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Abstract In this paper, we investigate connected nonregular graphs with four dis-
tinct Laplacian eigenvalues. We characterize all such graphs which are bipartite or
have exactly one multiple Laplacian eigenvalue. Other examples of interest are also
presented.
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1 Introduction

Let G be a graph with the vertex set {v1, . . . , vn}. The adjacency matrix of G is an
n × n matrix A(G) whose (i, j)-entry is 1 if vi is adjacent to vj and is 0 otherwise.
For any i, the degree of vi , that is, the number of edges incident to vi , is denoted by
d(vi). The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G, where
D(G) is the n × n diagonal matrix whose (i, i)-entry is d(vi). Since A(G) and L(G)

are real symmetric matrices, their eigenvalues are real numbers. Moreover, L(G) is a
positive semidefinite matrix with the smallest eigenvalue 0. The eigenvalues of A(G)

and L(G) are called the adjacency eigenvalues and the Laplacian eigenvalues of G,
respectively.

Graphs with few distinct adjacency (Laplacian) eigenvalues form an interesting
class of graphs and possess nice combinatorial properties. It is not hard to see that the
number of distinct adjacency (Laplacian) eigenvalues of a connected graph is greater
than the diameter of the graph. Therefore, all adjacency (Laplacian) eigenvalues of
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a graph coincide if and only if the graph has no edge. Moreover, a graph has only
two distinct adjacency (Laplacian) eigenvalues if and only if it is a disjoint union
of complete graphs on the same number of vertices. It is well known that the class
of all regular graphs with three distinct adjacency (Laplacian) eigenvalues coincides
with the class of strongly regular graphs. For results on nonregular graphs with three
adjacency eigenvalues, we refer the reader to [1, 3, 5, 16]. Regular graphs with four
adjacency (Laplacian) eigenvalues were studied in [6, 10], and nonregular bipartite
graphs with four adjacency eigenvalues were investigated in [8, 9], through the study
of the incidence graphs of some combinatorial designs.

The authors of [7] showed that nonregular graphs with three Laplacian eigenvalues
have nice structures like strongly regular graphs. More precisely, it is proved that in
such a graph and also in its complement, any two nonadjacent vertices have the same
number of common neighbors, which in turn yields that for degrees of vertices, there
are only two possibilities. More results on these graphs can be found in [17]. In this
paper, we study connected nonregular graphs with four distinct Laplacian eigenval-
ues. First, some examples are presented, and their Laplacian spectrum are computed.
We then characterize all such graphs which are bipartite. Finally, we determine all
instances of these graphs with exactly one multiple Laplacian eigenvalue.

2 Notation and preliminaries

Let us recall some definitions and notation to be used throughout the paper. For a
graph G, the smallest degree of G and the set of all neighbors of a vertex v of G are
denoted by δ(G) and N(v), respectively. The complement of a graph G, denoted by
G, is the graph on the vertex set of G such that two vertices of G are adjacent if and
only if they are not adjacent in G. The union of two vertex disjoint graphs G1 and G2,
denoted by G1 ∪G2, is the graph whose vertex (respectively, edge) set is the union of
vertex (respectively, edge) sets of G1 and G2. The join of two vertex disjoint graphs
G1 and G2 is the graph obtained from G1 ∪ G2 by joining each vertex in G1 with
every vertex in G2 and is denoted by G1 ∨ G2. We denote the complete graph on n

vertices and the complete bipartite graph with two parts of sizes m and n by Kn and
Km,n, respectively. Also, the n × n identity matrix and the m × n all-one matrix will
be denoted by In and Jm×n, respectively, and we will drop the subscripts whenever
there is no danger of confusion.

Here, we recall some results from the literature that will be used in the subsequent
sections.

Theorem 1 [15] Let G and H be two graphs with Laplacian spectra λ1 � · · · � λn

and μ1 � · · · � μm, respectively. Then the Laplacian spectra of G and G ∨ H are

n − λ1, . . . , n − λn−1,0 and

n + m,m + λ1, . . . ,m + λn−1, n + μ1, . . . , n + μm−1,0,

respectively.
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Theorem 2 [2, Theorem 1] Let G be a graph with Laplacian spectrum λ1 � · · · � λn

and with vertex degrees d1 � · · · � dn, and let s ∈ {1, . . . , n}. Then λs � ds − s + 2,
unless G = Ks ∪ (n − s)K1.

