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Abstract We further develop the theory of inducing W -graphs worked out by
Howlett and Yin (Math. Z. 244(2):415–431, 2003 and Manuscr. Math. 115(4):495–
511, 2004), focusing on the case W = Sn. Our main application is to give two
W -graph versions of tensoring with the Sn defining representation V , one being
H ⊗HJ

− for H ,HJ the Hecke algebras of Sn, Sn−1 and the other ( ̂H + ⊗H −)1,
where ̂H + is a subalgebra of the extended affine Hecke algebra and the subscript sig-
nifies taking the degree 1 part. We look at the corresponding W -graph versions of the
projection V ⊗ V ⊗ − → S2V ⊗ −. This does not send canonical basis elements to
canonical basis elements, but we show that it approximates doing so as the Hecke
algebra parameter u → 0. We make this approximation combinatorially explicit by
determining it on cells and relate this to RSK growth diagrams.

Keywords W-graph · Hecke algebra · Restriction and induction · Canonical basis ·
Growth diagram

1 Introduction

The polynomial ring R := C[x1, . . . , xn] is well understood as a CSn-module, but
how this CSn-module structure is compatible with the structure of R as a module
over itself is not. This work came about from an attempt to construct a combinatorial
model for R as a CSn-module that takes into account multiplication by the xi . The
hope is that such a model would lead to a better understanding of the Garsia–Procesi
modules, particularly, the combinatorics of cyclage and catabolism. We also might
hope to find modules corresponding to the k-atoms of Lascoux, Lapointe, and Morse
and uncover combinatorics that governs them.
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Such a model might look something like this: decompose the tensor algebra T V

into canonically chosen irreducible CSn-submodules, where V is the degree 1 part
of R. Define a poset in which an irreducible E′ is less than an irreducible E if
E′ ⊆ V ⊗ E. Somehow project this picture onto a canonical decomposition of R

into CSn-irreducibles. Lower order ideals of the projected poset would correspond
to CSn-modules that are also R-modules. The poset would be controlled by a local
rule saying that any sequence (E,E′), (E′,E′′) of covering relations must satisfy
E′′ ⊆ S2V ⊗ E.

The main results of this paper are a first step toward this approach; further work
will appear in [1]. To obtain a nice decomposition of T V and R into irreducibles, we
replace CSn with the Hecke algebra H of W = Sn and apply the theory of canonical
bases. The functor V ⊗ − is replaced by H ⊗HJ

−, J = {s2, . . . , sn−1} ⊆ S, S the
simple reflections of W . We are naturally led to a construction that takes an HJ -
module E coming from a WJ -graph and produces a W -graph structure on H ⊗HJ

E.
This construction of inducing W -graphs, found independently by the author, is due
to Howlett and Yin [8]. We spend a good deal of this paper (Sects. 2–4) developing
this theory, proving some basic results of interest for their own sake as well as for this
application.

Once this groundwork is laid, we can form a W -graph version of T V ⊗ E, T V

being the tensor algebra of V , for any H -module E coming from a W -graph. We
can then try to project this onto a W -graph version of SV ⊗ E = R ⊗ E. This is
even interesting for T 2V and S2V and is what we focus on in this paper. Define
T 2

redV := Z{xi ⊗ xj : i �= j} and S2
redV := Z{xi ⊗ xj + xj ⊗ xi : i �= j}. We show in

Proposition 5.10 that our W -graph version ˜E2 := H ⊗J H ⊗J E of T 2V ⊗ E has
a cellular decomposition into ˜F 2 := H ⊗J\s2 E and H ⊗J E, which we refer to
as the reduced and non-reduced parts of ˜E2; at u = 1 these become T 2

redV ⊗ E and
V ⊗ E.

There is a canonical map (42)

˜F 2 β̃−→ H ⊗S\s2 E,

specializing at u = 1 to the projection T 2
redV ⊗ E → S2

redV ⊗ E. The map β̃ does
not send canonical basis elements to canonical basis elements, but it approximates
doing so as the Hecke algebra parameter u → 0 (Corollary 6.9). This partitions the
canonical basis of ˜F 2 into two parts—the approximate kernel, which we refer to
as combinatorial wedge, and the approximate inverse image of the canonical basis
of H ⊗S\s2 E, which we refer to as combinatorial reduced sym. Theorem 7.1 and
Corollary 7.10 determine the partition of the cells of ˜E2 into parts corresponding to
its reduced part, combinatorial reduced sym, and combinatorial wedge. We find that
RSK growth diagrams appear here naturally and in a somewhat different way from
their application to understanding the RSK correspondence.

We also consider a W -graph version of tensoring with V coming from the ex-
tended affine Hecke algebra. This mostly parallels the version just described, but
there are some interesting differences. Most notably, the combinatorics of this W -
graph version of the decomposition

V ⊗ V ⊗ E ∼= V ⊗ E ⊕ S2
redV ⊗ E ⊕ Λ2V ⊗ E
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has growth diagram local rules that are transpose to that of the other; compare Theo-
rems 7.1 and 7.6.

This paper is organized mainly in order of decreasing generality. We begin in
Sect. 2 by introducing the Hecke algebra, W -graphs, and the inducing W -graph
construction. We reformulate some of this theory using the formalism of IC bases
as presented in [2]. This has the advantage of avoiding explicit calculations involv-
ing Kazhdan–Lusztig polynomials, or rather, hides these calculations in the citations
of [8, 9]. This allows us to focus more on cells and cellular subquotients. In Sect. 3 we
specialize to the case where W -graphs come from iterated induction from the regular
representation. In this case we prove that all left cells are isomorphic to those occur-
ring in the regular representation of W (Theorem 3.5). Next, in Sect. 4, we review
the combinatorics of cells in the case W = Sn. As was first observed in [12], there
is a beautiful connection between the Littlewood–Richardson rule and the cells of an
induced module H ⊗HJ

E (Proposition 4.1). The combinatorics of the cells of the
restriction ResHJ

H is less familiar; see Conjecture 3.8. The remaining Sects. 5, 6,
and 7 contain our main results just discussed.

2 IC bases and inducing W -graphs

2.1

We will use the following notational conventions in this paper. If A is a ring and S is a
set, then AS is a free A-module with basis S (possibly endowed with some additional
structure, depending on context). Elements of induced modules H ⊗HJ

E will be
denoted h� e to distinguish them from elements of a tensor product over Z, F ⊗Z E,
whose elements will be denoted f ⊗ e. The symbol [n] is used for the set {1, . . . , n}
and also for the u-integer (defined below), but there should be no confusion between
the two.

2.2

Let W be a Coxeter group and S its set of simple reflections. The length �(w)

of w ∈ W is the minimal l such that w = s1 · · · sl for some si ∈ S. If �(uv) =
�(u) + �(v), then uv = u · v is a reduced factorization. The notation L(w) = {s ∈
S : sw < w},R(w) = {s ∈ S : ws < w} will be used for the left and right descent sets
of w.

For any J ⊆ S, the parabolic subgroup WJ is the subgroup of W generated by J .
Each left (resp. right) coset wWJ (resp. WJ w) contains an unique element of minimal
length called a minimal coset representative. The set of all such elements is denoted
WJ (resp. J W ). For any w ∈ W , define wJ , J w by

w = wJ · J w, wJ ∈ WJ , J w ∈ WJ . (1)

Similarly, define wJ , J w by

w = wJ · J w, wJ ∈ WJ , J w ∈ J W. (2)
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2.3

Let A = Z[u,u−1] be the ring of Laurent polynomials in the indeterminate u, A−
(resp. A+) be the subring Z[u−1] (resp. Z[u]), and · : A → A be the involution
given by u = u−1. The Hecke algebra H of W is the free A-module with basis
{Tw : w ∈ W } and relations generated by

TuTv = Tuv if uv = u · v is a reduced factorization,

(Ts − u)(Ts + u−1) = 0 if s ∈ S.
(3)

For each J ⊆ S, HJ denotes the subalgebra of H with A-basis {Tw : w ∈ WJ },
which is also the Hecke algebra of WJ . We abbreviate the restriction functor ResHJ

:
H -Mod → HJ -Mod by ResJ .

The involution, ·, of H is the additive map from H to itself extending the invo-
lution · on A and satisfying Tw = T −1

w−1 . Observe that Ts = T −1
s = Ts + u−1 − u for

s ∈ S. Some simple ·-invariant elements of H are C′
id := Tid and C′

s := Ts + u−1 =
T −1

s + u, s ∈ S. The ·-invariant u-integers are [k] := uk−u−k

u−u−1 ∈ A.

2.4

Before introducing W -graphs and the Kazhdan–Lusztig basis, we will discuss a
slightly more general setup for canonical bases. The presentation here follows Du [2].
This formalism originated in [10] and was further developed by Lusztig and Kashi-
wara (see the references in [2]).

Given any A-module E (no Hecke algebra involved), we can try to construct a
canonical basis or IC basis from a standard basis and involution · : E → E. Let
{ti : i ∈ I } be an A-basis of E (the standard basis) for some index set I and assume
the involution · intertwines the involution · on A: at = at for any a ∈ A, t ∈ E. Define
the lattice L to be A−{ti : i ∈ I }. If there exists a unique ·-invariant basis {ci : i ∈ I }
of the free A−-module L such that ci ≡ ti mod u−1L , then {ci : i ∈ I } is the IC
basis of E with respect to {ti : i ∈ I } and ·, denoted

I CE

({ti : i ∈ I }, ·). (4)

Theorem 2.1 (Du [2]) With the notation above, if (I,≺) is a poset such that for all
j ∈ I , {i ∈ I : i ≺ j} is finite and tj ≡ tj mod A{ti : i ≺ j}, then the (by definition,
unique) IC basis I CE({ti : i ∈ I }, ·) exists.

In the remainder of this paper, · will be clear from context so will be omitted from
the I C() notation. An observation that will be used in Sect. 2.8 and Sect. 3 is that this
construction behaves well with taking lower order ideals.

Proposition 2.2 With the notation of Theorem 2.1, if I ′ is a lower order ideal of I

and E′ := A{ti : i ∈ I ′}, then

I CE′
({ti : i ∈ I ′}) = {ci : i ∈ I ′} ⊆ I CE

({ti : i ∈ I })
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Proof The poset I ′ and the involution · restricted to E′ satisfy the necessary hypothe-
ses so that Theorem 2.1 applies. Label the resulting IC basis by di , i ∈ I ′ and put
L ′ = A−{ti : i ∈ I ′}. Then di ≡ ti mod u−1L ′ for i ∈ I ′ certainly implies di ≡ ti
mod u−1L . Uniqueness of the IC basis then implies di = ci (i ∈ I ′). �

We now come to the main construction studied in this paper. Let E be an HJ -
module with an involution · : E → E intertwining · on HJ (he = he for all h ∈ HJ

and e ∈ E). Suppose Γ is a ·-invariant A-basis of E. Put ˜E = H ⊗HJ
E. We will

apply Theorem 2.1 to ˜E with standard basis ˜T := {T̃z : z ∈ WJ × Γ }, where T̃w,γ :=
Tw �γ . The lattice L is then A−

˜T . Define the involution · on ˜E from the involutions
on E and H :

h� e = h� e, for every h ∈ H , e ∈ E. (5)

It is easy to check (and is done in [8]) that the definition of · : ˜E → ˜E is sound, that
it is an involution and intertwines the involution · on H .

Let ≺ be the partial order on WJ × Γ generated by the rule: (w′, γ ′) ≺ (w,γ ) if
T̃w′,γ ′ appears with non-zero coefficient in (Tw − Tw)�γ expanded in the basis ˜T .
Since Tw − Tw is an A-linear combination of Tx for x < w, it is easy to see that

T̃w,γ − T̃w,γ (w ∈ WJ , γ ∈ Γ ) is an A-linear combination of {T̃x,δ : x < w,δ ∈ Γ },
so the definition of ≺ is sound. To see that Dw,γ := {(w′, γ ′) : (w′, γ ′) � (w,γ )} is
finite, induct on �(w). The set Dw,γ is the union of {(w,γ )} and Dw′,γ ′ over those
(w′, γ ′) such that T̃w′,γ ′ appears with non-zero coefficient in (Tw − Tw)�γ , each of
which is finite by induction.

Thus Theorem 2.1 applies and we obtain a canonical basis Λ = I C
˜E(˜T ) = {C̃′

w,γ :
w ∈ WJ ,γ ∈ Γ } of ˜E. This is one way of proving the following theorem that is
Theorem 5.1 in [8] (there they use the basis Cw,γ that is ≡ T̃w,γ mod uA+

˜T ).

Theorem 2.3 (Howlett, Yin [8]) There exists a unique ·-invariant basis Λ = {C̃′
w,γ :

w ∈ WJ ,γ ∈ Γ } of ˜E such that C̃′
w,γ ≡ T̃w,γ mod u−1L .

Applied to J = ∅ and Γ the free A-module of rank one, this yields the usual
Kazhdan–Lusztig basis ΓW := {C′

w : w ∈ W } of H .

2.5

In [10], Kazhdan and Lusztig introduce W -graphs as a combinatorial structure for
describing an H -module with a special basis. A W -graph consists of a vertex set Γ ,
an edge weight μ(δ, γ ) ∈ Z for each ordered pair (δ, γ ) ∈ Γ × Γ , and a descent
set L(γ ) ⊆ S for each γ ∈ Γ . These are subject to the condition that AΓ has a left
H -module structure given by

C′
sγ =

{[2]γ if s ∈ L(γ ),
∑

{δ∈Γ :s∈L(δ)} μ(δ, γ )δ if s /∈ L(γ ).
(6)
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We will use the same name for a W -graph and its vertex set. If an H -module E

has an A-basis Γ that satisfies (6) for some choice of descent sets, then we say that
Γ gives E a W -graph structure, or Γ is a W -graph on E.

It is convenient to define two W -graphs Γ,Γ ′ to be isomorphic if they give rise to
isomorphic H -modules with basis. That is, Γ ∼= Γ ′ if there is a bijection α : Γ →
Γ ′ of vertex sets such that L(α(γ )) = L(γ ) and μ(α(δ),α(γ )) = μ(δ, γ ) whenever
L(δ) �⊆ L(γ ).

