p − 1,
we define subsets Mk(B) and Mk(b) of M(B) and M(b), respectively, by letting
Mk(B) = {χ ∈ M(B);χ(1)p′ ≡ ±k (mod p)} and Mk(b) = {ϕ ∈ M(b);ϕ(1)p′ ≡
±k (mod p)}. We then have the following

Conjecture 1.1 [5, Conjecture B] For 1 ≤ k ≤ p − 1, we have |Mck(B)| = |Mk(b)|,
where c = [G : NG(D)]p′ .

Note that Conjecture 1.1 obviously implies the Alperin–McKay Conjecture (by
letting k run through {1, . . . , p − 1}), but also implies another refinement of the
McKay Conjecture; if we let Mk(G) = {χ ∈ Irr(G);χ(1) ≡ ±k (mod p)} then, by
considering all blocks of G with defect group P ∈ Sylp(G), we obtain |Mk(G)| =
|Mk(NG(P ))|, since [G : NG(P )] ≡ 1 (mod p) (see [5, Conjecture B]).

Isaacs and Navarro proved Conjecture 1.1 whenever D is cyclic, or G is p-
solvable or sporadic. P. Fong proved it for symmetric groups S(n) in [2], and R. Nath
for alternating groups A(n) in [8]. In this paper, we prove that Conjecture 1.1 holds
in all the covering groups of the symmetric and alternating groups, provided p is
odd (Theorem 5.1). The proof makes heavy use of the powerful combinatorics under-
lying the representation theory of these groups. In particular, Conjecture 1.1 comes
from an explicit bijection, given in terms of the bar-partitions used to parametrize the
irreducible characters.

In Sect. 2, we present the covering groups S+(n) and S−(n) and their irreducible
characters, first studied by I. Schur in [11], as well as their p-blocks. It turns out that
the main work to be done is on so-called spin blocks. We also give various results on
the degrees of spin characters, generalizing the methods used by Fong in [2]. Most of
these results are of a combinatorial nature, and the concepts they involve are also pre-
sented here. Section 3 is devoted to proving Theorem 3.4 which reduces the problem
to proving only that Conjecture 1.1 holds for the principal spin block of S+(pw).
This reduction theorem is a refinement of [6, Theorem 2.2] that G.O. Michler and
J.B. Olsson proved in order to establish that the Alperin–McKay Conjecture holds
for covering groups. Finally, the case of the principal spin block of S+(pw) is treated
in Sect. 4.

2 Covering groups

In this section, we introduce the objects and preliminary results we will need about
covering groups and their characters. Unless stated otherwise, the following results
can be found in [6].

2.1 Covering groups

For any integer n ≥ 1, I. Schur has defined (by generators and relations) two central
extensions Ŝ(n) and S̃(n) of the symmetric group S(n) (see [11], p. 164). We have
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Ŝ(1)∼= S̃(1)∼= Z/2Z, and, for n≥ 2, there is a nonsplit exact sequence

1 −→ 〈z〉 −→ Ŝ(n)
π−→S(n)−→ 1,

where 〈z〉 = Z(Ŝ(n))∼= Z/2Z.
Whenever n ≥ 4, these two extensions are non-isomorphic, except when n = 6.

However, they are isoclinic, so that their representation theory is virtually the same.
Hence, for our purpose, it is sufficient to study one of them. Throughout this paper,
we will write S+(n) for Ŝ(n).

If H is a subgroup of S(n), we let H+ = π−1(H) and H− = π−1(H ∩ A(n)).
In particular, H− has index 1 or 2 in H+, and H+ = H− if and only if H ⊂ A(n).
We define S−(n) = A(n)− = A(n)+. Hence S−(n) is a central extension of A(n) of
degree 2.

The groups A(6) and A(7) also have one 6-fold cover each, which, together with
the above groups, give all the covering groups of S(n) and A(n).

2.2 Characters, blocks and twisted central product

From now on, we fix an odd prime p. For any H ≤ S(n), the irreducible complex
characters of Hε fall into two categories: those that have z in their kernel, and which
can be identified with those of H (if ε = 1) or those of H ∩ A(n) (if ε = −1),
and those that don’t have z in their kernel. These (faithful) characters are called
spin characters. We denote by SI(Hε) the set of spin characters of Hε , and we let
SI0(H

ε)= SI(Hε)∩M(Hε) (with the notation of Sect. 1).
If B is a p-block of Hε then, because p is odd, it is known that either B ∩

SI(Hε)= ∅ or B ⊂ SI(Hε), in which case we say that B is a spin block of Hε .
Any two χ,ψ ∈ Irr(Hε) are called associate if χ ↑H+= ψ ↑H+

(if ε =−1) or if
χ ↓H−= ψ ↓H− (if ε = 1). Then each irreducible character of Hε has exactly 1 or
2 associate characters. If χ is itself its only associate, we say that χ is self-associate
(written s.a.), we put χa = χ and let σ(χ) = 1. Otherwise, χ has a unique associate
ψ �= χ ; we say that χ is non-self-associate (written n.s.a.), we put χa = ψ and we
let σ(χ)=−1.

If H+ �= H−, then χ ∈ Irr(H+) and ϕ ∈ Irr(H−) are said to correspond if
〈χ,ϕ ↑H+〉H+ �= 0. In this case, Clifford’s theory implies that σ(χ)=−σ(ϕ).

If H1,H2, . . . ,Hk ≤ S(n) act (non-trivially) on disjoint subsets of {1, . . . , n}, then
one can define the twisted central product H+ = H+

1 ×̂ · · · ×̂H+
k ≤ S+(n) (see [11]

or [3]). Then |H+| = 1
2k−1 |H+

1 | · |H+
2 | · · · |H+

k | = 2|H1| · |H2| · · · |Hk|. Also, one ob-

tains SI(H+) from the SI(H+
i )’s as follows:

Proposition 2.1 (See [11, §28]) There is a surjective map

⊗̂:
{

SI(H+
1 )× · · · × SI(H+

k )−→ SI(H+),

(χ1, . . . , χk) �−→ χ1⊗̂ · · · ⊗̂χk,

which satisfies the following properties. Suppose χi,ψi ∈ SI(H+
i ) for 1 ≤ i ≤ k.

Then
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(i) σ(χ1⊗̂ · · · ⊗̂χk) = σ(χ1) · · ·σ(χk), and (χ1⊗̂ · · · ⊗̂χk)(1) = 2�s/2�χ1(1) · · · ×
χk(1), where s is the number of n.s.a. characters in {χ1, . . . , χk} and � � denotes
integral part.

(ii) χ1⊗̂ · · · ⊗̂χk and ψ1⊗̂ · · · ⊗̂ψk are associate if and only if χi and ψi are asso-
ciate for all i.

(iii) χ1⊗̂ · · · ⊗̂χk = ψ1⊗̂ · · · ⊗̂ψk if and only if χi and ψi are associate for all i and
[σ(χ1) · · ·σ(χk)= 1] or [σ(χ1) · · ·σ(χk)=−1 and |{i |χi �=ψi}| is even].

2.3 Partitions and bar-partitions

Just as the irreducible characters of S(n) are parametrized by the partitions of n, the
spin characters of S+(n) have a combinatorial description. We let P(n) be the set
of all partitions of n, and P0(n) be the subset of all partitions in distinct parts, also
called bar-partitions. We write λ � n for λ ∈ P(n), and λ� n for λ ∈ P0(n). We also
write, in both cases, |λ| = n.

It is well known that Irr(S(n)) = {χλ,λ � n}. For any λ � n, we write h(λ) for
the product of all hook-lengths in λ. We then have h(λ) = hλ,phλ,p′ , where hλ,p

(respectively, hλ,p′ ) is the product of all hook-lengths divisible by p (prime to p,

respectively) in λ. The Hook-Length Formula then gives χλ(1)= n!
h(λ)

.
If we remove all the hooks of length divisible by p in λ, we obtain its p-core λ(p).

The information on p-hooks is stored in the p-quotient λ(p) of λ. If n= pw+ r , with
λ(p) � r , then λ(p) is a p-tuple of partitions of w, i.e., λ(p) = (λ(0), . . . , λ(p−1)) and
|λ(0)| + · · · + |λ(p−1)| =w. The partition λ is uniquely determined by its p-core and
p-quotient. Also, for any integer k, there exists a (canonical) bijection between the
kp-hooks in λ and the k-hooks in λ(p) (i.e., in the λ(i)’s).

Finally, the Nakayama Conjecture states that χλ,χμ ∈ Irr(S(n)) belong to the
same p-block if and only if λ and μ have the same p-core.

We now present the analogue properties for bar-partitions and spin characters. For
any bar-partition λ = (a1, . . . , am) of n, with a1 > · · · > am > 0, we let m(λ) = m,
and define the sign of λ by σ(λ)= (−1)n−m(λ). We then have

Theorem 2.2 (See [11, §41]) For each sign ε ∈ {1,−1}, there is a (canonical) sur-
jective map f ε : SI(Sε(n))−→ P0(n) such that:

(i) σ(χ)= εσ (f ε(χ)) for all χ ∈ SI(Sε(n)).
(ii) For any χ,ψ ∈ SI(Sε(n)), we have f ε(χ) = f ε(ψ) if and only if χ and ψ are

associate.
(iii) If χ ∈ SI(S+(n)) and ϕ ∈ SI(S−(n)), then f+(χ)= f−(ϕ) if and only if χ and

ϕ correspond.

In particular, each λ � n labels one s.a. character χ or two associate characters
χ and χa . Throughout this paper, we will denote by 〈λ〉 the set of spin characters
labeled by λ, and write (abusively) 〈λ〉 ∈ SI(Sε(n)), and 〈λ〉(1) for the (common)
degree of any spin character in 〈λ〉. We will also sometimes write 〈λ〉+ to emphasize
that 〈λ〉 ∈ SI(S+(n)) (and 〈λ〉− if 〈λ〉 ∈ SI(S−(n))).

