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Abstract In this article we investigate the autotopism group of the so-called cyclic
semifield planes. We show that the group generated by the homology groups of the
nuclei is already the full group of autotopisms that are linear with respect to the
nuclei. The full autotopism group is also computed with the exception of one special
subcase.
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1 Introduction

Let V be an m-dimensional space over a field K = GF(qn), σ ∈ Aut(K) an automor-
phism of order n, and T an irreducible σ -linear operator on V . Then

S = S(T ) =
m−1∑

i=0

KT i =
m−1∑

i=0

T iK

is an additively closed spread set (see [6] and also [8]). Let K0 = GF(q) be the fixed
field of σ , and let ψ be an arbitrary K0-isomorphism from V onto S. Then

x ∗ y = xψ(y)

determines on V a presemifield multiplication. Note that if one chooses ψ such that,
in addition, ψ−1(1)ψ(y) = y for y ∈ V , then one obtains even a semifield multipli-
cation. The (pre)semifields of this isotopism class were called cyclic semifields in [6].
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If n = 1, the semifield is actually a field. We therefore say that a cyclic semifield is
proper if n > 1.

On the other hand, the spread set S determines a translation plane P = P(T ) on
W = V ⊕ V , where the associated spread is

Σ = {
V (∞)

} ∪ {
V (s) | s ∈ S

}

with

V (∞) = 0 ⊕ V, V (s) = {
(x, xs) |x ∈ V

}
.

Our aim is to determine the autotopism group of these planes. We will show the
following:

Theorem 1 Let V be an m-dimensional space over K = GF(qn), σ ∈ Aut(K) an
automorphism of order n > 1, and T an irreducible, σ -linear operator on V . Set
K0 = Kσ = GF(q). Then F = CEndK0 (V )(T ) is a field isomorphic to GF(qm). More-
over the following holds:

(a) The right and middle nuclei of P = P(T ) are isomorphic to K , and the left nu-
cleus is isomorphic to F .

(b) Denote by M the normal subgroup of autotopisms of P which are linear with
respect to the nuclei. Then M is the product of the homology groups associated
with the nuclei. In particular,

M � (K∗ × K∗ × F ∗)/K∗
0 .

For autotopisms outside of M , we state the following:

Theorem 2 We assume that P satisfies the assumptions of Theorem 1 and keep the
notation of this theorem. Assume further that q = pf , where charK = p, and denote
by G the autotopism group of P. Then n divides |G/M|. Moreover, |G/M| divides
f · m · n if n > (m,n), and |G/M| divides f · m · n · (m,n) if n = (m,n).

We will observe that—in contrast to Theorem 1—the quotient G/M does depend
on the individual operator T and not only on the parameters m and n. In fact, we will
compute the group G/M except for the case that n divides m and n < m, where we
have only incomplete information.

The notation of this paper can be found in Subsects. 2.1 and 3.1 and in the defi-
nitions at the beginnings of Sects. 3 and 4. Section 2 includes some auxiliary results
on field extensions. Section 3 is devoted to the proof of Theorem 1, and Sect. 4 to the
proof of Theorem 2.

In Sect. 5 we determine the full autotopism group G in the case (m,n) = 1. This
result will be used in Sects. 6 and 7, where we treat the cases n ≥ m and n < m,
respectively. The precise structure of G/M (excluding the case n|m, n < m) is given
in Propositions 6.3 and 7.4.

The terminology on semifield planes follows standard texts like [3] or [5].
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2 Semilinear operators and preliminary results

In this section we explain the description of irreducible linear operators of [4]. The
work of Kantor and Liebler [9] on cyclic semifields also contains a representation of
such transformations. However it seems convenient to use the very concrete descrip-
tion of [4]. We also collect some special results on field extensions.

2.1 Description of semilinear operators

We make the following assumptions:

V is an m-dimensional space over the field K = GF(qn).
σ is an automorphism of K of order n, i.e., K0 = GF(q) is the fixed field.
Set F = GF(qm), d = (m,n), m′ = m/d , and L = GF(qm′n).

(I) From [4] we take the following:

Theorem Let V,K,σ , etc. satisfy the above assumptions, and let T be an irre-
ducible, σ -linear operator on V . Then:

(a) There is a decomposition

V = U0 ⊕ · · · ⊕ Ud−1

into K-spaces such that UiT = Ui−1 for all i (and U−1 = Ud−1).
(b) T d induces on each Ui an irreducible, σd -linear operator.
(c) Each Ui can be identified with L, and T d induces on such a space a mapping of

the form x 
→ wxγ with w ∈ L∗ and γ ∈ Aut(L) such that γK = σd .
(d) T n restricted to Ui has the form ζ1, where F = K0[ζ ].

Using coordinates, we can identify V with Ld , Ui with Lei (ei a standard basis
vector), and the K-structure of V is given by

a · x = (
ax0, a

σ x1, . . . , a
σd−1

xd−1
)
, a ∈ K, where x = (x0, . . . , xd−1) ∈ V.

The action of T is given by

xT = (
x1, . . . , xd−1,wx

γ

0

)
,

where ζ = NL:F (w) with γ and ζ as in (d) of Theorem. For the remainder of this
paper, T will usually denote a σ -linear operator, and in this context the symbols

w and ζ = NL:F (w)

will always refer to the foregoing representation. Note that any choice of w and ζ with
ζ = NL:F (w) and F = K0(ζ ) defines by the above equation an irreducible semilinear
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transformation. We also formally describe T by the matrix
⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 γw

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎠
.

In the sequel we will use similar matrix descriptions for other semilinear transforma-
tions, too.

(II) When we will describe autotopisms, the following two types of semilinear
operators (acting on V = Ld ) will be relevant:

Let a0, . . . , ad−1 ∈ L∗, φ ∈ Aut(L), and let P(π) = (δi,π(j))0≤i,j<d be the per-
mutation matrix associated with the permutation π which is a power of the d-cycle
(0,1, . . . , d − 1). The semilinear operator described formally by the matrix

(a) diag(φa0, . . . , φad−1) has diagonal form of type φ, and
(b) diag(φa0, . . . , φad−1)P (π) is an operator of permutational form of type φ.

Definition We call an additive endomorphism S of V linear if it is a linear trans-
formation with respect to the K- and F -structure of V , i.e., (a · x)S = a · (xS) and
(bx)S = b(xS) for a ∈ K and b ∈ F .

Lemma 2.2 Let S be an invertible operator on V which is semilinear with respect to
the F - and K-structure. Then S induces a permutation of {U0,U1, . . . ,Ud−1} which
lies in the group generated by the cycle (U0,U1, . . . ,Ud−1). If S is even linear, then
S fixes each Ui .

Proof Let ω be a generator of the field K1 = GF(qd). When we consider ω as an
element of F , this element induces on V the K0-linear map ω1. Considering ω as an
element of K , we denote the K0-linear map x 
→ ω · x by ω̃. In particular, ω1 and ω̃

agree on U0. The Ui ’s are the homogeneous components of the group 〈ω1, ω̃〉 on V .
A homogeneous component of a G-module, G a group, is the sum of all irreducible
submoduls of one isomorphism type. This notion of basic representation theory is
connected with Clifford’s theorem (see, for instance, [1], (12.11–13), p. 40) which
is used here in a very elementary fashion. Since S normalizes the group 〈ω1, ω̃〉, we
see that it induces a permutation on the set {U0,U1, . . . ,Ud−1}. Clearly, if S is linear,
then S fixes each Ui .

So assume that S is not linear. The operator T from 2.1 satisfies the assertion of the
lemma. So adjusting S by a power of T , we may assume wlog that S fixes U0. Denote
by φ the automorphism induced by S on F and by ψ the automorphism induced by
S on K . Then, for u ∈ U0, also uS ∈ U0, and

ωψ(uS) = ωψ · (uS) = (ω · u)S = (ωu)S = ωφ(uS).

Hence,

ωψ = ωφ.
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Now let u ∈ Ui , i > 0, and assume that uS ∈ Uj . Then,

ωψσj

(uS) = ωψ · (uS) = (ω · u)S = (
ωσi

u
)
S = ωσiφ(uS).

