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Abstract Results of R. Stanley and M. Masuda completely characterize the h-
vectors of simplicial posets whose order complexes are spheres. In this paper we
examine the corresponding question in the case where the order complex is a ball.
Using the face rings of these posets, we develop a series of new conditions on their
h-vectors. We also present new methods for constructing poset balls with specific
h-vectors. Combining this work with a new result of S. Murai we are able to give a
complete characterization of the h-vectors of simplicial poset balls in all even dimen-
sions, as well as odd dimensions less than or equal to five.

Keywords Simplicial poset · f -vector · Face ring · h-vector

1 Introduction

A simplicial poset P is a finite poset containing a minimal element 0̂ such that for
every p ∈ P the closed interval [0̂,p] is a Boolean algebra. For any simplicial poset P

there is a regular CW-complex Γ (P ) such that P is the face poset of Γ (P ) (see [1]).
The closed faces of Γ (P ) are simplexes, but two faces can intersect in a subcomplex
of their boundaries instead of just a single face. In particular, Γ (P ) can have multiple
faces on the same vertex set. Throughout this paper we will identify each closed face
of Γ (P ) with the corresponding element of the poset P .

Let P = P − {0̂}. The order complex of P , denoted Δ(P ), is the simplicial com-
plex whose vertices are the elements of P and whose faces are the chains of P .
For a simplicial poset P , when we refer to the order complex of P we mean Δ(P ).
The spaces Γ (P ) and |Δ(P )| are homeomorphic (in fact, Δ(P ) is isomorphic to the
barycentric subdivision of Γ (P )). Therefore, in the following we will often refer to
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topological properties of Γ (P ) or |Δ(P )| as being properties of the poset P . In this
paper we study simplicial posets that are balls.

The ith face number of Γ (P ), denoted fi(Γ (P )), is the number of i-dimensional
faces of Γ (P ). Equivalently, fi(Γ (P )) is the number of elements p ∈ P such that
[0̂,p] is a Boolean algebra of rank i +1. In particular, f−1(Γ (P )) = 1 corresponding
to the empty face in Γ (P ) or the element 0̂ in P . The dimension of Γ (P ) is the largest
i such that fi(Γ (P )) is non-zero. We define fi(P ), the ith face number of the poset
P , by fi(P ) = fi(Γ (P )). If the poset P is clear from the context we often write fi

instead of fi(P ) or fi(Γ (P )).
Let d − 1 be the dimension of P . We record all of the face numbers of P in a

single vector f (P ) = (f−1, f0, f1, . . . , fd−1) called the f-vector of P . It will often
be easier to work with an equivalent encoding of the face numbers called the h-vector.
The entries of the h-vector (h0, h1, . . . , hd) are obtained from the face numbers by
the relation

d∑

i=0

hix
i =

d∑

i=0

fi−1x
i(1 − x)d−i .

In the case where Γ (P ) is a simplicial complex, this definition of the h-vector
of Γ (P ) agrees with the standard definition of the h-vector of a simplicial
complex. Note that if P is a simplicial poset of dimension d − 1 then hd =∑d

i=0(−1)d−ifi−1 = (−1)d−1χ̃ (Γ (P )). In particular, if P is a (d − 1)-ball then
hd = 0. In many cases we will study the differences between consecutive entries of
the h-vector. We therefore define gi := hi − hi−1, with g0 := h0 = 1.

A significant area of study is characterizing the possible f -vectors of various
types of simplicial posets. Complete characterizations are already known for Cohen–
Macaulay posets (see Sect. 2), spheres, products of spheres, and real projective
spaces. For simplicial posets that are spheres, sufficiency was proved by Stanley
[9, Theorem 4.3, Remark 4] and necessity by Masuda [4, Corollary 1.2].

Theorem 1 Let h = (h0, h1, . . . , hd) ∈ N
d+1. Then there exists a simplicial poset P

with h(P ) = h and Γ (P ) homeomorphic to a (d − 1)-sphere if and only if h0 = 1,
hi = hd−i for 0 ≤ i ≤ d , and either hi > 0 for 0 ≤ i ≤ d or

∑d
i=0 hi is even.

The equations hi = hd−i are a generalized version of the Dehn–Sommerville equa-
tions. Because of this symmetry in the h-vector, whenever d is odd

∑d
i=0 hi is always

even and the final condition in Theorem 1 is automatically satisfied. In the case where
d is even the parity of

∑d
i=0 hi is equal to the parity of hd/2. Extending these ideas

and using the concept of crystallizations to obtain new constructions, Murai recently
characterized the f -vectors of RP n and products of spheres [8].

In this paper we investigate the question of characterizing the h-vectors of posets
P such that Γ (P ) is a ball. Section 3 relates the h-vector of a poset that is a ball
to the h-vector of its boundary poset, which is a sphere. This allows us to translate
known conditions on the h-vectors of spheres to conditions on our ball. However, as
in the case of simplicial complexes that are balls, these conditions are not sufficient
to characterize the h-vectors of balls [2].
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In Sects. 4 and 5 we develop additional necessary conditions on the h-vectors of
balls. In Sect. 4 we show that when h1 of the boundary sphere is zero there is a
surjective map from the face ring of the ball modulo a linear system of parameters to
the face ring of the boundary sphere modulo a related linear system of parameters.
This result gives a series of new inequalities relating the entries of the h-vectors of
the ball and the boundary sphere. We also state a recent generalization of this result
due to Murai for the case when a general hi of the boundary sphere is zero.

Section 5 gives a number of conditions on the h-vector of a ball that force the
sum of the entries of the h-vector to be even. All of these conditions require that
some entry of h-vector of the ball is zero (besides hd , which is always zero) and that
some entry of the h-vector of the boundary sphere is also zero. The first two results
in this section follow from counting arguments involving the incidences of facets and
codimension-one faces of the ball. The other two conditions are derived by adding
to our ball the cone over the boundary of the ball, resulting in a sphere of the same
dimension as the original ball. We then look at the restriction map from the face ring
of this new sphere to the face ring our original ball and use this map to transfer known
conditions on the sphere to conditions on the ball.

In Sect. 6 we present constructions for obtaining simplicial posets that are balls
and have specific h-vectors. These constructions all use the idea of shellings [1, Def-
inition 4.1] to ensure that the resulting complex is a ball and that it has the desired
h-vector. We present two general constructions as well as a third result that yields
additional h-vectors in dimension five. We conclude the paper in Sect. 7 by using
the previous results to give a complete characterization of the h-vectors of simplicial
posets that are balls in all even dimensions as well as in dimensions three and five.
We also discuss what types of problems remain in the higher odd dimension cases.

2 Notation and background

In this section we provide background on many of the ideas mentioned in the intro-
duction, as well as some additional useful results of Masuda about simplicial poset
spheres.

2.1 Shellings of Γ (P )

The facets of any CW-complex are the maximal faces with respect to inclusion.
A CW-complex is pure if all of its facets have the same dimension. Let P be a sim-
plicial poset of dimension d − 1. Then the facets of Γ (P ) correspond to the maximal
elements of P .