Theorem 3 [12, Theorem 2.1] The largest Laplacian eigenvalue of a graph G is at
most

max
{∣∣N(v) ∪ N(w)

∣∣ ∣∣v and w are two adjacent vertices of G
}
.

Theorem 4 [13, Corollary 13.1.4] Let G be a graph on n vertices. Then n is a Lapla-
cian eigenvalue of G if and only if G is the join of two graphs.

Theorem 5 [14] Let G be a graph which is not complete. Then the second smallest
Laplacian eigenvalue of G is at most δ(G). If the equality occurs, then G is a join of
a graph on δ(G) vertices with another graph.

3 Examples

In this section, we present some families of graphs with four distinct Laplacian eigen-
values and compute their Laplacian spectrum. Some of these examples are utilized in
the characterizations given later.

Example 1 In [7], several examples and constructions of nonregular graphs with three
distinct Laplacian eigenvalues are given. Let G be a connected graph on n vertices
with three distinct Laplacian eigenvalues 0, α,β . Then the graphs G∨G and G∨Km

have four distinct Laplacian eigenvalues

0, α + n,β + n,2n and 0, α + m,β + m,n + m,

respectively.

Example 2 Let n and m be two distinct positive integers. By Theorem 1, it is easy to
see that the Laplacian spectrum of Kn,m is

0[1], n[m−1],m[n−1], (n + m)[1].

Example 3 Let n be a positive integer. If M is a matching in Kn with r edges, then
the Laplacian spectrum of Kn \ M is

0[1], (n − 2)[r], n[n−r−1].

Thus, by Theorem 1, for any positive integer m, the Laplacian spectrum of
(Kn \ M ) ∨ Km is

0[1], n[m−1], (n + m − 2)[r], (n + m)[n−r].
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Next, let n � 2, and let G be a graph obtained by adding a matching with r edges to
Kn,n. Since G is the complement of (Kn \ M1) ∪ (Kn \ M2) for two matchings M1
and M2, by Theorem 1, we conclude that the Laplacian spectrum of G is

0[1], n[2n−r−2], (n + 2)[r], (2n)[1].

Finally, let n � 2, and let H be a graph obtained by adding a matching M with r

edges to K1, n. Since H is the complement of K1 ∪ (Kn \ M ), by Theorem 1, we find
that the Laplacian spectrum of H is

0[1],1[n−r−1],3[r], (n + 1)[1].

Example 4 Let G1 and G2 be two graphs on disjoint sets of n1 and n2 vertices,
respectively. The corona G1 ◦ G2 of G1 and G2 is defined as the graph obtained by
taking one copy of G1 and n1 copies of G2, and then joining the ith vertex of G1 to
every vertex in the ith copy of G2. For any positive integers n and m, we have

det
(
xI − L(Kn ◦ Km)

) = det

[
(x − n − m)In + Jn In ⊗ J1×m

In ⊗ Jm×1 In ⊗ ((x − m − 1)Im + Jm)

]

= x(x − m − 1)n(m−1)+1(x2 − (n + m + 1)x + n
)n−1

.

Therefore, Kn ◦ Km has four distinct Laplacian eigenvalues that, along with their
multiplicities, are

0[1], (m + 1)[n(m−1)+1],
(

(n + m + 1) ± √
(n + m + 1)2 − 4n

2

)[n−1]
.

Example 5 Let D be the graph obtained from the incidence graph of a symmetric
design with parameters (v, k, λ) after joining any two vertices corresponding to the
blocks of the design. We have

det
(
xI − L(D)

) = det

[
(x − v − k)Iv + Jv B

BT (x − k)Iv

]

= x(x − 2k)
(
x2 − (v + 2k)x + v(k + λ)

)v−1
,

where B is a v × v matrix such that BBT = (k − λ)I + λJ . Therefore, the Laplacian
spectrum of D is

0[1], (2k)[1],
(

v + 2k ± √
v2 + 4(k − λ)

2

)[v−1]
.

Example 6 For any positive integers r, s, consider the vertex disjoint graphs
G1,G2,H1,H2 such that G1,G2 are complete graphs on r vertices and H1,H2 are
graphs on s vertices with no edges. We denote by G(r, s) the graph obtained by join-
ing any vertex in subgraph H1 of G1 ∨ H1 to any vertex in subgraph H2 of G2 ∨ H2.
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Using Theorem 9.3.3 of [13] on equitable partitions, we find that the Laplacian spec-
trum of G(r, s) is

0[1], (r + s)[2r+2s−3],
(

3s + r ± √
(r + s)2 + 4rs

2

)[1]
.