Given a W -graph Γ , we always have an involution

· : AΓ → AΓ , with γ = γ for every γ ∈ Γ, (7)

and extended A-semilinearly using the involution on A. It is quite clear from (6) (and
checked in [8]) that this involution intertwines · on H .

2.6

Now let Γ be a WJ -graph, E = AΓ , and · : E → E be as just mentioned in (7). Then
we are in the setup of Sect. 2.4 except Γ is a WJ -graph instead of any ·-invariant
basis of E. Maintaining the notation of Sect. 2.4, let Λ = I C

˜E(˜T ) = {C̃′
w,γ : w ∈

WJ ,γ ∈ Γ }. As would be hoped, Λ gives ˜E a W -graph structure.
Define P̃x,δ,w,γ by the formula

C̃′
w,γ =

∑

(x,δ)∈WJ ×Γ

P̃x,δ,w,γ T̃x,δ. (8)

For every (x, δ), (w,γ ) ∈ WJ × Γ define

μ(x, δ,w,γ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

coefficient of u−1 in P̃x,δ,w,γ if x < w,

μ(δ, γ ) if x = w,

1 if x = sw, x > w, s ∈ S, δ = γ,

0 otherwise.
(9)

Also define L(w,γ ) = L(w) ∪ {s ∈ S : sw = wt, t ∈ L(γ )}. Now we can state the
main result of Howlett and Yin.

Theorem 2.4 (See [8, Theorem 5.3]) With μ and L as defined above, Λ gives
˜E = H ⊗HJ

AΓ a W -graph structure.

We will often abuse notation and refer to a module when we really mean the W -
graph on that module, but there should be no confusion as there will never be more
than one W -graph structure on a given module. We will use the notation H ⊗HJ

Γ

to mean the Λ in this theorem, in case we want refer to its vertex set or to emphasize
the W -graph rather than the module.

Examples of Howlett and Yin’s induced W -graphs (as defined in Theorem 2.4)
appear in [9] and in Figs. 1 and 2. We use the following conventions for drawing
W -graphs: vertices are labeled by canonical basis elements and descent sets appear
as superscripts; an edge with no arrow indicates that μ = 1 and neither descent set
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contains the other; an edge with an arrow indicates that μ = 1 and the descent set of
the arrow head strictly contains that of the arrow tail; no edge indicates that μ = 0 or
the descent sets are the same. These conventions make it easy to read off the preorder
on the W -graph’s vertices, which we define in the next subsection.

Remark 2.5 A W -graph is symmetric if it is isomorphic to a W -graph with μ(x,w) =
μ(w,x) for all vertices x,w. The W -graph ΓW on the regular representation of H is
symmetric. The W -graph Λ defined above is symmetric if and only if Γ is symmetric,
although this is not obvious from the definition of μ (9). In [8], the W -graph for Λ is
defined so that it is clearly symmetric, and then it is proved later that it is isomorphic
to the W -graph Λ defined here.

2.7

Let Γ be a W -graph and put E = AΓ . The preorder ≤Γ on the vertex set Γ is
generated by

δ ≤Γ γ if there is an h ∈ H such that δ appears with non-zero

coefficient in the expansion of hγ in the basis Γ . (10)

Equivalence classes of ≤Γ are the left cells of Γ , or just cells since we will almost
exclusively work with left cells. Sometimes we will speak of the cells of E or the
preorder on E to mean that of Γ , when the W -graph Γ is clear from context. A cel-
lular submodule of E is a submodule of E that is spanned by a subset of Γ (and is
necessarily a union of cells). A cellular quotient of E is a quotient of E by a cellu-
lar submodule, and a cellular subquotient of E is a cellular submodule of a cellular
quotient. We will abuse notation and sometimes refer to a cellular subquotient by its
corresponding union of cells.

Remark 2.6 The term cellular subquotient is not used in the original Kazhdan–
Lusztig paper [10], but it is consistent with, though less general than, the term cell
representation from [6]: for the cellular algebra coming from the Kazhdan–Lusztig
basis in type A [6, Example 1.2], a cell representation is a cellular subquotient corre-
sponding to a single left cell.

2.8

We will give one result about cells in the full generality of Sect. 2.6 before specializ-
ing W and the WJ -graph Γ . Let D be a cellular submodule of E spanned by a subset
ΓD of Γ and p : E → E/D the projection. Put ΓE/D = p(Γ \ΓD). The WJ -graph
Γ yields WJ -graphs ΓD on D and ΓE/D on E/D. The involution · on E restricts
to one on D and projects to one on E/D; elements of ΓD (resp. ΓE/D) are fixed by
the involution · on D (resp. E/D). Since H is a free right HJ -module, we have the
exact sequence

0 H ⊗J D H ⊗J E
p̃

H ⊗J E/D 0, (11)
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where the shorthand H ⊗J E := H ⊗HJ
E will be used here and from now on. In

other words, inducing commutes with taking subquotients. It is also true that inducing
and taking canonical bases commutes with taking cellular subquotients:

Proposition 2.7 With the notation above and that of Sect. 2.6, let ˜TD = {T̃w,γ : w ∈
WJ ,γ ∈ ΓD} and ˜TE/D = {Tw �γ : w ∈ WJ ,γ ∈ ΓE/D}. Then

(i) I CH ⊗J D(˜TD) = {C̃′
w,γ : w ∈ WJ ,γ ∈ ΓD} ⊆ I C

˜E(˜T ),

(ii) I CH ⊗J E/D(˜TE/D) = {p̃(C̃′
w,γ ) : w ∈ WJ ,γ ∈ Γ \ΓD} ⊆ p̃(I C

˜E(˜T )).

In particular, H ⊗J D (resp. H ⊗J E/D) is a cellular submodule (resp. quotient)
of H ⊗J E.

Proof Statement (i) is actually a special case of Proposition 2.2. From the definition
of ≺ in Sect. 2.4 we can see that WJ × ΓD is a lower order ideal of WJ × Γ .

We prove (ii) directly. The lattice LE/D := A−
˜TE/D is the quotient L /LD =

p̃(L ). Therefore, given w ∈ WJ and γ ∈ Γ \ΓD , we have

p̃(C̃′
w,γ ) = p̃

(

Tw �γ + u−1x
) ≡ p̃(Tw �γ ) = Tw �p(γ ), (12)

where x is some element of L and the congruence is mod u−1LE/D . By defini-
tion, p(γ ) ∈ ΓE/D so p̃(C̃′

w,γ ) is the element of I CH ⊗J E/D(˜TE/D) congruent to

Tw �p(γ ) mod u−1LE/D . �

This proposition is essentially [9, Theorem 4.3], though the proof here is different.
It also appears in [4, Theorem 1] in the case that Γ = ΓWJ

(the usual WJ -graph on
HJ ) but in the generality of unequal parameters.

2.9

For our main application of inducing W -graphs in Sects. 5–7, we briefly discuss the
canonical maps coming from restriction and induction and their compatibility with
the canonical basis.

The functor H ⊗J − : HJ -Mod → H -Mod is left adjoint to ResJ : H -Mod →
HJ -Mod. Let α (resp. β) denote the unit (resp. counit) of the adjunction so that
α(F ) ∈ HomHJ -Mod(F,ResJ H ⊗J F ) corresponds to IdH ⊗J F (resp. β(E) ∈
HomH -Mod(H ⊗J ResJ E,E) corresponds to IdResJ E). We omit the argument F

or E in the notation for the unit and counit when there is no confusion. Explicitly,
α : F → ResJ H ⊗J F is given by f �→ 1�f , and β : H ⊗J E → E is given by
h� e �→ he. It is clear from these formulas that the unit and counit intertwine the
involution ·, so they take canonical basis elements to ·-invariant linear combinations
of canonical basis elements.

The unit behaves in a simple way on canonical basis elements.

Proposition 2.8 Let F = AΓ be any HJ -module coming from a WJ -graph Γ . The
map α : F → ResJ H ⊗J F takes canonical basis elements to canonical basis ele-
ments. Therefore im(α) is a cellular submodule isomorphic to AΓ as a WJ -graph.
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Proof The elements C̃′
1,γ = α(γ ) (γ ∈ Γ ) are canonical basis elements and are an

A-basis for the image of α. �

It is usually difficult to determine where the counit takes the canonical basis—it
does not simply take canonical basis elements to canonical basis elements in gen-
eral. In type A with S = {s1, . . . , sn−1} and J = S\sn−1, we partially determine the
counit’s action on the canonical basis; we omit this result here, but it appears in a
longer unpublished version of this paper.

3 Iterated induction from the regular representation

In this paper we will primarily be interested in the case where E is obtained by
some sequence of inductions and restrictions of the regular representation of a Hecke
algebra, or subquotients of such modules. In this section, let ˜E denote H1 ⊗J E,
where E = AΓ,Γ = ΓW2 unless specified otherwise.

3.1

Suppose we are given Coxeter groups W1, W2 with simple reflections S1, S2 and a
set J with inclusions ik : J → Sk, k = 1,2 such that (W1)i1(J )

∼= (W2)i2(J ) as Coxeter
groups. Define the set

W1
J× W2 := {

(w1,w2) : w1 ∈ W1,w2 ∈ W2
}

/〈

(w1w,w2) ∼ (w1,ww2) : w ∈ WJ

〉

, (13)

where WJ := W1J
∼= W2J . The set W1

J× W2 can also be identified with any of W1 ×
J W2, W1

J × W2, or WJ
1 × WJ × J W2. These sets label canonical basis elements of

Hecke algebra modules obtained by inducing from the regular representation just as
a Coxeter group labels the canonical basis elements of its regular representation.

The material that follows in this subsection is somewhat tangent from our main
theme, but we include it for completeness. We omit the details of proofs.

The set W1
J× W2 comes with a left action by W1, a length function, and a partial

order generalizing the Bruhat order, as described in the following proposition.

Proposition 3.1 Let (w1,w2) ∈ W1
J× W2. The set W1

J× W2 comes equipped with

(i) a left action by W1 : x · (w1,w2) = (xw1,w2)

(ii) a length function: �(w1,w2) = �(w1) + �(w2) whenever w1 ∈ W1
J

(iii) a partial order: (w′
1,w

′
2) ≤ (w1,w2), whenever there exists (w′′

1 ,w′′
2) ∼

(w′
1,w

′
2) such that w′′

i ≤ wi , w′
i ,w

′′
i ∈ Wi, i = 1,2, and w1 ∈ W1

J .

Proposition 3.2 The W1-graph ˜E is bipartite in the sense of [9, Definition 3.1].

Moreover, if z, z′ ∈ W1
J× W2, and �(z) − �(z′) is even (resp. odd), then P̃z′,z involves

only even (resp. odd) powers of u.
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Proof This follows from [9, Proposition 3.2]. �

Proposition 3.3 The W1-graph ˜E is ordered in the sense of [9, Definition 1.1].

Stronger, W1
J× W2 has a partial order from Proposition 2.2 of [9] using the Bruhat

order on W2, and this agrees with ≤ of Proposition 3.1. Therefore if z, z′ ∈ W1
J× W2

and P̃z′,z �= 0, then z′ ≤ z.

Proof Showing the partial orders from [9] and Proposition 3.1 are equal takes some
work. The rest is a citation of results in [9]. �

3.2

The set W1
J1× · · · Jd−1× Wd is defined in a similar way to the d = 2 case above: it is the

set of equivalence classes of W1 × · · · × Wd , with equivalence relation generated by
(w1, . . . ,wiw,wi+1, . . . ,wd) ∼ (w1, . . . ,wi,wwi+1, . . . ,wd) for all i ∈ [d − 1] and
w ∈ (Wi)Ji

∼= (Wi+1)Ji
. To work with these sets, introduce the following notation.

A representative (w1, . . . ,wd) of an element of W1
J1× · · · Jd−1× Wd is i-stuffed if

w1 ∈ W
J1
1 , . . . , wi−1 ∈ W

Ji−1
i−1 , wi ∈ Wi,

wi+1 ∈ Ji Wi+1, . . . , Jd−1Wd.
(14)

It is convenient to represent the element z ∈ W1
J1× · · · Jd−1× Wd , somewhat redun-

dantly, in stuffed notation: z = (z1, z2, . . . , zd), where zi is the ith component of the
i-stuffed expression for z.

3.3

The main ideas in this subsection also appear in [5, Sect. 4] where they are used
to adapt Lusztig’s a-invariant to give results about the partial order on the cells of
ResJ ΓW .

For any X ⊆ W1 × W2, define the shorthands

T T (X) := {

Tw1 �Tw2 : (w1,w2) ∈ X
}

,

T C(X) := {

Tw1 �C′
w2

: (w1,w2) ∈ X
}

,

CT (X) := {

C′
w1

�Tw2 : (w1,w2) ∈ X
}

.

(15)

The construction from Sect. 2.4 applied to ΓW2 gives the IC basis I C
˜E(T C(WJ

1 ×
W2)) of ˜E. The next proposition shows that the same canonical basis can be con-
structed from two other standard bases, and this will be used implicitly in what fol-
lows.

Proposition 3.4 The standard bases

T C
(

WJ
1 × W2

)

, T T
(

WJ
1 × W2

) = T T
(

W1 × J W2
)

, CT
(

W1 × J W2
)



J Algebr Comb (2011) 34:545–585 555

of ˜E = H1 ⊗J H2 have the same A−-span, denoted L . Moreover,

Tw1 �C′
vw2

≡ Tw1 �Tvw2 = Tw1v �Tw2 ≡ C′
w1v

�Tw2 mod u−1L

for every w1 ∈ W1
J , v ∈ WJ ,w2 ∈ J W2. Therefore, the corresponding IC bases are

identical:

I C
˜E

(

T C
(

WJ
1 × W2

)) = I C
˜E

(

T T
(

WJ
1 × W2

)) = I C
˜E

(

CT
(

W1 × J W2
))

(and these will be denoted Λ = {C′
w1,w2

: (w1,w2) ∈ W1
J× W2}).

Proof The lattices A−{Tw2 : w2 ∈ W2} and A−{C′
w2

: w2 ∈ W2} are equal by the
definition of an IC basis (Sect. 2.4). Thus A−T C(WJ

1 × W2) = A− T T (WJ
1 × W2)

and similarly A− T T (W1 × J W2) = A− CT (W1 × J W2). The remaining statements
are clear. �

Now given any lower order ideal I in J W2, define DI = A CT (W1 ×I ), thought of
as an H1-submodule of ˜E. Applying Proposition 2.2 to DI ⊆ ˜E with poset W1 ×J W2
and lower ideal W1 × DI shows that DI has canonical basis {C′

w1,w2
: w1 ∈ W1,

w2 ∈ I } (Proposition 3.4 is used implicitly). The next theorem now comes easily.
Let D≤x = D{w∈J W2:w≤x} and D<x = D{w∈J W2:w<x}. Recall that ΓW1 is the usual

W1-graph of the regular representation of H1.