For the following results on bars, cores and quotients, we refer to [9]. For any odd
integer q , let e = (q − 1)/2. We define a q̄-quotient of weight w to be any tuple of
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partitions (λ(0), λ(1), . . . , λ(e)) such that λ(0) ∈ P0(w0), λ(i) ∈ P(wi) for 1 ≤ i ≤ e,
and w0 + w1 + · · · + we = w. We define its sign by σ((λ(0), λ(1), . . . , λ(e))) =
(−1)w−w0σ(λ(0)).

Now take any bar-partition λ = (a1, . . . , am) of n as above. The bars in λ can be
read in the shifted Young diagram S(λ) of λ. This is obtained from the usual Young
diagram of λ by shifting the ith row i − 1 positions to the right. The j th node in the
ith row is called the (i, j)-node, and corresponds to the bar Bij . The bar-lengths in
the ith row are obtained by writing (from left to right in S(λ)) the elements of the
following set in decreasing order: {1,2, . . . , ai} ∪ {ai + aj | j > i} \ {ai − aj | j > i}.
The bars are of three types:

• Type 1. These are bars Bij with i + j ≥m+ 2 (i.e., in the right part of S(λ)). They
are ordinary hooks in S(λ), and their lengths are the elements of {1,2, . . . , ai −
1} \ {ai − aj | j > i}.

• Type 2. These are bars Bij with i + j = m + 1 (in particular, the corresponding
nodes all belong to the same column of S(λ)). Their length is precisely ai , and the
bar is all of the ith row of S(λ).

• Type 3. The lengths {ai + aj | j > i} correspond to bars Bij with i + j ≤ m. The
bar consists of the ith row together with the j th row of S(λ).

Bars of type 1 and 2 are called unmixed, while those of type 3 are called mixed. The
unmixed bars in λ correspond exactly to the hooks in the partition λ∗, which admits
as a β-set the set of parts of λ.

For any λ� n, we write h̄(λ) for the product of all bar-lengths in λ. We then have
h̄(λ) = h̄λ,ph̄λ,p′ , where h̄λ,p (respectively, h̄λ,p′ ) is the product of all bar-lengths
divisible by p (prime to p, respectively) in λ. We then have the following analogue
of the Hook-Length Formula (proved by A.O. Morris [7, Theorem 1])

〈λ〉(1)= 2�(n−m(λ))/2� n!
h̄(λ)

.

If we remove all the bars of length divisible by p in λ, we obtain its p̄-core λ(p̄)

(which is still a bar-partition), and its p̄-quotient λ(p̄). If n= pw + r , with λ(p̄) � r ,
then λ(p̄) is a p̄-quotient of weight w in the sense defined above. The bar-partition
λ is uniquely determined by its p̄-core and p̄-quotient. Also, for any integer k, there
exists a canonical bijection between the set of kp-bars in λ and the set of k-bars in
λ(p̄) (where a k-bar in λ(p̄) = (λ(0), λ(1), . . . , λ((p−1)/2)) is a k-bar in λ(0) or a k-hook
in one of λ(1), . . . , λ((p−1)/2)).

The distribution of the spin characters of S+(n) into spin blocks was first con-
jectured for p odd by Morris. It was first proved by J.F. Humphreys in [4], then
differently by M. Cabanes, who also determined the structure of the defect groups of
spin blocks (see [1]).

Proposition 2.3 Let χ,ψ ∈ SI(Sε(n)) and p be an odd prime. Then χ is of p-defect
0 if and only if f ε(χ) is a p̄-core. If f ε(χ) is not a p̄-core, then χ and ψ belong to
the same p-block if and only if f ε(χ)(p̄) = f ε(ψ)(p̄).

One can therefore define the p̄-core of a spin block B and its weight w(B), as well
as its sign δ(B)= σ(f ε(χ)(p̄)) (for any χ ∈ B). We then have
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Proposition 2.4 (See [1]) If B is a spin block of Sε(n) of weight w, then a defect
group X of B is a Sylow p-subgroup of Sε(pw).

2.4 Removal of p-bars

The following result is the bar-analogue of [2, Lemma 3.2]; it describes how the
removal of p-bars affects the product of p′-bar-lengths.

Proposition 2.5 Suppose λ� n has p̄-core λ(p̄). Then

h̄λ,p′ ≡ ±2−a(λ)h̄λ(p̄),p
′ = ±2−a(λ)h̄(λ(p̄)) (mod p),

where a(λ) is the number of p-bars of type 3 to remove from λ to get λ(p̄).

Proof Let Bij be a p-bar in λ and λ − Bij be the bar-partition obtained from λ by
removing Bij . We distinguish two cases, depending on whether Bij is unmixed or
mixed.

First suppose that Bij is unmixed (i.e., i + j > m(λ)). We start by examining the
unmixed p′-bars in λ and λ − Bij . These correspond, in the notation above, to the
p′-hooks in λ∗ and (λ − Bij )

∗, respectively (considering λ and λ − Bij as β-sets).
The set of parts of λ is X = {a1, . . . , am}, and the set of non-zero parts of λ − Bij

is Y = {a1, . . . , ai−1, ai − p,ai+1, . . . , am} (or Y = {a1, . . . , ai−1, ai+1, . . . , am} if
ai = p). The p′-hooks in λ∗ (resp., (λ − Bij )

∗) therefore correspond to pairs (x, y)

with 0 ≤ x < y, (y − x,p)= 1, and x /∈X, y ∈X (resp., x /∈ Y , y ∈ Y ).
If Bij is of type 1 (i.e., i + j > m(λ) + 1), then ai − p > 0, so that |Y | = |X|

and (λ − Bij )
∗ = λ∗ − h for some p-hook h in λ. In this case, we are thus ex-

actly in the same context as [2, Lemma 3.2], and we get hλ∗,p′ ≡ ±hλ∗−h,p′ =
±h(λ−Bij )∗,p′ (mod p). Note that the result of [2, Lemma 3.2] is, in fact, incorrect, as
the right hand side should be multiplied by (−1)μ/κ , where μ/κ is the relative sign
associated to μ and κ . The mistake is to be found in the proof, where the leg-length
Lh of the hook removed should appear (four lines before the end), yielding, in our
case, hλ∗,p′ ≡ (−1)Lh+1hλ∗−h,p′ (mod p).

If, on the other hand, Bij is of type 2 (i.e., i + j = m(λ) + 1), then ai − p = 0,
and Y = X \ {p}. Note that, in this case, Y is not a β-set for a partition of |λ∗| − p,
while Y ∪ {0} is. The p′-hooks in (λ − Bij )

∗ correspond to either pairs (x, y) with
y �= ai , which also correspond to p′-hooks in λ∗, or to pairs (p, y), with y > p and
y ∈X. These new hooks have lengths (a1 −p), . . . , (ai−1 −p). Finally, some hooks
have disappeared: those corresponding to pairs (x,p) with x < p and x /∈ X. These
have lengths (p − x), for 0 ≤ x < p and x /∈ {ai+1, . . . , am}.

We now turn to the mixed p′-bars in λ and λ − Bij . Suppose first that Bij is of
type 1. Then m(λ)=m(λ−Bij ). Suppose that

a1 > · · ·> ai−1 > ai+1 > · · ·> ak > ai − p > ak+1 > · · ·> am.

To prove the result, we can simply ignore the bar-lengths which are common to λ and
λ−Bij . The mixed bars which disappear when going from λ to λ−Bij have lengths

(a1 + ai), (a2 + ai), . . . , (ai−1 + ai) and
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(ai + ai+1), (ai + ai+2), . . . , (ai + am).

The mixed bars which appear have lengths

(a1 + ai − p), (a2 + ai − p), . . . , (ai−1 + ai − p),

(ai+1 + ai − p), . . . , (ak + ai − p) and (ai − p + ak+1), . . . , (ai − p + am).

If we then just consider the lengths not divisible by p, it is easy to see that we can pair
the bars disappearing with those appearing. The pairs are of the form (b, b′), where
b is a bar in λ and b′ is a bar in λ−Bij , and |b′| = |b| − p. We thus get, in this case,

∏
b mixed p′-bar in λ

|b| ≡
∏

b′ mixed p′-bar in λ−Bij

|b′| (mod p).

Together with the equality obtained above for unmixed p′-bars, we obtain that, if Bij

is a p-bar of type 1 in λ, then h̄λ,p′ ≡ ±h̄λ−Bij ,p′ (mod p).
Now suppose that Bij is of type 2, i.e., ai = p. Then the mixed bars which disap-

pear when going from λ to λ− Bij have lengths (a1 + p), (a2 + p), . . . , (ai−1 + p)

(call these A) and (p+ ai+1), (p+ ai+2), . . . , (p+ am) (call these B), while no new
mixed bar appears.

The bars disappearing in A are compensated for by the hooks appearing in
(λ−Bij )

∗ in the study of unmixed bars above (since au + p ≡ au − p (mod p)

for all 1 ≤ u ≤ i − 1, the p′-parts are congruent mod p when these are not divisible
by p).

On the other hand, since 0 < am < · · · < ai+1 < ai = p, all the bar-lengths in B

are coprime to p, and their product is

(p + ai+1)(p + ai+2) · · · (p + am)≡ ai+1ai+2 · · ·am (mod p).

Now the hooks disappearing in the above discussion of unmixed bars all have length
prime to p except one (corresponding to x = 0). The product of the lengths prime to
p is thus ∏

0<x<p,x /∈{ai+1,...,am}
(p − x)≡ (−1)p−1−m+i

∏
0<x<p,x /∈{ai+1,...,am}

x (mod p).