Hence, ωψσj = ωσiφ , and therefore,

ωψσj−i = ωφ or ωσj−i = ωψφ−1σ j−i = ω,

which in turn implies that i = j as |j − i| < d . The proof is complete. �

The next result is known (see [2]). For convenience, we supply a proof.

Lemma 2.3 Let V,W be finite-dimensional L-spaces. Let L : K be a Galois ex-
tension with Galois group �. For γ ∈ �, denote by Hγ the K-subspace of γ -linear
mappings in HomK(V,W). Then

HomK(V,W) =
⊕

γ∈�

Hγ .

Proof Assume that [L : K] = �, dimL V = m, and dimL W = n. Then
dimK HomL(V,W) = �mn and dimK HomK(V,W) = �2mn. If T is invertible and
γ -linear, then Hγ = T HomL(V,W), so that dimK Hγ = �mn, too. Hence, it suffices
to show that

∑

γ∈�

Hγ =
⊕

γ∈�

Hγ .

We proceed by induction and suppose that, for any subset  ⊆ � of size < r , we
have already shown

∑
δ∈ Hδ = ⊕

δ∈ Hδ , and let Ω = {ω1, . . . ,ωr} be an r-subset.
Assume that

0 = T1 + · · · + Tr, Ti ∈ Hωi
.

We have to show that Ti = 0 for all i.
Let L = K[c]. Then, for v ∈ V ,

v

(
r∑

i=2

Tic
ω1

)
= cω1v

r∑

i=2

Ti = −cω1vT1 = −(cv)T1 =
r∑

i=2

cωi vTi = v

(
r∑

i=2

Tic
ωi

)
.

Hence,
∑

i Tic
ω1 = ∑

i Tic
ωi . Since each Tic

ω1 and each Tic
ωi are ωi -linear, induc-

tion forces Tic
ω1 = Tic

ωi , and thus Ti = 0 for i > 1 by the choice of c. Then also
T1 = 0. �

The following result is a slight generalization of Theorem 5 of [7]. The proof is
taken from this article.

Lemma 2.4 Let L : K be a field extension of degree n, and let {ui |0 ≤ i < n} and
{wi |0 ≤ i < n} be K-bases of L. Let k be a number between 1 and (n − 1)/2. Set
U = ⊕k

i=0 Kui and W = ⊕k
i=0 Kwi . The following two statements are equivalent:
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(a) There exists a λ ∈ L with W = λU .
(b) w lies in the orbit of u under PGL(2,K) (acting naturally on PG(1,L)).

Moreover, if (a) and (b) hold and if

w = a + bu

c + du
, a, b, c, d ∈ K,

then

λ ∈ 1

(c + du)k
K.

Proof (a) ⇒ (b) There exist polynomials

0 �= Bi =
k∑

j=0

b
(i)
j Xj ∈ K[X], 0 ≤ i ≤ k,

such that

λBi(u) = wi.

In particular,

λ = 1

B0(u)
, w = B1(u)

B0(u)
.

Assume that k = 1, B1 = a + bX, and B0 = c + dX. Since w �∈ K , the pairs (a, b)

and (c, d) are K-linear independent. Hence, the mapping

x 
→ a + bx

c + dx

lies in PGL(2,K), and we are done.
So we assume that k > 1. Substituting λ, we see that

wi = Bi(u)

B0(u)
, 1 ≤ i ≤ k.

For i > 1, we also have wi = wi−1w = Bi−1(u)

B0(u)
B1(u)
B0(u)

, showing that

Bi(u)B0(u) = Bi−1(u)B1(u), 1 ≤ i ≤ k.

This is a polynomial equation for polynomials in u of degree < n. Hence, we obtain
even an equation of (formal) polynomials in K[X],

BiB0 = Bi−1B1, 1 ≤ i ≤ k.

In particular, B2
1 = B2B0.
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Case 1 B1 does not divide B0. Then there exists f ∈ K[X] irreducible with
B1 = g1f

t , (f, g1) = 1, and f t does not divide B0. Therefore, f t+1 divides B2.
A straightforward induction shows that

Bi = gif
t+i−1, gi ∈ K[X], 1 ≤ i ≤ k.

In particular, Bk = gkf
t+k−1. Since degBk ≤ k, we see that

degf = 1, gk ∈ K, t = 1, i.e. Bk = gkf
k.

Then

Bk−1 = B0Bk

B1
= gkf

k−1 B0

g1
.

Hence, g1 divides B0, and since degBk−1 ≤ k, one has

0 ≤ degE ≤ 1 for E = B0

g1
.

Moreover,

w = Bk(u)

Bk−1(u)
= f (u)

E(u)
.

Set f = a + bX and E = c + dX. Again, w �∈ K implies ad − bc �= 0, and w has the
desired form. Note that

λ = wk

Bk(u)
= 1

gkE(u)k
∈ 1

E(u)k
K.

Case 2 Now we assume that B1 divides B0. Since w �∈ K , we even have degB1 <

degB0, and using Bi = Bi−1B1/B0, we obtain

degBi ≤ k − i, 0 ≤ i ≤ k.

But since Bk �= 0, we have

Bk ∈ K, and degBi = k − i, 0 ≤ i ≤ k.

This shows that

E = E(X) = B0

B1
= c + dX, c, d ∈ K, d �= 0.

Using again BiB0 = Bi−1B1, we have

Bi = BkE
k−i , w = B1(u)

B0(u)
= 1

E(u)
, λ = 1

BkEk(u)
,

and we are done.
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(b) ⇒ (a) Assume now that

w = F(u)

E(u)
, F = a + bX, E = c + dX.

Then define

λ = 1

E(u)k

and inductively

B0 = 1

λ
, Bi = wBi−1, 1 ≤ i ≤ k.

A straightforward computation shows that

Bi(u) = F(u)iE(u)k−i ∈ U, 1 ≤ i ≤ k,

and then

Biλ =
(

F(u)

E(u)

)i

= wi.

Now W = λU follows. �

Lemma 2.5 Let L : K be a field extension of degree m, and L = K[u]. For 1 ≤ s <

m, set Ls = ⊕s−1
i=0 Kui and let x ∈ L satisfy xLs = Ls . Then x ∈ K .

Proof Write E = Ls and x = a0 + a1u + · · · + atu
t with ai ∈ K , at �= 0. Since

x = x · 1 ∈ E, we see t < s. We claim that t = 0 and thus x ∈ K .
Assume that t > 0. Then

xus−t = a0u
s−t + a1u

s+1−t + · · · + atu
s.

But then xus−t �∈ E as us ∈ L − E, a contradiction. �

Lemma 2.6 Let L : K0 be a field extension of degree mn, (m,n) = 1, and let F,K

be subfields such that [F : K0] = m and [K : K0] = n. Assume further that L : F

is a Galois extension with a cyclic Galois group Σ = 〈σ 〉 and that K : K0 also is a
Galois extension such that the Galois group is the restriction of Σ to K . Set Y = {y ∈
L∗ |yσ y−1 ∈ K}. Then Y = F ∗K∗.

Proof For y ∈ Y , we have yσ = yv, v ∈ K . Hence,

y = yσn = yvvσ · · ·vσn−1 = yNK:K0(v),

i.e., NK:K0(v) = 1. By Hilbert’s theorem 90 there exists a u ∈ K such that v = uσ u−1.
This implies that (y/u)σ = y/u, i.e., y/u ∈ F . �
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Lemma 2.7 Let K : K0 be a cyclic Galois extension with Galois group 〈φ〉 of order
> 1. Let L : K be a field extension of degree � and assume that L = K0[u]. Then
B = {ui |0 ≤ i < �} is a K-basis of L. Write x ∈ L as x = ∑�−1

i=0 xiu
i , xi ∈ K , and

set x = ∑�−1
i=0 x

φ
i ui . Assume that z ∈ L and that z · x = z ·x for all x ∈ L. Then z ∈ K .