Consider the case where Γ (P ) is a pure complex. A shelling of Γ (P ) is an or-
dering F1,F2, . . . ,Ft of the (closed) facets of Γ (P ) such that Fj ∩ (

⋃j−1
i=1 Fi) is a

union of (closed) facets of ∂Fj . This is equivalent to the definition of a shelling of a
CW-complex used by Björner [1, Definition 4.1] specialized to the case of Γ (P ) for
a simplicial poset P . Define the restriction face of Fk , denoted σ(Fk), to be the set
of vertices v of Fk such that the facet of ∂Fk not containing v is in

⋃k−1
i=1 Fi . Then

the entries of the h-vector of P are given by hj = |{Fk : |σ(Fk)| = j}|. We also use
σ(Fk) to refer to the face of Fk containing exactly the vertices in the set σ(Fk).
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2.2 Cones of posets

Given a simplicial poset P , the cone over P is the simplicial poset P × [1,2] where
[1,2] is the poset of two elements with 2 > 1. More specifically, the elements of
P × [1,2] are the ordered pairs (p, i) where p ∈ P and i ∈ {1,2} and the covering
relations are:

– If p covers q in P , then (p, i) covers (q, i) in P × [1,2] for i ∈ {1,2}.
– For all p ∈ P , (p,2) covers (p,1) in P × [1,2].
Topologically, Γ (P × [1,2]) is the cone over Γ (P ). The dimension of P × [1,2] is
one greater than that of P . A straightforward calculation shows that the h-vector of
P × [1,2] is the same as that of P except being augmented by hd+1 = 0.

2.3 The face ring of a simplicial poset

We now describe Stanley’s idea of the face ring of a simplicial poset [9]. Let k be
an infinite field. Define S := k[xp : p ∈ P ] to be the polynomial ring over k with
variables indexed by the elements of P . We define a grading on S by letting the
degree of xp be one more than the dimension of the face in Γ (P ) corresponding to
p (so [0̂,p] is a Boolean algebra of rank equal to the degree of xp). For elements p

and q in P the meet of p and q , denoted p ∧ q , is the largest element that is less than
both p and q . Since P is a simplicial poset we know that the element p ∧ q is well
defined whenever p and q have a common upper bound. Define IP to be the ideal of
S generated by all elements of the form xpxq − xp∧q

∑
r xr where the sum is over

all minimal upper bounds r of p and q . In the case where p and q have no common
upper bound in P , this reduces to the element xpxq . If p ∧ q = 0̂ then let xp∧q = 1.
Define the face ring of P to be AP := S/IP .

2.4 Cohen–Macaulay simplicial posets

A simplicial poset P is Cohen–Macaulay if its order complex Δ(P ) is a Cohen–
Macaulay simplicial complex. For a simplicial complex Δ, Munkres [6] proved
that Δ is Cohen–Macaulay if and only if for all points p ∈ |Δ| and all i < dimΔ,
H̃i(|Δ|; k) = Hi(|Δ|, |Δ| − p; k) = 0. In particular, whenever |Δ(P )| ∼= Γ (P ) is a
ball or sphere P is Cohen–Macaulay. Stanley proved that a simplicial poset P is
Cohen–Macaulay if and only if its face ring AP is a Cohen–Macaulay ring [9, Corol-
lary 3.7]. Using this result, Stanley [9, Theorem 3.10] showed that if Q is a Cohen–
Macaulay simplicial poset then h0(Q) = 1 and hi(Q) ≥ 0 for i ≥ 1 (he also proved
that these are sufficient conditions to characterize the h-vectors of Cohen–Macaulay
simplicial posets). Stanley’s book [11] is a good reference for more information on
Cohen–Macaulay rings and complexes.

Let T = T0 ⊕ T1 ⊕ · · · be a finitely generated graded algebra over the (infinite)
field k = T0. The Hilbert function of T is F(T , i) := dimk Ti where i ≥ 0. Let d be
the Krull dimension of T . Then a linear system of parameters (l.s.o.p) for T is a col-
lection of elements θ1, . . . , θd ∈ T1 such that T is finitely generated as a k[θ1, . . . , θd ]-
module. From [9, Theorem 3.10] we know that when P is a Cohen–Macaulay sim-
plicial poset, dimAP = dim(Γ (P )) + 1 and an l.s.o.p. for AP exists. Further, when
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P is a Cohen–Macaulay simplicial poset and θ1, . . . , θd is an l.s.o.p. for AP we have
F(AP /(θ1, . . . , θd), i) = hi(P ) [9, Theorem 3.8].

2.5 Additional results about simplicial poset spheres

As mentioned in the introduction, Theorem 1 gives a complete characterization of the
possible h-vectors of simplicial posets that are spheres. In addition to the numerical
result we will often need some of the stronger statements that were used to prove
the necessity of the claim. The following theorem is discussed on pages 343–344 of
the original proof of necessity due to Masuda [4] and is Theorem 2 in the paper [5]
published two years later by Miller and Reiner giving a simplified proof of Masuda’s
result.

Theorem 2 Let P be a simplicial poset such that Γ (P ) is a (d − 1)-sphere.
If hi(P ) = 0 for some i strictly between zero and d , then for every subset V =
{v1, . . . , vd} of the vertices of Γ (P ) the number of facets of Γ (P ) with vertex set
V is even.

One consequence of the proof of Theorem 2 is the following result that relates the
parity of the number of facets on a vertex set to the product of the variables in the
algebra AP corresponding to those vertices.

Proposition 3 Let P be a simplicial poset such that Γ (P ) is a (d − 1)-sphere and
let V = {v1, . . . , vd} be a subset of the vertices of Γ (P ). Let Θ = θ1, . . . , θd be an
l.s.o.p. for AP . If xv1 · · ·xvd

is zero in AP /Θ then there are an even number of facets
of Γ (P ) with vertex set V .

3 The h-vector of the boundary of a simplicial poset

The goal of this section is to relate the h-vector of a simplicial poset P such that
Γ (P ) is a manifold with boundary to the h-vector of the boundary complex. In the
case of balls, this will allow us to use Theorem 1 about the h-vectors of spheres to
restrict the possible h-vectors of balls.

Our starting point is a paper by I.G. Macdonald [3, Theorem 2.1] that gives the de-
sired relationship for the case of simplicial complexes whose geometric realizations
are manifolds with boundary. The entire first section of Macdonald’s paper is done
in the generality of cell complexes and applies in our case. When Macdonald proves
Theorem 2.1, the only property of simplicial complexes that he uses is the fact that
for each simplex y in the complex the interval [0̂, y] in the face poset is a Boolean
algebra. Since this fact is true for simplicial posets, Macdonald’s result holds in this
more general setting as well. Expressing his result in terms of h- and g-vectors we
have the following theorem.

Theorem 4 Let P be a (d − 1)-dimensional simplicial poset such that Γ (P ) is a
manifold with boundary. Then

hd−i (P ) − hi(P ) =
(

d

i

)
(−1)d−1−i χ̃

(
Γ (P )

) − gi

(
∂Γ (P )

)

for all 0 ≤ i ≤ d .
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In the special case where Γ (P ) is a (d − 1)-ball this reduces to the equation
hi(P ) − hd−i (P ) = gi(∂Γ (P )). In particular, for 0 ≤ j ≤ d we have

hj

(
∂Γ (P )

) =
j∑

i=0

(
hi(P ) − hd−i (P )

)
. (1)

By this result and the Dehn–Sommerville equations, in the case where d is odd we
have

d∑

i=0

hi(P ) ≡ h(d−1)/2
(
∂Γ (P )

) ≡
d−1∑

i=0

hi

(
∂Γ (P )

)
mod 2. (2)

Using this relationship we now give a first set of necessary conditions on the h-
vectors of simplicial poset balls. As discussed in Sect. 2, any simplicial poset P such
that Γ (P ) is a ball is a Cohen–Macaulay poset. Combining Stanley’s characterization
of the h-vectors of Cohen–Macaulay posets with Theorem 1 and (1) and (2) we have
the following.