Hence the product of the p′-hook-lengths disappearing and the p′-bar-lengths in B is
congruent (mod p) to

(−1)p−1−m+i
∏

0<y<p

y = (−1)p−1−m+i (p − 1)! ≡ (−1)p−m+i (mod p)

(by Wilson’s Theorem). Finally, we obtain that, if Bij is a p-bar of type 2 in λ, then
h̄λ,p′ ≡ (−1)p−m+i h̄λ−Bij ,p′ (mod p).

We now suppose that Bij is a p-bar of type 3 in λ, i.e., i < j , ai > aj and ai +
aj = p. The set of parts of λ is X = {a1, . . . , am} and the set of parts of λ − Bij is
Y = {a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , am}. Ignoring as before the bars which
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are common to λ and λ−Bij , we see that the unmixed bars which disappear from λ

to λ−Bij have lengths

(ai − x)
(
0 ≤ x < ai, x /∈ {am, . . . , ai+1}

)
and

(aj − x)
(
0 ≤ x < aj , x /∈ {am, . . . , aj+1}

)
,

while those appearing have lengths

(a1 − ai), . . . , (ai−1 − ai), (a1 − aj ), . . . , (ai−1 − aj ) and

(ai+1 − aj ), . . . , (aj−1 − aj ).

On the other hand, there is no mixed bar appearing, while the mixed bars disappearing
have lengths

(a1 + ai), . . . , (ai−1 + ai) (rows 1, . . . , i − 1, column i),

(ai + ai+1), . . . , (ai + aj−1), (ai + aj ), . . . , (ai + am) (row i),

(a1 + aj ), . . . , (ai−1 + aj ) (rows 1, . . . , i − 1, column j ),

(ai+1 + aj ), . . . , (aj−1 + aj ) (rows i + 1, . . . , j − 1, column j ), and

(aj + aj+1), . . . , (aj + am) (row j ).

Now, since ai + aj = p, we have, for any 1 ≤ k ≤m,

ak − ai ≡ ak + aj (mod p) and ak + ai ≡ ak − aj (mod p).

In particular, ak − ai (resp., ak + ai ) is coprime to p if and only if ak + aj (resp.,
ak − aj ) is coprime to p, and, in that case,

(ak ± ai)p′ = ak ± ai ≡ ak ∓ aj ≡ (ak ∓ aj )p′ (mod p).

We thus have the following compensations between the appearing unmixed bars and
the appearing mixed bars:

(a1 − ai), . . . , (ai−1 − ai) ←→ (a1 + aj ), . . . , (ai−1 + aj )

(a1 − aj ), . . . , (ai−1 − aj ) ←→ (a1 + ai), . . . , (ai−1 + ai) and

(ai+1 − aj ), . . . , (aj−1 − aj ) ←→ (ai + ai+1), . . . , (ai + aj−1).

This accounts for all the appearing (unmixed) bars, and we’re left exactly with the
following disappearing bar-lengths:

(ai − x)
(
0 ≤ x < ai, x /∈ {am, . . . , ai+1}

)
unmixed of type 1,

(aj − x)
(
0 ≤ x < aj , x /∈ {am, . . . , aj+1}

)
unmixed of type 2,
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(ai+1 + aj ), . . . , (aj−1 + aj ), (aj + aj+1), . . . , (aj + am) mixed of type 1,

(ai + aj+1), . . . , (ai + am) mixed of type 2,

and (ai + aj )= p which can thus be ignored.
Now, for any i + 1 ≤ k ≤ m, aj + ak = p − ai + ak ≡−(ai − ak) (mod p), and,

for j + 1 ≤ k ≤ m, ai + ak ≡ −(aj − ak) (mod p). Hence, taking the product, we
obtain (modulo p):

∏
0≤x<ai ,x �=aj

(ai − x)= ai !
ai − aj

(type 1) and
∏

0≤x<aj

(aj − x)= aj ! (type 2).

Now aj ! = 1 ·2 · · ·aj = (−1)aj (−1) · · · (−aj )≡ (−1)aj (p−1) · · · (p−aj ) (mod p),
so that aj ! ≡ (−1)aj (p − 1) · · · (ai + 1)ai (mod p). We thus have, disappearing,

±aiai !(ai + 1) · · · (p − 1)

ai − aj

≡± ai

ai − aj

(p − 1)! ≡ ∓ ai

ai − aj

(mod p)

(this last equality being true by Wilson’s Theorem).
Finally, ai −aj = ai −(p−ai)≡−2ai (mod p), yielding a total of ±2−1 (mod p)

disappearing (since, p being odd, 2 is invertible (mod p), and ai < p so that we
can simplify by ai ). We thus get that, if Bij is a p-bar of type 3 in λ, then h̄λ,p′ ≡
± 1

2 h̄λ−Bij ,p′ (mod p).
Iterating the above results on all the p-bars to remove from λ to get to its p̄-core

λ(p̄), we finally obtain the desired equality, writing a(λ) for the number of p-bars of
type 3 to remove:

h̄λ,p′ ≡ ±2−a(λ)h̄λ(p̄),p
′ = ±2−a(λ)h̄(λ(p̄)) (mod p)

(since all the bars in λ(p̄) have length coprime to p). �

2.5 p̄-Core tower, p̄-quotient tower and characters of p′-degree

In this section, we want to obtain an expression for the (value modulo p of the) p′-
part of the degree of a spin character. We start by describing the p̄-core tower of a
bar-partition, introduced by Olsson in [9].

Take any λ � n. the p̄-core tower of λ has rows Rλ
0 ,Rλ

1 ,Rλ
2 , . . . , where the

ith row Rλ
i contains one p̄-core and (pi − 1)/2 p-cores (in particular, one can

consider Rλ
i as a p̄i -quotient). We have Rλ

0 = {λ(p̄)} (the p̄-core of λ). If the p̄-
quotient of λ is λ(p̄) = (λ(0), λ(1), . . . , λ(e)) (where e = (p − 1)/2), then Rλ

1 =
{λ(0)

(p̄), λ
(1)
(p), . . . , λ

(e)
(p)}. Writing λ(0)(p̄) = (λ(0,0), λ(0,1), . . . , λ(0,e)) the p̄-quotient of

λ(0) and λ(i)(p) = (λ(i,1), λ(i,2), . . . , λ(i,p)) the p-quotient of λ(i) (1 ≤ i ≤ e), and tak-
ing cores, we let

Rλ
2 =

{
λ

(0,0)
(p̄) , λ

(0,1)
(p) , . . . , λ

(0,e)
(p) , λ

(1,1)
(p) , . . . , λ

(1,p)

(p) , λ
(2,1)
(p) , . . . , λ

(e,p)

(p)

}
.

Continuing in this way, we obtain the p̄-core tower of λ. We define the p̄-quotient
tower of λ in a similar fashion: it has rows Qλ

0,Qλ
1,Qλ

2, . . . , where the ith row



410 J Algebr Comb (2011) 34:401–426

Qλ
i contains one p̄-quotient and (pi − 1)/2 p-quotients (in particular, Qλ

i can be
seen as a p̄i+1-quotient). With the above notation, we have Qλ

0 = {λ(p̄)}, Qλ
1 =

{λ(0)(p̄), λ(1)(p), . . . , λ(e)(p)} and

Qλ
2 =

{
λ(0,0)(p̄), λ(0,1)(p), . . . , λ(0,e)(p), λ(1,1)(p), . . . , λ(1,p)(p), λ(2,1)(p), . . . , λ(e,p)(p)

}
.

The following result will be useful later.

Lemma 2.6 If λ� n has p̄-core tower (Rλ
0 ,Rλ

1 , . . . ,Rλ
m), then σ(λ)=∏m

i=0 σ(Rλ
i ).

Proof We have σ(λ)= σ(λ(p̄))σ (λ(p̄)), and σ(λ(p̄))= σ(Rλ
0 ).

Also, σ(λ(p̄))= σ(λ(0))(−1)
∑

i≥1 |λ(i)|, and

σ
(
λ(0)

)= σ
(
λ

(0)
(p̄)

)
σ
(
λ(0)(p̄)

)= σ
(
Qλ

0

)= σ
(
λ

(0)
(p̄)

)
σ
(
λ(0,0)

)
(−1)

∑
j≥1 |λ(0,j)|

.

Now σ(Rλ
1 )= σ(λ(0)(p̄))(−1)

∑
i≥1 |λ(i)

(p̄)
| and σ(Qλ

1)= σ(λ(0,0))(−1)
∑

i≥0,j≥1 |λ(i,j)|, so
that

σ
(
Rλ

1

)
σ
(
Qλ

1

) = σ
(
λ(0)(p̄)

)
σ
(
λ(0,0)

)
(−1)

∑
i≥1 |λ(i)

(p̄)
|+∑

i≥0,j≥1 |λ(i,j)|

= σ
(
λ(0)

)
(−1)

∑
i≥1 |λ(i)

(p̄)
|+∑

i,j≥1 |λ(i,j)|
.

However, for each i ≥ 1, we have |λ(i)
(p̄)| +

∑
j≥1 |λ(i,j)| ≡ |λ(i)

(p̄)| + p
∑

j≥1 |λ(i,j)|
(mod 2) (since p is odd), and |λ(i)

(p̄)| + p
∑

j≥1 |λ(i,j)| = |λ(i)|. We therefore get

σ
(
Rλ

1

)
σ
(
Qλ

1

)
σ
(
λ(0)

)
(−1)

∑
i≥1 |λ(i)| = σ

(
λ(p̄)

)= σ
(
Qλ

0

)
.

Finally, we have σ(λ) = σ(Rλ
0 )σ (Qλ

0), and σ(Qλ
0) = σ(Rλ

1 )σ (Qλ
1), whence σ(λ) =

σ(Rλ
0 )σ (Rλ

1 )σ (Qλ
1). Iterating this process, we deduce the result. �

Now, writing βi(λ) for the sum of the cardinalities of the partitions in Rλ
i , one

shows easily that |λ| = ∑
i≥0 βi(λ)pi (see [9]). Also, one gets the following bar-

analogue of [2, Proposition 1.1]:

Proposition 2.7 [9, Proposition 3.1] In the above notation,

νp

(
h̄(λ)

)= n−∑
i≥0 βi(λ)

p − 1
.