Proof Clearly, B is a K-basis. Let f = X� − ∑�−1
i=0 aiX

i be the minimal polynomial
of u over K and assume that z = ∑k

i=0 ziu
i , zi ∈ K , zk �= 0, k < �.

Suppose that k > 0. Then

zu�−k =
k∑

i=0

ziu
�−k+i =

k−1∑

i=0

ziu
�−k+i + zk

�−1∑

i=0

aiu
i

= zk

�−k−1∑

i=0

aiu
i +

�−1∑

i=�−k

(zk−�+i + zkai)u
i,

i.e.,

z · u�−k = z
φ
k

�−k−1∑

i=0

a
φ
i ui +

�−1∑

i=�−k

(
z
φ
k−�+i + z

φ
k a

φ
i

)
ui.

Similarly,

z · u�−k = zu�−k = z
φ
k

�−k−1∑

i=0

aiu
i +

�−1∑

i=�−k

(
z
φ
k−�+i + z

φ
k ai

)
ui.

Since zk �= 0, we obtain a
φ
i = ai for all 0 ≤ i < �. Hence, f ∈ K0[X], and thus

[L : K0] ≤ �, a contradiction. �

3 Cyclic semifields and the proof of Theorem 1

We first introduce some notation 3.1 for cyclic semifield planes that will be kept
fixed throughout this paper. Then we compute the nuclei (Proposition 3.3) and prove
Theorem 1.

3.1 Description of cyclic semifield planes

Let V,K,F,σ,T etc. have the same meaning as in 2.1. We introduce the following
notation:

S = S(T ) =
m−1⊕

i=0

KT i =
m−1⊕

i=0

T iK

is the spread set of the cyclic semifield plane defined by T .
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Set W = V ⊕ V and

Σ = Σ(T ) = {
V (∞)

} ∪ {
V (s) | s ∈ S

}

with V (∞) = 0 × V and V (s) = {(v, vs) |v ∈ V }. Then Σ is the spread on W asso-
ciated with S.

Set d = (m,n). Then

S = S0 ⊕ · · · ⊕ Sd−1,

where S0 = {s ∈ S |U0s ⊆ U0} and Si = T iS0 = S0T
i for 0 ≤ i < d . Note that Si is

the set of transformations in S which move Ui onto U0.
Let Sj be the set of σ j -linear transformations in S. Then (see Lemma 2.3)

S = S0 ⊕ · · · ⊕ Smin(m,n)−1.

Note that Sj = KT j if m ≤ n. If m > n, set m = en + r , 0 ≤ r < n. Then

Sj =
e′⊕

i=0

Kζ iT j =
e′⊕

i=0

ζ iT jK

with e′ = e if j < r and e′ = e − 1 otherwise. Recall that T n = ζ1.
An autotopism α is identified with an element in GLGF(p)(W), p = charK , which

stabilizes Σ and fixes the fibers V (∞) and V (0). We also write α = (α1, α2), where
α1 is the restriction to V (0), and α2 is the restriction to V (∞). We call α diagonal of
type φ, φ ∈ Aut(L), if both α1 and α2 are diagonal of type φ, i.e., we have a matrix
description of α1 and α2 in the form

α1 = diag(φa0, . . . , φad−1), α2 = diag(φb0, . . . , φbd−1).

We call α semidiagonal of type φ if α1 is diagonal of type φ and α2 is permutational
of type φ, i.e., α2 has a matrix description of the form

diag(φb0, . . . , φbd−1)P (π)

with π ∈ 〈(0,1, . . . , d − 1)〉.
3.2 Some autotopisms

For 0 �= a ∈ K , the maps La and Ra defined by

(x, y)La = (a · x, y), (x, y)Ra = (x, a · y)

are homologies, and we see that middle nucleus Nm = {α ∈ EndK0(V ) |αS ⊂ S} con-
tains the group

L = {La |0 �= a ∈ K} � K∗

and the right nucleus Nr = {α ∈ EndK0(V ) |Sα ⊂ S} contains the group

R = {Ra |0 �= a ∈ K} � K∗.
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For 0 �= b ∈ F , the map Db defined by

(x, y)Db = (bx, by)

is a kern homology. Hence, the left nucleus N� contains the group

D = {Db |0 �= b ∈ F } � F ∗.

Finally, we observe that the transformation T defined by (x, y)T = (xT , yT ) is an
autotopism.

Proposition 3.3 Nr � Nm � K and N� � F .

Proof Let 0 �= β ∈ Nr , i.e., Sβ = S. Write

Tβ =
k∑

i=0

T iai, k ≤ m − 1, ak �= 0.

Assume that k ≥ 1. Then

T m−kTβ =
k∑

i=0

T m−k+iai = T mak +
k−1∑

i=0

T m−k+iai .

If k ≥ 2, then T mak and thus T m lie in S. This implies ST = S, a contradiction, since
S is proper.

Hence k ≤ 1. If a0 �= 0, then β = 1a1 + T −1a0 and β = 1β ∈ S, i.e., T −1 ∈ S and
ST −1 = S, a contradiction. We conclude that a0 = 0 and β = 1a1. This shows that
Nr � K and by symmetry Nm � K .

Let 0 �= β ∈ N�, i.e., sβ = βs for s ∈ S. Since β also commutes with K , we see
that

β ∈ CEndK0

({T } ∪ K1
)
.

From (Theorem 2.4 in [4]) we get β ∈ F . The second claim follows. �

Definition We call an autotopism linear if it commutes with all elements from the
nuclei.

For instance, the group

M = L R D

is a group of linear autotopisms. T is linear with respect to N� but only semilinear
respect to Nm and Nr .

Lemma 3.4 Set K = D ∩ (L × R). Then K � K∗
0 and M � (D × L × R)/K.

Proof Suppose LaRb = Dc ∈ (L × R) ∩ D. Then

V (1) = V (1)Dc = V (1)LaRb = V
(
a−1b

)
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implies that a = b. Moreover,

V (T ) = V (T )Dc = V (T )LaRa = V
(
a−1aσ T

)
,

which shows that a−1aσ = 1, i.e., a ∈ K0. The claim follows. �

The following observation will be used repeatedly.

Lemma 3.5 Let i, j be numbers in {0, . . . , d − 1}. Let s, s′ be elements in Si , and
0 �= u ∈ Uj . Then s = s′ if us and us′ have the same image under the projection onto
Uj−i . In particular, if s, s′ ∈ S0 and sUj

= s′
Uj

, then s = s′.

Proof We may assume that s, s′ �= 0. Since Uj−i = Uis = Uis
′, we see that, for

u ∈ Ui , u(s − s′) = 0, and since s − s′ ∈ S, we obtain s = s′. �

Lemma 3.6 The claim of Theorem 1 is true if d = 1.

Proof Let α be a linear autotopism. We can make the identifications V = L and
xT = wxσ . By our assumption we have

(x, y)α = (ax, by), a, b ∈ L.

Take 0 �= s ∈ S0. Then V (s)α = V (a−1bs), and hence a−1bs ∈ S0, i.e., a−1bS0 = S0.
By Lemma 2.5 (and as m �= n) we get a−1b ∈ K . Adjusting α by Lab−1 ∈ L, we may
assume wlog that a = b.

Choose now 0 �= s ∈ S1. Then s = s0T , s0 ∈ S0 and

V (s)α = V
(
a−1s0T a

) = V
(
aσ a−1s0T

) = V
(
aσ a−1s

)
,

and aσ a−1s is a σ -linear operator in S. Hence aσ a−1s ∈ S1 and aσ a−1S1 = S1. As
before, we deduce aσ a−1 ∈ K∗. Apply Lemma 2.6 to conclude that a ∈ F ∗K∗. This
shows that α ∈ M . �

Lemma 3.7 Let α be a linear autotopism. For each i ∈ {0, . . . , d − 1}, the following
holds.

(a) α leaves invariant Wi = Ui ⊕ Ui .
(b) α−1

1 Siα2 = Si .
(c) S0 induces on Wi a cyclic semifield spread which is invariant under the linear

autotopism αWi
.