Theorem 3.5 The module ˜E (with W1-graph structure Λ) has a filtration with cel-
lular subquotients that are isomorphic as W1-graphs to ΓW1 . In particular, the left
cells of Λ are isomorphic to those occurring in ΓW1 .

Proof For any x ∈ J W2, the map π : D≤x → H1 given by π(D<x) = 0 and
C′

w �Tx �→ C′
w is an H1-module homomorphism. Hence the exact sequence

0 D<x D≤x
π

H1 0 . (16)

Moreover, π(C̃′
w,x) = C′

w , which is clear when viewing the C̃′
w,x as being constructed

from the standard basis CT (W1 × J W2). This gives an isomorphism of W1-graphs
D≤x/D<x

∼= H1. �

Letting H be the Hecke algebra of (W,S) and setting H1 = HJ , H2 = H ,
J ⊆ S, we obtain

Corollary 3.6 The left cells of ResJ H are isomorphic as WJ -graphs to the left cells
of the regular representation of HJ .

This corollary is implied by results from [9, Sect. 5], but the method of proof is
different. It is also a consequence of [12, Theorem 5.2].

By the same methods we can check that the canonical basis construction for in-
duced modules is well-behaved for nested parabolic subgroups.
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Proposition 3.7 Let H be the Hecke algebra of (W,S), J2 ⊆ J1 ⊆ S, E a left HJ2 -
module with involution · intertwining that of HJ2 , and Γ a ·-invariant basis of E

(like the setup in Sect. 2.4). Let ΛJ1 = I CHJ1⊗J2E({T̃w,γ : w ∈ W
J2
J1

, γ ∈ Γ }), where

W
J2
J1

= (WJ1)
J2 is the set of minimal left coset representatives of WJ2 in WJ1 . Then,

letting ˜E = H ⊗J2 E, we have

I C
˜E

({

Tw �γ : w ∈ WJ2, γ ∈ Γ
}) = I C

˜E

({

Tw � δ : w ∈ WJ1, δ ∈ ΛJ1

})

. (17)

Proof By the same argument as in Proposition 3.4, the right-hand side of (17) can
also be constructed from the standard basis {Tv1 �Tv2 �γ : v1 ∈ WJ1, v2 ∈ W

J2
J1

,

γ ∈ Γ }. It remains to check that WJ1 ×W
J2
J1

= WJ2 by (v1, v2) �→ v1v2. As v1 ranges
over left coset representatives of WJ1 and v2 over left coset representatives of WJ2

inside WJ1 , v1v2 ranges over left coset representatives of WJ2 in W (true for any pair
of nested subgroups in a group). To see that v1v2 is a minimal coset representative,
let x ∈ WJ2 ; then v2 · x is a reduced factorization and v2x ∈ WJ1 (and v1 minimal in
v1WJ1 ) implies v1 · v2x is a reduced factorization and thus so is v1 · v2 · x. �

3.4

The set of cells of a W -graph Γ is denoted C(Γ ). We will describe the cells of
H1 ⊗J1 · · · ⊗Jd−1 Hd using the results of the previous subsection Sect. 3.3.

Let Υ be a cell of H1 ⊗J H2. By Theorem 3.5 and its proof, Υ = {C′
w1,x2

:
w1 ∈ Υ ′} for some cell Υ ′ of ΓW1 and x2 ∈ J W2. We say that Υ ′ is the local label
of Υ . By Theorem 3.5, the cells Υ and Υ ′ are isomorphic as W1-graphs so that the
isomorphism type of a cell is determined by its local label. Thus C(H1 ⊗J H2) has a
description via the bijection C(H1 ⊗J H2) ∼= C(H1) × J W2, Υ �→ (Υ ′, x2), taking
a cell to its local label and an element of J W2. Unfortunately, from this description it
is difficult to determine the cells of a cellular subquotient H1 ⊗J AΓ of H1 ⊗J H2
for some Γ ∈ C(H2) (this is a cellular subquotient of H1 ⊗J H2 by Proposition 2.7).

Essentially the same argument used in Theorem 3.5 yields a similar expression for
the general case:

C(H1 ⊗J1 · · · ⊗Jd−1 Hd) ∼= C(H1) × J1W2 × · · · × Jd−1Wd, (18)

taking a cell to its local label and a tuple of right coset representatives. This of course
has the same drawback of it being difficult to identify the subset of cells obtained by
taking a cellular subquotient of H2 ⊗J2 · · ·⊗Jd−1 Hd . We now address this deficiency.

Put ˜Ek = Hd−k ⊗Jd−k
· · · ⊗Jd−1 Hd . The collection of cells

∐d−1
k=0 C(˜Ek) can be

pictured as vertices of an acyclic graph G (see Fig. 1 of Sect. 5.3 and Example 7.2).
The subset C(˜Ek) of vertices is the kth level of G. There is an edge between Υ k of
level k and Υ k+1 of level k + 1 if Υ k+1 ∈ C(Hd−(k+1) ⊗Jd−(k+1)

Υ k). Here we are
using Proposition 2.7 to identify Hd−(k+1) ⊗Jd−(k+1)

Υ k with a cellular subquotient
of ˜Ek+1. Note that from a vertex of level k + 1 there is a unique edge to a vertex of
level k since the cells of a module ˜Ek are the composition factors of a composition
series for ˜Ek , thereby yielding composition factors for the induced module of ˜Ek+1 =
Hd−(k+1) ⊗Jd−(k+1)

˜Ek .
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A vertex Υ k in the kth level of G has a unique path to a vertex Υ 0 in the 0th level.
The local labels (Γ k, . . . ,Γ 0) of the vertices in this path is the local sequence of Υ k

(where Γ i is the local label of the vertex in the ith level).

The cell of ˜Ed−1 containing C̃′
z, z ∈ W1

J1× · · · Jd−1× Wd is the end of a path
with local labels (Γ1, . . . ,Γd), where Γi ∈ C(ΓWi

) is the cell containing C′
zi

and
z = (z1, . . . , zd) in stuffed notation.

A local sequence (Γ d−1, . . . ,Γ 0) does not in general determine a cell of ˜Ed−1

uniquely. For instance, the cells of HJ ⊗J H with J = ∅ are just single canonical
basis elements of H , so a local sequence does not determine a cell unless the cells
of H are of size 1. We say that the tuple (˜Ed−1, . . . , ˜E0) is weakly multiplicity-free
if there is at most one cell of ˜Ed−1 with local sequence (Γ d−1, . . . ,Γ 0) for all Γ i ∈
C(ΓWd−i

). The tuple (H ⊗J HJ ,HJ ) corresponding to a pure induction is trivially
weakly multiplicity-free since the local label of a cell in H ⊗J HJ = H is the same
thing as the cell itself. It is not hard to see that (˜Ed−1, . . . , ˜E0) is weakly multiplicity-
free if and only if the restriction (HJi

⊗Ji
Hi+1,Hi+1) is weakly multiplicity-free

for all i.
We have seen that the restriction (HJ ⊗J H ,H ) is not always weakly

multiplicity-free, but a natural question is whether it always is for J of size |S| − 1.
This fails for W of type B2 and B3 for all choices of J (and presumably for Bn,
n > 3). This failure may only be because cells in type B do not always correspond to
irreducible modules, so this question should be investigated in the unequal parameter
setting. We conjecture the following for type A.

Conjecture 3.8 If H is the Hecke algebra of (W,S) = (Sn, {s1, . . . , sn−1}) and
|J | = |S| − 1, then the restriction (HJ ⊗J H ,H ) is weakly multiplicity-free.

This conjecture was verified for n = 10, J = S\{s5} using Magma, and for n = 16
and a few arbitrary choices of a cell Γ , we checked that (HJ ⊗J Γ,Γ ) is weakly
multiplicity-free. Strangely, it does not seem to be amenable to typical RSK, jeu de
taquin style combinatorics. See Sect. 4.3 for more about the combinatorics involved
here.

4 Tableau combinatorics

4.1

We will make the description of cells from the previous section combinatorially ex-
plicit in the case W = Sn. In this section fix S = {s1, . . . , sn−1} and H the Hecke
algebra of type An−1. As is customary, we will think of an element of Sn as a word
of length n in the numbers 1, . . . , n. We want to maintain the convention used thus
far of looking only at left H -modules, however tableau combinatorics is a little nicer
if a right action is used. To get around this, define the word associated to an element
w = si1si2 · · · sik ∈ W to be w−1(1) w−1(2) · · ·w−1(n), where (to be completely ex-
plicit) w−1(i) = sik sik−1 · · · si1(i) and sj transposes j and j + 1. The left descent set
of w ∈ Sn is {si : w−1(i) > w−1(i + 1)}.
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The RSK algorithm gives a bijection between Sn and pairs of standard Young
tableau (SYT) of the same shape sending w ∈ Sn to the pair (P (w),Q(w)), writ-

ten w
RSK−−→ (P (w),Q(w)), where P(w) and Q(w) are the insertion and recording

tableaux of the word of w (which is equal to w−1(1) w−1(2) · · ·w−1(n) by our con-
vention). As was shown in [10], the left cells of H are in bijection with the set of
SYT and the cell containing C′

w corresponds to the insertion tableau of w under this
bijection. The cell containing those C′

w such that w has insertion tableau P is the cell
labeled by P . Note that the shape of the tableau labeling a cell is the transpose of the
usual convention for Specht modules, i.e. the trivial representation is labeled by the
tableau of shape 1n, sign by the tableau of shape n.

For the remainder of this paper let r ∈ {1, . . . , n − 1}, Jr = {s1, . . . , sr−1}, J ′
n−r =

{sr+1, . . . , sn−1}, and J = Jr ∪ J ′
n−r .

4.2

Let Γ be a cell of WJ labeled by a pair of insertion tableaux (T ,T ′) ∈ T1r 0n−r ×
T0r 1n−r , where Tα is the set of tableau with αi entries equal to i. Here we are using
the easy fact, proven carefully in [12], that a cell of ΓW1×W2 is the same as a cell of
ΓW1 and one of ΓW2 . We will describe the cells of H ⊗J AΓ .

For any w ∈ W , in the notation of Sect. 2.2, J w = (a, b) ∈ WJr × WJ ′
n−r

, where
a (resp. b) is the permutation of numbers 1, . . . , r (resp. r + 1, . . . , n) obtained by
taking the subsequence of the word of w consisting of those numbers. For example,
if n = 6, w = 436125, and r = 3, then a = 312 and b = 465.

The induced module H ⊗J AΓ has canonical basis {C′
w : P(J w) = (T ,T ′)},

where we define P(a, b) for (a, b) ∈ WJr × WJ ′
n−r

to be (P (a),P (b)). For any
tableau P , let jdt(P ) denote the unique straight-shape tableau in the jeu de taquin
equivalence class of P . From the most basic properties of insertion and jeu de taquin it
follows that if J w = (a, b), then P(w)≤r = P(a), P (w)>r = jdt(P (b)), where P≤r

(resp. P>r ) is the (skew) subtableau of P with entries 1, . . . , r (resp. r + 1, . . . , n).
See, for instance, [3, A1.2] for more on this combinatorics. We now have the follow-
ing description of cells.

Proposition 4.1 With Γ labeled by T ,T ′ as above, the cells of H ⊗J AΓ ⊆ H are
those labeled by P such that P≤r = T , jdt(P>r) = T ′.

Example 4.2 Let n = 6, r = 3, and T ,T ′ = (

1 2
3 , 4 6

5

)

. Then the cells of H ⊗J AΓ

are labeled by

1 2 4 6
3 5 , 1 2 4

3 5 6 ,
1 2 4 6
3
5

,
1 2 6
3 4
5

,
1 2 4
3 6
5

,
1 2
3 4
5 6

,
1 2 6
3
4
5

,
1 2
3 6
4
5

.

This is, of course, the Littlewood–Richardson rule. The combinatorics of the
Littlewood–Richardson rule matches beautifully with the machinery of canonical
bases. This version of the Littlewood–Richardson is due to Schützenberger and its
connection with canonical bases was also shown in [12].

Let Mλ be the Specht module corresponding to the partition λ, and put μ = sh(T ),
ν = sh(T ′). It was established in [10] that all left cells of H isomorphic at u = 1 to
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Mλ are isomorphic as W -graphs. This, together with the fact that the W -graph of
Theorem 2.4 depends only on the isomorphism type of the WJ -graph Γ , shows that
the multiplicity of Mλ in IndW

WJ
(Mμ � Mν) is given by the combinatorics above and

is independent of the chosen insertion tableaux T ,T ′.

4.3

Let Γ be a cell of H labeled by P with sh(P ) = λ. We will describe the cells of
ResJ AΓ .

For any w ∈ W , in the notation of Sect. 2.2, wJ = (a, b) ∈ WJr × WJ ′
n−r

, where a

(resp. b) is the permutation of numbers 1, . . . , r (resp. r +1, . . . , n) with the same rel-
ative order as w−1(1) w−1(2) · · ·w−1(r) (resp. w−1(r +1) · · ·w−1(n)). For example,
if n = 6, w = 436125, and r = 3, then a = 213 and b = 456.

Specifying a cell of ResJ H is equivalent to giving x ∈ J W and (T ,T ′) ∈
T1r 0n−r × T0r 1n−r , and the cell specified by this data is (see Sect. 2.2 for the definition
of J w)

{

C′
w : P(wJ ) = (T ,T ′), J w = x

}

.