Theorem 5 Let P be a (d −1)-dimensional simplicial poset such that Γ (P ) is a ball.
Then h0(P ) = 1, hd(P ) = 0, hi(P ) ≥ 0 for all i, and

∑j

i=0(hi(P ) − hd−i (P )) ≥ 0

for 0 ≤ j ≤ 
(d − 1)/2�. Further, if d is odd and
∑j

i=0(hi(P ) − hd−i (P )) = 0 for

some 0 ≤ j ≤ 
(d − 1)/2�, then
∑d

i=0 hi(P ) is even.

4 Inequalities relating a ball and its boundary

Consider a simplicial poset ball such that h1 of the boundary sphere is zero. In the
following we derive inequalities relating the h-vectors of the boundary sphere and the
ball in this case. The idea of the argument follows that of a similar result by Stanley
[10, Theorem 2.1] for the h-vectors of simplicial complexes.

One of the main tools in this proof is a useful characterization of linear systems of
parameters for the ring AP . Fix an ordering {v1, . . . , vn} of the vertices of Γ (P ). Let
θ1, . . . , θd be a collection of homogeneous degree-one elements of AP . We can write
each element of our collection as a linear combination of the xvj

, θi = ∑n
j=1 Θi,j xvj

.
This gives a d × n matrix Θi,j whose rows correspond to the θi .

Let F be a facet of Γ (P ). Define ΘF to be the d × d submatrix of Θi,j obtained
by restricting to the columns corresponding to the vertices of F . Then we have the
following characterization of the collections of degree one elements that are linear
systems of parameters.

Lemma 6 Let P be a simplicial poset and let θ1, . . . , θd be a collection of homoge-
neous degree one elements of AP . Then θ1, . . . , θd is an l.s.o.p. for AP if and only if
det(ΘF ) �= 0 for all facets F of Γ (P ).

The only if part of the lemma was proved by Masuda [4, Lemma 3.1] and Miller
and Reiner [5, p. 1051]. The if direction follows from Proposition 5 of Miller
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and Reiner’s paper. In this proposition Miller and Reiner show that for an l.s.o.p.
θ1, . . . , θd , AP /(θ1, . . . , θd) is spanned k-linearly by the images of the xG for all el-
ements G ∈ P . The only property of the l.s.o.p. used in the proof is the non-zero
determinant assumption in the above lemma.

Let P be a (d − 1)-ball. Then ∂(Γ (P )) is a (d − 2)-sphere. If h1(∂(Γ (P ))) = 0
we know that ∂(Γ (P )) has only d − 1 vertices. Therefore every facet of ∂(Γ (P ))

has the same vertex set. Let F be a facet of Γ (P ) such that a codimension-one face
of F is in ∂(Γ (P )). Let v be the vertex of F that is not ∂(Γ (P )). Note that all of the
vertices of Γ (P ) not in F are interior vertices.

Let θ1, . . . , θd be an l.s.o.p. for AP . By Lemma 6 we know that ΘF has non-
zero determinant. Thus the span of {θ1, . . . , θd} contains some element θ ′ = xv +∑

w/∈F cwxw where the sum is over the vertices of Γ (P ) not in F and the cw are
constants in k. This allows us to choose a new l.s.o.p. θ ′

1, . . . , θ
′
d for AP such that

θ ′
d is a linear combination of interior vertices of Γ (P ). By Lemma 6 we know that

det(Θ ′
G) �= 0 for all facets G of Γ (P ).

Let Q be the face poset of ∂Γ (P ). Let f : AP → AQ be given by setting all
variables corresponding to faces in Γ (P )\∂Γ (P ) equal to zero. Identify the l.s.o.p.
θ ′

1, . . . , θ
′
d with its image under f in AQ. Let H be any facet of ∂Γ (P ). The last row

of Θ ′
H is all zeros, so the (d − 1) × (d − 1) minor given by the first (d − 1) rows

must have a non-zero determinant. Again using Lemma 6 we see that θ ′
1, . . . , θ

′
d−1 is

an l.s.o.p. for ∂Γ (P ).
Therefore, f induces a degree preserving surjection

f : AP /
(
θ ′

1, . . . , θ
′
d

) → AQ/
(
θ ′

1, . . . , θ
′
d−1

)
.

Hence hi(P ) = F(AP /(θ ′
1, . . . , θ

′
d), i) ≥ F(AQ/(θ ′

1, . . . , θ
′
d−1), i) = hi(Q). We

have therefore proved the following theorem.

Theorem 7 Let P be a (d − 1)-dimensional simplicial poset such that Γ (P ) is a
ball and h1(∂(Γ (P ))) = 0. Then hi(P ) ≥ hi(∂(Γ (P ))) for all i ≥ 0.

Now consider the case of a ball P such that hn(∂(Γ (P ))) = 0 for some n > 0. If
we let {θ1, . . . , θd} be a generically chosen set of linear forms, then Murai [7] noted
that there is a surjection

g : AP /
(
θ1, . . . , θd−1, θ

n
d

) → AQ/(θ1, . . . , θd−1).

Using this surjection along with the fact

dimk

(
AP /(θ1, . . . , θd−1)

)
l
= h0(P ) + h1(P ) + · · · + hl(P )

Murai was able to prove the following generalization of the previous theorem.

Theorem 8 (Murai) Let P be a (d −1)-dimensional simplicial poset such that Γ (P )

is a ball and hn(∂(Γ (P ))) = 0. Then

hl(∂P ) ≤ hl(P ) + hl−1(P ) + · · · + hl−(n−1)(P ) for l ≥ n.
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5 Parity conditions on the sum of the hi(P )

If P is a simplicial poset ball of even dimension (so d is odd) we already know
from Theorem 5 that if any hk(∂Γ (P )) is zero then

∑d
i=0 hi(P ) is even. For odd-

dimensional balls the situation is not as simple. In this section we derive a series of
different conditions under which the sum of the hi(P ) must be even. All of these
conditions involve some hk(∂Γ (P )) and some hj (P ) being zero. However, we will
see in Section 6 that for odd-dimensional balls there are cases where the h-vector of
the boundary sphere has a zero entry and

∑d
i=0 hi(P ) is odd.

5.1 Conditions from counting arguments

Our first two examples of this new type of condition follow from counting arguments
involving the faces of our complexes. The main idea in both proofs is the follow-
ing connection between a zero in the h-vector of the boundary sphere and a parity
condition on the incidences between facets and codimension-one faces.

Lemma 9 Let P be a (d − 1)-dimensional simplicial poset such that Γ (P ) is a ball
and hk(∂Γ (P )) = 0 for some k strictly between zero and d − 1. Then every set of
d − 1 vertices of P is contained in an even number of facets (possibly zero).