Example 7 Let D1 (respectively, D2) be the graph obtained from the incidence graph
of the symmetric design with parameters (7,3,1) (respectively, (7,4,2)) after joining
a new vertex to all vertices corresponding to the blocks of the design. With an easy
calculation, we obtain that D1 and D2 have the Laplacian spectra

0[1],2[6],5[7],9[1] and 0[1],3[6],6[7],10[1],

respectively.

4 Bipartite graphs

In this section, we characterize all connected bipartite graphs with four distinct Lapla-
cian eigenvalues. It turns out that the bipartite graphs presented in Sect. 3 are in fact
the only examples. In the following, we will use the notation associated to the graphs
defined in Sect. 3.

Theorem 6 Let G be a connected bipartite graph on n � 5 vertices. Then G has
four distinct Laplacian eigenvalues if and only if G is either the incidence graph of
a symmetric design or one of the graphs D1,D2, G(1, (n − 2)/2) and Kr,n−r , where
1 < r < n/2.

Proof If G is one of the graphs D1,D2, G(1, (n−2)/2) and Kr,n−r for some integer
1 < r < n/2, then by the results of Sect. 3, G has four distinct Laplacian eigenvalues.
Also, if G is the incidence graph of a symmetric design, by [4, p. 166] we are done. So
assume that G has four distinct Laplacian eigenvalues 0 < α < β < γ . We suppose
that G is not a complete bipartite graph. By Theorem 5, δ(G) > α. Assume that
{A,B} is the vertex partition of the bipartite graph G. Let

A(G) =
[

0 C

CT 0

]
and P =

[−Ir 0
0 Is

]

for some r × s matrix C. Consider the matrix Q(G) = D(G) + A(G), the so-called
signless Laplacian matrix of G. It is clear that Q(G) = P L(G)P −1, and so Q(G)

and L(G) have the same spectrum. Since Q(G) is a nonnegative irreducible matrix,
by the Perron–Frobenius theorem [13, p. 178], the multiplicity of γ is 1, and there
exists a positive eigenvector corresponding to γ . Since x(x − α)(x − β)(x − γ ) is
the minimal polynomial of Q(G), any row and any column of the matrix Q(G) ×
(Q(G) − αI)(Q(G) − βI) is contained in the null space of Q(G) − γ I , and so
it is not hard to see that there exists a positive real eigenvector υ = (υ1, . . . , υn)

corresponding to γ such that

Q(G)
(

Q(G) − αI
)(

Q(G) − βI
) = υTυ. (1)
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On the other hand, Lemma 2.1 of [17] shows that (L(G) − αI)(L(G) − βI) ×
(L(G) − γ I) = −αβγ

n
J , and so, multiplying both sides of (1) by P from left and

right, we find that

(
Q(G) − αI

)(
Q(G) − βI

)(
Q(G) − γ I

) = αβγ

n

[−Jr J

J −Js

]
. (2)

Subtracting (2) from (1) gives

Q(G)2 − (α + β)Q(G) + αβI = υTυ

γ
+ αβ

n

[
Jr −J

−J Js

]
. (3)

Comparing the (i, j)-entries on both sides of (3), we will obtain the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(i)2 + (1 − α − β)d(i) = υ2
i

γ
+ αβ

n
− αβ for all vertices i; (4)

|N(i) ∩ N(j)| = υiυj

γ
+ αβ

n
if i and j are in the same part of G; (5)

d(i) + d(j) = υiυj

γ
+ α + β − αβ

n
if i and j are adjacent; (6)

υiυj

γ
= αβ

n
if i and j are nonadjacent and in different parts. (7)

For any vertex g of G, let [g] denote the set of all vertices in the same part and
with the same degree as of g. Using relations (4)–(7), we obtain the following facts
about G.