In particular, 〈λ〉 has p′-degree if and only if
∑

i≥0 βi(λ)pi is the p-adic decompo-
sition of n.

Let n=∑k
i=0 tip

i be the p-adic decomposition of n. For each 0 ≤ i ≤ k, let ei =
(pi − 1)/2, and write Rλ

i = {μ(0)
i ,μ

(1)
i , . . . ,μ

(ei )
i } and Qλ

i = {λ(0)
i , λ

(1)
i , . . . , λ

(ei+1)

i }.
Note that Qλ

k = {∅, . . . ,∅}.
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We let h̄(Rλ
i )= h̄(μ

(0)
i )

∏ei

j=1 h(μ
(j)
i ), and h̄(Qλ

i )= h̄(λ
(0)
i )

∏ei+1
j=1 h(λ

(j)
i ), and we

let m
(0)
i =m(μ

(0)
i ) and βi = βi(λ).

Proposition 2.8 With the above notation, we have, for any λ� n,

|S+(n)|p′

〈λ〉(1)p′
≡ ± 2

2� S
2 �

k∏
i=0

1

2�(βi−m
(0)
i )/2�

h̄(Rλ
i ) (mod p),

where S = |{0 ≤ i ≤ k;βi −m
(0)
i odd}|.

Proof We have

|S+(n)|p′

〈λ〉(1)p′
= 2

2�(n−m(λ))/2� h̄(λ)p′ .

Now h̄(λ)p′ = h̄λ,p′(h̄λ,p)p′ = h̄λ,p′(h̄(Qλ
0)p′) (since there is a bijection between the

set of bars divisible by p in λ and the set of bars in the quotient Qλ
0).

By Proposition 2.5, we have h̄λ,p′ ≡ ±2−a(λ)h̄(λ(p̄)) ≡ ±2−a(λ)h̄(Rλ
0 ) (mod p).

Also,

h̄
(
Qλ

0

)
p′ = h̄Qλ

0 ,p′(h̄Qλ
0 ,p)p′

= h̄
λ

(0)
0 ,p′hλ

(1)
0 ,p′ · · ·hλ

(e1)

0 ,p′ h̄
(
Qλ

1

)
p′

≡ ±2−a(λ
(0)
0 )h̄

μ
(0)
1

h
μ

(1)
1
· · ·h

μ
(e1)

1
h̄
(
Qλ

1

)
p′ (mod p),

this last equality holding by 2.5 (applied to λ
(0)
0 ) and by [2, Lemma 3.2] (applied to

λ
(1)
0 , . . . , λ

(e1)
0 ). We thus get h̄(Qλ

0)p′ ≡ ±2−a(λ
(0)
0 )h̄(Rλ

1 )h̄(Qλ
1)p′ (mod p), and

h̄(λ)p′ ≡ ±2−a(λ)−a(λ
(0)
0 )h̄

(
Rλ

0

)
h̄
(
Rλ

1

)
h̄
(
Qλ

1

)
p′ (mod p).

Iterating this, until we get to Qλ
k = {∅, . . . ,∅}, we obtain

h̄(λ)p′ ≡ ±2−�a(λ)+a(λ
(0)
0 )+a(λ

(0)
1 )+···+a(λ

(0)
k−1)�

k∏
i=0

h̄
(
Rλ

i

)
(mod p).

On the other hand, repeated use of [9, Corollary 2.6] yields

m(λ) = m
(0)
0 +m

(
λ

(0)
0

)+ 2a(λ)

= m
(0)
0 +m

(0)
1 +m

(
λ

(0)
1

)+ 2a(λ)+ 2a
(
λ

(0)
0

)
= (· · · )
= m

(0)
0 +m

(0)
1 + · · · +m

(0)
k + 2

(
a(λ)+ a

(
λ

(0)
0

)+ · · · + a
(
λ

(0)
k−1

))
,
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so that⌊
(n−m(λ))

2

⌋
=

⌊
(n−m

(0)
1 − · · · −m

(0)
k )

2
− (

a(λ)+ a
(
λ

(0)
0

)+ · · · + a
(
λ

(0)
k−1

))⌋

=
⌊

(n− (m
(0)
1 + · · · +m

(0)
k )

2

⌋
− (

a(λ)+ a
(
λ

(0)
0

)+ · · · + a
(
λ

(0)
k−1

))
.

Together with the expression we obtained for h̄(λ)p′ , this gives

|S+(n)|p′

〈λ〉(1)p′
≡ ± 2

2�(n−m
(0)
0 −···−m

(0)
k )/2�

k∏
i=0

h̄
(
Rλ

i

)
(mod p).

Now recall that n=∑k
i=0 βip

i . Also, for any 1 ≤ i ≤ k, we have

⌊
βip

i −m
(0)
i

2

⌋
=

⌊
βi(p

i − 1)

2
+ βi −m

(0)
i

2

⌋

=
⌊

(p − 1)βi(1+ p + · · · + pi−1)

2
+ βi −m

(0)
i

2

⌋

= (p − 1)

2
βi

(
1+ p + · · · + pi−1)+ ⌊

βi −m
(0)
i

2

⌋
,

and

2
(p−1)

2 βi(1+p+···+pi−1) = (2
(p−1)

2 )βi (1+···+pi−1) ≡ (−1)βi(1+···+pi−1) ≡±1 (mod p).

Hence

2�
n−(m

(0)
0 +···+m

(0)
k

)

2 � = 2�
∑k

i=0(βip
i−m

(0)
i

)

2 �

= 2�
∑k

i=1
p−1

2 βi(1+···+pi−1)+∑k
i=0

βi−m
(0)
i

2 �

= 2
∑k

i=1
p−1

2 βi(1+···+pi−1)+�∑k
i=0

βi−m
(0)
i

2 �

≡ ±2�
∑k

i=0
βi−m

(0)
i

2 � (mod p).

Now⌊
k∑

i=0

βi −m
(0)
i

2

⌋
=

⌊
k∑

i=0,βi−m
(0)
i even

βi −m
(0)
i

2
+

k∑
i=0,βi−m

(0)
i odd

βi −m
(0)
i

2

⌋

=
k∑

i=0,βi−m
(0)
i even

⌊
βi −m

(0)
i

2

⌋
+

⌊
k∑

i=0,βi−m
(0)
i odd

βi −m
(0)
i

2

⌋
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and we have �∑k

i=0,βi−m
(0)
i odd

βi−m
(0)
i

2 � = �S
2 � +

∑k

i=0,βi−m
(0)
i odd

�βi−m
(0)
i

2 �, where

S = |{0 ≤ i ≤ k;βi −m
(0)
i odd}|. We finally obtain

|S+(n)|p′

〈λ〉(1)p′
≡ ± 2

2� S
2 �

k∏
i=0

1

2�(βi−m
(0)
i )/2�

h̄
(
Rλ

i

)
(mod p).

�

3 Reduction theorem

In this section, we show that, in order to prove Conjecture 1.1 for any spin block B

of Sε(n) of positive weight w, it is enough to prove it for the principal spin block of
S+(pw) (i.e., that with empty p̄-core). Our main tool to navigate between S+(n) and
S−(n) is the strong duality that exists between their spin blocks.

Let H ≤ S(n). A block of Hε is called proper if it contains both an s.a. character
and an n.s.a. character. By [10, 2.1], any spin block of Sε(n) of positive weight is
proper. Now, if B is a proper block of Hε , then Hε �=H−ε , and there exists a unique
block B∗ of H−ε covering B (if ε = −1) or covered by B (if ε = 1), and B∗ is
also proper. We say that B and B∗ are (dual) corresponding blocks. Finally, if B is
proper, then it follows that B consists of s.a. characters and pairs of n.s.a. characters.
In particular, we can still write (abusively) 〈λ〉 ∈ B or 〈λ〉 ∈ M(B). Also, for any
sign ε, if 〈λ〉ε ∈ SI(Sε(n)), then we call 〈λ〉−ε ∈ SI(S−ε(n)) the dual correspondent
of 〈λ〉ε .

3.1 Preliminaries: the case ε = 1

Let B be a spin block of S+(n) of weight w = w(B) > 0 and sign δ = δ(B), and let
B0 be the principal spin block of Sδ(pw). Let r = n−wp. Let μ be the p̄-core of B ,
so that σ(μ) = δ. The characters in B are indexed by the p̄-quotients of weight w.
For any bar-partition λ with p̄-core μ, we denote the p̄-quotient of λ by λ(p̄) (so that
σ(λ) = δσ (λ(p̄))), and we let λ̃ be the bar-partition of wp with empty p̄-core, and
p̄-quotient λ(p̄).

Lemma 3.1 If δ = 1, then, with the above notation, λ �−→ λ̃ induces a sign-
preserving bijection I between B and B0 which is also height-preserving. Further-
more,

〈λ〉(1)p′ ≡ ± (n!)p′

((wp)!)p′(r!)p′
〈μ〉(1)p′ 〈λ̃〉(1)p′ (mod p).

Proof Since δ = 1, we have 〈λ̃〉 ∈ B0 and σ(〈λ〉) = σ(λ) = σ(λ̃) = σ(〈λ̃〉), so that
I : 〈λ〉 �−→ 〈λ̃〉 is sign preserving, and therefore gives a bijection between B and B0.

Now, for any 〈λ〉 ∈ B , we have

〈λ〉(1)= 2�(n−m(λ))/2� n!
h̄(λ)

and 〈λ̃〉(1)= 2�(wp−m(λ̃))/2� (wp)!
h̄(λ̃)

.
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In particular, since B and B0 have a common defect group X (which is a Sylow
p-subgroup of S(pw) and S+(pw)), the heights of 〈λ〉 and 〈λ̃〉 are

h
(〈λ〉)= ν

(|X|)− ν
(
h̄(λ)

)
and h

(〈λ̃〉)= ν
(|X|)− ν

(
h̄(λ̃)

)
, respectively.