Proof Let S be a set of d − 1 vertices of Γ (P ). If S is not contained in any facet of
Γ (P ) we are done. Otherwise, let F be a face of Γ (P ) with vertex set S. If F is an
interior face of Γ (P ) then since Γ (P ) is a manifold there are exactly two facets of
Γ (P ) that have F as a codimension-one face. If F is a boundary face of Γ (P ) then
there is exactly one facet of Γ (P ) that has F as a codimension-one face. Further,
since some hk(∂Γ (P )) = 0, by Theorem 2 the number of boundary faces of Γ (P )

with vertex set S is even. Since no single facet of Γ (P ) can have multiple faces with
the same vertex set, the total number of facets of Γ (P ) that contain S is even. �

Now consider the case where Γ (P ) is a ball, h1(P ) = 0, and hk(∂Γ (P )) = 0 for
some k. By Lemma 9, any set of d − 1 vertices of P is contained in an even number
of facets. In terms of the face numbers, h1(P ) = 0 implies f0(P ) = d , meaning that
all of the vertices of Γ (P ) are in every facet. Therefore, every set of d − 1 vertices of
P is in every facet and hence the total number of facets of Γ (P ) is even. Recalling
that

∑d
i=0 hi(P ) is the number of facets of Γ (P ) we have the following proposition.

Proposition 10 Let P be a (d − 1)-dimensional simplicial poset such that Γ (P ) is
a ball, h1(P ) = 0, and hk(∂Γ (P )) = 0 for some k strictly between zero and d − 1.
Then

∑d
i=0 hi(P ) is even.

We can extend the result of Proposition 10 to the case h2(P ) = 0 (instead of
h1(P ) = 0) using a somewhat more involved argument based on the same ideas.

Proposition 11 Let P be a (d − 1)-dimensional simplicial poset such that Γ (P ) is
a ball, h2(P ) = 0, and hk(∂Γ (P )) = 0 for some k strictly between zero and d − 1.
Then

∑d
i=0 hi(P ) is even.
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Proof Pick a facet F0 of Γ (P ) with vertex set V = {v1, . . . , vd}. Let Δ0 be the in-
duced subcomplex on the vertex set V ; Δ0 consists of all of the faces of Γ (P ) whose
vertices are contained in the set V . Note that Δ0 contains at least

(
d
2

)
edges.

Let F1 be a facet of Γ (P ) − Δ0 that intersects Δ0 in a face of dimension
d − 2. Since Γ (P ) is a manifold, unless Γ (P ) = Δ0 such a facet F1 must exist.
If Γ (P ) = Δ0 then Γ (P ) has d vertices, so h1(P ) = 0 and we are in the case of
Proposition 10. Otherwise, let w1 be the vertex of F1 not in V and let Δ1 be the in-
duced subcomplex of Γ (P ) on the vertex set V ∪ {w1}. There must be at least d − 1
edges in Δ1 − Δ0 in order for the facet F1 to exist.

We can continue to build our complex in this manner until we reach Δh1 = Γ (P ).
This results in a minimum of

(
d
2

) + h1(P ) · (d − 1) edges in our complex. However,
since h2(P ) = 0 this is exactly the number of edges in Γ (P ). So we must have added
the minimum number of edges at each step in our construction. In particular, for
1 ≤ i ≤ h1, all of the facets of Δi that contain wi must have the same vertex set as Fi .

By Lemma 9 we know that every set of d − 1 vertices of Γ (P ) is contained in
an even number of facets. In particular, let S be a set of d − 1 vertices of Fh1 that
includes the vertex wh1 . The facets that contain the vertices of S are exactly those
facets whose vertex set equals the vertex set of Fh1 . Therefore, there must be an even
number of facets on the vertex set of Fh1 .

Since we are only interested in the parity of the number of facets on each vertex set
we can now ignore the contribution of the facets on the vertex set of Fh1 and repeat
the above argument on the complex Δh1−1 and the facet Fh1−1. Continuing in this
manner we see that there are an even number of facets on all of the sets of d vertices
of Γ (P ). Therefore Γ (P ) has an even number of facets, as desired. �

5.2 The cone over the boundary of Γ (P )

Let P be a simplicial poset such that Γ (P ) is a manifold with boundary and let Q

be the face poset of ∂(Γ (P )). Define the cone over the boundary of Γ (P ) to be
SP := P ∪ (Q × [1,2]) with each element (q,1) ∈ (Q × [1,2]) identified with the
element in P corresponding to q . The covering relations in SP are all of the covering
relations in P along with all of the covering relations in Q×[1,2]. In the case where
Γ (P ) is a (d − 1)-ball, Γ (SP ) is a (d − 1)-sphere.

We now consider the relationship between the algebras AP and ASP . Let v be
the cone point of SP ; v is the vertex corresponding to (0̂,2) in Q × [1,2]. There is
a natural surjective map f : ASP → AP given by setting all of the variables corre-
sponding to faces containing v equal to zero. If Θ = θ1, . . . , θd is an l.s.o.p. for ASP ,
then by Lemma 6 the image of Θ under f (which we also write as Θ) is an l.s.o.p.
for AP . Therefore, there is an induced map f : ASP /Θ → AP /Θ with kernel gen-
erated (modulo Θ) by monomials containing a variable corresponding to a face con-
taining v. We use this map f to prove the following lemma.

Lemma 12 Let P be a (d −1)-dimensional simplicial poset such that Γ (P ) is a ball
and hk(P ) = 0 for some k strictly between zero and d . Let V = {v1, . . . , vd−1, vd} be
a set of vertices of Γ (P ) such that vd is an interior vertex. Then Γ (P ) has an even
number of facets with vertex set V .
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Proof Let Θ be an l.s.o.p. for AP and let v be the cone point of SP as above.
Let m := xv1 · · ·xvk

be a monomial in (ASP )k . Since the dimension of (AP /Θ)k is
hk(P ) = 0 we know that m is in the kernel of the map f : ASP /Θ → AP /Θ defined
above. Therefore, in ASP /Θ we can write m as a linear combination of monomials
each containing a variable corresponding to a face containing v. Since vd is an inte-
rior vertex of Γ (P ), xvd

m is zero in ASP /Θ . Thus by Proposition 3 we know that
there must be an even number of facets of Γ (SP ) with vertex set V . Since the cone
point v is not in V , the facets of Γ (SP ) with vertex set V are exactly the same as the
facets of Γ (P ) with vertex set V , proving the desired result. �

5.3 The case h1(∂Γ (P )) = 0

Using Lemma 12 we now prove the following necessary condition.

Proposition 13 Let P be a (d −1)-dimensional simplicial poset such that Γ (P ) is a
ball, h1(∂Γ (P )) = 0, and hk(P ) = 0 for some 0 < k < d . Then

∑d
i=0 hi(P ) is even.

Proof Since h1(∂Γ (P )) = 0 we know that ∂Γ (P ) has only d −1 vertices. Therefore
every facet of Γ (P ) contains an interior vertex. By Lemma 12 there are an even num-
ber of facets (possibly zero) on every set of d vertices of Γ (P ). Hence

∑d
i=0 hi(P ),

which is the total number of facets of Γ (P ), is even. �

5.4 The case h1(∂Γ (P )) = 1

A slightly more complicated argument allows us to extend the result of Proposition 13
to the case where h1(∂Γ (P )) = 1 and some higher hj (∂(Γ (P )) is zero.