Fact 1. For every two vertices g and g′ of G, if d(g) = d(g′), then υg = υg′ .
Fact 2. For every two vertices a, a′ ∈ A, if υa = υa′ , then d(a) = d(a′).
Fact 1 follows directly from (4), and in order to prove Fact 2, let υa = υa′ for two

vertices a, a′ ∈ A. By (5), there exists a vertex b ∈ N(a) ∩ N(a′). Hence by (6), we
have

d(a) + d(b) = υaυb

γ
+ α + β − αβ

n
= υa′υb

γ
+ α + β − αβ

n
= d

(
a′) + d(b),

and the assertion follows.
Fact 3. For every two vertices a, a′ ∈ A of the same degree, all vertices in B \

(N(a) ∩ N(a′)) have the same degree.
Fact 4. For every two nonadjacent vertices a ∈ A and b ∈ B , every vertex in [a]

(respectively, [b]) is adjacent to every vertex in B \ [b] (respectively, A \ [a]).
The above two facts follow from (7) and Facts 1 and 2. Notice that Facts 2 and 3

also hold for vertices in part B .
Fact 5. For every vertices a, a′ ∈ A and b, b′ ∈ B , if the induced subgraph on

{a, a′, b, b′} is K2,2, then either d(a) = d(a′) or d(b) = d(b′).
In order to prove Fact 5, note that by applying (6) for vertices a, a′ ∈ A and b,

b′ ∈ B , we easily deduce that

d(a) − d
(
a′) = (υa − υa′)υb

γ
and d(a) − d

(
a′) = (υa − υa′)υb′

γ
.
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Hence, if d(a) 	= d(a′), then υb = υb′ , and therefore from Fact 2 it follows that
d(b) = d(b′), as desired. Now we are able to continue the proof of the theorem.

First, we assume that there exist two nonadjacent vertices a ∈ A and b ∈ B with
at least one edge between [a] and [b]. By Facts 4 and 5, there is no edge between
A \ [a] and B \ [b]. This, along with Fact 4, shows that for any vertex a′ ∈ A \
[a] and b′ ∈ B \ [b], we have N(a′) = [b] and N(b′) = [a]. Therefore, applying (5)
for any two vertices in [a] and any two vertices in [b] and then Fisher’s inequality
[13, Lemma 5.10.1], it turns out that the induced subgraph of G on [a] ∪ [b] is the
incidence graph of a symmetric design with parameters, say (m, k,λ). So m = |[a]| =
|[b]|.

We claim that either [a] = A or [b] = B . By contrary, assume that there are two
vertices a′ ∈ A \ [a] and b′ ∈ B \ [b]. Then, by Fact 1, we have υa′ = υb′ . By (5), we
obtain that

υaυa′

γ
+ αβ

n
= ∣∣N(a) ∩ N

(
a′)∣∣ = λ = ∣∣N(b) ∩ N

(
b′)∣∣ = υbυb′

γ
+ αβ

n
,

and thus υa = υb . Now, applying (7), we find that

υ2
a

γ
= αβ

n
= υ2

a′
γ

,

and so υa = υa′ , a contradiction. Hence, without loss of generality, we may suppose
that [a] = A. Let |B \ [b]| = r . If r = 0, then G is the incidence graph of a symmetric
design. So assume that r � 1. We have

Q(G) =
⎡

⎢
⎣

(r + k)Im C J

CT kIm 0

J 0 mIr

⎤

⎥
⎦ ,

for some m × m matrix C in which CCT = (k − λ)I + λJ . An easy calculation
shows that det(xI − Q(G)) = x(x − m)r−1(p1(x))m−1p2(x), where p1(x) = x2 −
(r + 2k)x + rk + mλ and p2(x) = x2 − (r + 2k + m)x + k(r + 2m). It is straight-
forward to verify that the polynomials p1(x) and p2(x) have no multiple root, and so
they must have a common root. Considering simultaneously the equations p1(x) = 0
and p2(x) = 0, we find that the common root of p1(x) and p2(x) is x0 = 2k − λ and
the other roots of p1(x) and p2(x) are x1 = r + λ and x2 = r + λ + m, respectively.
From p1(x0) = 0, we deduce that m = (k2 − r −1)/(k − r −1). One can easily check
that m 	∈ {x0, x1, x2} and so r = 1, since G has four distinct Laplacian eigenvalues.
Thus, m = k + 2 + 2/(k − 2) and since m is an integer, we conclude that either k = 3
or k = 4. Using the fact λ(m − 1) = k(k − 1) from design theory, in the first case, we
find that G = D1 and in the latter case, G = D2.

Next, suppose that for every two nonadjacent vertices a ∈ A and b ∈ B , there is no
edge between [a] and [b]. Using Facts 4 and 5, we consider the following two cases.