(d) For each i, there exist a μi ∈ M such that

αWi
= (μi)Wi

.

Proof (a) By Lemma 2.2, α1 and α2 leave each Ui invariant. Therefore, α leaves all
Wi ’s invariant.
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(b) Let 0 �= s be in Si . Then V (s)α = V (α−1
1 sα2), and for j ∈ {0, . . . , d − 1}, we

have

Ujα
−1
1 sα2 = Ujsα2 = Uj−iα2 = Uj−i .

Hence α−1
1 sα2 ∈ Si .

(c) We know that Ti = (T d)Ui
is an irreducible, σd -linear operator on the K-space

Ui . Note that the fixed field of σd is K1 � GF(qd) and that (Ti)
n′

and K1 induce on
Ui the field F . In particular,

KUi
∩ FUi

= (K1)Ui
.

Hence (with K1 in the role of K0), S0 induces on Wi a cyclic semifield spread, and α

induces a linear autotopism.
(d) Set m = m′d and n = n′d . By Proposition 3.3 and Lemma 3.5 the nuclei of the

semifield induced by S0 on Ui coincide with the nuclei of S when restricted to Ui .
Moreover, [K : K1] = n′, [F : K1] = m′, and (m′, n′) = 1. Therefore we can apply
Lemma 3.6 to Wi and αWi

. Our statement on the nuclei implies assertion (d). �

Now Theorem 1 follows from Lemma 3.6 and the following:

Lemma 3.8 The claim of Theorem 1 is true if d > 1.

Proof Let α be a linear autotopism. We keep the notation of Lemma 3.7. Suppose
first that S0 induces on W0 a proper cyclic semifield spread. Then by Lemma 3.6
the homology groups associated with the nuclei are already induced by the elements
of M . Hence, we find μ ∈ M such that

μW0 = α−1
W0

.

Assume now that S0 is not proper; then F = L � S0, i.e., n divides m, and L =
K ⊕ Kζ ⊕ · · · ⊕ Kζm′−1. Adjusting α by a suitable element in M , we can as-
sume that (α1)U0 = 1. We identify (S0)U0 with L, and since (S0)U0(α2)U0 = (S0)U0 ,
we may identify (α2)U0 with some z ∈ L. Apply Lemma 2.7. Hence z ∈ K and
(α2Rz−1)U0 = 1.

So in any case, α can be replaced by some αμ, μ ∈ M , such that (αμ)W0 = 1.
Then

(
α−1

1 α2
)
U0

= 1.

Using Lemma 3.5, we deduce α1 = α2 and (α1)U0 = 1. Therefore, α1 is represented
in matrix form by

α1 = diag(1,A2, . . . ,Ad)

with Ai ∈ L. Since
(
α−1

1 T dα1
)
U0

= T d
U0

,
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we deduce from Lemma 3.5 that T dα1 = α1T
d . Hence, A

γ

i w = wAi for 2 ≤ i ≤ d ,
i.e., Ai = A

γ

i or

Ai ∈ F, 1 < i ≤ d, (1)

since the fixed field of γ in L is F . Moreover, there exists a T ′ ∈ S1 = T S0 such that

V (T )α = V
(
α−1

1 T α1
) = V (T ′)

with

T ′ =

⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 γwAd

A−1
2 0 · · · 0 0
0 A−1

3 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · A−1
d Ad−1 0

⎞

⎟⎟⎟⎟⎟⎠
= T A

and

A = diag
(
A−1

2 ,A−1
3 A2, . . . ,A

−1
d Ad−1,Ad

) ∈ S0.

Replacing T by any element in S1, we see by the same argument that S0 A = S0 and
A represents an element in S0 since 1 is in S0.

Set x = A−1
2 . Then xU0 ∈ (S0)U0 and (S0)U0xU0 = (S0)U0 . Using Lemmas 3.6 and

3.7 with (S0)U0 in the role of S, and γ in the role of σ , we see that xU0 ∈ KU0 . This
shows, using (1), that

xU0 ∈ (F ∩ K)U0 = (K1)U0 . (2)

We conclude that A−1
2 ∈ K1. This shows (using Lemma 3.5 again) that

A = diag
(
a, aσ , . . . , aσd−1)

for some a ∈ K1. We obtain A−1
2 = a, A−1

3 = aσ A−1
2 = aaσ , . . . ,

A−1
d = aaσ · · ·aσd−2

. Finally, the equation Ad = aσd−1
implies that aaσ · · ·aσd−1 =

1. Hilbert’s theorem 90 shows that there is a b ∈ K1 with a = b/bσ . We conclude that

α1 = diag

(
1,

bσ

b
,
bσ 2

b
, . . . ,

bσd−1

b

)
,

and

α = Db−1LbRb ∈ M

follows. �

4 Proof of Theorem 2

In this section we show that autotopisms of P(T ) can be described by some kind of
“normal form” (see the definition and 4.1 below). Subsequently we verify Theorem 2.
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Definition Denote by G1 the subgroup of G (autotopism group of P = P(T )) con-
sisting of diagonal autotopisms and by G0 the subgroup which consists of diagonal
and semidiagonal autotopisms (see 3.1).

The next result shows that the quotient G/M is determined by the subgroup G0:

Proposition 4.1 M ≤ G0 � G, G = G0〈T 〉, and |G : G0| = d . Moreover, all auto-
topisms in G0 are diagonal, that is, G0 = G1, if n is not a divisor of m.

We need the following:

Lemma 4.2 Let α be an autotopism of P = P(T ).

(a) α1 and α2 are associated with the same field automorphism of F .
(b) α1 and α2 are associated with the same field automorphism of K , or n divides m.
(c) α1 and α2 induce the same permutation on {U0, . . . ,Ud−1}, or n divides m.
(d) Let α1 and α2 induce the trivial permutation on {U0, . . . ,Ud−1}. Then α1 and α2

are associated with the same field automorphism of K .

Proof (a) Since the kernel of P is F , one knows that α is a semilinear map on W with
respect to F . This shows the claim.

(b) Suppose that αi , i = 1,2, are associated with the field automorphisms φi of
K . Then α−1

1 α2 is associated with the field automorphism τ = φ−1
1 φ2 of K . Hence,

α−1
1 S0α2 is a set of τ -linear mappings on V (considered as a K-space) contained

in S. Therefore, τ = σk for some 0 ≤ k ≤ min(m − 1, n − 1).
Assume that k > 0. Suppose first that n > m. Then α−1

1 Sm−kα2 is a set of σm-
linear mappings inside of S, which is impossible.

Assume next that m ≥ n and set m = en + r , 0 ≤ r < n. Then dimK Sj = e + 1
for 0 ≤ j < r and dimK Sj = e for r ≤ j < n. Assume that r > 0. Then dimK Sk =
dimK S0 implies k < r . But then

e = dimK Sr = dimα−1
1 Sr−kα2 = dim Sr−k = e + 1,

a contradiction. Therefore, if φ1 �= φ2, i.e., τ �= 1, we see that n divides m.
(c) Assume that Sj = α−1

1 S0α2 �= S0. Then α−1
1 S0α2 ⊆ Sj is a set of semilinear but

not linear mappings with respect to K . That is, the automorphisms of K associated
with α1 and α2 must be different. Apply (b).

(d) By (b) we only have to consider the case that n divides m, i.e., F contains a
subfield isomorphic to K , and each element of K when restricted to Ui lies in this
subfield. By (a) the claim follows. �

Proof of 4.1 By Lemma 2.2 every autotopism of G induces a permutation of the sub-
spaces {Ui × 0 |0 ≤ i < d}, and G0 is the kernel of this permutation representation:

Let α be an element in G0. If n is not a divisor of m, we see by Lemma 4.2c that
α fixes all spaces 0 × Ui and by Lemma 4.2d that α1 and α2 induce on K the same
field automorphism. Since L is generated by the subfields K and F , we see (using
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Lemma 4.2a) that α is a diagonal autotopism. If n divides m, then K is isomorphic
to a subfield of L = F , and α is semidiagonal by Lemma 4.2a. Moreover, G0 � G.