Given μ � r, ν � n − r , define

μ � ν = (ν1 + μ1, ν2 + μ1, . . . , ν�(ν) + μ1,μ1,μ2, . . . ,μ�(μ)), (19)

where �(μ) is the number of parts of μ.
Expressing the tableaux on 1, . . . , r and r +1, . . . , n that label the cells of ResJ AΓ

in terms of P is tricky: first define the set

X := {

(T ,T ′) : |T | = r, |T ′| = n − r, jdt(T T ′) = P
}

, (20)

where T T ′ is the tableau of shape μ � ν/ρ (sh(T ) = μ, sh(T ′) = ν, ρ = μ1
�(ν))

obtained by adding T ′ to the top right of T . The multiset of local labels of the cells
of ResJ AΓ (Conjecture 3.8 says this is actually a set) is obtained by projecting each
element of X onto the set T1r 0n−r × T0r 1n−r by replacing the entries of T (resp. T ′)
by 1, . . . , r (resp. r + 1, . . . , n) so that relative order is preserved.

Example 4.3 If n = 6, r = 3, and P = 1 2 5
3 6
4

, then X is

{

(

3 6
4 , 1 2 5

)

,
(

1
3
4
, 2 5

6

)

,
(

1 6
4 , 2 5

3

)

,
(

1 4 6 , 2 5
3

)

,
(

1 3
4 , 2 5

6

)

,
(

1 3
4 ,

2
5
6

)}

.

Hence the cells of ResJ AΓ have local labels

(

1 3
2 , 4 5 6

)

,
(

1
2
3
, 4 5

6

)

,
(

1 3
2 , 4 6

5

)

,
(

1 2 3 , 4 6
5

)

,
(

1 2
3 , 4 5

6

)

,
(

1 2
3 ,

4
5
6

)

.

A slightly better description of the cells of ResJ AΓ is as follows. Fix μ � r ,
ν � n − r such that λ ⊆ μ � ν, and B a tableau of the rectangle shape ρ := μ1

�(ν).
Now consider the jeu de taquin growth diagrams with lower left row corresponding
to P , lower right row corresponding to B , and the partition at the top equal to μ � ν
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(see, e.g., [3, A1.2]). The upper right row of such a growth diagram necessarily cor-
responds to some T T ′ such that jdt(T T ′) = P , and the upper left row corresponds to
some A such that jdt(A) = B . Since a growth diagram is constructed uniquely from
either of its sides, we obtain the bijection

{

(T ,T ′) : sh(T ) = μ, sh(T ′) = ν, jdt(T T ′) = P
}

∼= {

A : sh(A) = μ � ν/λ, jdt(A) = B
}

. (21)

From an A in the set above, one obtains the corresponding (T ,T ′) as follows: perform
jeu de taquin to P in the order specified by the entries of A to obtain a tableau of shape
μ � ν/ρ; split this into a tableau of shape μ and one of shape ν. This can be used to
give another description of the set X. This description has the advantage that the same
choice of B can be used for all tableau P of shape λ.

4.4

If r = 1 or r = n − 1, then restricting and inducing are multiplicity-free. Therefore,
we only need to keep track of the shapes of the tableaux rather than the tableaux
themselves, except at the first step C(Hd), in order to determine a cell of H1 ⊗J1· · ·⊗Jd−1 Hd . However, it is often convenient for working concrete examples to keep
track of all tableaux.

If r = 1 or r = n − 1, then the cells of ResJ AΓ , with Γ labeled by P , can be de-
scribed explicitly. If r = 1 (resp. r = n−1), they are labeled by the tableaux obtained
from P by column-uninserting (resp. row-uninserting) an outer corner and replacing
the entries of the result with 2, . . . , n (resp. 1, . . . , n − 1) so that relative order is
preserved.

We will work with both r = 1 and r = n − 1 in this paper because tableau combi-
natorics is easier with r = n − 1, but r = 1 is preferable for our work in Sect. 5 and
beyond. It is therefore convenient to be able to go back and forth between these two
conventions.

On the level of algebras, this is done by replacing any HK -module by the
Hw0Kw0 -module obtained by twisting by the isomorphism Hw0Kw0

∼= HK,

Tsi �→ Tsn−i
, where w0 is the longest element of W . Combinatorially, this corresponds

to replacing a word x1x2 · · ·xn with

x� := n + 1 − x1 n + 1 − x2 · · · n + 1 − xn.

The local label of a cell changes from T to evac(T ), where T �→ evac(T )

is the Schützenberger involution (see, e.g., [3, A1.2]). More precisely, the lo-
cal label (T ,T ′) ∈ T1j 0n−j × T0j 1n−j of a cell of an HS\sj -module becomes
(evac(T ′)∗, evac(T )∗), where evac(T ′)∗ (resp. evac(T )∗) is obtained from evac(T ′)
by adding a constant to all entries so that evac(T ′)∗ ∈ T1n−j 0j (resp. evac(T )∗ ∈
T0n−j 1j ).

4.5

In this subsection we give a combinatorial description of cells of a certain submodule
of ResH

̂H , where ̂H is the extended affine Hecke algebra of type A. We digress
to introduce this object. See [7, 14] for a more thorough introduction.
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First of all, everything we have done so far for Coxeter groups also holds for ex-
tended Coxeter groups. An extended Coxeter group, defined from a Coxeter group
(W,S) and an Abelian group Π acting by automorphisms on (W,S), is the semi-
direct product Π � W , denoted We. The length function and partial order on W

extend to We: �(πv) = �(v), and πv ≤ π ′v′ if and only if π = π ′ and v ≤ v′, where
π,π ′ ∈ Π , v, v′ ∈ W . The definitions of left and right descent sets, reduced factor-
ization, the ·-involution, and definition of the Hecke algebra (3) of Sect. 2 carry over
identically. The Hecke algebra elements Tπ for π ∈ Π will be denoted simply by π ;
note that these are ·-invariant.

Although it is possible to allow parabolic subgroups to be extended Coxeter
groups, we define a parabolic subgroup of We to be an ordinary parabolic subgroup
of W to simplify the discussion (this is the only case we will need later in the pa-
per). With this convention, each coset of a parabolic subgroup WeJ

contains a unique
element of minimal length.

In the generality of extended Coxeter groups, a We-graph Γ must satisfy πγ ∈ Γ

for all π ∈ Π , γ ∈ Γ in addition to (6). The machinery of IC bases carries over
without change. Everything we have done so far holds in this setting; the only thing
that needs some comment is Theorem 2.4. Presumably the proof carries over with-
out change, however it is also easy to deduce this from Theorem 2.4 for ordinary
Coxeter groups: use the fact that P̃πx,δ,πv,γ = P̃x,δ,v,γ to deduce that with the def-
inition (9) for μ, μ(πx, δ,πv, γ ) = μ(x, δ, v, γ ) (x, v ∈ W,π ∈ Π ); the identity
C̃′

πv,γ = πC̃′
v,γ together with the theorem for ordinary Coxeter groups give it for

extended Coxeter groups.

4.6

Let W,Wa be the Weyl groups of type An−1, Ãn−1, respectively. Put Kj =
{s0, s1, . . . , ŝj , . . . , sn−1}. Let Y ∼= Z

n, Q ∼= Z
n−1 be the weight lattice, root lattice

of GLn. The extended affine Weyl group We is both Y � W and Π � Wa where
Π ∼= Y/Q ∼= Z. For λ ∈ Y , let yλ be the corresponding element of We and let yi = yεi ,
where ε1, . . . , εn is the standard basis of Y . Also let π be the generator of Π such that
siπ = πsi−1, where subscripts are taken mod n. The isomorphism Y �W ∼= Π �Wa

is determined by

yi → si−1 · · · s1πsn−1 · · · si , (22)

and the condition that W ↪→ Y �W ∼= Π �Wa identifies W with (Wa)K0 via si �→ si ,
i ∈ [n].

Another description of We, due to Lusztig, is as follows. The group We can be
identified with the group of permutations w : Z → Z satisfying w(i + n) = w(i)+ n.
The identification takes si to the permutation transposing i +kn and i +1+kn for all
k ∈ Z, and takes π to the permutation k �→ k +1 for all k ∈ Z. We can then express an
element w of We in window notation as the sequence of numbers w−1(1) · · ·w−1(n),
also referred to as just the word of w. For example, if n = 4, the word of π2s2s0s1
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can be computed as follows

w ∈ We The word of w

1 1 2 3 4
s1 2 1 3 4

s0s1 0 1 3 6
s2s0s1 0 3 1 6

πs2s0s1 2 0 3 1
π2s2s0s1 −3 2 0 3

(23)

Let Y≥0 = Z
n
≥0 and W+

e = Y≥0 � W . As is shown in [1], there is a corresponding

subalgebra ̂H + of ̂H , equal to both A{Tw : w ∈ W+
e } and A{C′

w : w ∈ W+
e }. Let Γ

be a W -graph and put E = AΓ . The positive, degree d part of ResH
̂H ⊗H E is

( ̂H + ⊗H E)d

:= A
{

C̃′
yλv,γ

: λ ∈ Y≥0, |λ| = d, v ∈ W such that yλv ∈ WK0
e , γ ∈ Γ

}

. (24)

Proposition 4.4 ( ̂H + ⊗H E)d is a cellular submodule of ResH
̂H ⊗H E.

Proof The A-basis above can be rewritten as
{

πdC̃′
w,γ : πdw ∈ W+

e ,w ∈ Wa,γ ∈ Γ
}

.

It is easy to see this is left stable by the action of H , given that ̂H + is a subalgebra
of ̂H containing H . �

Let Γ be a cell of H labeled by T and ̂E1 = ( ̂H + ⊗H AΓ )1. We now return to
give a combinatorial description of the cells of ̂E1. The restriction (ResH

̂H ⊗H E,
̂H ⊗H E) is not weakly multiplicity-free, so we have to use the description (18). In

this case, we have found it most convenient to use a hybrid of the description in (18)
and local labels, which we now describe.

Given x ∈ We, define P(x) to be the insertion tableau of the word of x. Since xK0

is the permutation of 1, . . . , n with the same relative order as the word of x, P(xK0) is
obtained from P(x) by replacing the entries with 1, . . . , n and keeping relative order
the same.

Let ak = sk−1 . . . s1 for k ∈ {2, . . . , n}, a1 = 1 be the minimal left coset represen-
tatives of WJ ′

n−1
. Then ̂E1 = A{C̃′

akπ,w : k ∈ [n],P (w) = T }. In this case, define the

local label of the cell containing C̃′
akπ,w to be P(akπw). A caveat to this is that if

we then form some induced module H1 ⊗J1
̂E1, it is good to convert the local labels

of ̂E1 to be the tableaux P((akπw)K0
) before computing local labels of H1 ⊗J1

̂E1

(see Examples 7.8 and 7.9).
Combinatorially, the cells of ̂E1 may be described as follows. Let w ∈ W with

P(w) = T and define Q = Q(w). Let w∗
Jn−1

be the word obtained from w by delet-

ing its last number (see Example 4.6). Then w∗
Jn−1

RSK−−→ (T −,Q≤n−1), where T − is
obtained from T by uninserting the square Q\Q≤n−1; let c be the number uninserted.
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Write akπw in window notation, which is w∗
Jn−1

with a c −n inserted in the kth spot.

Let Q+ be the tableau obtained by column-inserting k into the tableau obtained from
Q≤n−1 by replacing entries with {1, . . . , k − 1, k + 1, . . . , n} and keeping the same

relative order. We have akπw
RSK−−→ (T +,Q+), where T + is jdt(T −,Q+\Q≤n−1)

with the number c − n added to the top left corner (so that the resulting tableau has a
straight-shape). This implies the following result about the cells of ̂E1.

Proposition 4.5 The local labels of the cells of ̂E1 are those tableaux obtained from
T by uninserting some outer corner then performing jeu de taquin to some inner
corner, and finally filling in the missing box in the top left with a c − n, where c is the
entry bumped out in the uninsertion.

Example 4.6 For the element (a3π,346512) ∈ W
K0
e ×W , the insertion and recording

tableaux discussed above are

a3πw w∗
Jn−1

w

34−4651 34651 346512

P
-4 1 5
3 4
6

1 4 5
3
6

1 2 5
3 4
6

Q
1 2 4
3 5
6

1 2 3
4
5

1 2 3
4 6
5

(25)

5 Some W -graph versions of tensoring with the defining representation

Let V denote the n-dimensional defining representation of Sn: V = Z{x1, . . . , xn},
si(xj ) = xsi(j). In this section, we will explore three W -graph versions of tensoring
with V . We then look at W -graphs corresponding to tensoring twice with V and
show that these decompose into a reduced and non-reduced part. We make a habit of
checking what our W -graph constructions become at u = 1 in order to keep contact
with our intuition for this more familiar case.

5.1

In what follows, E denotes an H -module or ZSn-module, depending on context.
A useful observation, and indeed, what motivated us to study inducing W -graphs is
that V ⊗ E ∼= ZSn ⊗ZSn−1 E for any ZSn-module E. This is well-known, but the
proof is instructive.

Proposition 5.1 Given a finite group G, a subgroup K , and a Z(G)-module E, there
is a (ZG-module) isomorphism, natural in E,

ZG ⊗ZK E ∼= (ZG ⊗ZK Z) ⊗Z E,

g � e → (g �1) ⊗ ge,
(26)

where Z denotes the trivial representation of K .
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Proof The expressions gk �k−1e and g � e (k ∈ K) are sent to the same element
so this map is well-defined. Similarly, its inverse (g �1) ⊗ e �→ g �g−1e is well-
defined. These maps clearly intertwine the action of G. �

Maintain the notation W = Sn, Jn−1 = {s1, . . . , sn−2}, J ′
n−1 = {s2, . . . , sn−1} of

the previous sections. Let bk = sk · · · sn−1 for k ∈ [n − 1], bn = 1 be the minimal left
coset representatives of WJn−1 , and ak = sk−1 · · · s1 for k ∈ {2, . . . , n}, a1 = 1 be the
minimal left coset representatives of WJ ′

n−1
.

Corollary 5.2 For the inclusions Sn−1 = WJ ′
n−1

↪→ W = Sn and Sn−1 = WJn−1 ↪→
W = Sn, we have ZSn ⊗ZSn−1 E ∼= V ⊗Z E for any ZSn-module E.

Proof Put G = Sn. If K = WJ ′
n−1

, then ZG ⊗ZK Z ∼= V by ai �1 �→ xi . If K =
WJn−1 , then ZG ⊗ZK Z ∼= V by bi �1 �→ xi . �

The Hecke algebra is not a Hopf algebra in any natural way, so it is not clear what
a Hecke algebra analogue of F ⊗ E should be for F,E ZSn-modules. If F = V ,
however, then H ⊗J E is a u-analogue of ZSn ⊗ZSn−1 E ∼= V ⊗E, where r is either
n − 1 or 1 (and J = Jr ∪ J ′

n−r ). These choices for r give isomorphic representations
at u = 1, but do not give isomorphic W -graphs in general.