Case 1. There are two vertices x ∈ A and y ∈ B such that N(x) = B and
N(y) = A. By Fact 5, there is no edge from A \ [x] to B \ [y]. We want to estab-
lish that |A \ [x]| = |B \ [y]| = 1. By contrary and with no loss of generality, assume
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that there are two vertices x′, x′′ ∈ A \ [x]. By (5), we have

υxυx′′

γ
+ αβ

n
= ∣∣[y]∣∣ = υx′υx′′

γ
+ αβ

n
.

This yields that υx = υx′ , which contradicts Fact 2. Therefore, G = Kr, s − e. We
want to show that r = s. To continue the proof, we need the following fact.

Fact 6. For every two distinct vertices g and g′ of G, if N(g) = N(g′), then d(g) =
d(g′) = β .

In order to establish Fact 6, let N(g) = N(g′) for two distinct vertices g and g′
of G. Using (5), we have d(g) = υgυg′/γ + αβ/n, and applying (4), we find that
d(g)2 + (1 − α − β)d(g) = d(g) − αβ . From Theorem 5, δ(G) > α, and therefore
d(g) = d(g′) = β .

If |[x]| � 2 and |[y]| � 2, then applying Fact 6, we find that G = Kn/2, n/2 − e =
G(1, (n − 2)/2), and we are done. Suppose without loss of generality that |[x]| � 2
and |[y]| = 1. Hence Fact 6 yields that d(x) = β = 2, and so applying Theorem 2 for
s = 2, we deduce that n − 3 = |[x]| = d(z) � β = 2 for the vertex z ∈ B \ [y]. From
n � 5 we deduce that G = K2,3 − e, which is a contradiction, since G has just four
distinct Laplacian eigenvalues.

Case 2. Without loss of generality, assume that there is no vertex such a ∈ A

that N(a) = B . Consider two nonadjacent vertices a1 ∈ A and b1 ∈ B . Since G is
connected and there is no edge between [a1] and [b1], by the assumption of Case 2
and Fact 4, there exist two nonadjacent vertices a2 ∈ A \ [a1] and b2 ∈ B \ [b1]. Now
by the assumption of Case 2, there is no edge between [a2] and [b2], and so by Fact 4,
the subgraphs of G induced on [a1] ∪ [b2] and [a2] ∪ [b1] are complete bipartite. By
(5), |N(b1) ∩ N(b2)| 	= 0, and so there is a vertex a3 ∈ A \ ([a1] ∪ [a2]). By the
assumption of Case 2 and Fact 4, there exists a vertex b3 ∈ B \ ([b1] ∪ [b2]) such
that a3 and b3 are nonadjacent. Now, if there is a vertex x ∈ A \ ([a1] ∪ [a2] ∪ [a3]),
then we get a contradiction by Fact 5. Hence A = [a1] ∪ [a2] ∪ [a3] and similarly
B = [b1] ∪ [b2] ∪ [b3]. If two of the sets [a1], [a2], [a3] have only one vertex, say
[a1] and [a2], then d(b1) = d(b2), which is impossible. Therefore, using Fact 6, the
degree of at least two vertices of a1, a2, a3 are β , which is again impossible. This
completes the proof. �

We remark that, as well known, for bipartite graphs Laplacian and signless Lapla-
cian are similar matrices. Hence Theorem 6 also holds for signless Laplacian.

5 Multiple Laplacian eigenvalues

All graphs with three distinct Laplacian eigenvalues such that exactly one of them is
multiple are previously identified.

Theorem 7 [11, Theorems 2.8 and 2.9] Let G be a graph on n � 3 vertices whose
distinct Laplacian eigenvalues are 0 < α < β . Then the following hold.

(i) The multiplicity of α is n − 2 if and only if G is one of the graphs Kn/2, n/2 or
K1, n−1.
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(ii) The multiplicity of β is n − 2 if and only if G is the graph Kn − e.

In this section, we characterize all graphs with four distinct Laplacian eigenvalues
such that exactly one of their Laplacian eigenvalues is multiple. Notice that we will
use the notation associated to the graphs defined in Sect. 3.

Theorem 8 Let G be a graph on n � 5 vertices whose distinct Laplacian eigenvalues
are 0 < α < β < γ. Then the multiplicity of α is n − 3 if and only if G is one of the
graphs K2, n−2,Kn/2, n/2 + e or K1, n−1 + e.