Using Lemma 2.2 again, we see that we can adjust any autotopism with an ele-
ment from 〈T 〉 to obtain a semidiagonal autotopism. This implies the second asser-
tion. Clearly, T permutes the above subspaces transitively, and again by Lemma 2.2
the permutation representation is semiregular. Hence |G : G0| = d . Moreover, by
Lemma 4.2c we have that n |m if G0 contains a semidiagonal, but not diagonal, au-
totopism. �

Lemma 4.3 Theorem 2 is true.

Proof By Proposition 4.1, |G/G0| = d , and G1 is the subgroup of autotopisms in G

which fix W0 = U0 ⊕ U0. The mapping G1 → Aut(L) which maps α to φ, where φ

is the type of α (see 3.1), is obviously a homomorphism with kernel M . Thus,

|G1/M| | ∣∣Aut(L)
∣∣ = f · m · n/d.

Assume first that n does not divide m. Then, by Proposition 4.1, G0 = G1, and
therefore |G/M| divides f · m · n.

Assume next now that n divides m. Then (using Lemma 2.2) G0 induces a
semiregular permutation representation on {0 × Ui |0 ≤ i < d} with kernel G1. This
shows that

|G0/G1| |d.

Therefore, |G/M| divides f · m · n · d . �

5 The case (m,n) = 1

We assume throughout this section that

d = (m,n) = 1.

In view of 3.1, we can identify V ≡ L and T with the mapping

x 
→ wxσ ,

where F = K0[ζ ], L = K[ζ ], and ζ = NL:F (w). Clearly, all autotopisms are diago-
nal, i.e., G0 = G. Therefore we may write formally (abbreviating a0 = e and b0 = v

in (2.1)):

α1 = φe, α2 = φv, e, v ∈ L.

Lemma 5.1 Let m < n and φ ∈ Aut(L). The following statements are equivalent:

(a) There exists an autotopism of type φ.
(b) wφ−1 ∈ (L∗)σ−1K∗.
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Proof Let α be an autotopism of type φ. Use the notation from above. Then α−1
1 =

φ−1f with f = e−φ .
Let x ∈ K∗. Then α−1

1 T kxα2 is σk-linear, i.e., α−1
1 T kxα2 = T ky for some y ∈

K∗. On the other hand,

α−1
1 T kxα2 = σkf φσk (

wwσ · · ·wσk−1)φ
vxφ = T k (wwσ · · ·wσk−1

)φ

wwσ · · ·wσk−1 f φσk

vxφ.

Hence, we have, for 0 ≤ k < m,

(wwσ · · ·wσk−1
)φ

wwσ · · ·wσk−1 f φσk

v ∈ K. (1)

Specializing k = 0, we get

v = A

f φ
(2)

with A ∈ K∗, and taking k = 1, we have

wφ

w
· (f φ)σ

f φ
· A ∈ K∗. (3)

Therefore, the condition

wφ−1 ∈ K∗(L∗)σ−1

is necessary for the existence of an autotopism of type φ.
Suppose conversely that this condition is true. Then choose f ∈ L∗ such that (3)

holds with A = 1 and define v ∈ L∗ by (2) and then α1 and α2 as above.
We claim that this defines an autotopism. The foregoing computations show that

we have to verify (1) for all 0 ≤ k < n. We notice that the cases k = 0,1, i.e., (2) and
(3), are already true.

Assume k ≥ 2. Then

(wwσ · · ·wσk−1
)φ

wwσ · · ·wσk−1 f φσk

v = (wwσ · · ·wσk−1
)φ

wwσ · · ·wσk−1 · f φσk

f φ

= (wwσ · · ·wσk−1
)φ

wwσ · · ·wσk−1

(f σ f σ 2 · · ·f σk
)φ

(ff σ · · ·f σk−1
)φ

=
(

wφ

w

f φσ

f φ

)(
wφ

w

f φσ

f φ

)σ

· · ·
(

wφ

w

f φσ

f φ

)σk−1

∈ K∗

by (3). The proof is complete. �

Lemma 5.2 Let m > n and φ ∈ Aut(L). The following statements are equivalent:

(a) There exists an autotopism of type φ.
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(b) ζφ lies in the orbit of ζ under PGL(2,K) (acting naturally on PG(1,L)). More-
over, if

ζφ = F(ζ )

E(ζ )
; F(X),E(X) ∈ K[X], 0 ≤ degF(X),degE(X) ≤ 1,

then E(ζ )wφ−1 ∈ Lσ−1K if n = 2, and E(ζ ) ∈ K , wφ−1 ∈ Lσ−1K if n > 2.

Proof (a) ⇒ (b) We choose the same notation as in the proof of Lemma 5.1. Write
m = en + r .

Then for 0 ≤ k < n, we have α−1
1 Skα2 = Sk . Set L(k) = ⊕e

i=0 Kζ i for k < r and

L(k) = ⊕e−1
i=0 Kζ i for r ≤ k < n. Then Sk = T kL(k). Set

Ak = (wwσ · · ·wσk−1
)φ

wwσ · · ·wσk−1 f φσk

v.

The same computation as in the proof of Lemma 5.1 shows that AkL(k)φ = L(k)

(⇔ A−1
k L(k) = L(k)φ). By Lemma 2.4 (with ζ in the role of u, ζφ in the role of w)

we have

ζφ = F(ζ )

E(ζ )
; F(X) = a + bX, E(X) = g + hX ∈ K[X],

and

Ak ≡
{

E(ζ )e, 0 ≤ k < r,

E(ζ )e−1, r ≤ k < n,
modK∗.

In particular,

E(ζ ) ≡ Ar−1

Ar

= (
w1−φ

)σ r−1(
f 1−σ

)φσ r−1
modK∗.

This implies that

g + hζ ∈ (
w1−φ

)σ r−1
L1−σ K.

If n = 2, then r = 1 and E(ζ ) = g + hζ ∈ (w1−φ)L1−σ K = (w1−φ)Lσ−1K , and we
are done.

So assume n > 2. Then n − 1 > r or r > 1. We only treat the case n − 1 > r ; the
other case is similar. In the first case, Ar ≡ Ar+1 mod K∗. Hence,

Ar+1

Ar

= (
wφ−1)σ r (

f σ−1)φσ r ∈ K∗.

This implies that
(
w1−φ

)σ r−1 ≡ (
f σ−1)φσ r−1

modK∗,

and therefore

E(ζ ) ≡ (
w1−φ

)σ r−1(
f 1−σ

)φσ r−1 ≡ 1 modK∗.



J Algebr Comb (2011) 34:641–669 659

So we may assume that E(ζ ) = 1 and ζφ = F(ζ ) = a + bζ .
The case r > 1 (use A0 and A1) leads to the same assertion. So (b) holds.
(b) ⇒ (a). Assume now that ζφ = F(ζ )

E(ζ )
, where F(X),E(X) ∈ K[X] have the

shape from above. Moreover, assume that E(ζ ) ∈ (w1−φ)L1−σ K if n = 2 and E(ζ ) ∈
K , wφ−1 ∈ L1−σ K if n > 2. In both cases choose f ∈ L∗ such that

(
f φ

)1−σ ≡ E(ζ )wφ−1 modK∗

and define v ∈ L∗ by the equation

A0 = E(ζ )e = f φv.

Moreover, define Ak,L(k), 1 ≤ k < n, as above. Using Lemma 2.4, a straightforward
computation shows that

AkL(k)φ = L(k).

Then α−1
1 = φ−1f and α2 = φv define an autotopism of type φ. �

Remark The case m > n = 2 is implicitly contained as Theorem 5 in the article of
Johnson, Polverino, Marino and Trombettti [7].

6 The case n ≥ m

We keep the description of V , T , and autotopisms as explained in 2.1 and 3.1. We
assume throughout this section that

n ≥ m.

In view of the previous section, we may assume that

d = (m,n) > 1.

It will be convenient to write k(j) instead of kσj
for k ∈ K and j = 0,1, . . .

Lemma 6.1 Assume that m = n. Then F � K � L.