Example 5.3 Let e+ be the trivial representation of H . Then compare the W -graphs
H ⊗J ′

n−1
e+ (first row) and H ⊗Jn−1 e+ (second row) for n = 4, which are drawn

with the conventions described in Sect. 2.6:

C̃′
a4,e

+1,2,3 C̃′
a3,e

+1,2 C̃′
a2,e

+1,3 C̃′
a1,e

+2,3

C̃′
b1,e

+1,2,3 C̃′
b2,e

+2,3 C̃′
b3,e

+1,3 C̃′
b4,e

+1,2

Evidently, these are not isomorphic as W -graphs.

For the remainder of this paper, let J = J ′
n−1 (r = 1) since this is preferable for

comparing H ⊗J E with ( ̂H + ⊗H E)1 (see Sect. 5.2, below). See Sect. 4.4 for
how to go back and forth between the J ′

n−1 and Jn−1 pictures.

5.2

There is another u-analogue of tensoring with V that comes from the extended affine
Hecke algebra ̂H . See Sects. 4.5 and 4.6 for a brief introduction to this algebra.

The module ̂H + ⊗H E is a u-analogue of ZW+
e ⊗

ZW+
e K0

E, which, together

with the following proposition, shows that ( ̂H + ⊗H E)1 is a u-analogue of V ⊗ E.
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Proposition 5.4 The correspondence

ResZSn
ZW+

e ⊗
ZW+

e K0
E ∼= Z[x1, . . . , xn] ⊗Z E,

yλ � e ←→ xλ ⊗ e,
(27)

is a degree-preserving isomorphism of ZSn-modules, natural in E, where Sn acts on
the polynomial ring by permuting the variables.

Proof Recalling that We = Y �W with W acting on Y by permuting the coordinates,
we have si(y

λ � e) = siy
λsi � sie = ysi(λ) � sie and si(x

λ ⊗ e) = xsi(λ) ⊗ sie. �

Example 5.5 To compare with the W -graphs in Example 5.3, here is the W -graph on
( ̂H + ⊗H e+)1. In this case it is isomorphic to the W -graph on H ⊗J ′

n−1
e+, but

this is not true in general as can be seen by comparing Figs. 1 and 2.

C̃′
a4π,e+1,2,3 C̃′

a3π,e+1,2 C̃′
a2π,e+1,3 C̃′

a1π,e+2,3 .

The general relationship between ( ̂H + ⊗H E)1 and H ⊗J ′
n−1

E can be explained
as a special case of a W -graph version of Mackey’s formula due to Howlett and Yin
[9, §5], which we now recall.

Let Γ be a WI -graph, and K,I ⊆ S. Put F = AΓ . Let KWI be the set of min-
imal double coset representatives {d : d of minimal length in WKdWI }. For each
d ∈ KWI , the d-subgraph of (the WK -graph on) ResKH ⊗I F is {C̃′

wd,γ : w ∈
WL

K,L = K ∩ dId−1, γ ∈ Γ }.
For any d ∈ KWI , let L = K ∩ dId−1. Then d−1Ld = d−1Kd ∩ I ⊆ I so the

restriction Resd−1LdF makes sense. This Wd−1Ld -graph naturally gives rise to a WL-
graph, denoted dΓ , obtained by conjugating descent sets by d . Explicitly, the descent
set of a vertex dγ of dΓ is

L(dγ ) = {

dsd−1 : s ∈ L(γ ) ⊆ I and dsd−1 ∈ K
} ⊆ L. (28)

The edge weights of dΓ are the same as those of Γ : μ(dδ, dγ ) = μ(δ, γ ) for all
δ, γ ∈ Γ .

Theorem 5.6 (Howlett, Yin [9]) The d-subgraphs of ResKH ⊗I F partition its
canonical basis. Each d-subgraph is a union of cells and is isomorphic to HK ⊗L dF

(L = K ∩ dId−1) as a WK -graph via the correspondence C̃′
wd,γ ↔ C̃′

w,dγ ,w ∈ WL
K .

Remark 5.7 It is probably the case that each d-subgraph is a cellular subquotient
rather than just a union of cells, however this is not proven in [9]. This issue does not
come up, however, because in the applications in this paper we can easily show that
the d-subgraph is a cellular subquotient and sometimes the stronger statement that it
is a cellular quotient or submodule.

In the present application, put K = I = {s1, . . . , sn−1}. We have π ∈ KWe
I

and K ∩ πIπ−1 = J ′
n−1. Thus the π -subgraph of ResH

̂H ⊗H E is {C̃′
akπ,γ :
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k ∈ [n], γ ∈ Γ }, which is exactly its cellular submodule ( ̂H + ⊗H E)1. By The-
orem 5.6, this is isomorphic as a W -graph to H ⊗J ′

n−1
πE. The WJ ′

n−1
-graph πE

is just ResJn−1E, with each element of its descent sets shifted up by one. We have
proved the following.

Proposition 5.8 The W -graphs ( ̂H + ⊗H E)1 and H ⊗J ′
n−1

πE are isomorphic.

Remark 5.9 Though this suggests that the W -graph versions of V ⊗ E,
( ̂H + ⊗H E)1 and H ⊗J ′

n−1
E, behave in essentially the same way, some care must

be taken. At u = 1, H ⊗J ′
n−1

πE is not isomorphic to V ⊗Z πE using Proposition 5.1

since πE is only a ZWJ ′
n−1

-module, not a ZW -module. Thus ( ̂H + ⊗H E)1|u=1 and
(H ⊗J ′

n−1
E)|u=1 are only isomorphic to V ⊗E by the rather different looking routes

Proposition 5.4 and Corollary 5.2.

5.3

Let Γ be a W -graph, and put E = AΓ , F = ResJ AΓ , ˜E2 := H ⊗J H ⊗J AΓ .
We will show that ˜E2 decomposes into what we call a reduced and non-reduced

part. Toward this end, consider the exact sequence

0 F
α

ResJ H ⊗J F
τ

HJ ⊗J ′
n−2

ResJ ′
n−2

F 0.

γ 1�γ 0

Tak
�γ Tsk−1...s2 �γ (29)

By Proposition 2.8 the image of α is a cellular submodule. The map τ induces
an isomorphism of WJ -graphs ResJ H ⊗J F/ im(α) ∼= HJ ⊗J ′

n−2
ResJ ′

n−2
F ; given

that the sequence is exact, this is equivalent to taking canonical basis elements to
canonical basis elements or to 0. That τ is an isomorphism can be seen directly by
observing that it takes standard basis elements of H ⊗J F to standard basis elements
of HJ ⊗J ′

n−2
F or to 0, takes the lattice A−H ⊗J Γ to the lattice A−HJ ⊗J ′

n−2
Γ ,

and intertwines the involutions ·.
This decomposition also comes from another application of the W -graph ver-

sion of Mackey’s formula (Theorem 5.6). For this application, put K = I = J

(= {s2, . . . , sn−1}). Then KWI = {1, s1}. The 1-subgraph of ResJ H ⊗J F is {C̃′
1,γ :

γ ∈ Γ } and the s1-subgraph is {C̃′
ws1,γ

: w ∈ W
J ′
n−2

J , γ ∈ Γ }. These are isomorphic
as WJ -graphs to HJ ⊗J F = F and HJ ⊗J ′

n−2
ResJ ′

n−2
F , respectively (since we have

d−1Ld = L for all d , dF and F are identical).
Next, tensor (29) with H to obtain

0 H ⊗J AΓ
H ⊗J α

H ⊗J H ⊗J AΓ
H ⊗J τ

H ⊗J ′
n−2

AΓ 0.

(30)
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C̃′
a4,a4,e

+1,2,3 C̃′
a3,a4,e

+1,2 C̃′
a2,a4,e

+1,3 C̃′
a1,a4,e

+2,3

C̃′
a4,a3,e

+1,3 C̃′
a3,a3,e

+1,2 C̃′
a2,a3,e

+1 C̃′
a1,a3,e

+2

C̃′
a4,a2,e

+2,3 C̃′
a3,a2,e

+2 C̃′
a2,a2,e

+1,3 C̃′
a1,a2,e

+3

C̃′
a4,a1,e

+1,2,3 C̃′
a3,a1,e

+1,2 C̃′
a2,a1,e

+1,3 C̃′
a1,a1,e

+2,3

Fig. 1 The W -graph on H ⊗J ′
n−1

H ⊗J ′
n−1

e+ with n = 4 (drawn with the conventions of Sect. 2.6)

and the graph G of Sect. 3.4. The vertices of the tree G are marked by local labels. Each path from a
leaf to the root is the local sequence of a cell, and the small diagram below the leaf indicates which cell
(see Examples 7.2 and 7.3). The labels “sym”, “wedge”, and “non-red”, are explained in Examples 5.11
and 6.10. Recall that ak denotes the element sk−1 · · · s1 ∈ Sn (and a1 = 1)

Put ˜F 2 = H ⊗J ′
n−2

AΓ . The quotient ˜F 2 (resp. the submodule H ⊗J AΓ ) is the

reduced (resp. non-reduced) part of ˜E2.

Proposition 5.10 The submodule and quotient of ˜E2 given by (30) are cellular and
the maps in (30) take canonical basis elements to canonical basis elements or to 0.

Proof This follows from the application of Theorem 5.6 described above and Propo-
sition 2.7. �
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C̃′
a4π,a4π,e+1,2,3 C̃′

a3π,a4π,e+1,2 C̃′
a2π,a4π,e+1,3 C̃′

a1π,a4π,e+2,3

C̃′
a4π,a3π,e+1,2,3 C̃′

a3π,a3π,e+1,2 C̃′
a2π,a3π,e+1,3 C̃′

a1π,a3π,e+2,3

C̃′
a4π,a2π,e+1,3 C̃′

a3π,a2π,e+1,2 C̃′
a2π,a2π,e+1 C̃′

a1π,a2π,e+2

C̃′
a4π,a1π,e+2,3 C̃′

a3π,a1π,e+2 C̃′
a2π,a1π,e+1,3 C̃′

a1π,a1π,e+3

Fig. 2 The W -graph on ( ̂H + ⊗H ( ̂H + ⊗H e+)1)1 with n = 4 (drawn with the conventions of
Sect. 2.6) and the graph G of Sect. 3.4, with the labeling conventions of Sect. 4.6. Each path from a
leaf to the root is the local sequence of a cell, and the small diagram below the leaf indicates which cell
(see Examples 7.7 and 7.8). The labels “sym”, “wedge”, and “non-red”, are explained in Examples 5.14
and 6.10

Example 5.11 The non-reduced part of ˜E2 for E = e+ is the bottom row of the
W -graph in Fig. 1. The cells comprising it are labeled “non-red” below the tree.

5.4

Let us determine what the decomposition of ˜E2 into reduced and non-reduced parts
becomes at u = 1.

Proposition 5.12 At u = 1, (30) becomes



J Algebr Comb (2011) 34:545–585 569

0 V ⊗ E V ⊗ V ⊗ E T 2
redV ⊗ E 0.

xk ⊗ γ xk ⊗ xk ⊗ γ 0

xi ⊗ xj ⊗ γ xi ⊗ xj ⊗ γ, (31)

where i �= j and T 2
redV := Z{xi ⊗ xj : i �= j, i, j ∈ [n]} ⊆ V ⊗ V .

To see this, first define ak,l = sk−1 · · · s1sl−1 · · · s2 for k ∈ [n], l ∈ {2, . . . , n}; then

ak,l · s1 = al,k+1 if k < l,

WJ ′
n−2 = {

ak,l : k ∈ [n], l ∈ {2, . . . , n}},
WS\s2s1 = {ak,l : k ≥ l > 1}, and

WS\s2 = {ak,l : k < l}.

(32)

Apply Corollary 5.2 twice to obtain

˜E2|u=1 ∼= ZSn ⊗ZSn−1 V ⊗ E ∼= V ⊗ V ⊗ E

ak �al �γ ↔ ak �
(

xl ⊗ al(γ )
)

↔
⎧

⎨

⎩

xk ⊗ xk ⊗ akal(γ ) if l = 1,

xk ⊗ xl ⊗ akal(γ ) if k < l,

xk ⊗ xl−1 ⊗ akal(γ ) if k ≥ l > 1.

(33)

Proof of Proposition 5.12 The interesting part of the calculation is the following
diagram

˜E2|u=1

∼=

˜F 2|u=1

∼=

V ⊗ V ⊗ E T 2
redV ⊗ E

ak �al �γ ak,l �γ

xk ⊗ ak(xl) ⊗ akal(γ ) xk ⊗ ak(xl) ⊗ ak,ls1(γ )

(34)

where k ∈ [n], l ∈ {2, . . . , n}.
There is a slightly tricky point here: the left-hand isomorphism of (34) comes

from (33), but the right-hand isomorphism does not come from a similar applica-
tion of Proposition 5.1. However, Proposition 5.1 also holds with the isomorphism
g � e �→ (g �1) ⊗ gce replacing (26), where c ∈ G commutes with all of K . In this
case we must choose c = s1 (which commutes with K = J ′

n−2) to make the dia-
gram (34) commute. �
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5.5

There is a similar decomposition of ̂E2 := ( ̂H + ⊗H ( ̂H + ⊗H AΓ )1)1 into a
reduced and non-reduced part. Two applications of Proposition 5.8 yield ̂E2 =
H ⊗J π(H ⊗J πE).

First, let us apply Theorem 5.6 to ResJn−1H ⊗J ′
n−1

πE analogously to the appli-

cation in the previous subsection. In this case I = J ′
n−1, K = Jn−1, and therefore

KWI = {1, an}.
The 1-subgraph is {C̃′

ak,πγ : k < n,πγ ∈ πΓ } and spans a cellular submodule of
ResJn−1H ⊗J ′

n−1
πE. This can be seen, for instance, by applying Proposition 2.2

with the order ≺ of Sect. 2.4 to obtain

A
{

C̃′
ak,πγ : k < n,πγ ∈ πΓ

} = A
{

T̃ak,πγ : k < n,πγ ∈ πΓ
}; (35)

it is clear that this A-span of T̃ ’s is left stable under the action of HJn−1 . Now this
submodule is isomorphic to HJn−1 ⊗Jn−1\s1 πE (as a WJn−1 -graph) by Theorem 5.6.