Proof If G is one of the graphs K2, n−2,Kn/2, n/2 +e or K1, n +e, then we are done by
the results of Sect. 3. For the converse, assume that α is the only multiple Laplacian
eigenvalue of G. This implies that α is an integer. Let d1 � · · · � dn be the vertex
degrees of G. By Theorem 2, d3 � α + 1. Also, Theorem 5 yields that dn � α. It
follows that d3, . . . , dn ∈ {α,α + 1}.

First, assume that dn = α + 1. Since the trace of L(G) is equal to the sum of
all vertex degrees of G, we have (n − 3)α + β + γ = d1 + d2 + (n − 2)(α + 1).
Hence, β + γ = d1 + d2 + α + n − 2. By Theorem 3, γ � min{n,d1 + d2}, and
so n + d1 + d2 � 2γ > β + γ = d1 + d2 + α + n − 2, which yields that α = 1 and
therefore γ = n = d1 +d2. By Theorem 4, G = H1 ∨H2 for some graphs H1 and H2.
Applying Theorem 1, we conclude that either H1 or H2 has one vertex. This shows
that d1 = n − 1, which contradicts d1 + d2 = n and d2 � 2.

Next, suppose that dn = α. By Theorem 5, G has the form H1 ∨ H2 for some
graphs H1 and H2, where H1 has α vertices. For any nonzero Laplacian eigenvalue μ

of H2, we must have β = μ+α, so H2 has at most one nonzero Laplacian eigenvalue.
Therefore, H2 has at most one edge. Let λ1 � · · · � λα be the Laplacian eigenvalues
of H1.

Assume that H2 has no edges. If α � 2, then it is straightforward to see that G =
K2, n−2. So suppose that α � 3. Using Theorem 1, we find that β = λ1 + n − α and
α = λ2 + n − α = · · · = λα−1 + n − α. If H1 is connected, then Theorem 7(i) implies
that H1 is the join of two graphs, and so using Theorems 1 and 4, the multiplicity of γ

is at least 2, a contradiction. Thus H1 is not connected, and so λ2 = · · · = λα−1 = 0.
Thus α = n − α, and since β > α, H1 has one nonzero Laplacian eigenvalue. This
implies that G = Kn/2, n/2 + e.

Now assume that H2 has one edge. If α = 1, then we have G = K1, n + e. So
suppose that α � 2. Using Theorem 1, we find that β = α + 2 and α = λ1 + n − α =
· · · = λα−1 + n − α. Hence either H1 = Kα or H1 = Kα . Since the multiplicity of
γ is 1, Theorem 1 implies that the first case is impossible, and in the latter case we
again find that G = Kn/2, n/2 + e. �

Theorem 9 Let G be a graph on n � 5 vertices whose distinct Laplacian eigenvalues
are 0 < α < β < γ. Then the multiplicity of γ is n−3 if and only if G = Kn−3 ∨K1,2.

Proof First assume that the multiplicity of γ is n − 3. If γ 	= n, then by Theorem 1,
the Laplacian spectrum of G is

0[1], (n − γ )[n−3], (n − β)[1], (n − α)[1].
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Since n − α 	= n, we obtain a contradiction using Theorem 8. Hence γ = n, and
therefore by Theorem 1, the Laplacian spectrum of G is

0[n−2], (n − β)[1], (n − α)[1].

It follows that G has n − 2 connected components, so G = Kn−3 ∪ K1,2, and the
assertion follows. Notice that the converse is clear, since the Laplacian spectrum of
Kn−3 ∨ K1,2 is

0[1], (n − 3)[1], (n − 1)[1], n[n−3]. �

Theorem 10 Let G be a graph on n � 5 vertices whose distinct Laplacian eigenval-
ues are 0 < α < β < γ . Then the multiplicity of β is n − 3 if and only if G is one of
the graphs K1 ∨ 2K(n−1)/2, Kn/3 ∨ 2Kn/3, Kn−1 + e, or G(r, n − r) for some r .

Proof If G is one of the graphs K1 ∨ 2K(n−1)/2, Kn/3 ∨ 2Kn/3, Kn−1 + e, or
G(r, n − r) for some 1 � r � n − 1, then the assertion easily follows from the re-
sults of Sect. 3 and Theorem 1. For the converse, assume that the multiplicity of β is
n − 3.