(a) G1/M � {φ ∈ Aut(L) |wφ−1 ∈ K0}.
(b) G0/G1 � C2 if m = 2 and G0 = G1 otherwise.

Proof We have S = ⊕m−1
i=0 T iK .

(a) Let α = (α1, α2) be a diagonal autotopism of type φ ∈ Aut(L). We write α−1
1 =

diag(φ−1a0, φ
−1a1, . . .) and α2 = diag(φb0, φb1, . . .) as in 3.1. By adjusting α with

a suitable element from M we may assume a0 = b0 = 1 and α1 = α2. This implies
(note d = n) that

bi = 1

a
φ
i

, 1 ≤ i < n.
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For T k ∈ S1 = T K , there exists an � ∈ K with

α−1
1 T kα2 = T �,

and a computation leads to the equations

a
φ
1 = �(0)

kφ(0)
,

a
φ
2

a
φ
1

= �(1)

kφ(1)
,

a
φ
3

a
φ
2

= �(2)

kφ(2)
, . . . ,

a
φ
n−1

a
φ
n−2

= �(n−2)

kφ(n−2)
,

wφ−1

a
φ
n−1

= �(n−1)

kφ(n−1)
.

This implies that

NK:K0

(
�(0)

kφ(0)

)
= wφ−1.

Therefore, a necessary condition for the existence of a diagonal autotopism of type φ

is

wφ−1 ∈ K0.

We show that this condition is sufficient, too. So take a ∈ K such that NK:K0(a
φ) =

wφ−1 and define

a0 = 1, a1 = a(0), a2 = a(0)a(1), . . . , an−1 = a(0)a(1) · · ·a(n−2),

and α1 = α2 as above. A computation shows that

α−1
1 T α2 = T aφ.

Now α−1
1 T iα2 = (α−1

1 T α1)
i ∈ T iK follows. Hence, α = (α1, α2) defines a diagonal

autotopism associated with φ.
(b) Let α = (α1, α2) be a proper semidiagonal autotopism of type φ ∈ Aut(L). We

split our argument into subcases.
(1) Let α2 induce a permutation of order n. Then n = 2, and such autotopisms do

exist.
We may assume wlog that

xα2 = (
b1x

φ
1 , b2x

φ
2 , . . . , bn−1x

φ
n−1, b0x

φ
0

)
,

and by adjusting the autotopism with a suitable element from M we may even assume
that α−1

1 α2 = T , a0 = 1, and b0 = w. This implies that

bi = 1

a
φ
i

, 1 ≤ i < n.
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Assume first that n = 2. Then α−1
1 T α2 ∈ S0 = K , which shows that there exists a

k ∈ K such that

k(0) = wφ

a
φ
1

, k(1) = a
φ
1 w.

Choosing φ = σ and a1 = 1, we obtain a solution.
So we assume from now on that n > 2. Then α−1

1 T α2 = kT 2 for some k ∈ K .
Comparing both sides, we obtain the equations

a1 = kϕ(1), a2 = kϕ(1)kϕ(2), . . . , an−1 = kϕ(1)kϕ(2) · · ·kϕ(n−1)

with ϕ = φ−1. This forces, as in (a), wφ−1 = NK:K0(k).
Finally, α−1

1 T n−1α2 ∈ K , i.e., there exists � ∈ K such that the equations

�(0) = wφ

a
φ
1

, �(1) = wφa
φ
1

a
φ
2

, . . . , �(n−2) = wφa
φ
n−2

a
φ
n−1

, �(n−1) = wa
φ
n−1

hold. Replacing the ai ’s, we get

�(0) = wφ

k(1)
, �(1) = wφ

k(2)
, . . . , �(n−2) = wφ

k(n−1)
,

and

�(n−1) = wk(1)k(2) · · ·k(n−1) = wφ

k(0)
.

This shows that wφ = �(0)k(1) = �(n−1)k(0), forcing wσ = w, a contradiction. Hence,
(1) is true.

(2) Let n = 2k, k > 1. Then 2 is not the order of the permutation induced by α2.
Assume the contrary. Then

xα2 = (
bkx

φ
k , . . . , bn−1x

φ
n−1, b0x

φ
0 , . . . , bk−1x

φ
k−1

)
,

and adjusting α with a suitable element from M , we may even assume that a0 = 1
and α−1

1 α2 = T k . This shows that

b0 = w, bi = w

a
φ
i

, 1 ≤ i < k; bi = 1

a
φ
i

, k ≤ i < n.

Also, α−1
1 T α2 = �T k+1 for some � ∈ K . We obtain the equations

�(0)w = wφbn−1, �(1)w = a
φ
1 b0, . . . , �(k)w = a

φ
k bk−1,

�(k+1) = a
φ
k+1bk, . . . , �(n−1) = a

φ
n−1bn−2.

This leads to

a
φ
1 = �(1), a

φ
2 = �(1)�(2), . . . , a

φ
n−1 = �(1)�(2) · · ·�(n−1),
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and

wφ−1 = NK:K0(�).

Finally, we have α−1
1 T kα2 = s with s ∈ K . One obtains the equations

s(0) = wφbk, s(1) = wφa
φ
1 bk+1, . . . , s(k−1) = wφa

φ
k−1bn−1,

s(k) = a
φ
k b0, . . . , s(n−1) = a

φ
n−1bk−1.

We eliminate the ai ’s and the bi ’s and get

s(i) = wφ

�(i+1) · · ·�(k+i)
, s(k+i) = w�(i+1) · · ·�(k+i), 0 ≤ i < k.

In particular,

s(1) = wφ(1)

�(2) · · ·�(k+1)
= wφ

�(2) · · ·�(k+1)
.

But then wφ(1) = wφ , a contradiction. This implies assertion (2).
Using (1) and (2), we may now assume that n > 2 and that the permutation induced

by α2 has an odd order r , where r is a proper divisor of n, say n = f r . Then α2 leaves
invariant the subspace

Ṽ = U0 ⊕ Uf ⊕ · · · ⊕ U(r−1)f ,

S̃ = K ⊕ KT f ⊕ · · · ⊕ KT (r−1)f

induces on W̃ = Ṽ × Ṽ a cyclic semifield plane, and αW̃ induces a semidiagonal
autotopism whose associated permutation has order r . This shows that we are in the
situation of (1). Hence r ≤ 1, i.e., the autotopism is diagonal. The proof is com-
plete. �

Lemma 6.2 Assume that m < n. Then G0 is the group of diagonal autotopisms. Let
φ be an automorphism of L. The following statements are equivalent:

(a) There exists a diagonal autotopism associated with φ.
(b) wφ−1 ∈ K1+σ+···+σd−1

Lγ−1.

In particular, G0/M � {φ ∈ Aut(L) |wφ−1 ∈ K1+σ+···+σd−1
Lγ−1}.

Proof The first assertion follows from Proposition 4.1. Let α = (α1, α2) be a diagonal
autotopism associated with φ ∈ Aut(L) (we represent the αi ’s as in the proof of 6.1).
Since Si = T iK , and Si is the set of σ i -linear maps in S, we have α−1

1 Siα2 = Si . In
particular, by adjusting α with some element from M we may assume that α1 = α2.
This implies that

bi = 1

a
φ
i

, 0 ≤ i < d.



J Algebr Comb (2011) 34:641–669 663

There exists some k ∈ K such that α−1
1 T α2 = T k. We obtain the equations

a
φ
1 b0 = k(0), . . . , a

φ
d−1bd−2 = k(d−2), wφa

γφ

0 bd−1 = wk(d−1).

Eliminating the bi ’s, we get

a
φ
1 = k(0)a

φ
0 , a

φ
2 = k(0)k(1)a

φ
0 , . . . , a

φ
d−1 = k(0)k(1) · · ·k(d−2)a

φ
0 ,

and

wφ−1a
γφ

0 = k(0)k(1) · · ·k(d−1)a
φ
0 .

Therefore, condition (b) is necessary for the existence of a diagonal autotopism of
type φ.