Proposition 14 Let P be a (d − 1)-dimensional simplicial poset such that Γ (P ) is
a ball, h1(∂Γ (P )) = 1, hj (∂Γ (P )) = 0 for some 1 < j < d − 1, and hk(P ) = 0 for
some 0 < k < d . Then

∑d
i=0 hi(P ) is even.

Proof The assumption h1(∂Γ (P )) = 1 implies that ∂Γ (P ) has d vertices. Let W =
{w1, . . . ,wd} be the set of exterior vertices of Γ (P ). Let V be a set of d vertices
of Γ (P ). If V �= W then V contains some interior vertex, so by Lemma 12 we know
that there are an even number of facets of Γ (P ) with vertex set V . In particular, given
any set S of (d − 1) vertices of Γ (P ) there are an even number (possibly zero) of
facets with vertex set V that contain S.

If there are no facets with vertex set W then we are done, so assume F is a
facet with vertex set W . Let W ′ be a set of d − 1 distinct elements of W . Since
hj (∂Γ (P )) = 0 we know by Theorem 2 that the number of boundary faces of Γ (P )

with vertex set W ′ is even. Because Γ (P ) is a manifold each interior face with vertex
set W ′ is contained in two facets of Γ (P ) and each boundary face with vertex set
W ′ is contained in one facet of Γ (P ). Therefore there are an even number of facets
of Γ (P ) that contain the vertices W ′. As argued above there are an even number of
facets on vertex sets other than W that contain W ′. Thus in total there are an even
number of facets on vertex set W . Hence we have an even total number of facets,
which gives the desired result. �
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6 Constructions

We now turn our attention to constructing posets P with prescribed h-vectors such
that Γ (P ) is a ball. The balls that we construct are all shellable. We use the following
result of Björner [1, Proposition 4.3] to prove that the complexes that we build are
actually balls.

Proposition 15 Let Γ (P ) be a shellable CW-complex of dimension d − 1. If every
(d − 2)-cell is a face of at most two (d − 1)-cells and some (d − 2)-cell is a face of
only one (d − 1)-cell then Γ (P ) is homeomorphic to a (d − 1)-ball.

The first theorem of this section presents our basic construction method. The re-
mainder of the section gives some extensions of this construction that allow us to
obtain additional h-vectors.

Theorem 16 Let h = (h0, h1, . . . , hd−1, hd) ∈ N
d+1 with h0 = 1 and hd = 0. Let

∂hj = ∑j

i=0(hi − hd−i ).

1. If ∂hj > 0 for 0 ≤ j ≤ 
(d − 1)/2� then there exists a poset P such that Γ (P ) is
a (d − 1)-ball and h(P ) = h.

2. Alternatively, let 0 < n < 
(d − 1)/2� be the smallest number such that ∂hn = 0.
If

∑d
i=0 hi is even and ∂hl ≤ ∑n−1

i=0 hl−i for n + 1 ≤ l ≤ d − (n + 1) then there
exists a poset P such that Γ (P ) is a (d − 1)-ball and h(P ) = h.

Many of the conditions in Theorem 16 are related to the restrictions on the h-
vectors of balls in Theorem 5. Also note that the inequalities of Theorem 16 are
known to be necessary by Murai’s result, Theorem 8.

Proof The structure of our proof is as follows. We first present the notation that we
will we use to describe the facets of our ball. We then recursively construct our ball by
explaining how each facet of the ball is attached to the union of the previous facets. In
Claim 1 we prove that this process results in a well-defined CW-complex. In Claim 2
we show that the complex is shellable with the desired restriction faces. Finally, in
Claim 3 we show we have actually constructed a ball by proving that the conditions
of Proposition 15 are satisfied.

We begin with the notation for the facets of our ball. The facets are denoted by
Fi for 1 ≤ i ≤ ∑d

i=0 hi . Each facet Fi contains d vertices. We label these vertices
{1}i , {2}i , . . . , {d}i . For any set S ⊆ [d] we denote by {S}i the face of Fi containing
exactly the vertices {{l}i}l∈S . For example {1,2,3,4}3 is the face of F3 containing
the vertices {1}3, {2}3, {3}3, and {4}3. We use the notation {a : b} and {a : b}c to refer
to {a, a + 1, . . . , b} and {a, a + 1, . . . , b}c, respectively.

Next we describe recursively how to construct the ball using the facets Fi . Let
Δj be the complex

⋃j

i=1 Fi . For each facet Fi we describe below the identifications
of faces of Fi with faces in Δi−1. Most of the vertices of Fi will be identified with
vertices of Δi−1, but in some cases Fi may contain a new vertex. For example, we
may state that {1}2 is identified with {1}1 or that {1}2 is a new face. In general, we
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choose the vertex labels such that two identified faces contain vertices labeled by the
same numbers.

First we consider the case where all of the ∂hi are strictly positive. Let a =∑d
i=0 hi , which is the total number of facets in our shelling. For 1 ≤ k ≤ a − 1 let

ck be the integer such that
∑ck−1

i=0 hi < k + 1 ≤ ∑ck

i=0 hi . Thus ck measures the lo-
cation where the sum of the entries of the vector h reaches k + 1. Set c0 = 0. Then
|{k : ck = j}| = hj . As an example, if h = (1,2,0,0,1,0) then a = 4, c0 = 0, c1 = 1,
c2 = 1, and c3 = 4.

We begin the shelling with the facet F1 which cannot have any identifications with
any previous facets, hence |σ(F1)| = 0. The remaining facets will be added in pairs
Fi , Fi+1 where i is even. The restriction faces of Fi and Fi+1 will be {1 : ci/2}i and
{ci/2 + 1 : ci/2 + ca−i/2}i+1, respectively. We are pairing a facet contributing to the
start of the h-vector with a facet contributing to the end of the h-vector and then
working our way inward to the center of the h-vector with the subsequent pairs of
facets. We stop after adding the facet Fa .

We now describe how the facets Fi and Fi+1 are attached to our complex. For
i even, we introduce a new face {1 : ci/2}i . Let S ⊆ [d]. If S ⊇ {1 : ci/2} then {S}i
cannot be identified with any face in a previous facet. If S ⊇ {ci/2−1 + 1 : ci/2} but
S �⊇ {1 : ci/2−1} then identify {S}i with {S}i−1. For all other sets S ⊆ [d] identify {S}i
with {S}1. The fact that these identifications are well defined follows from the case
k = i of Claim 1 below.

Continuing the shelling, Fi+1 is identified with Fi except we replace the face
{ci/2 + 1 : ci/2 + ca−i/2}i by a new face {ci/2 + 1 : ci/2 + ca−i/2}i+1 with the same
boundary. The fact that all of the ∂hi are positive ensures that ci/2 + ca−i/2 never
exceeds d , so the construction can proceed as described.

Claim 1 Fix i even with 2 ≤ i ≤ a and k even with 2 ≤ k ≤ i. Let S ⊆ [d] be such
that S �⊇ {ci/2−1 + 1 : ci/2} and S �⊇ {1 : ck/2−1}. Then {S}k−1 = {S}1.

Proof of Claim 1 Our proof is by induction on i. The base case i = 2 is trivial.
Assuming the result for i = i′ − 2 we prove it for i = i′. The inductive hypothesis
allows us to assume that the construction of Δi′−1 is well defined.

We prove the case i = i′ by induction on k. Again, the base case k = 2 is trivial.
We assume the claim for k = k′ − 2 and prove it for k = k′.