The an-subgraph is {C̃′
an,πγ : πγ ∈ πΓ } and spans a cellular quotient since the

only other d-subgraph spans a submodule. This quotient is isomorphic to anπE as a
WJn−1 -graph. Moreover, anπE is exactly ResJn−1E as L = K ∩anIa−1

n = K = Jn−1.
The following exact sequence summarizes what we have so far.

0 HJn−1 ⊗Jn−1\s1 πE ResJn−1H ⊗J ′
n−1

πE ResJn−1E 0.

(36)
Applying π to the WJn−1 -graphs in this sequence to obtain WJ ′

n−1
-graphs (as ex-

plained before Theorem 5.6) and then tensoring with H yields

0 H ⊗J ′
n−1

π(HJn−1 ⊗Jn−1\s1 πE)

∼=

H ⊗J ′
n−1

π(H ⊗J ′
n−1

πE)

∼=

H ⊗J ′
n−1

πE

∼=

0

0 H ⊗J ′
n−2

ResJ ′
n−2

π2E ( ̂H + ⊗H ( ̂H + ⊗H E)1)1 ( ̂H + ⊗H E)1 0,

(37)
where ResJ ′

n−2
π2E is the WJ ′

n−2
-graph obtained from ResJn−2E by increasing de-

scent set indices by 2. The leftmost isomorphism comes from the isomorphism of
Coxeter group pairs (WJn−1\s1,WJn−1)

∼= (WJ ′
n−2

,WJ ′
n−1

) given by conjugation by π .
The other two isomorphisms are applications of Proposition 5.8.

The submodule ̂F 2 := H ⊗J ′
n−2

ResJ ′
n−2

π2E (resp. the quotient ( ̂H + ⊗H E)1)

is the reduced (resp. non-reduced) part of ̂E2. We have proved the following analogue
of Proposition 5.10.

Proposition 5.13 The submodule and quotient of ̂E2 given by (37) are cellular and
the maps in (37) take canonical basis elements to canonical basis elements or to 0.

Example 5.14 The non-reduced part of ̂E2 for E = e+ is the top row of the W -graph
in Fig. 2. The cells comprising it are labeled “non-red” below the tree.
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At u = 1, the decomposition (37) becomes

̂E2|u=1 ∼= V ⊗ V ⊗ E ∼= T 2
redV ⊗ E ⊕ V ⊗ E (38)

(with the left-hand isomorphism from Proposition 5.4), but the computation is differ-
ent from that of Sect. 5.4. We omit the details.

6 Decomposing V ⊗ V ⊗ E and the functor Z2

In this section we study a W -graph version of the decomposition V ⊗ V ⊗ E ∼=
S2V ⊗ E ⊕ Λ2V ⊗ E. Along the way, we come across a mysterious object, the sym-
wedge functor Z2. At u = 1, this is some kind of mixture of the functors S2

redV ⊗ −
and Λ2V ⊗ −, where S2

redV = Z{xi ⊗ xj + xj ⊗ xi : i �= j} ⊆ S2V ⊆ V ⊗ V .

6.1

Let Λ be the WS\s2 -graph on HS\s2 ⊗J ′
n−2

AΓ obtained from Theorem 2.3. For any

W -graph Υ and s ∈ S, define Υ −
s = {γ ∈ Υ : s ∈ L(γ )} and Υ +

s = {γ ∈ Υ : s /∈
L(γ )}. In this case, Λ−

s1
= {C̃′

s1,γ
: γ ∈ Γ }, and Λ+

s1
= {C̃′

1,γ : γ ∈ Γ } as L(w,γ ) =
L(w) ∪ L(γ ). Also note that C̃′

1,γ = C′
1 �γ and C̃′

s1,γ
= C′

s1
�γ .

It is clear that in the case Γ = ΓWJ ′
n−2

, AΛ−
s1

is a cellular submodule of AΛ. This

is actually true in full generality as we will see shortly (Lemma 6.3). Now define
the sym-wedge functor Z2 by Z2AΓ = H ⊗S\s2 AΛ−

s1
, with a W -graph structure

coming from Theorem 2.3.

Theorem 6.1 The H -module Z2AΓ is a cellular submodule of ˜F 2 := H ⊗J ′
n−2

AΓ .

Proof By Lemma 6.3 (below), AΛ−
s1

is a cellular submodule of AΛ. Proposition 2.7
shows that H ⊗S\s2 AΛ−

s1
is a cellular submodule of H ⊗S\s2 AΛ, and H ⊗S\s2 Λ

and H ⊗J ′
n−2

Γ give the same W -graph structure on ˜F 2 by Proposition 3.7. �

The sym-wedge functor was discovered by looking at examples. The preceding
proof sort of explains why such a cellular submodule should exist, but it is still some-
what surprising it does not agree with S2

redV ⊗ − at u = 1. We will determine what
Z2AΓ is at u = 1 in Sect. 6.2 and address its relation with S2

redV ⊗ − and Λ2V ⊗ −
in Sect. 6.5. It will be useful for us later to know the following additional structure
possessed by Z2.

Proposition 6.2 The rule E �→ Z2E is a functor Z2 : H -Mod → H -Mod. More-
over, if E = AΓ for some W -graph Γ , then taking cellular submodules or quotients
of E gives rise to cellular submodules and quotients of Z2E in the same way induc-
tion does in Proposition 2.7.
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Proof As explained above, the proposed functor Z2 is the composition

H -Mod

Res
J ′
n−2

HJ ′
n−2

-Mod
HS\s2 ⊗−

HS\s2 -Mod
ζ

HS\s2 -Mod
H ⊗−

H -Mod,

(39)

where ζ(F ) is the kernel of F

mC′
s1

−[2]−−−−−→ F and mh is left multiplication by h (by
Lemma 6.3, mC′

s1
−[2] is an HS\s2 -module homomorphism and its kernel equals AΛ−

s1

in the case F = AΛ). Thus it suffices to show that ζ is a functor and respects cellular
subquotients as claimed.

Let F and F ∗ be WS\s2 -graphs and f : F → F ∗ be an HS\s2 -module homo-
morphism. As f mC′

s1
−[2] = mC′

s1
−[2]f , f (ker(mC′

s1
−[2])) ⊆ ker(mC′

s1
−[2]). Thus

f �→ f |ker(mC′
s1

−[2]) defines ζ on morphisms and this certainly respects composition

of morphisms.
For the second statement, just observe that if Λ is a WS\s2 -graph and Υ ⊆ Λ

spans a cellular submodule, then ζ(AΥ ) is the intersection of the cellular submodules
AΥ and AΛ−

s1
, which is a cellular submodule of ζ(AΛ) = AΛ−

s1
. Similarly, if Υ ∗ is

the vertex set Λ\Υ , then ζ(AΥ ∗) = A(Υ ∗ ∩ Λ−
s1

), which is the cellular quotient
AΛ−

s1
/ζ(AΥ ) of AΛ−

s1
. �

Lemma 6.3 For any W -graph Λ and s ∈ S, the kernel of the map of Abelian groups
mC′

s−[2] : AΛ → AΛ (where mh is left multiplication by h) is equal to AΛ−
s . If s

commutes with t for all t ∈ S and F is any H -module, then mC′
s−[2] : F → F is an

H -module homomorphism. Therefore, if Λ is a WS\s2 -graph, then AΛ−
s1

is a cellular
submodule of AΛ.

Proof Certainly any h ∈ AΛ−
s is in the kernel of mC′

s−[2]. To see that the kernel is no
bigger, let h = ∑

λ∈Λ cλλ (cλ ∈ A) be an element of AΛ satisfying (C′
s − [2])h = 0.

We may assume that cλ = 0 for λ ∈ Λ−
s . Also, by multiplying the c’s by some power

of u, we may assume that cλ ∈ A− for all λ and cλ /∈ u−1A−Λ for at least one λ.
Then computing mod A−Λ, we have

0 =
∑

λ∈Λ

cλ

(

∑

{δ:s∈L(δ)}
μ(δ,λ)δ

)

− [2]
∑

λ∈Λ

cλλ ≡ −u
∑

λ∈Λ

cλλ. (40)

Therefore cλ ∈ u−1A−Λ for all λ, contradicting the earlier assumption.
The second statement is a special case of the fact that mh is an H -module homo-

morphism whenever h is in the center of H . �

6.2

To better understand the functor Z2, let us determine what it becomes at u = 1.

Proposition 6.4 The image of Z2E|u=1 under the isomorphism ˜F 2|u=1 ∼= T 2
redV ⊗E

of (34) is S2
redV ⊗ E (resp. Λ2V ⊗ E) if ResW{s1}E is a sum of copies of the trivial

(resp. sign) representation.
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Proof Under the isomorphism ˜F 2|u=1 ∼= T 2
redV ⊗E, the standard basis for Z2E com-

ing from realizing it as H ⊗S\s2 AΛ−
s1

(see the discussion before Theorem 6.1) sat-
isfies

(Tak,l
�S\s2 C′

s1
�J ′

n−2
γ )|u=1 = (ak,l + al,k+1)�γ

←→ xk ⊗ xl ⊗ ak,ls1γ + xl ⊗ xk ⊗ ak,lγ (k < l), (41)

where (32) has been used freely. Therefore if s1 acts trivially on E, then the rightmost
expression in (41) becomes (xk ⊗ xl + xl ⊗ xk) ⊗ ak,lγ . If s1 acts by −1 on E, then
it becomes (−xk ⊗ xl + xl ⊗ xk) ⊗ ak,lγ . The proposition then follows, as Z{ak,lγ :
γ ∈ Γ } = E|u=1. �

6.3

A correct W -graph version of tensoring S2
redV with E is H ⊗S\s2 E, and the projec-

tion T 2
redV ⊗ E � S2

redV ⊗ E corresponds to

˜F 2 = H ⊗J ′
n−2

E = H ⊗S\s2 HS\s2 ⊗J ′
n−2

E
β̃(E)−−−→ H ⊗S\s2 E, (42)

where β̃(E) = H ⊗S\s2 β(E) and β is the counit defined in Sect. 2.9. This is justified
by the following calculation at u = 1.

Proposition 6.5 The module H ⊗S\s2 E is a u-analogue of S2
redV ⊗E (via the right

vertical map of the following diagram, to be defined) in a way so that the diagram
commutes.

(H ⊗J ′
n−2

E)|u=1

∼=
β̃(E)

(H ⊗S\s2 E)|u=1

∼=

T 2
redV ⊗ E S2

redV ⊗ E

(43)

Proof Here we will think of S2
redV as the subspace Z{xkxl : k �= l} of (Z[x1, . . . , xn])2,

and the map T 2
redV ⊗ E → S2

redV ⊗ E as the one sending xk ⊗ xl to xkxl . The
right vertical map comes from an application of the modified Proposition 5.1 (in
which g � e �→ (g �1) ⊗ gce replaces (26), where c ∈ G commutes with all of K).
In this application, use G = W,K = WS\s2 , c = s1. We have ZG ⊗ZK Z ∼= S2

redV

by ak,l �1 �→ xkxl for k < l. It is straightforward to check that this is a ZG-
module homomorphism; the most interesting case is skak,k+1 �1 = ak+1,k+1 �1 =
ak,k+1s1 �1 = ak,k+1 �1, which matches sk(xkxk+1) = xkxk+1. It can be checked
directly on the basis {ak,l �γ : k ∈ [n], l ∈ {2, . . . , n}, γ ∈ Γ } of (H ⊗J ′

n−2
E)|u=1

that the diagram commutes. �
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6.4

It is immediate from Proposition 5.4 that the right-hand vertical map in the diagram
below is a u-analogue of the surjection V ⊗V ⊗E → S2V ⊗E. Let us check that this
is compatible with the projection β̃(π2E) – the u-analogue of the projection T 2

redV ⊗
E → S2

redV ⊗ E. This amounts to checking that the following diagram commutes,
where the top horizontal map is from (37) and the bottom horizontal map we take to
be the inclusion of the π2-subgraph of ResH

̂H ⊗H E.

H ⊗J ′
n−2

π2E

β̃(π2E)

( ̂H + ⊗H ( ̂H + ⊗H E)1)1

β(( ̂H +⊗H E)1)

H ⊗S\s2 π2E ( ̂H + ⊗H E)2

(44)

It is straightforward to check, given Theorem 5.6 and the derivation of (37), that
standard basis elements behave as shown under the horizontal maps. This proves that
the diagram commutes.

T̃ak,l ,π
2γ T̃akπ,al−1π,γ T̃ak,l ,π

2γ T̃akπ,al−1π,γ

T̃ak,l ,π
2γ T̃ak,lπ

2,γ Tal−1,k
�Ts1(π

2γ ) Tal−1,k
π2 �Tsn−1γ

(45)
The left-hand diagram is for k < l and the right for k ≥ l > 1.

This calculation will be used to show that the work we do in the next subsection
for the H ⊗J − version of tensoring with V is also useful for the ( ̂H + ⊗H −)1
version.

6.5

In this subsection we will partially determine the projection β̃(E) on canonical basis
elements. Despite the fact that H ⊗S\s2 E is a u-analogue of S2

redV ⊗ E and Z2E

is not, our study of Z2 was not wasted. It will be helpful for determining what β̃(E)

does to canonical basis elements. This is not so easy to see directly, as it does not
simply send canonical basis elements to canonical basis elements.

By Lemma 6.3, AΓ −
s1

is a cellular submodule of ResS\s2AΓ with corresponding
quotient AΓ +

s1
, hence the exact sequence

0 AΓ −
s1

ResS\s2AΓ AΓ +
s1 0. (46)

Since ˜F 2,Z2AΓ,S2
redV AΓ only depend on ResS\s2AΓ, this sequence yields the

three columns in the diagram below. The left column is exact by Proposition 6.2
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and the other two are exact by exactness of induction. The left two squares commute
because ζ (of the proof of Proposition 6.2) of a morphism just restricts its domain,
and the right two squares commute because β is a natural transformation.