Conversely, we assume that condition (b) holds and show the existence of an au-
totopism. Choose a0 ∈ L and k ∈ K such that

wφ−1 = k(0) · · ·k(d−1)
(
a

φ
0

)1−γ

and define ai for 0 < i < d by

a
φ
i = k(0)k(1) · · · k(i−1)a

φ
0

and α1 = α2 by

xα−1
1 = (

a0x
φ−1

0 , . . . , ad−1x
φ−1

d−1

)
.

Then the above computations show that α−1
1 Siα2 = Si for i = 0,1. Now α−1

1 Siα2 =
α−1

1 Siα1 = Si follows for all 0 ≤ i < m. The proof is complete. �

Summarizing Theorem 1, Proposition 4.1, and Lemmas 5.1, 6.1 and 6.2, we have
the following:

Proposition 6.3 Assume that n ≥ m and use the notation of 2.1 and 3.1. Then M �
G1 � G0 � G, |M| = (qn − 1)2(qm − 1)/(q − 1), and |G : G0| = d . Moreover:

(a) G1/M � {φ ∈ Aut(L) |wφ−1 ∈ K1+σ+···+σd−1
Lγ−1}.

(b) G0/G1 � C2 if m = n = 2 and G0 = G1 otherwise.

7 The case m > n

We assume throughout this section that

m > n.

In view of Sect. 5, we may assume that

d = (m,n) > 1.
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We set further m = m′d , n = n′d . We recall, from 2.1 and 3.1, γ ∈ Aut(L) such that
γK = σd . A K-basis for L is {1, ζ, ζ 2, . . . , ζm′−1}, where

ζ = NL:F (w) = wwγ · · ·wγ n′−1
.

If x = ∑m′−1
i=0 xiζ

i , xi ∈ K , we set x(0) = x and

x(1) =
m′−1∑

i=0

xσ
i ζ i

and define inductively x(i+1) = (x(i))(1).

Lemma 7.1 Assume for φ ∈ Aut(L) that ζφ = a + bζ with a, b ∈ K0. Then for all
x ∈ L, we have

x(1)φ = xφ(1).

Proof Both mappings are additive. So it suffices to consider monomials of the form
x = kζ j , k ∈ K . We calculate

x(1)φ =
j∑

�=0

(
j

�

)
kσφaj−�b�ζ �

and

xφ(1) =
j∑

�=0

(
j

�

)
kφσ (aj−�b�)σ ζ �,

and the claim follows by the assumptions. �

Lemma 7.2 Assume that for φ ∈ Aut(L), both ζφ = a + bζ, a, b ∈ K0, and wφ−1 ∈
K1+σ+···+σd−1

Lγ−1 hold. Then there exists a diagonal autotopism of type φ.

Proof Choose s ∈ K and a0 ∈ L such that

wφ−1 = s(0)s(1) · · · s(d−1)a
φ(γ−1)

0 .

Define further a1, a2, . . . by

a
φ
1 = a

φ
0 s(0), a

φ
2 = a

φ
0 s(0)s(1), . . . , a

φ
d−1 = a

φ
0 s(0) · · · s(d−2)

and set

α−1
1 = diag

(
φ−1a0, . . . , φ

−1ad−1
)
.

Then

α1 = diag(φb0, . . . , φbd−1)
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with bi = 1/a
φ
i . Set α2 = α1 and α = (α1, α2). Then calculations show that

α−1
1 S0α1 = S0 and α−1

1 T α1 = T s. Then even α−1
1 Sα1 = S, and the assertion fol-

lows. �

Lemma 7.3 Assume that m > n > d > 1. Then G1/M is isomorphic to the subgroup
of φ ∈ Aut(L) such that ζφ = a + bζ , a, b ∈ K0, and wφ−1 ∈ K1+σ+···+σd−1

Lγ−1.

Proof Let m′ = en′ + r ′, r ′ < n′. Then m = en + r , r = r ′d < n. For 0 ≤ k < n, set
(as in the proof of Lemma 5.2)

L(k) =
{⊕e

i=0 Kζ i, 0 ≤ k < r,⊕e−1
i=0 Kζ i, r ≤ k < n.

Also set Lj = ⊕j

i=0 Kζ i , i.e., L(k) = Le if k < r and L(k) = Le−1 if r ≤ k < n.
Then

Sk = L(k)T k = T kL(k).

Moreover, S = S0 ⊕ · · · ⊕ Sd−1 with S0 = ⊕
d|j Sj = ⊕m′−1

i=0 KT di and Sk = T kS0,
0 ≤ k < d . Let α = (α1, α2) be a diagonal autotopism of type φ ∈ Aut(L). We rep-
resent α−1

1 and α2 as in the proof of 6.1. We verify the assertion of the lemma by
splitting the proof into intermediate steps.

Step 1. The restriction of S0 on Wi = Ui ⊕ Ui , 0 ≤ i < d , defines with respect to
the γ -linear operator T d a cyclic semifield plane.

Since dimF L = n′ (we identify Ui with L), the γ -linear operator (T d)Ui
is irre-

ducible (see [4], Cor. 2.5). Also, dimK L = m′, and the assertion follows from [6].
Step 2. We have:

(a) ζφ = F(ζ )
E(ζ )

, F (X),E(X) ∈ K[X], 0 ≤ degF(X),degE(X) ≤ 1. Moreover,

E(ζ ) ≡ (w1−φ)γ
r′−1

a
(1−γ )φγ r′−1

i modK∗ if n′ = 2 and wφ−1 ∈ KLγ−1, E(ζ ) ∈
K if n′ > 2.

(b) For 0 ≤ i < d and 0 ≤ k < n′, set

Ai
k = (wwγ · · ·wγ k−1

)φ

wwγ · · ·wγ k−1 a
φγ k

i bi .

Then Ai
kL(k)φ = L(k) and Ai

k ≡ E(ζ )e
′
modK∗, where e′ = e if k < r and e′ =

e − 1 if k ≥ r . In particular, Ai
0 = a

φ
i bi ≡ E(ζ )e modK∗.

Apply Step 1 and Lemma 5.2 onto the restriction of S0 and α to W0. Assertion (a)
follows. From the proof of this lemma and the restriction of S0 and α to Wi we obtain
the assertions from (b), too (the pair (f, v) of the proof of Lemma 5.2 is replaced by
(ai, bi)).

Set F = a + bX and E = g + hX. We can adjust the nominator and denominator
of the rational function F/E by some element from K∗, i.e., we can and do assume
that one of the coefficients a, b, g,h is 1.

Step 3. The element E(ζ ) lies in K∗ even if n′ = 2.
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A typical element s in S0 has the form s = diag(x(0), x(1), . . . , x(d−1)) with x ∈
L(0) = Le. For 0 ≤ i < d , we have

φ−1aix
(i)φbi = a

φ
i bix

(i)φ = Ai
0x

(i)φ,

which shows that

α−1
1 sα2 = diag

(
A0

0x
(0)φ,A1

0x
(1)φ, . . . ,Ad−1

0 x(d−1)φ
) ∈ S0.

This implies that, for 1 ≤ i < d and x ∈ Le,

(
Ai−1

0 x(i−1)φ
)(1) = Ai

0x
(i)φ.

By Step 2 we have Ai
0 = kiE(ζ )e with some ki ∈ K . We specialize x = ζ j . Then

x(i)φ = x(i) and Ai
0x

(i)φ = kiE(ζ )e(F (ζ )/(ζ ))j = kiE(ζ )e−jF (ζ )j , and we obtain

kσ
i−1

(
E(ζ )e−jF (ζ )j

)(1) = kiE(ζ )e−jF (ζ )j . (1)

Set mi = ki

kσ
i−1

. Then taking j = e, we get, for 1 ≤ i < d ,

e∑

j=0

((
e

j

)(
bσ

)j (
aσ

)e−j
)

ζ j = mi

e∑

j=0

(
e

j

)(
bjae−j

)
ζ j ,

and taking j = 0, we obtain

e∑

j=0

((
e

j

)(
hσ

)j (
gσ

)e−j
)

ζ j = mi

e∑

j=0

(
e

j

)(
hjge−j

)
ζ j .