We first show that {S}k′−1 = {S}k′−2. By the construction of the odd index facets,
this follows from showing S �⊇ {c(k′−2)/2 +1 : c(k′−2)/2 +ca−(k′−2)/2}. By assumption
S �⊇ {ci′/2−1 + 1 : ci′/2}. Thus it is enough to show

c(k′−2)/2 + 1 ≤ ci′/2−1 + 1 and ci′/2 ≤ c(k′−2)/2 + ca−(k′−2)/2. (3)

The first inequality in (3) follows from the monotonicity of the cl . Again using the
monotonicity of the cl and the fact that i′ ≤ a we have

ci′/2 ≤ ca−i′/2 ≤ ca−(k′−2)/2 ≤ c(k′−2)/2 + ca−(k′−2)/2,

proving the second inequality.
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We complete the proof of Claim 1 by showing {S}k′−2 = {S}1. By assumption,
S �⊇ {1 : ck′/2−1} = {1 : c(k′−2)/2}. Thus, if S ⊇ {c(k′−2)/2−1 + 1 : c(k′−2)/2} then S �⊇
{1 : c(k′−2)/2−1}. In this case, by our construction of the even index facets we have
{S}k′−2 = {S}k′−3 and by the inductive hypothesis {S}k′−3 = {S}1, giving the desired
result. If S �⊇ {c(k′−2)/2−1 + 1 : c(k′−2)/2} then our construction identifies {S}k′−2 and
{S}1, completing the proof. �

Let {ĵ}k be the codimension-one face of Fk that does not contain the vertex {j}k .

Claim 2 Let 2 ≤ k ≤ a. Then

for k = i even Fi ∩ Δi−1 =
ci/2⋃

j=1

{ĵ}i

and for k = i + 1 odd Fi+1 ∩ Δi =
ci/2+ca−i/2⋃

j=ci/2+1

{ĵ}i+1.

Hence the Fi form a shelling order with |σ(Fi)| = ci/2 and |σ(Fi+1)| = ca−i/2.

Proof of Claim 2 For 1 ≤ j ≤ ci/2−1 each of the faces {ĵ}i is also in Fi−1 while
for ci/2−1 < j ≤ ci/2 the face {ĵ}i is also a face of F1. Therefore

⋃ci/2
j=1{ĵ}i ⊆

(Fi ∩ Δi−1). To see the reverse inclusion note that any face in Fi\(⋃ci/2
j=1{ĵ}i ) con-

tains the face {1 : ci/2}i , which is a new face and therefore not in Δi−1.
The proof for Fi+1 is handled in a similar manner with {ĵ}i+1 ⊆ Fi for ci/2 + 1 ≤

j ≤ ci/2 + ca−i/2 and {ci/2 + 1 : ci/2 + ca−i/2}i+1 �∈ Δi . The last part of Claim 2 now
follows from the definition of a shelling. �

Claim 3 For 1 ≤ p ≤ a each codimension-one face of Δp is contained in at most
two facets and there exists a codimension-one face of Δp that is contained in only
one facet.

Proof of Claim 3 We first show that each codimension-one face is contained in at
most two facets. We do this by showing that any codimension-one face in Fl ∩ Δl−1

for 1 < l ≤ a is either a face of Fl−1\Δl−2 or a face of F1\(⋃l−1
i=2 Fi).

Let l > 0 be even and consider Fl ∩ Δl−1. By Claim 2 we need to consider the
faces {ĵ}l for 1 ≤ j ≤ cl/2. Using the attachment rules given before Claim 1, for
1 ≤ j ≤ cl/2−1 we see that {ĵ}l is a face in Fl−1\Δl−2, while for cl/2−1 +1 ≤ j ≤ cl/2

the face {ĵ}l is in F1\(⋃l−1
i=2 Fi).

Now consider the case Fl+1 ∩ Δl . By Claim 2 we are interested in the faces
{ĵ}l+1 for cl/2 +1 ≤ j ≤ cl/2 + ca−l/2. Again using the attachment rules given before
Claim 1, all of these are faces in Fl\Δl−1, as desired.

Using Claim 2, the faces {ĵ}1 for j > c
a/2� never appear in any Fl with l > 1.
Since hd = 0 we know c
a/2� < d , so the codimension-one face {d̂}1 is only contained
in the facet F1, completing the proof of Claim 3. �
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By Claim 3 and Proposition 15 we know that Δa is a ball. Using the |σ(Fi)| from
Claim 2 to count the contribution of each facet to the h-vector along with the fact
|{i : ci = j}| = hj we know that Δa has the desired h-vector.

We now consider the case where 0 < n < 
(d − 1)/2� is the smallest integer such
that ∂hn = 0. Define a new vector h′ = (h′

0, h
′
1, . . . , h

′
d−1, h

′
d) by h′

i = hi for i �=
d − n and h′

d−n = hd−n − 1. From the definition of the ∂hi , in order for ∂hn−1 >

0 and ∂hn = 0 we must have hd−n > 0, so the vector h′ has non-negative entries.
Additionally, for n ≤ i ≤ 
(d − 1)/2� we have ∂h′

i = ∂hi + 1 ensuring that all of the
∂h′

i are strictly positive. We can therefore apply the construction of the previous case

to create a ball with h-vector h′. In what follows we take a = ∑d
i=0 h′

i = (
∑d

i=0 hi)−
1 to match the definition of a in the previous case. Similarly, ck for 0 ≤ k ≤ a − 1
measures the location where the sum of the entries of h′ reaches k + 1.

By assumption
∑d

i=0 hi is even, hence the construction of the ball with h-vector
h′ ends with the facet Fa with a odd. We complete the construction of a ball with h-
vector h by adding a facet Fa+1. We attach Fa+1 to the ball Δa using the rules given
before Claim 1 for attaching an even index facet but acting as if c̃(a+1)/2 = d − n, so
{1 : d − n}a+1 is a new face (when referring to the facet Fa+1 we use the notation
c̃(a+1)/2 = d − n to avoid confusion with c(a+1)/2 as defined from the vector h′). To
complete the proof we must extend the results of Claims 1, 2, and 3 to include the
additional facet Fa+1.

First we prove Claim 1 for the case i = a + 1. The proof is the same as for smaller
i values except that the second inequality in (3) requires a different justification.
Rewriting this inequality, for 1 ≤ j ≤ (a − 1)/2 we must show

d − n ≤ cj + ca−j .

First consider the case cj ≥ d − 2n. Since n < 
(d − 1)/2�, adding the equations∑d
m=0 hm = a+1 and

∑n
m=0(hm−hd−m) = 0 and then removing some non-negative

terms from the left-hand side yields
∑n

m=0 hm ≤ (a + 1)/2. Hence
∑n

m=0 h′
m ≤

(a + 1)/2 and c(a+1)/2 ≥ n. Since a − j ≥ (a + 1)/2 we have ca−j ≥ c(a+1)/2 ≥ n,
completing the proof of this case.

For the case 1 ≤ cj ≤ d − 2n − 1 note that we can rewrite the assumption ∂hl ≤∑n−1
m=0 hl−m as

l−n∑

m=0

hm ≤
l∑

m=0

hd−m or
l−n∑

m=1

h′
m ≤

l∑

m=0

h′
d−m

where n + 1 ≤ l ≤ d − (n + 1). By the second inequality, choosing l such that cj =
l − n we have ca−j ≥ d − l. Therefore cj + ca−j ≥ d − n, as desired.