Now, using the notation of Sect. 2, we have h̄(λ) = h̄λ,ph̄λ,p′ and h̄(λ̃) = h̄λ̃,ph̄λ̃,p′ ,

so that ν(h̄(λ)) = ν(h̄λ,p) and ν(h̄(λ̃)) = ν(h̄λ̃,p). However, because of the bijec-

tion between bars of length divisible by p in λ and bars in the p̄-quotient λ(p̄),
we have h̄λ,p = pwh̄(λ(p̄)) = pwh̄(λ̃(p̄)) = h̄λ̃,p , whence ν(h̄(λ)) = ν(h̄(λ̃)) and

h(〈λ〉)= h(〈λ̃〉). This proves that I is height-preserving. We also get

〈λ〉(1)p′

〈λ̃〉(1)p′
= 2�(n−m(λ))/2�

2�(wp−m(λ̃))/2�
(n!)p′

((wp)!)p′

(h̄λ̃,p)p′ h̄λ̃,p′

(h̄λ,p)p′ h̄λ,p′

= 2�(n−m(λ))/2�

2�(wp−m(λ̃))/2�
(n!)p′

((wp)!)p′

h̄λ̃,p′

h̄λ,p′
.

If we write λ(p̄) = (λ(0), λ(1), . . . , λ((p−1)/2)), then, by [9, Corollary (2.6)], we have
m(λ)=m(λ(0))+m(μ)+ 2a(λ) and m(λ̃)=m(λ(0))+m(∅)+ 2a(λ̃). This implies
that ⌊(

n−m(λ)
)
/2

⌋= ⌊(
n−m

(
λ(0)

)−m(μ)
)
/2

⌋− a(λ)

and ⌊(
wp −m(λ̃)

)
/2

⌋= ⌊(
wp −m

(
λ(0)

))
/2

⌋− a(λ̃).

Now Proposition 2.5 gives h̄λ,p′ ≡ ±2−a(λ)h̄(μ) (mod p) and h̄λ̃,p′ ≡ ±2−a(λ̃)

(mod p). This yields

2�(n−m(λ))/2�

h̄λ,p′
≡ ±2�(n−m(λ(0))−m(μ))/2�

h̄(μ)
(mod p)

and

h̄λ̃,p′

2�(n−m(λ̃))/2� ≡ ± 1

2�(wp−m(λ(0)))/2� (mod p).

By hypothesis, we have δ = σ(μ)= (−1)r−m(μ) = 1, so that r −m(μ) is even. Thus
�(n−m(λ(0))−m(μ))/2� = �(wp −m(λ(0)))/2� − �(r −m(μ))/2�, which in turn
implies, together with the above,

〈λ〉(1)p′

〈λ̃〉(1)p′
≡ ± (n!)p′

((wp)!)p′
2�(r−m(μ))/2�

h̄(μ)
=± (n!)p′

((wp)!)p′(r!)p′
〈μ〉(1)p′ (mod p). �

The corresponding result when δ =−1 is given by the following
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Lemma 3.2 If δ = −1, then, with the above notation, λ �−→ λ̃ induces a sign-
preserving bijection I : 〈λ〉 �−→ 〈λ̃〉− between B and B0 which is also height-
preserving. Furthermore, if 〈λ̃〉+ ∈ B∗

0 ⊂ SI(S+(pw)) is the dual correspondent of
〈λ̃〉−, then

〈λ〉(1)p′ ≡ ± (n!)p′

((wp)!)p′(r!)p′
〈μ〉(1)p′ 〈λ̃〉+(1)p′2s(λ) (mod p),

where s(λ)= 1 if σ(λ̃)=−1 and s(λ)= 0 if σ(λ̃)= 1.

Proof Since δ = −1, we have σ(λ̃) = −σ(λ), and σ(〈λ̃〉−) = −σ(f−(〈λ̃〉−)) =
−σ(λ̃) = σ(〈λ〉), so that I : 〈λ〉 �−→ 〈λ̃〉− is sign preserving, and therefore gives
a bijection between B and B0.

Now, for any 〈λ〉 ∈ B , we have

〈λ〉(1)= 2�(n−m(λ))/2� n!
h̄(λ)

and 〈λ̃〉+(1)= 2�(wp−m(λ̃))/2� (wp)!
h̄(λ̃)

,

and, by duality,

〈λ̃〉−(1)=
{
〈λ̃〉+(1) if σ(〈λ̃〉−)= 1,

〈λ̃〉+(1)/2 if σ(〈λ̃〉−)=−1.

As in the proof of Lemma 3.1, this implies that I is height-preserving.
As above, we have

⌊(
n−m(λ)

)
/2

⌋= ⌊(
n−m

(
λ(0)

)−m(μ)
)
/2

⌋− a(λ)

and ⌊(
wp −m(λ̃)

)
/2

⌋= ⌊(
wp −m

(
λ(0)

))
/2

⌋− a(λ̃),

so that Proposition 2.5 yields

2�(n−m(λ))/2�

h̄λ,p′
≡ ±2�(n−m(λ(0))−m(μ))/2�

h̄(μ)
(mod p)

and

h̄λ̃,p′

2�(n−m(λ̃))/2� ≡ ± 1

2�(wp−m(λ(0)))/2� (mod p).

However, this time, we have δ = σ(μ)= (−1)r−m(μ) =−1, so that r −m(μ) is odd.
Thus

⌊(
n−m

(
λ(0)

)−m(μ)
)
/2

⌋ = ⌊(
wp −m

(
λ(0)

)+ 1
)
/2

⌋− ⌊(
r −m(μ)− 1

)
/2

⌋
= ⌊(

wp −m
(
λ(0)

)+ 1
)
/2

⌋− ⌊(
r −m(μ)

)
/2

⌋
.
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Now

⌊(
wp −m

(
λ(0)

)+ 1
)
/2

⌋− ⌊(
wp −m

(
λ(0)

))
/2

⌋=
{

1 if wp −m(λ(0)) is odd,

0 if wp −m(λ(0)) is even.

But (−1)wp−m(λ(0)) = (−1)wp−|λ(0)|(−1)|λ(0)|−m(λ(0)) = (−1)wp−|λ(0)|σ(λ(0)), and,
since p is odd, (−1)wp−|λ(0)| = (−1)w−|λ(0)|, so that (−1)wp−m(λ(0)) = σ(λ(p̄)) =
−σ(λ)= σ(λ̃). This implies the result. �

We now turn to the p-local situation. As mentioned above, the defect group X of
the block B can be chosen to be a Sylow p-subgroup of S(pw) and of S+(pw). If
we let N0(X)=NS(pw)(X), then we have

NS(n)(X)=N0(X)× S(r) and N :=NS+(n)(X)=N0(X)+×̂S+(r).

In particular, we have, writing N = |N0(X)+| = |NS(pw)(X)+| = |NS+(pw)(X)|,
[
S+(n) : NS+(n)(X)

]= 2n!
|N0(X)+×̂S+(r)| =

2n!
(N 2r!)/2

= 2n!
N r!

and [
S+(pw) : NS+(pw)(X)

]= 2(pw)!
N .

The following result will also be useful later.

Lemma 3.3 If X is a Sylow p-subgroup of S−(pw), then[
S−(pw) : NS−(pw)(X)

]= [
S+(pw) : NS+(pw)(X)

]
and [

S−(n) : NS−(n)(X)
]= [

S+(n) : NS+(n)(X)
]
.

Proof Both assertions will be consequences of the following result, which is easily
derived from the Orbit-Stabilizer Theorem: if H is a subgroup of the finite group
G, and if P is a subgroup of H such that H acts transitively by conjugation on the
G-conjugates of P , then [G : NG(P )] = [H : NH (P )].

Take any Sylow p-subgroup X of S−(pw). Then, since S−(pw) is of index 2
in S+(pw) (while p is odd), X is also a Sylow p-subgroup of S+(pw). Also, all
the S+(pw)-conjugates of X are in S−(pw) (which is normal in S+(pw)), hence
are Sylow p-subgroups of S−(pw), and thus are S−(pw)-conjugate to X (note that
the same argument shows that the Sylow p-subgroups of S+(n) and S−(n) are the
same). This proves that S−(pw) acts transitively (by conjugation) on the S+(pw)-
conjugates of X. By the above, this proves the first assertion.

Now take any subgroup Q of S+(n) isomorphic to S−(pw), and X a Sylow p-
subgroup of Q, and take any g ∈ S+(n). Then the conjugate Xg of X is a Sylow
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p-subgroup of Qg . However, S−(n) acts transitively by conjugation on the S+(n)-
conjugates of Q, so that there exists h ∈ S−(n) such that Qgh = Q, and Xgh is a
Sylow p-subgroup of Q. Hence there exists h′ ∈ Q such that Xghh′ = X, and thus
Xg = X(hh′)−1

. This proves that all S+(n)-conjugates of X are S−(n)-conjugate to
X, which implies the second assertion. �

If μ � r is the p̄-core of B , we choose γ ∈ SI(S+(r)) such that f+(γ ) = μ. We
have γ = γ a if and only if δ = 1.

If we then denote by b the Brauer correspondent of B in N , we have (see the proof
of [6, Theorem 2.2])

b = {
χ⊗̂γ,χ⊗̂γ a | χ ∈ SI

(
N0(X)+

)}= {
χ⊗̂γ,χ⊗̂γ a | χ ∈ β0

}
,

where β0 is the spin block of N0(X)+, and thus the Brauer correspondent of the
principal spin block of S+(pw). In particular, β0 = b0 if δ = 1 and β0 = b∗0 if δ =−1.