0 0 0

Z2AΓ −
s1

H ⊗J ′
n−2

AΓ −
s1

β̃(AΓ −
s1

)

H ⊗S\s2 AΓ −
s1

Z2AΓ H ⊗J ′
n−2

AΓ

β̃(AΓ )

H ⊗S\s2 AΓ

Z2AΓ +
s1

H ⊗J ′
n−2

AΓ +
s1

β̃(AΓ +
s1

)

H ⊗S\s2 AΓ +
s1

0 0 0

(47)

Lemma 6.6 Given w ∈ WJ ′
n−2 , γ ∈ Γ , suppose that either s1 /∈ R(w) or s1 /∈ L(γ ).

Then β̃(AΓ )(C̃′
w,γ ), C̃′

w,γ ∈ H ⊗J ′
n−2

AΓ lies in the lattice L ′ := A−H ⊗S\s2 Γ .

Proof First note that the standard basis for H ⊗J ′
n−2

AΓ coming from realizing
H ⊗J ′

n−2
AΓ as H ⊗S\s2 HS\s2 ⊗J ′

n−2
AΓ satisfies

T̃
v,C̃′

1,γ
= Tv �S\s2 1�J ′

n−2
γ

β̃(AΓ )�−→ Tv �S\s2 γ , and

T̃
v,C̃′

s1,γ
= Tv �S\s2 C′

s1
�J ′

n−2
γ

β̃(AΓ )�−→
{[2]Tv �S\s2 γ if s1 ∈ Γ,

∑

{δ:s1∈L(δ)} μ(δ, γ )Tv �S\s2 δ if s1 /∈ Γ,

(48)

for v ∈ WS\s2 . Then since the elements Tv �S\s2 γ are a standard basis for H ⊗S\s2

AΓ , the lattice L = A−H ⊗J ′
n−2

Γ is sent to uL ′ by β̃(AΓ ). Now for w ∈ WJ ′
n−2 ,

s1 /∈ R(w) implies w ∈ WS\s2 . In this case,

C̃′
w,γ ∈ T̃

w,C̃′
1,γ

+ u−1L
β̃(AΓ )−−−−→ Tw �S\s2 γ + L ′ = L ′. (49)

On the other hand if s1 ∈ R(w), then w = vs1 for v ∈ WS\s2 , and in this case we are
assuming s1 /∈ L(γ ). Hence

C̃′
vs1,γ

∈ T̃
v,C̃′

s1,γ
+ u−1L

β̃(AΓ )−−−−→ Tv �S\s2 A−Γ + L ′ = L ′. (50)

�
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For the remainder of the subsection set L ∗ = A−H ⊗S\s2 Γ −
s1

.

Theorem 6.7 The arrows in (47) are compatible with the W -graph structures in the
following sense.

(i) Vertical arrows take canonical basis elements to canonical basis elements or
to 0.

(ii) The top non-zero row, on canonical basis elements, satisfies

C̃′
w,C′

s1,γ
C̃′

ws1,γ
β̃

[2]C̃′
w,γ , and (w ∈ WS\s2)

C̃′
w,γ

β̃

0 mod L ∗
(51)

(iii) The bottom non-zero row, on canonical basis elements, satisfies

C̃′
w,C′

s1,γ
C̃′

ws1,γ
β̃

0, and (w ∈ WS\s2)

C̃′
w,γ

β̃

C̃′
w,γ

(52)

Proof Statement (i) follows from Proposition 2.7 and Proposition 6.2.
The horizontal arrows on the left side of (47) are understood from Theorem 6.1;

each is the inclusion of a cellular submodule.
To see (ii), first observe that ResS\s2Γ

−
s1

and Λ−
s1

⊆ HS\s2 ⊗J ′
n−2

AΓ −
s1

(as in The-
orem 6.1) are isomorphic as WS\s2 -graphs. This is clear from the remarks preceding
Theorem 6.1 and from (9). An isomorphism, up to a global constant, between these
two objects is given by

AΛ−
s1

β(AΓ −
s1

)−−−−−→ AΓ −
s1

, C̃′
s1,γ

�→ [2]γ. (53)

Therefore, tensoring β(AΓ −
s1

) with H and applying the construction of Theorem 2.3
yields a map taking each canonical basis element to [2] times a canonical basis ele-
ment. This map is the composite of the maps in the top non-zero row of (47).

The second line of (51) follows from Lemma 6.6.
The proof of (iii) is similar to that of (ii). The WS\s2 -graphs ResS\s2Γ

+
s1

and Λ+
s1

⊆
HS\s2 ⊗J ′

n−2
AΓ +

s1
are isomorphic via

AΛ+
s1

β(AΓ +
s1

)−−−−−→ AΓ +
s1

, C̃′
1,γ �→ γ. (54)

Tensoring with H yields a map taking canonical basis elements to canonical basis
elements, and this map is the bottom right horizontal map of (47).
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To see the first line of (52), first observe that C̃′
s1,γ

= C′
s1

�γ
β(AΓ +

s1
)�−→ C′

s1
γ = 0,

with the equality by definition of the quotient AΓ +
s1

. Then use the fact that any

C̃′
w,C̃′

s1,γ

is in A{Tx � C̃′
s1,γ

: x ∈ WS\s2, γ ∈ Γ +
s1

} (see Theorem 6.1 and the preceding

discussion). �

Theorem 6.8 The map β̃(AΓ ) (the middle right horizontal map of (47)), on canon-
ical basis elements, satisfies

C̃′
ws1,γ

�−→ [2]C̃′
w,γ if s1 ∈ L(γ ),

C̃′
w,γ �−→ 0 mod L ∗ if s1 ∈ L(γ ),

C̃′
ws1,γ

�−→ 0 mod L ∗ if s1 /∈ L(γ ),

C̃′
w,γ �−→ C̃′

w,γ mod L ∗ if s1 /∈ L(γ ),

(55)

where w is any element of WS\s2 (and L ∗ = A−H ⊗S\s2 Γ −
s1

).

Proof The first and second line of (55) follow from Theorem 6.7(ii) and the top
right square of (47), as each vertical map in this square is the inclusion of a cellular
submodule.

For the third line, apply Theorem 6.7(iii) to show that C̃′
ws1,γ

∈ H ⊗J ′
n−2

AΓ ,

going down and then right, maps to 0 ∈ H ⊗S\s2 AΓ +
s1

. Therefore (going right)

β̃(AΓ )(C̃′
ws1,γ ) ∈ H ⊗S\s2 AΓ −

s1
⊆ H ⊗S\s2 AΓ . Combining this with Lemma 6.6

yields the desired result. A similar argument proves the fourth line. �

In a way made precise by the corollary below, the sets

Z2Γ −
s1

∪ (

H ⊗J ′
n−2

Γ +
s1

\Z2Γ +
s1

)

and Z2Γ +
s1

∪ (

H ⊗J ′
n−2

Γ −
s1

\Z2Γ −
s1

)

(56)

are canonical bases for S2
redV ⊗ AΓ and Λ2V ⊗ AΓ , respectively, as u → 0. We

therefore call these subsets of H ⊗J ′
n−2

Γ combinatorial reduced sym and combina-
torial wedge, respectively.

Corollary 6.9 After adjoining 1
[2] to A, there exists a ·-invariant basis {cx,γ : x ∈

WJ ′
n−2 , γ ∈ Γ } of H ⊗J ′

n−2
AΓ so that the transition matrix to the basis H ⊗J ′

n−2
Γ

tends to the identity matrix as u → 0, and so that under the map β̃(AΓ )

cws1,γ �−→ [2]C̃′
w,γ if s1 ∈ L(γ ),

cw,γ �−→ 0 if s1 ∈ L(γ ),

cws1,γ �−→ 0 if s1 /∈ L(γ ),

cw,γ �−→ C̃′
w,γ if s1 /∈ L(γ ),

(57)

where w is any element of WS\s2 .
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Theorem 6.8 and Corollary 6.9 also apply with π2AΓ replacing AΓ . There is
a potential pitfall here as π2AΓ is not the restriction of an H -module to HJ ′

n−2
.

However, it is an HS\s2 -module, since K0 ∩ π2K0π
−2 = S\s2, which is all that

is needed to apply the results in this subsection. Also, by Sect. 6.4 the projection
β̃(π2E) specializes to the projection T 2

redV ⊗E → S2
redV ⊗E at u = 1. Thus we can

write H ⊗J ′
n−2

π2Γ as the disjoint union of

Z2π2Γ −
sn−1

∪ (

H ⊗J ′
n−2

π2Γ +
sn−1

\Z2π2Γ +
sn−1

)

and

Z2π2Γ +
sn−1

∪ (

H ⊗J ′
n−2

π2Γ −
sn−1

\Z2π2Γ −
sn−1

)

,
(58)

which will also be called combinatorial reduced sym and combinatorial wedge.

Example 6.10 In the W -graph in Fig. 1, the subset combinatorial reduced sym is
the lower triangular region consisting of the first i entries of row i for i = 1,2,3;
combinatorial wedge is the upper triangular region consisting of the last 4 − i entries
of row i for i = 1,2,3. For general Γ , the W -graph could be drawn in n by n chunks,
one for each γ ∈ Γ , and combinatorial reduced sym would consist of lower triangular
regions for γ ∈ Γ −

s1
and upper triangular regions for γ ∈ Γ +

s1
.

In the W -graph in Fig. 2, the subset combinatorial reduced sym is the lower trian-
gular region consisting of the first i − 1 entries of row i for i = 2,3,4; combinatorial
wedge is the upper triangular region consisting of the last 5 − i entries of row i for
i = 2,3,4. For general Γ , similar comments to those above apply here as well.

The labels “sym” and “wedge” below the trees mark the cells in combinatorial
reduced sym and combinatorial wedge.

7 Combinatorial approximation of V ⊗ V ⊗ E ��� S2V ⊗ E

For this section, let Γ be a cell of ΓW labeled by a tableau T 0. We will describe the
results of Sects. 5 and 6 in terms of cells and their tableau labels.

7.1

For a tableau P , let Pr,c be the square of P in the r th row and cth column. Suppose
that Pr1,c1, . . . ,Prl ,cl

are squares of P such that Pri,ci
is an outer corner of P i−1 :=

P \{Pr1,c1 , . . . ,Pri−1,ci−1}. Then referring to the sequence of tableaux P,P 1, . . . ,P l ,
we say that Pr1,c1 , . . . ,Prl ,cl

are removed from P as a horizontal strip (resp. re-
moved from P as a vertical strip) if c1 > c2 > · · · > cl (resp. r1 > r2 > · · · > rl).
Equivalently, if P ∗ is the skew tableau of squares {Pr1,c1, . . . ,Prl ,cl

} with l + 1 − i

in Pri,ci
, then jdt(P ∗) is a single row (resp. column). Similarly, referring to the se-

quence of tableaux P l, . . . ,P 1,P , we say that Prl,cl
, . . . ,Pr1,c1 are added to P l as

a horizontal strip (resp. added to P l as a vertical strip) if c1 > c2 > · · · > cl (resp.
r1 > r2 > · · · > rl).
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Recall the local rules for the RSK growth diagram (see, e.g., [13, 7.13]). Letting
λ,μ, ν be partitions with μ ⊆ λ, ν, we notate these local rules by

G (0;λ,μ, ν) =
⎧

⎨

⎩

λ if λ = μ = ν,

λ + εi+1 if λ = ν = μ + εi,

λ ∪ ν, if λ �= ν,

G (1;λ,μ, ν) = λ + ε1, if λ = μ = ν.

(59)

Here εi denotes the tuple with a 1 in its ith coordinate and 0’s elsewhere, and λ ∪ ν

denotes the partition whose ith part is max(λi, νi).
Let a → P (resp. a ← P ) denote the column (resp. row) insertion of a into P .

For the next theorem we will use freely the descriptions of cells given in Sect. 4.
The shorthand P> will be used for P>c = jdt(P ∗), where P ∗ is the skew sub-
tableau of P with entries > c and c is the smallest entry of P . In what follows
we will use the somewhat redundant local sequences for cells that come from writ-
ing ˜E1, ˜E2, ˜F 2, ˜F 2 as H ⊗J HJ ⊗J AΓ , H ⊗J HJ ⊗J H ⊗J HJ ⊗J AΓ ,
H ⊗J HJ ⊗J ′

n−2
HJ ′

n−2
⊗J ′

n−2
HJ ⊗J AΓ , H ⊗S\s2 HS\s2 ⊗J ′

n−2
HJ ′

n−2
⊗J ′

n−2

HS\s2 ⊗S\s2 AΓ , respectively; these last two will be referred to as ˜F 2
J and ˜F 2

S\s2
,

respectively.

Theorem 7.1

(i) The map H ⊗J α : ˜E1 → ˜E2 of (30) is given on cells by
(

T 1, T 1
>,T 0) �→ (

T 1, T 1
>,P,T 1

>,T 0),

where P = 1 → T 1
>. In particular,

sh(P ) = G
(

1; sh
(

T 1
>

)

, sh
(

T 1
>

)

, sh
(

T 1
>

))

.

(ii) The inverse of the map ˜E2 → ˜F 2
J of (30) is given on cells by

(

T 2, T 2
>,T 2

>2, T
1, T 0) �→ (

T 2, T 2
>,P,T 1, T 0),

where

sh(P ) = G
(

0; sh
(

T 2
>

)

, sh
(

T 2
>2

)

, sh
(

T 1));
P is determined by its shape and P> = T 1.

(iii) The isomorphism of W -graphs ˜F 2
J → ˜F 2

S\s2
of Proposition 3.7 is given on cells

by (T 2, T 2
>,T 2

>2, T
1, T 0) �→ (T 2, (P 2, T 2

>2), T
2
>2, (P

1, T 2
>2), T

0), where P 1 is
the tableau 1 2 (resp. 1

2 ) if T 0\T 1, T 1\T 2
>2 are removed from T 0 as a horizontal

strip (resp. vertical strip), and P 2 is the tableau 1 2 (resp. 1
2 ) if T 2

>\T 2
>2, T

2\T 2
>

are added to T 2
>2 as a horizontal strip (resp. vertical strip).