First, suppose that γ 	= n. Using Theorem 4, this means that G is not a join of
two graphs. Since β is the only multiple Laplacian eigenvalue of G, β is an integer.
Let {v1, . . . , vn} and d1 � · · · � dn be the vertex set and the vertex degrees of G,
respectively. For simplicity, we let d(vi) = di for any i. By Theorem 2, d2 � β , and
also by Theorem 1, we have n − 1 − dn−1 � n − β . It follows that d2, . . . , dn−1 ∈
{β,β − 1}. Define

U1 = ({v1} ∪ {vi |di = β}) \ {vn} and U2 = ({vn} ∪ {vi |di = β − 1}) \ {v1}.
Since the multiplicity of β is n − 3, every 4 × 4 principal submatrix of βI − L(G) is
singular. We frequently use this property in what follows.

We prove that N(u) = N(v) for any two nonadjacent vertices u,v ∈ U1. Suppose
otherwise that there exist two nonadjacent vertices x, y ∈ U1 such that d(y) = β and
N(x) \ N(y) contains at least a vertex z with d(z) � β . For a vertex t ∈ N(y), the
principal submatrix of βI − L(G) corresponding to the vertices x, y, z, t is

⎡

⎢⎢
⎣

β − d(x) 0 1 ξ1
0 0 0 1
1 0 β − d(z) ξ2
ξ1 1 ξ2 β − d(t)

⎤

⎥⎥
⎦

for some ξ1, ξ2 ∈ {0,1}. Its determinant is 1+ (d(x)−β)(β −d(z)) 	= 0, since d(z) �
β � d(x). Note that the Laplacian spectrum of G has the form similar to that of G,
so applying the above property for G, we conclude that N(u) \ {v} = N(v) \ {u} for
any two adjacent vertices u,v ∈ U2.

Denote the induced subgraphs of G on U1 and U2 by G1 and G2, respectively. The
above properties on U1 and U2 show that any two nonadjacent vertices of each of the
subgraphs G1 in G and G2 in G have the same neighborhoods. By a graph theoretic
argument, it is easy to see that a graph with this property must be a complete mul-
tipartite graph. Therefore, G1 is a complete multipartite graph, and G2 is a disjoint
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union of complete graphs. By contradiction, suppose that there are three independent
vertices in U2, say x, y, z. Since the multiplicity of 0 in the Laplacian spectrum of
any graph is equal to the number of its connected components [13, Lemma 13.1.1],
G is connected, and without loss of generality, we may assume that x is adjacent to a
vertex t ∈ U1 and d(y) = d(z) = β − 1. Now, the principal submatrix of βI − L(G)

corresponding to the vertices x, y, z, t is
⎡

⎢⎢
⎣

β − d(x) 0 0 1
0 1 0 ξ1
0 0 1 ξ2
1 ξ1 ξ2 β − d(t)

⎤

⎥⎥
⎦

for some ξ1, ξ2 ∈ {0,1}, whose determinant is (d(x) − β)(ξ1 + ξ2 − (β − d(t))

− 1 	= 0, a contradiction. Hence G2 is a disjoint union of at most two complete
graphs. If G2 is a complete graph, then G would be a join of two graphs, a con-
tradiction. Thus G2 is a disjoint union of two complete graphs, and by considering
G instead of G, we conclude that G1 is a complete bipartite graph. Let {V1,V2} be
the vertex partition of the bipartite graph G1, and W1,W2 be the vertex sets of two
cliques of G2. Since G is a connected graph which is not a join of two graphs, without
loss of generality, we may assume that any vertex in Vi is adjacent to any vertex in
Wi for i = 1,2 and that G has no further edges. For i = 1,2, let ai ∈ Vi and bi ∈ Wi .
We have min{d(a1), d(a2)} � max{d(b1), d(b2)}+1. This yields that |V1| = |V2| and
|W1| = |W2|, and therefore G = G(r, s) for some r, s.

Next, suppose that γ = n. By Theorem 1, the Laplacian spectrum of G is

0[2], (n − β)[n−3], (n − α)[1].

Hence G has two connected components, say H1 and H2. Since the Laplacian spec-
trum of Km is 0[1],m[m−1], it is easily checked that the distinct Laplacian eigenvalues
of one of graphs H1 and H2, say H1, are 0 < n−β < n−α, and H2 is either a single
vertex or a complete graph on n − β vertices. By Theorem 7(i), H1 is either K1, s for
some s or a regular complete bipartite graph. It follows that G is one of the graphs
K1 ∨ 2K(n−1)/2, Kn/3 ∨ 2Kn/3, or Kn−1 + e. �
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