For any χ ∈ β0, we have (χ⊗̂γ )(1) = (χ⊗̂γ a)(1) = 2�s/2�χ(1)γ (1), where s is
the number of n.s.a. characters in {χ,γ }. If δ = 1, we therefore get s = 0 (if χa = χ )
or s = 1 (if χa �= χ ), so that �s/2� = 0 and (χ⊗̂γ )(1) = χ(1)γ (1). If δ = −1, we
have s = 1 and �s/2� = 0 if χa = χ , and s = 2 and �s/2� = 1 if χa �= χ , so that

(χ⊗̂γ )(1)= (χ⊗̂γ a)(1)=
{

χ(1)γ (1) if χa = χ,

2χ(1)γ (1) if χa �= χ.

3.2 Reduction theorem

We can now prove the main result of this section:

Theorem 3.4 Let B be a spin block of Sε(n) of weight w = w(B) > 0 and sign
δ = δ(B) and let b be its Brauer correspondent in NSε(n)(X), where X is a defect
group of B . Suppose the Isaacs–Navarro Conjecture holds for the principal spin block
of S+(pw) via a sign-preserving bijection. Then it also holds for B .

Proof We first suppose ε = 1.
We use the same notation as in Sect. 3.1. Let B0 be the principal spin block of

Sδ(pw) and b0 be its Brauer correspondent. Let μ � r = n − wp be the p̄-core
of B , and γ ∈ SI(S+(r)) such that f+(γ ) = μ. If λ is a bar-partition of n with
p̄-core μ and p̄-quotient λ(p̄), let λ̃ be the bar-partition of wp with empty p̄-core
and p̄-quotient λ(p̄).

Suppose furthermore that δ = 1. Then, by Lemma 3.1, λ �−→ λ̃ induces a sign-
preserving bijection I between B and B0 which is also height-preserving, and

〈λ〉(1)p′ ≡ ± (n!)p′

((wp)!)p′(r!)p′
γ (1)p′ 〈λ̃〉(1)p′ (mod p).

Now let c = [S+(pw) : NS+(pw)(X)]p′ , and let ϕ : M(B0)−→M(b0) be a bijection
such that, for each k such that (p, k) = 1, we have Mk(b0) = ϕ(Mck(B0)) (such a
ϕ exists by hypothesis). We have b = {χ⊗̂γ | χ ∈ b0}, and, by [6, Proposition 1.2],
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χ⊗̂γ =ψ⊗̂γ if and only if ψ ∈ {χ,χa} and (σ(χ)σ (γ )= σ(χ)= 1) or (σ(χ)=−1
and χ =ψ ), i.e., χ⊗̂γ =ψ⊗̂γ if and only if ψ = χ . Thus, by the results of Sect. 3.1,
χ �−→ χ⊗̂γ is a height-preserving bijection between b0 and b. Hence

�:
{
M(B)−→M(b),

〈λ〉 �−→ ϕ(〈λ̃〉)⊗̂γ

is a (height-preserving) sign-preserving bijection.
Now, if 〈λ〉 ∈M(B), then �(〈λ〉)(1)= (ϕ(〈λ̃〉))(1)γ (1), so that

�
(〈λ〉)(1)p′ = (

ϕ
(〈λ̃〉))(1)p′γ (1)p′

≡ ±〈λ̃〉(1)p′

c
γ (1)p′ (mod p) (by definition of ϕ)

≡ ±1

c

(
r!(pw)!

n!
)

p′
〈λ〉(1)p′ (mod p),

and, writing N = |NS(pw)(X)+| = |NS+(pw)(X)|,
1

c

(
r!(pw)!

n!
)

p′
= 1

[S+(pw) : NS+(pw)(X)]p′

(
r!(pw)!

n!
)

p′

=
( N

2(pw)!
)

p′

(
r!(pw)!

n!
)

p′
=

( N r!
2n!

)
p′

= 1

[S+(n) : NS+(n)(X)]p′
,

whence we finally get

�
(〈λ〉)(1)p′ ≡ ± 〈λ〉(1)p′

[S+(n) : NS+(n)(X)]p′
(mod p),

i.e., � is an Isaacs–Navarro bijection between B and b.
Suppose now that δ =−1. Then B0 is the principal spin block of S−(pw), its dual

B∗
0 is the principal spin block of S+(pw), and b∗0 is the Brauer correspondent of B∗

0 .
Writing D+ for the set of s.a. characters in D and D− for the set of pairs of n.s.a.
characters in D (so that |Mk(B0)| = |Mk(B0)+| + 2|Mk(B0)−|), we thus have, for
each k such that (p, k)= 1, the following equalities:∣∣Mk(B0)+

∣∣= ∣∣Mk

(
B∗

0

)
−
∣∣= ∣∣Mk/c

(
b∗0

)
−
∣∣

and ∣∣Mk(B0)−
∣∣= ∣∣M2k

(
B∗

0

)
+
∣∣= ∣∣M2k/c

(
b∗0

)
+
∣∣,

where c = [S+(pw) : NS+(pw)(X)]p′ = [S−(pw) : NS−(pw)(X)]p′ (by Lemma 3.3).
On the other hand, we have b = {χ⊗̂γ,χ⊗̂γ a |χ ∈ β0 = b∗0}. For any χ,ψ ∈ β0

and γ1, γ2 ∈ {γ, γ a}, we have χ⊗̂γ1 = ψ⊗̂γ2 if and only if χ and ψ are associate
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and⎧⎨
⎩

σ(χ)σ (γ1)=−σ(χ)= 1
or
σ(χ)σ (γ1)=−σ(χ)=−1 and [(χ =ψ,γ1 = γ2) or (χ �=ψ,γ1 �= γ2)].

Hence, if χ ∈ β0+, then we get two irreducible characters, χ⊗̂γ and χ⊗̂γ a , while, if
χ ∈ β0−, then we get one irreducible character, χ⊗̂γ = χa⊗̂γ = χa⊗̂γ a = χ⊗̂γ a .
Note that χ �−→ χ⊗̂γ and χ �−→ χ⊗̂γ a are height preserving. Using the equalities
above, as well as Lemma 3.2, we obtain the following height-preserving and sign-
preserving bijection:

�:
{

M(B)
+→M(B0)

−→M(B∗
0 )

+→M(b∗0)
−→M(b),

〈λ〉 �→ 〈λ̃〉− �→ 〈λ̃〉+ �→ ϕ(〈λ̃〉+) �→ ϕ(〈λ̃〉+)⊗̂〈μ〉,

where, as before, ϕ is the (sign-preserving) Isaacs–Navarro bijection we supposed ex-

ists between M(B∗
0 ) and M(b∗0), and

+→ (respectively,
−→) denotes a sign-preserving

(respectively, sign-inverting) bijection.
Now, by hypothesis, 〈λ̃〉+(1)p′ ≡ cϕ(〈λ̃〉+)(1)p′ (mod p), so that, by Lemma 3.2,

we obtain

〈λ〉(1)p′ ≡
(

n!
(wp)!r!

)
p′

cϕ
(〈λ̃〉+)

(1)p′ 〈μ〉(1)p′2s(λ) (mod p),

and, as in the case δ = 1, we have ( n!
(wp)!r! )p′c = [S+(n) : NS+(n)(X)]p′ . Finally, since

σ(λ̃)= 1 ⇐⇒ σ(〈λ̃〉+)= 1 ⇐⇒〈λ̃〉+ is s.a. ⇐⇒ ϕ(〈λ̃〉+) is s.a., we get

ϕ
(〈λ̃〉+)

(1)p′ 〈μ〉(1)p′2s(λ) =
{

2ϕ(〈λ̃〉+)(1)p′ 〈μ〉(1)p′ if σ(λ̃)=−1,

ϕ(〈λ̃〉+)(1)p′ 〈μ〉(1)p′ if σ(λ̃)= 1,

= (
ϕ
(〈λ̃〉+)⊗̂〈μ〉)(1)p′

= �
(〈λ〉)(1)p′ ,

whence 〈λ〉(1)p′ ≡ [S+(n) : NS+(n)(X)]p′�(〈λ〉)(1)p′ (mod p), i.e., � is a (sign-
preserving) Isaacs–Navarro bijection between M(B) and M(b).

We now suppose ε =−1.
In this case, B is a spin block of S−(n) and b is its Brauer correspondent in

NS−(n)(X). Thus B∗ is a spin block of S+(n), and, by [6, Lemma 2.3] (which is due
to H. Blau), the dual b∗ of b is the Brauer correspondent of B∗. By the case ε = 1,
there exists a sign-preserving Isaacs–Navarro bijection ϕ : M(B∗) −→ M(b∗). We
define the sign-preserving bijection

�:
{
M(B)−→M(b),

〈λ〉 �−→ (ϕ(〈λ〉∗))∗.
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By Lemma 3.3, we have c = [S−(n) : NS−(n)(X)]p′ = [S+(n) : NS+(n)(X)]p′ , and,
for each k such that (p, k)= 1, we have∣∣Mck(B)+

∣∣= ∣∣Mck(B
∗)−

∣∣= ∣∣Mk(b
∗)−

∣∣= ∣∣Mk(b)+
∣∣

and ∣∣Mck(B)−
∣∣= ∣∣M2ck(B

∗)+
∣∣= ∣∣M2k(b

∗)+
∣∣= ∣∣Mk(b)−

∣∣,
whence |Mck(B)| = |Mck(B)+| + 2|Mck(B)−| = |Mk(b)|. �

4 Principal block

By Theorem 3.4, it is now sufficient to prove that the Isaacs–Navarro Conjec-
ture holds for the principal spin block of S+(pw) via a sign-preserving bijection.
Throughout this section, we therefore consider the following situation. We take
G = S+(pw) (where w ≥ 1 is an integer), B the principal spin block of G, and b

the Brauer correspondent of B . Hence b is the principal spin block of NG(X) for
some X ∈ Sylp(G).