(iv) The cells of ˜F 2
S\s2

in combinatorial reduced sym (resp. combinatorial wedge)

are those with local sequences (T 2, (P 2, T 2
>2), T

2
>2, (P

1, T 2
>2), T

0) such that
P 2 and P 1 have the same shape (resp. different shape).
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Proof For (i)–(iii), we will use J = Jn−1 instead of J = J ′
n−1 and the comments in

Sect. 4.4 to go back and forth between these conventions.
The map H ⊗J α on canonical basis elements is given in stuffed notation by

(z1, J z1, z0) �→ (z1, J z1, J z1n, J z1, z0). (60)

Here the zi are thought of as words so that J z1n is just the word J z1 with n appended
at the end. The map on cells is then (T 1, T 1

<n,T
0) �→ (T 1, T 1

<n,P,T 1
<n,T

0), where
P = T 1

<n ← n. Statement (i) then follows by applying the Schützenberger involution.
For (ii), observe that the inverse of H ⊗J τ of (30) is given in stuffed notation by

(z2, J z2, z0Jn−2 , z0J , z0) �→ (z2, J z2, z1, z0J , z0), (61)

where z1 = J z2
∗k (J z2

∗ is obtained from J z2 by increasing all numbers ≥ k by 1)
and k is such that z0J = z0

∗
Jn−2

k (z0
∗
Jn−2

is obtained from z0Jn−2 by increasing all

numbers ≥ k by 1). Thus if (T 2
<n)

∗ := P(J z2
∗) and (T 2

<n−1)
∗ := P(Jn−2z0

∗), then

P := P(z1) = (

T 2
<n

)∗ ← k, and T 1 := P(z0J ) = (

T 2
<n−1

)∗ ← k. (62)

Note that k �= n and z0Jn−2 = Jn−2z2 imply (T 2
<n)

∗\(T 2
<n−1)

∗ is a square containing
an n. The element k inserts in these tableau exactly the same way, except that the final
step of (T 2

<n)
∗ ← k may bump the n down one row; this case corresponds exactly to

the case sh((T 2
<n)

∗) = sh(T 1).
Statement (iii) is really two separate statements, one for a bijection of local

sequences corresponding to ResJ ′
n−2

ResJ AΓ ∼= ResJ ′
n−2

ResS\s2AΓ , and one for a
bijection of local sequences corresponding to H ⊗ HJ ⊗ Υ ∼= H ⊗ HS\s2 ⊗
Υ (Υ some cell of ΓWJ ′

n−2
). The first bijection follows from [13, Lemma 7.11.2]

(This includes the statement that if P is a tableau and j ≤ k, then the square
(P ← j)\P lies strictly to the left of ((P ← j) ← k)\(P ← j). We also need that
if j > k, then the square (P ← j)\P lies weakly to the right of ((P ← j) ← k)\
(P ← j), which is similar.) The second bijection is the definition of adding as a
horizontal or vertical strip in the case that J = Jn−1.

To see (iv), observe that the local labels of the cells of ResS\s2Γ
+
s1

(resp.
ResS\s2Γ

−
s1

) are of the form ( 1 2 , T 2
>2) (resp. ( 1

2 , T
2
>2)); the local labels of the

cells of Λ+
s1

(resp. Λ−
s1

) are of the form ( 1 2 , T 2
>2) (resp. ( 1

2 , T
2
>2)), where Λ =

HS\s2 ⊗J ′
n−2

Γ . �

Example 7.2 Let Γ = {C′
4321} so that AΓ = e+ and T 0 =

1
2
3
4
, matching the setup of

Fig. 1. Consider the canonical basis element C̃′
a2,a1,e

+ from Fig. 1. The picture below
gives the coordinates in stuffed notation for this element (top right) and the local
sequence of the cell of ˜E2 containing it (bottom right). The tableaux are arranged
this way to match an RSK growth diagram. This cell is in the non-reduced part of ˜E2

and the map is that of Theorem 7.1(i).
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4132 4321
432

1 2
3
4

1
2
3
4

2
3
4

�→

4132 1432 4321
432 432

1 2
3
4

1 2
3
4

1
2
3
4

2
3
4

2
3
4

Example 7.3 As in the previous example, we match the setup of Fig. 1. Let us explain
the element C̃′

a2,a4,e
+ from the figure. On the top left are its coordinates in stuffed

notation. Below this is the local sequence of the cell of ˜E2 containing it (reading
from left to right, ignoring the bottom middle tableau) and the local sequence of the
corresponding cell of ˜F 2

J (reading from left to right, ignoring the top middle tableau).
The tableaux are arranged this way to match an RSK growth diagram.

On the right is the local sequence of the corresponding cell of ˜F 2
S\s2

.

4132 4321 4321
432 432

43

1 2
3
4

1
2
3
4

1
2
3
4

2
3
4

2
3
4

3
4

4132 4321
12,43 21,43

43

1 2
3
4

1
2
3
4

1 2 , 3
4

1
2 ,

3
4

3
4

By Theorem 7.1(iv), and with the notation of the theorem, P 2 = 1 2 ,P 1 = 1
2 , so

this canonical basis element lies in combinatorial wedge of ˜F 2.

Example 7.4 Here is a more substantial example, in the same format as the previous

example, for T 0 = 1 2 3
4 6
5

. On the top left are the coordinates of the stuffed notation for

a canonical basis element in ˜E2.

362145 526134 541623
36245 52634

3645

1 4 5
2 6
3

1 3 4
2 6
5

1 2 3
4 6
5

2 4 5
3 6

2 3 4
5 6

3 4 5
6

362145 541623
21,3645 21,3645

3645

1 4 5
2 6
3

1 2 3
4 6
5

1
2 ,

3 4 5
6

1
2 ,

3 4 5
6

3 4 5
6

By Theorem 7.1(iv), and with the notation of the theorem, P 2 = P 1 = 1
2 , so this

canonical basis element lies in combinatorial reduced sym of ˜F 2.

Remark 7.5 Although Theorem 7.1 requires only a small part of an RSK growth
diagram, we have a guess for a generalization of this to a W -graph version of the
projection T dV ⊗ E → SdV ⊗ E that involves

(

d+2
2

)

tableaux of a growth diagram.
However, we have yet to find an analogue of Corollary 6.9 in this setting.
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7.2

For the W -graph version of tensoring with V coming from the affine Hecke alge-
bra, we have a similar theorem. Let G ′(a;λ,μ, ν) = (G (a;λ′,μ′, ν′))′, where ′ of
a partition denotes its transpose. Let ̂E1, ̂E2, ̂F 2

J , ̂F 2
S\s2

be defined analogously to
˜E1, ˜E2, ˜F 2

J , ˜F 2
S\s2

. More precisely, ̂E1 and ̂E2 will use three- and five-term local se-

quences as in Examples 4.6 and 7.9; ̂F 2
J refers to H ⊗J HJ ⊗J ′

n−2
π2(HJn−2 ⊗Jn−2

HJn−1 ⊗Jn−1 AΓ ) with a six-term local sequence as in Example 7.9, and ̂F 2
S\s2

refers

to H ⊗S\s2 HS\s2 ⊗J ′
n−2

π2(HJn−2 ⊗Jn−2 HS\sn−2 ⊗S\sn−2 AΓ ) also with a six-term
local sequence.

Theorem 7.6

(i) The inverse of the map ̂E2 → ̂E1 of (37) is given on cells by

(

T 1, T 1
>,T 0) �→ (

P 2,P 2
>,P 1, T 1

>,T 0),

where P 1 is determined by sh(P 1) = G ′(1; sh(T 1
>), sh(T 1

>), sh(T 1
>)) and the en-

tries in P 2,P 2
> have the same relative order as those in T 1, T 1

>.
(ii) The map ̂F 2

J → ̂E2 of (37) is given on cells by

(

T 2, T 2
>,T 2

>2,π
−2T 2

>2, T
1, T 0) �→ (

P 2,P 2
>,P 1,P 1

>,T 0),

where P 1 is determined by sh(P 1) = G ′(0; sh(T 2
>), sh(T 2

>2), sh(T 1)) and the
entries of P 2,P 2

>,P 1
> have the same relative order as those in T 2, T 2

>,T 1.
(iii) The isomorphism of W -graphs ̂F 2

J
∼= ̂F 2

S\s2
of Proposition 3.7 is given on cells

by

(

T 2, T 2
>,T 2

>2,π
−2T 2

>2, T
1, T 0)

�→ (

T 2,
(

P 2, T 2
>2

)

, T 2
>2,π

−2T 2
>2,

(

π−2T 2
>2,P

1), T 0),

where P 1 is the tableau n-1 n (resp.
n-1
n ) if T 0\T 1, T 1\π−2T 2

>2 are removed from
T 0 as a horizontal strip (resp. vertical strip), and P 2 is the tableau 1 2 (resp. 1

2 )
if T 2

>\T 2
>2, T

2\T 2
> are added to T 2

>2 as a horizontal strip (resp. vertical strip).
(iv) The cells of ̂F 2

S\s2
in combinatorial reduced sym (resp. combinatorial wedge)

are those with local sequences

(

T 2,
(

P 2, T 2
>2

)

, T 2
>2,π

−2T 2
>2,

(

π−2T 2
>2,P

1), T 0)

such that P 2 and P 1 have the same shape (resp. different shape).

Proof Similar to that of Theorem 7.1, the main difference being for (ii): after apply-
ing the Schützenberger involution, the analogous statement to (62) is with column
insertions instead of row insertions. �



J Algebr Comb (2011) 34:545–585 583

Example 7.7 Let Γ = {C′
4321} so that AΓ = e+ and T 0 =

1
2
3
4
, matching the setup of

Fig. 2. Consider the canonical basis element C̃′
a2π,a4π,e+ from the figure. The picture

below gives the coordinates for this element (top right) and the local sequence of the
cell of ̂E2 containing it (bottom right) with the hybrid conventions of Sect. 4.6. The
tableaux are arranged this way to match an RSK growth diagram. This cell is in the
non-reduced part of ̂E2 and the map is that of Theorem 7.6(i).

4−332 4321
432

–3 2
3
4

1
2
3
4

2
3
4

�→

4−332 432−3 4321
432 432

–3 2
3
4

−3
2
3
4

1
2
3
4

2
3
4

2
3
4

Example 7.8 As in the previous example, we match the setup of Fig. 2. Let us explain
the element C̃′

a2π,a3π,e+ from the figure. On the top left are its coordinates with the
hybrid conventions of Sect. 4.6 (for instance, this implies 4 3 1 and 4 3 −3 2 are related
by 4 3 1 = 4 3 1 2∗

Jn−1
and 4 3 1 2 = 4 3 −3 2K0 ). Below this is the local sequence of

the cell of ̂E2 containing it. On the right is the local sequence of the corresponding
cell of ̂F 2

S\s2
.

4−231 43−32 4321
431 432

–2 1
3
4

–3 2
3
4

1
2
3
4

1
3
4

2
3
4

4132 4321
12,43 21,43

43 21

1 2
3
4

1
2
3
4

1 2 , 3
4

1
2 ,

3
4

3
4

1
2

By Theorem 7.6(iv), and with the notation of the theorem, P 2 = 1 2 , P 1 = 3
4 , so

this canonical basis element lies in combinatorial wedge of ̂F 2.

Example 7.9 Here is a more substantial example, in the same format as the previous

example, for T 0 = 1 4 5
2 6
3

. On the top left are the coordinates for a canonical basis

element in ̂E2.

−143162 32−1614 326145
43162 32614

–1 1 2
3 6
4

–1 1 4
2 6
3

1 4 5
2 6
3

1 2
3 6
4

1 4
2 6
3

154263 326145
12,5463 3241,56

5463 3241

1 2 3
4 6
5

1 4 5
2 6
3

1 2 ,
3 6
4
5

1 4
2
3

, 5 6

3 6
4
5

1 4
2
3

Since P 2 = 1 2 and P 1 = 5 6 have the same shape, this canonical basis element
lies in combinatorial reduced sym of ̂F 2.
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Corollary 7.10 Theorem 7.1 gives a partition of the cells of ˜E2 into three parts: the
non-reduced part corresponding to the image of (i), the inverse image of combinato-
rial reduced sym under (ii), and the inverse image of combinatorial wedge under (ii).
Similarly, Theorem 7.6 gives a partition of the cells of ̂E2 into three parts: the non-
reduced part corresponding to the inverse image of (i), the image of combinatorial
reduced sym under (ii), and the image of combinatorial wedge under (ii).

Remark 7.11 There is an obvious bijection between the cells of ˜E2 and ̂E2 obtained
by taking a local sequence Υ of a cell of ˜E2 to the cell of ̂E2 with the same sequence
of shapes as those of Υ . Under this bijection, the cells of any of the three parts of ˜E2

coming from Corollary 7.10 do not match the corresponding parts of ̂E2 in general.
They do not, for example, in Figs. 1 and 2.

8 Future work

There are some natural questions to ask about the inducing W -graphs construc-
tion that, as far as we know, remain unanswered. One question is whether the edge
weights μ of the WJ -graph Γ being nonnegative implies the same for the coefficients
P̃x,δ,w,γ of (9) or for the structure constants hx,y,z, defined by C′

xC̃
′
y = ∑

z hx,y,zC̃
′
z,

x ∈ W, y, z ∈ WJ × Γ . Our computations in the case W = Sn are consistent with
these positivity conjectures, but we have not investigated the inducing W -graphs con-
struction outside this case.

Another question concerns the partial order on the cells of ˜Ed−1 = H1 ⊗J1· · ·⊗Jd−1 Hd . We might hope to extend Lusztig’s a-invariant to the induced W -graph
setting. In particular, each cell of ˜Ed−1 is contained in a cellular subquotient isomor-
phic to ΓW1 (Theorem 3.5), so inherits an a-invariant from this isomorphism; a natural
question is whether z ≤Λ z′ and z, z′ in different cells implies a(z) > a(z′), where
Λ is the W1-graph structure on ˜Ed−1. In [5], Geck shows a slightly weaker version
of this statement in the case ˜Ed−1 = ResJ1H2, d = 2 and W2 crystallographic and
bounded in the sense of [11, 1.1(d)]. It seems likely that a similar proof will work for
the general case, with all Coxeter groups crystallographic and bounded.

In the forthcoming paper [1], we look at the partial order on the cells of
ResH

̂H + ⊗H e+. It appears that there are other important invariants besides the
a-invariant that put restrictions on this partial order.

We have put much effort into extending the results of Sects. 5–7 to higher symmet-
ric powers of V and have had only partial success (see Remark 7.5). In a way, this is
the subject of the forthcoming paper [1], however this focuses more on the extended
affine Hecke algebra and less on iterated restriction and induction.
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