We extend Claim 2 by showing

Fa+1 ∩ Δa =
d−n⋃

j=1

{ĵ}a+1. (4)

This follows from the proof of the even case of Claim 2 by treating c̃(a+1)/2 = d − n.
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To allow p = a + 1 in Claim 3 we consider the codimension-one faces in
Fa+1 ∩ Δa . By (4) these are {ĵ}a+1 for 1 ≤ j ≤ d − n. Using the attachment rules
for the Fi , for 1 ≤ j ≤ c(a−1)/2 we see that {ĵ}a+1 is a face in Fa\Δa−1, while for
c(a−1)/2 + 1 ≤ j ≤ d − n the face {ĵ}a+1 is in F1\(⋃a

i=2 Fi).
The faces {ĵ}1 for j > d − n never appear in any Fl with l > 1. Since n > 0 the

codimension-one face {d̂}1 is only contained in the facet F1, completing the proof of
the extended version of Claim 3. �

We next present a slight augmentation of the previous theorem that allows us to
deal with some additional cases involving h-vectors that have a single sequence of
non-zero entries.

Theorem 17 Let h = (h0, h1, . . . , hd−1, hd) ∈ N
d+1 with h0 = 1. Assume that there

exists k ∈ {1,2, . . . , d − 1} such that hj = 0 for j > k and hj > 0 for 1 ≤ j ≤ k.
Define h′ = (1, h1 − 1, h2 − 1, . . . , hk − 1,0, . . . ,0). If h′ satisfies the conditions
of Theorem 16 then there exists a poset P such that Γ (P ) is a (d − 1)-ball and
h(P ) = h.

Proof We once again construct a shellable CW-complex with the desired h-vector.
We begin by building a simplicial complex on vertex set [d +1]. We think of the faces
of this simplicial complex as subsets of [d + 1] as well as topological simplexes.

For 0 ≤ i ≤ k define Gi = [d + 1] − {i + 1}, a face of our simplicial complex. Let
Δj be the simplicial complex whose facets are {Gi}ji=0. Then for 1 ≤ i ≤ k

Gi ∩ Δi−1 =
i⋃

j=1

(
Gi − {j}).

Hence G1, . . . ,Gk is a shelling order for Δk with σ(Gi) = {1,2, . . . , i} and
|σ(Gi)| = i.

We complete the proof by performing the construction of Theorem 16 on the vec-
tor h′ with a few alterations. We omit the initial facet F1 in Theorem 16. Instead
we attach all of our additional facets to the boundary of Δk . In our new construc-
tion we replace the vertices {j}1, 1 ≤ j ≤ d , from Theorem 16 with the vertices
[d + 1]\{k + 2} of Δk , identifying vertices in the order preserving way. We then re-
place the faces of ∂F1 from Theorem 16 with the faces defined by the corresponding
sets of vertices of Δk .

We claim that performing the construction of Theorem 16 with this alteration
gives a shellable ball, with a shelling order given by concatenating the order
G1,G2, . . . ,Gk with the order given by Theorem 16. To prove this, we take every
facet of ∂F1 that is contained in a later facet in the construction of Theorem 16 and
show that the corresponding (d − 1)-subset of [d + 1]\{k + 2} is a face of ∂Δk . Let
H = [d + 1]\{j, k + 2} be a (d − 1)-subset of [d + 1]\{k + 2}. For 1 ≤ j ≤ k + 1, the
only facet of Δk that contains H is Gj−1, so H is in ∂Δk . For k + 3 ≤ j ≤ d + 1, the
facet of ∂F1 corresponding to H will never be used in the construction of Theorem 16
since hl = 0 for l > k.
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Totaling the contributions of all of the |σ(Gi)| shows that the ball created in this
manner has the desired h-vector. �

We now present one final construction specific to dimension five. This construction
allows us to complete the characterization of the possible h-vectors of five-balls in
the following section.

Proposition 18 Let h = (h0, h1, h2, h3, h4,0,0) ∈ N
7 with h0 = 1, h1, h2 �= 0,∑4

i=0 hi odd, and ∂h2 = 1 + h1 + h2 − h4 = 0. Then there exists a poset P such
that Γ (P ) is a five-ball and h(P ) = h.

Proof We begin this construction by using Theorem 16 to create a 5-ball with h-
vector (1,0,0, h3 − 1,0,0,0). Note that since 1 + h1 + h2 − h4 = 0, the parity of h3
is the same as the parity of

∑4
i=0 hi , which we assumed to be odd. Therefore h3 − 1

is even and non-negative.
When we complete this construction the facets of the boundary of our ball are

{1,2,3,4,5}1, {1,2,3,4,6}1, {1,2,3,5,6}1,

{2,3,4,5,6}h3, {1,3,4,5,6}h3, and {1,2,4,5,6}h3 .

The fact that the first three faces are on the boundary follows from the discussion
at the end of Claim 3 in the proof of Theorem 16. The last three faces are on the
boundary because Fh3 is the last facet added to our ball and {4,5,6}h3 is a new face
when Fh3 is added in the construction of Theorem 16.

Further, all of the faces of Fh3 are identified with the corresponding faces of F1
except for {1,2,3}h3 = {1,2,3}h3−1, {4,5,6}h3 , and all faces containing one of these
two faces (there is also the easier case where h3 = 1 and we have only one facet in
this initial part of the shelling).

We now describe the next six facets of our shelling, altering our notation slightly
to make the description easier to follow.
Fh3+1 = {1,2,3,4,5,7}h3+1 where {7}h3+1 is a new vertex.

{1,2,3,4,5}h3+1 is identified with {1,2,3,4,5}1.
Hence σ(Fh3+1) = {7}h3+1.

Fh3+2 = {1,2,3,4,6,7}h3+2.
{1,2,3,4,6}h3+2 is identified with {1,2,3,4,6}1.
{1,2,3,4,7}h3+2 is identified with {1,2,3,4,7}h3+1.
Hence σ(Fh3+2) = {6,7}h3+2.

Fh3+3 = {1,2,3,5,6,7}h3+3.
{1,2,3,5,6}h3+3 is identified with {1,2,3,5,6}1.
{1,2,3,5,7}h3+3 is identified with {1,2,3,5,7}h3+1.
{1,2,3,6,7}h3+3 is identified with {1,2,3,6,7}h3+2.
Hence σ(Fh3+3) = {5,6,7}h3+3.

Fh3+4 = {1,2,4,5,6,7}h3+4 with {4,5,6}h3+4 = {4,5,6}h3 .
{1,2,4,5,6}h3+4 is identified with {1,2,4,5,6}h3 .
{1,2,4,5,7}h3+4 is identified with {1,2,4,5,7}h3+1.
{1,2,4,6,7}h3+4 is identified with {1,2,4,6,7}h3+2.
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{1,2,5,6,7}h3+4 is identified with {1,2,5,6,7}h3+3.
Hence σ(Fh3+4) = {4,5,6,7}h3+4.

Fh3+5 = {1,3,4,5,6,7}h3+5 with {4,5,6}h3+5 = {4,5,6}h3 and new face
{4,5,6,7}h3+5.