4.1 Spin characters of height 0 of the normalizer

The normalizer N+ = NG(X) and its irreducible spin characters are described in
Sects. 3 and 4 of [6]. Let pw = ∑k

i=1 tip
i be the p-adic decomposition of pw. We

then have N+ = [N1 � S(t1)]+×̂ · · · ×̂[Nk � S(tk)]+, where, for each 1 ≤ i ≤ k, Ni =
NS(pi)(Xi) for some Xi ∈ Sylp(S(pi)).

Now fix 1 ≤ i ≤ k, and let ei = (pi − 1)/2. Then H+
i = (Ni � S(ti))

+ = M+
i S+

ti
,

where M+
i =N

(1)+
i ×̂ · · · ×̂N

(ti )+
i  H+

i and Sti
∼=�pi S(ti)⊂ S(piti), and where

S+
ti
∼=

{
Ŝ(ti ) if pi ≡ 1 (mod 4),

S̃(ti) if pi ≡−1 (mod 4).

By [6, Proposition 3.9], N+
i has one s.a. spin character ζ0 of degree (p − 1)i , and

ei = (pi − 1)/2 pairs of n.s.a. spin characters {ζ1, ζ
a
1 , . . . , ζei

, ζ a
ei
} of degree 1.

Let Ai = {(t(0)
i , t

(1)
i , . . . , t

(ei )
i ) | t (j)

i ∈N∪{0},∑ei

j=0 t
(j)
i = ti}. Then, by [6, Propo-

sition 3.12], a complete set of representatives for the S+
ti

-conjugacy classes in
SI0(M

+
i ) is given by

R = {θs | s ∈ Ai} ∪
{
θa

s | s =
(
t
(0)
i , t

(1)
i , . . . , t

(ei )
i

) ∈ Ai , ti − t
(0)
i odd, t

(0)
i ≤ 1

}
,

where θs = θ0 ⊗̂ θ1⊗̂ · · · ⊗̂ θei
, with θj = ζj ⊗̂ · · · ⊗̂ ζj (t (j)

i factors). Also, the inertial
subgroup T +

i = IH+
i

(θs) of θs in H+
i satisfies

T +
i /M+

i
∼=

{
A(t

(0)
i )× S(t

(1)
i )× · · · × S(t

(ei )
i ) if ti − t

(0)
i is odd,

S(t
(0)
i )× S(t

(1)
i )× · · · × S(t

(ei )
i ) if ti − t

(0)
i is even.
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We can now describe how to induce each θj from M
(j)+
i = (N+

i )×̂t
(j)
i to the corre-

sponding factor T
(j)+
i of its inertial subgroup.

Proposition 4.1 (See [6, Proposition 4.4]) If ζ is an n.s.a. linear representation of

N+
i , then θj = ζ t

(j)
i = ζ ⊗̂ · · · ⊗̂ζ ∈ Irr(M(j)+

i ) can be extended to a negative rep-

resentation Dζ ∈ Irr(T (j)+
i ), and every irreducible constituent V of θ ↑T

(j)+
i is of

the form V = Dζ ⊗ R, where R is an irreducible representation of T
(j)+
i /M

(j)+
i

∼=
S(t

(j)
i ). If t

(j)
i is odd, then every irreducible constituent V of θ ↑T

(j)+
i is n.s.a., and,

if t
(j)
i is even, then every irreducible constituent V of θ ↑T

(j)+
i is s.a.

In the above notation, if ψ is the character of V = Dζ ⊗ R, and if R has char-

acter χλ ∈ Irr(S(t
(j)
i )), then ψ(1) = ζ t

(j)
i (1)χλ(1). Also, since ζ is n.s.a., we have

ζ t
(j)
i (1) = 2�t

(j)
i /2�ζ(1)t

(j)
i = 2�t

(j)
i /2�, and ψ(1) = 2�t

(j)
i /2�χλ(1). Finally, ψ is s.a. if

and only if t
(j)
i is even.

Proposition 4.2 (See [6, Proposition 4.8]) Let t
(0)
i ≥ 4, and let D be the s.a. spin rep-

resentation of N+
i with degree (p − 1)i . Then Dt

(0)
i = D⊗̂ · · · ⊗̂D ∈ Irr(M(0)+

i ) can

neither be extended to an irreducible representation of T
(0)−
i =M

(0)+
i A+

t
(0)
i

nor to one

of T
(0)+
i = M

(0)+
i S+

t
(0)
i

. Furthermore, every irreducible constituent V of Dt
(0)
i ↑T

(0)+
i

is of the form V = Dt
(0)
i ⊗ S, where S is an irreducible spin representation of S+

t
(0)
i

,

and every irreducible constituent V of Dt
(0)
i ↑T

(0)−
i is of the form V = Dt

(0)
i ⊗ S,

where S is an irreducible spin representation of A+
t
(0)
i

. In each case, V is s.a. if and

only if S is s.a.

In this notation, if ψ is the character of V , and if S has character χS , then ψ(1)=
ζ

t
(0)
i

0 (1)χS(1). And, since ζ0 is s.a., we have ψ(1)= (p − 1)it
(0)
i χS(1).

We can now describe all the characters of height 0 in b. Recall that these are
exactly the spin characters with p′-degree in N+. Still writing pw = ∑k

i=1 tip
i the

p-adic decomposition of pw, Olsson proved in [10] that, for any sign σ ,

∣∣M(b)σ
∣∣= ∑

{(σ1,...,σk)}

k∏
i=1

qσi
(
p̄i , ti

)
,

where (σ1, . . . , σk) runs through all k-tuples of signs satisfying σ1 · · ·σk = σ , and
where qσi (p̄i , ti ) denotes the number of all p̄i -quotients with sign σi and weight ti .

The correspondence goes as follows. For each 1 ≤ i ≤ k, pick si ∈ Ai and
the corresponding θsi ∈ SI0(M

+
si

) (where, if si = (t
(0)
i , t

(1)
i , . . . , t

(ei )
i ), then M+

si
=

(N
×̂t

(0)
i

i )+×̂ · · · ×̂(N
×̂t

(ei )

i

i )+). Inducing θsi (or θsi + θa
si

if ti − t
(0)
i is odd and t

(0)
i ≤ 1)
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to its inertial subgroup T +
i , we obtain s.a. irreducible constituents and pairs of n.s.a.

irreducible constituents described by Propositions 4.1 and 4.2 and labeled by the p̄i -
quotients of weight ti : if Qi = (λ

(0)
i , λ

(1)
i , . . . , λ

(ei )
i ) is a p̄i -quotient of weight ti , then

〈�Qi
〉 = 〈ψ(0)

i 〉×̂〈ψ(1)
i 〉×̂ · · · ×̂〈ψ(ei)

i 〉 ∈ SI0(T
+
i ). Also, by Propositions 4.1 and 4.2,

• For 1 ≤ j ≤ ei , ψ
(j)
i (1) = 2�t

(j)
i /2�χ

λ
(j)
i

(1) (with χ
λ

(j)
i

∈ Irr(S(t
(j)
i ))) and ψ

(j)
i is

s.a. if and only if t
(j)
i is even.

• ψ
(0)
i (1) = (p − 1)it

(0)
i χ

λ
(0)
i

(1) (with χ
λ

(0)
i

∈ SI(S+
t
(0)
i

) if ti − t
(0)
i is even and χ

λ
(0)
i

∈
SI(A+

t
(0)
i

) if ti − t
(0)
i is odd) and ψ

(0)
i is s.a. if and only if χ

λ
(0)
i

is s.a.

Finally, 〈�Qi
〉(1)= 2�Si/2�〈ψ(0)

i 〉(1)〈ψ(1)
i 〉(1) · · · 〈ψ(ei)

i 〉(1), where Si is the num-

ber of (pairs of) n.s.a. characters in {〈ψ(0)
i 〉, 〈ψ(1)

i 〉, . . . , 〈ψ(ei)
i 〉}.

Inducing to H+
i = [Ni � S(ti)]+, we obtain a s.a. irreducible spin character, or a

pair of associate (n.s.a.) spin characters, 〈Qi〉, labeled by Qi .

Given the structure of T +
i , we see that σ(〈Qi〉) = (−1)ti−t

(0)
i σ (�Qi

). However,

we have σ(�Qi
) = σ(ψ

(0)
i )σ (ψ

(1)
i ) · · ·σ(ψ

(ei)
i ). Also, for 1 ≤ j ≤ ei , we have

σ(ψ
(j)
i ) = (−1)t

(j)
i , and σ(ψ

(0)
i ) = σ(χ

λ
(0)
i

) = σ(λ
(0)
i )(−1)ti−t

(0)
i , so that σ(�Qi

) =
σ(λ

(0)
i ) (since

∑ei

j=1 t
(j)
i = ti − t

(0)
i ) and σ(〈Qi〉) = (−1)ti−t

(0)
i σ (λ

(0)
i ) = σ(Qi).

Note that, writing m
(0)
i for the number of (non-zero) parts in λ

(0)
i , we have σ(λ

(0)
i )=

(−1)t
(0)
i −m

(0)
i , so that σ(〈Qi〉) = (−1)ti−m

(0)
i , and 〈Qi〉 is s.a. if and only if ti −m

(0)
i

is even.
Also, we have 〈Qi〉(1)= (|H+

i |/|T +
i |)〈�Qi

〉(1), unless χ
λ

(0)
i

is an s.a. irreducible

spin character of A+
t
(0)
i

(i.e., ti − t
(0)
i is odd and χ

λ
(0)
i

is s.a.), in which case 〈Qi〉(1)=
(|H+

i |/|T +
i |)〈�Qi

〉(1)/2.
Finally, the irreducible characters of height 0 in b are parametrized by the se-

quences (Q1, . . . ,Qk), where Qi is a p̄i -quotient of weight ti . We have 〈(Q1, . . . ,

Qk)〉 = 〈Q1〉⊗̂ · · · ⊗̂〈Qk〉, and 〈(Q1, . . . ,Qk)〉(1) = 2�s/2� ∏k
i=1〈Qi〉(1), where s is

the number of (pairs of) n.s.a. characters in {〈Q1〉, . . . , 〈Qk〉}. By the above remark
on the sign of 〈Qi〉, we see that s = |{1 ≤ i ≤ k; ti −m

(0)
i odd}|.