This shows that
(
aσ

)e = mia
e,

(
bσ

)e = mib
e,

(
gσ

)e = mig
e,

(
hσ

)e = mih
e.

In particular, m1 = m2 = · · · = md−1. A typical element in Sd has the form

s = diag
(
γwx(0), . . . , γwx(d−1)

)
,

where x ∈ Ld . Then a similar computation as above shows that

α−1
1 sα2 = diag

(
γwA0

1x
(0)φ, γwA1

1x
(1)φ, . . . , γwAd−1

1 x(d−1)φ
) ∈ Sd .

We deduce that, for 1 ≤ i < d and x ∈ L(d) = Le−1 (note that r ′ = 1 as n′ = 2),

(
Ai−1

1 x(i−1)φ
)(1) = Ai

1x
(i)φ.

Taking x = ζ j , we obtain similarly as before,

�σ
i−1

(
E(ζ )e−1−jF (ζ )j

)(1) = �iE(ζ )e−1−jF (ζ )j (2)
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with some �i ∈ K . Now choosing j = 0 and j = e − 1, we obtain

(
aσ

)e−1 = nia
e−1,

(
bσ

)e−1 = nib
e−1,

(
gσ

)e−1 = nig
e−1,

(
hσ

)e−1 = nih
e−1,

where ni = �i

�σ
i−1

. Again, n1 = n2 = · · · = nd−1. Set z = m1
n1

. Then

aσ = za, bσ = zb, gσ = zg, hσ = zh.

Since one of the coefficients a, b, . . . is 1, we conclude that z = 1 and a, b, g,h ∈ K0.
This shows for j < m′ that

(
E(ζ )j

)(1) = E(ζ )j . (3)

Finally, α−1
1 S1α2 = S1. For s ∈ L(1), there exists s′ ∈ L(1) such that α−1

1 T sα2 =
T s′. Computing the left-hand side and comparing both sides, we see

a
φ
i bi−1L(1)φ = L(1), 1 ≤ i < d.

Since L(1) = Le, we deduce from Lemma 2.4 that a
φ
i bi−1 ≡ E(ζ )e modK∗ for all i.

This implies (as a
φ
i bi ≡ E(ζ )e modK∗)

a0 ≡ a1 ≡ · · · ≡ ad−1, b0 ≡ b1 ≡ · · · ≡ bd−1 modK∗.

Let z = a
φ
1 b0 = kE(ζ )e with k ∈ K . Then

α−1
1 T α2 = T diag

(
z(0), . . . , z(d−1)

)
,

which shows that

z(d−1) = wφ−1a
γφ

0 bd−1.

Also,

z(d−1) = wφ−1(aγ−1
0

)φ
a

φ
0 bd−1 ≡ wφ−1(aγ−1

0

)φ
a

φ
0 b0

≡ wφ−1(aγ−1
0

)φ
E(ζ )e modK∗.

We know by Step 2 and as r ′ = 1 that E(ζ ) ≡ w1−φ(a
1−γ

0 )φ modK∗. Using (3), this
yields

E(ζ )e−1 ≡ z(d−1) ≡ E(ζ )e modK∗.

But then E(ζ ) ∈ K , and the assertion of step 3 follows.
Step 4. The assertion of the lemma holds.
By Step 3 we have E(ζ ) ∈ K , which implies that Ai

0 ∈ K for 0 ≤ i < d . Hence,
we may adjust α by some element of M such that we even can assume that A0

0 = 1.
Since

α−1
1 1α2 = diag

(
1,A1

0, . . . ,A
d−1
0

) ∈ S,
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we deduce from Lemma 3.5 that all Ai
0 = 1 for all i, i.e., α1 = α2. Then for s =

diag(x(0), x(1), . . . , x(d−1)) ∈ S0, we obtain

α−1
1 sα1 = diag

(
x(0)φ, x(1)φ, . . . , x(d−1)φ

)
,

which in turn implies that the equation

x(1)φ = xφ(1)

must hold for all x ∈ L(0) = Le. In particular,

a + bζ = ζ (1)φ = ζφ(1) = aσ + bσ ζ,

which forces

a, b ∈ K0. (4)

Conversely, this condition implies by Lemma 7.1 that our equation x(1)φ = xφ(1)

holds even for x ∈ L. Moreover, L(k)φ = L(k) for all k. We have α−1
1 T α1 = T s with

s ∈ L(1) = Le . Also, α−1
1 T tα1 = α−1

1 T α1α
−1
1 tα1 = T α−1

1 tα1s for t ∈ Le , which
implies Les = Le. So, by Lemma 2.5,

s ∈ K.

We already have seen in step 3 that α−1
1 T α1 = T s leads to the equations

s(0) = a
φ
1 b0, . . . , s

(d−2) = a
φ
d−1bd−2, s(d−1)w = a

γφ

0 bd−1w
φ.

This shows (using bi = a
−φ
i ) that

wφ−1 = s(0)s(1) · · · s(d−1)a
φ(1−γ )

0 = s1+σ+···+σd−1
b

γ−1
0 .

Therefore, the condition

wφ−1 ∈ K1+σ+···+σd−1
Lγ−1 (5)

is necessary for the existence of a diagonal autotopism of type φ. However, we see
by Lemma 7.2 that conditions (4) and (5) are even sufficient for the existence of the
autotopism. The proof is complete. �

Summarizing Theorem 1, Proposition 4.1, and Lemmas 5.2, 7.2, and 7.3, we ob-
tain the following:

Proposition 7.4 Assume that m > n and use the notation of 2.1 and 3.1. Denote by
G1 the subgroup of diagonal autotopisms. Then M � G1 � G0 � G, |M| = (qn −
1)2(qm − 1)/(q − 1), and |G : G0| = d . Moreover:

(a) Assume that n > d > 1. Then G0 = G1 and

G0/M � {
φ ∈ Aut(L) |wφ−1 ∈ K1+σ+···+σd−1

Lγ−1, ζ φ = a + bζ, a, b ∈ K0
}
.
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(b) Assume that n = d . Then [G0 : G1] divides n, and G1/M contains a subgroup
isomorphic to

{
φ ∈ Aut(L) |wφ−1 ∈ K1+σ+···+σd−1

Lγ−1, ζ φ = a + bζ, a, b ∈ K0
}
.

Example 7.5 Assume that n = d < m. For φ ∈ Aut(L), define a K-subspace of L by

Lφ = {
c ∈ L | (cxφ

)(1) = c(1)x(1)φ, x ∈ L
}
.

Computations like the previous ones show that a necessary condition for the existence
of a diagonal or semidiagonal autotopism of type φ is that

Lφ �= 0.

Suppose now that n = 2, m = 4, and Lφ �= 0. Computations show that a diagonal
autotopism of type φ exists iff wφ−1 ∈ K1+σ and that a semidiagonal autotopism of
type φ exists iff wφ+1 ∈ K1+σ . In the special case K = GF(4), L = F = GF(16),
a computer calculation shows that Lφ �= 0 iff |φ| = 2. Also |w| is divisible by 5.
Therefore, no diagonal autotopism of type φ exists. A semidiagonal autotopism of
type φ exists if and only if |w| = 5.

Final remarks (a) Assume the notation of Sect. 7. A complete treatment of the case
n = d , n < m, would require a characterization of the sets Lφ for φ ∈ Aut(L), where
Lφ is defined as in the previous example. We do not have such a characterization.

(b) Let V be an m-dimensional vector space over a not necessarily finite field K .
Let σ ∈ Aut(K) be of order n, and let T be an irreducible, σ -linear operator on V .
It is easy to see that S = ∑m−1

i=0 KT i still defines a semifield. Let F = CEndK0 (V )(T )

be a field (not merely a skew field), i.e., T be separable in the sense of [4]. Then
Theorem 1 is still true: by [4] the description of T is completely analogous as in the
case |K| < ∞, and it is not hard to see that all arguments of the proof of Theorem 1
carry over to our more general situation.
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