{1,3,4,5,6}h3+5 is identified with {1,3,4,5,6}h3 .
{1,3,4,5,7}h3+5 is identified with {1,3,4,5,7}h3+1.
{1,3,4,6,7}h3+5 is identified with {1,3,4,6,7}h3+2.
{1,3,5,6,7}h3+5 is identified with {1,3,5,6,7}h3+3.
Hence σ(Fh3+5) = {4,5,6,7}h3+5.

Fh3+6 = {2,3,4,5,6,7}h3+6 with {4,5,6}h3+6 = {4,5,6}h3 and new face
{4,5,6,7}h3+6.

{2,3,4,5,6}h3+6 is identified with {2,3,4,5,6}h3 .
{2,3,4,5,7}h3+6 is identified with {2,3,4,5,7}h3+1.
{2,3,4,6,7}h3+6 is identified with {2,3,4,6,7}h3+2.
{2,3,5,6,7}h3+6 is identified with {2,3,5,6,7}h3+3.
Hence σ(Fh3+6) = {4,5,6,7}h3+6.

Examining the |σ(Fi)| shows that the ball we have constructed has h-vector
(1,1,1, h3,3,0,0).

We finish building our ball using a slightly altered version of the construction of
Theorem 16 on the vector (1, h1 − 1, h2 − 1,0, h4 − 3,0,0). In place of the initial
facet from Theorem 16 we use the final facet Fh3+6 from the above construction (with
the order preserving identification of the two facets’ vertices).

Consider the construction of Theorem 16 for the h-vector (1, h1 − 1, h2 −
1,0, h4 − 3,0,0). We have c(a−1)/2 ≤ 2, hence by the proof of Claim 3 the only
codimension-one faces of F1 that are attached to facets Fi with i > 1 during the
construction are {1̂}1 and {2̂}1.

When we replace the initial facet in Theorem 16 with Fh3+6 from the above con-
struction, the corresponding co-dimension one faces that will be attached to later
facets are {3,4,5,6,7}h3+6 and {2,4,5,6,7}h3+6. These two faces are both on the
boundary of our above constructed ball. Thus we can finish the shelling in this man-
ner, creating a ball with the desired h-vector. �

7 A summary of known conditions

Using the results of the previous two sections we now fully characterize all of the h-
vectors of simplicial posets that are balls in all even dimensions as well as dimensions
three and five.

Theorem 19 (All Even Dimensions) Let d be an odd integer and let h =
(h0, h1, . . . , hd−1, hd) ∈ Z

d+1 with h0 = 1 and hd = 0. Define ∂hj = ∑j

i=0(hi −
hd−i ) for 0 ≤ j ≤ d − 1. Then there exists a simplicial poset P such that Γ (P ) is a
(d − 1)-ball and h = h(P ) if and only if the following all hold.

1. hi ≥ 0 for 1 ≤ i ≤ d − 1.
2. ∂hi ≥ 0 for 0 ≤ i ≤ (d − 1)/2.
3. If ∂hi = 0 for any 1 ≤ i ≤ (d − 1)/2 then

∑d−1
j=0 hj is even.
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4. If ∂hi = 0 for any 1 ≤ i ≤ (d − 1)/2 then ∂hl ≤ ∑i−1
j=0 hl−j for i + 1 ≤ l ≤ d −

(i + 1).

Proof For the first three conditions necessity follows directly from Theorem 5, while
for the last condition it is a result of Theorem 8. When the second condition is satisfied
with all strict inequalities sufficiency is proved using the first case of Theorem 16;
otherwise we use the second case of Theorem 16. �

Proposition 20 (Dimension 3) Let h = (1, h1, h2, h3,0) ∈ Z
5. Then there exists a

simplicial poset P such that Γ (P ) is a three-ball and h = h(P ) if and only if the
following all hold.

1. hi ≥ 0 for 1 ≤ i ≤ 3.
2. h3 ≤ h1 + 1.
3. If h1 = 0 and h3 = 1 then h2 is even.

Proof The necessity of the first two conditions follows directly from Theorem 5,
while the third condition is a consequence of Proposition 10.

When h3 < h1 + 1 sufficiency follows from the first case of Theorem 16. If
h3 = h1 + 1 and h2 is even the second case of Theorem 16 gives the desired result.
Otherwise, h3 = h1 + 1 > 1 and h2 is odd which means all of the hi for 0 ≤ i ≤ 3 are
non-zero and we can apply Theorem 17 to obtain the needed construction. �

Proposition 21 (Dimension 5) Let h = (h0, h1, h2, h3, h4, h5, h6) ∈ Z
7 with h0 = 1

and h6 = 0. Let ∂hj = ∑j

i=0(hi − h6−i ) for 0 ≤ j ≤ 5. Then there exists a simplicial
poset P such that Γ (P ) is a five-ball and h = h(P ) if and only if the following all
hold.

1. hi ≥ 0 for 1 ≤ i ≤ 5.
2. ∂h1 ≥ 0. If ∂h1 = 0 then hi ≥ ∂hi for 0 ≤ i ≤ 5. If ∂h1 = 0 and hj = 0 for some

1 ≤ j ≤ 4 then
∑5

i=0 hi is even.
3. ∂h2 ≥ 0. If ∂h2 = 0 and h1 = 0 or h2 = 0 then

∑5
i=0 hi is even.

Proof The necessity of condition one and the first inequality in the other two condi-
tions follow from Theorem 5. The additional inequalities when ∂h1 = 0 come from
Theorem 7. The remainder of condition two comes from Proposition 13. For the third
condition, the case h1 = 0 follows from Proposition 10 while the case h2 = 0 is a
result of Proposition 11.

For sufficiency, if there are strict inequalities in the second and third conditions
we use the first case of Theorem 16. If ∂h1 = 0 and

∑5
i=0 hi is even then we apply

the second case of Theorem 16. If ∂h1 = 0 and
∑5

i=0 hi is odd then all of the hi

for 1 ≤ i ≤ 5 are non-zero, so we apply Theorem 17. It is not hard to check that
reducing the elements of the h-vector by one will preserve the inequalities hi ≥ ∂hi

for 0 ≤ i ≤ 5. The case h3 ≥ ∂h3 uses the fact that the sum of the hi is odd.
If ∂h1 > 0 and ∂h2 = 0, the inequality in the second case of Theorem 16 is always

trivially satisfied. This gives the needed construction whenever
∑5

i=0 hi is even. For
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the case where
∑5

i=0 hi is odd, note that h3 must be odd and hence non-zero. There-
fore hi > 0 for 1 ≤ i ≤ 4. When h5 > 0 we can apply Theorem 17 to obtain the
desired construction; otherwise we use Proposition 18. �

For even-dimensional balls (d odd), when any entry of the boundary h-vector is
zero the sum of the hi of the ball must have even parity. This allows us to give
a complete characterization of the h-vectors of even-dimensional balls. In the odd-
dimensional case, this relationship is lost and more subtle behavior occurs. In par-
ticular, whether or not some of the hi of the ball are zero needs to be considered,
resulting in some of the more complicated conditions and the extra construction in
the dimension five case. To solve the characterization problem in higher odd dimen-
sions we still need a general framework to describe what types of conditions on the
h-vectors of the balls and their boundary spheres force an even number of facets. Ad-
ditionally, as we saw in dimension five, more constructions are needed to obtain all
possible h-vectors for odd-dimensional balls.
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