Proposition 4.3 With the above notation, we have

|NG(X)|p′

〈(Q1, . . . ,Qk)〉(1)p′
≡ ± 2

2�s/2�
k∏

i=1

1

2�(ti−m
(0)
i )/2�

h̄(Qi) (mod p),

where s = |{1 ≤ i ≤ k; ti −m
(0)
i odd}|, and, for each 1 ≤ i ≤ k, h̄(Qi) is the product

of all bar-lengths in Qi .
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Proof We have

|NG(X)|p′

〈(Q1, . . . ,Qk)〉(1)p′
=

∏k
i=1 |H+

i |
2k−1〈(Q1, . . . ,Qk)〉(1)p′

=
∏k

i=1 |H+
i |

2k−12�s/2� ∏k
i=1〈Qi〉(1)p′

.

This gives

|NG(X)|p′

〈(Q1, . . . ,Qk)〉(1)p′
= 1

2k−1

1

2�s/2�D
(+1)
1 D

(+1)
0 D

(−1)
1 D

(−1)
0 ,

where, for ε ∈ {+1,−1} and a ∈ {0,1},

D(ε)
a =

∏
1 ≤ i ≤ k

ti − t
(0)
i

≡ a (mod 2)

σ (χ
λ
(0)
i

)= ε

|H+
i |

〈Qi〉(1)p′
.

Now we have, whenever (ε, a) ∈ {(+1,0), (−1,1), (−1,0)},

D(ε)
a =

∏
1 ≤ i ≤ k

ti − t
(0)
i

≡ a (mod 2)

σ (χ
λ
(0)
i

)= ε

|T +
i |

〈�Qi
〉(1)p′

=
∏

1 ≤ i ≤ k

ti − t
(0)
i

≡ a (mod 2)

σ (χ
λ
(0)
i

)= ε

|T +
i |

2�Si/2� ∏ei

j=0 ψ
(j)
i (1)

,

while

D
(+1)
1 =

∏
1 ≤ i ≤ k

ti − t
(0)
i

odd

σ(χ
λ
(0)
i

)= 1

|T +
i |

〈�Qi
〉(1)p′/2

=
∏

1 ≤ i ≤ k

ti − t
(0)
i

odd

σ(χ
λ
(0)
i

)= 1

|T +
i |

2�Si/2�−1
∏ei

j=0 ψ
(j)
i (1)

,

where Si is the number of (pairs of) n.s.a. characters in {〈ψ(0)
i 〉, . . . , 〈ψ(ei)

i 〉}.
For each 1 ≤ i ≤ k, we have |T +

i |p′ = |T +
i /M+

i |p′ |M+
i |p′ . Also, M+

i
∼= (N+

i )×̂ti ,

so that |M+
i | = |N+

i |ti
2ti−1 = 2|Ni |ti . But Ni = NS(pi)(Xi) for some Xi ∈ Sylp(S(pi));

thus |Ni | = |Xi | · |Ni/Xi |, and we have Ni/Xi = Ki
∼= (Z/(p − 1)Z)i (see [6,

page 89]). Hence |Ni |p′ = (p − 1)i , |M+
i |p′ = 2(p − 1)iti , and

|T +
i |p′ ≡

{
(−1)iti t

(0)
i !t (1)

i ! . . . t (ei )
i ! (mod p) if ti − t

(0)
i is odd,

2(−1)iti t
(0)
i !t (1)

i ! . . . t (ei )
i ! (mod p) if ti − t

(0)
i is even.

Now fix 1 ≤ i ≤ k, and let {1, . . . , ei} = I
(i)
1 ∪ I

(i)
2 , where

I
(i)
1 = {

j ∈ {1, . . . , ei} | t (j)
i = 2k

(j)
i + 1

(
k
(j)
i ∈N∪ {0})}

and

I
(i)
2 = {

j ∈ {1, . . . , ei} | t (j)
i = 2k

(j)
i

(
k
(j)
i ∈ N

)}
.
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We obtain

ei∏
j=1

ψ
(j)
i (1)=

∏
j∈I

(i)
1

2k
(j)
i χ

λ
(j)
i

(1)
∏

j∈I
(i)
2

2k
(j)
i χ

λ
(j)
i

(1)= 2
∑ei

j=1 k
(j)
i

ei∏
j=1

χ
λ

(j)
i

(1).

Note that Si = |I (i)
1 | if ψ

(0)
i is s.a., while Si = |I (i)

1 | + 1 if ψ
(0)
i is n.s.a. We thus have

2�Si/2�
ei∏

j=1

ψ
(j)
i (1)= 2

∑ei
j=1 k

(j)
i +�Si/2�

ei∏
j=1

χ
λ

(j)
i

(1)= 2�
∑ei

j=1 k
(j)
i +Si/2�

ei∏
j=1

χ
λ

(j)
i

(1),

and ⌊
ei∑

j=1

k
(j)
i + Si

2

⌋
=

⌊ ∑
j∈I

(i)
1

t
(j)
i − 1

2
+

∑
j∈I

(i)
2

t
(j)
i

2
+ Si

2

⌋

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌊ ∑
j∈I

(i)
1

t
(j)
i

2
+

∑
j∈I

(i)
2

t
(j)
i

2

⌋
=

⌊
ti − t

(0)
i

2

⌋

if σ(ψ
(0)
i )= 1,

⌊ ∑
j∈I

(i)
1

t
(j)
i

2
+

∑
j∈I

(i)
2

t
(j)
i

2
+ 1

2

⌋
=

⌊
ti − t

(0)
i + 1

2

⌋

if σ(ψ
(0)
i )=−1.

We can now compute D
(+1)
1 , D

(+1)
0 , D

(−1)
1 and D

(−1)
0 . Take any 1 ≤ i ≤ k, and

first suppose that ti − t
(0)
i is odd and σ(χ

λ
(0)
i

)= 1. Then ψ
(0)
i is n.s.a., Si = |I (i)

1 | + 1,

ti −m
(0)
i is even and

χ
λ

(0)
i

(1)= 2�
t
(0)
i

−m
(0)
i

2 � t
(0)
i !

h̄(λ
(0)
i )

.

Finally, � ti−t
(0)
i +1
2 � = � ti−t

(0)
i

2 � + 1 (since ti − t
(0)
i is odd). We therefore get

|T +
i |

2�Si/2�−1
∏ei

j=0 ψ
(j)
i (1)

≡ ± h̄(λ
(0)
i )

∏ei

j=1 h(λ
(j)
i )

2�
ti−t

(0)
i

+1
2 �+� t

(0)
i

−m
(0)
i

2 �−1

(mod p)

≡ ± 1

2�
ti−m

(0)
i

+1
2 �−1

h̄(Qi) (mod p)

≡ ± 2

2�
ti−m

(0)
i

2 �
h̄(Qi) (mod p)
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(since ti −m
(0)
i is even). By similar arguments, we obtain, in all other cases,

|T +
i |

2�Si/2� ∏ei

j=0 ψ
(j)
i (1)

≡± 2

2�
ti−m

(0)
i

2 �
h̄(Qi) (mod p).

Finally, we get

|NG(X)|p′

〈(Q1, . . . ,Qk)〉(1)p′
≡ ± 2k

2k−12�s/2�
k∏

i=1

1

2�(ti−m
(0)
i )/2�

h̄(Qi) (mod p),

as announced. �

4.2 Isaacs–Navarro Conjecture

We can now prove the main result of this section.

Theorem 4.4 The Isaacs–Navarro Conjecture holds for the principal spin block of
S+(pw) via a sign-preserving bijection.

Proof Let B be the principal spin block of G = S+(pw), and b its Brauer corre-
spondent in NG(X). Let pw = ∑k

i=1 tip
i be the p-adic decomposition of pw. By

Proposition 2.7, λ � pw labels a spin character of B of p′-degree if and only λ has
p̄-core tower (Rλ

1 , . . . ,Rλ
k ) with |Rλ

i | = ti for each 1 ≤ i ≤ k. Also, for any such λ,
we have, by Lemma 2.6, σ(〈λ〉)= σ(λ)= σ(Rλ

1 ) · · ·σ(Rλ
k ). By the above description

of M(b), this implies that

�:
{
M(B)−→M(b),

〈λ〉 �−→ 〈(Rλ
1 , . . . ,Rλ

k )〉
is a sign-preserving bijection. Furthermore, it is immediate from Propositions 2.8
and 4.3 that, for any 〈λ〉 ∈M(B),

|G|p′

〈λ〉(1)p′
≡ ± |NG(X)|p′

〈(Q1, . . . ,Qk)〉(1)p′
(mod p).

This proves the result. �

5 Main theorem

We can now finally give our main theorem:

Theorem 5.1 The Isaacs–Navarro conjecture holds for all covering groups of the
symmetric and alternating groups, whenever p is an odd prime.
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Proof First, let G be any central extension of degree 2 of S(n) or A(n), and B be a
p-block of G. If B is an unfaithful block, then the Isaacs–Navarro Conjecture holds
for B by the results of Fong ([2]) and Nath ([8]). If B is a spin-block of G of weight
w > 0, then the Isaacs–Navarro Conjecture holds for B by Theorems 3.4 and 4.4.
If w = 0, then B contains a unique spin character (of p-defect 0), and the result is
immediate.

Finally, the case of the exceptional 6-fold covers of A(6) and A(7) can easily be
checked using the character tables given in [6, Appendix], or with a computer. �
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