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Abstract By investigating the construction of the split Cayley generalized hexagon,
H(2), we get that there do not exist five distinct hexagon lines each a distance two
apart from each other. From this we prove that the smallest Paige loop has a cov-
ering number of seven and that its automorphism group permutes these coverings
transitively.

Keywords Covering number · Moufang loop · Generalized hexagon · Split Cayley
hexagon

1 Introduction

A generalized hexagon is an incidence structure containing lines and vertices where
any two elements can be joined by a path containing at most seven elements and there
does not exist any n-gon for n < 6. Namely, its incidence graph has diameter 6 and
girth 12. A generalized hexagon of order (s, t) is one where each vertex is incident
with t + 1 lines and each line is incident with s + 1 vertices. The only examples
of finite generalized hexagons of order (q, q) are those associated with the group
G2(q) [3].

A Moufang loop is the generalization of a group that arises when the associative
law is replaced by the identity (xy)(zx) = x((yz)x). Clearly, any finite non-cyclic
loop can be written as a union of finitely many proper subloops. If G is a loop then
we say that the smallest number of subloops needed to cover G is called the covering
number of G. It was shown by Tomkinson in [13] that there does not exist a group
with a covering number of seven. Similarly, he conjectured that there are no groups
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with a covering number of eleven. It was Detomi and Lucchini [4] who then showed
that it is indeed true that there are no groups whose covering number is eleven. Cov-
erings of groups have been broadly explored and some results have been shown by
Foguel and Kappe [5] to also hold for loops.

This brings up the question as to whether or not there exist Moufang loops
with covering number seven or eleven. We take a look at split Cayley generalized
hexagons, H(q), that one gets from the split Cayley algebras and establish results to
help us answer this question. We then prove that even though there does not exist a
group with a covering number of seven, there does exist a finite simple Moufang loop,
namely a Paige loop, that has seven as its covering number. Moreover, its automor-
phism group permutes all such coverings, with seven proper subloops, transitively.

2 Generalized hexagons

In this section, we establish some concepts about a hexagonic structure that arises
from the split octonions. This is the generalized hexagon, sometimes called the Cay-
ley hexagon, which plays a big role in both deriving the covering number of the
smallest Paige loop and determining its possible coverings.

A Paige loop is an example of a Moufang loop arising from a split octonion alge-
bra. For an arbitrary field F , let C be the following set of Zorn’s vector matrices:

{(
a �v
�u b

)∣∣∣∣ a, b ∈ F, �u, �v ∈ F 3
}

.

Here C is the unique split octonion algebra over the field F where addition and
multiplication are defined by

(
a �v
�u b

)
+

(
c �α
�β d

)
=

(
a + c �v + �α
�u + �β b + d

)

and (
a �v
�u b

)(
c �α
�β d

)
=

(
ac + �v · �β a�α + d �v − �u × �β

b �β + c�u + �v × �α bd + �u · �α
)

,

where �u · �v and �u × �v are the usual dot product and cross product. With the quadratic
form

f

((
a �v
�u b

))
= ab − �v · �u

C is the split octonion algebra over F where x ∈ C is nonsingular, namely invertible,
if and only if f (x) �= 0. For all x, y ∈ C, the quadratic form admits composition

f (xy) = f (x)f (y)

and the associated bilinear form for f

(x, y) = f (x + y) − f (x) − f (y)
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is nondegenerate. Thus C is an example of a composition algebra. One can show
that, under multiplication, C satisfies the Moufang identities. Therefore, the set of
all invertible elements of C, called the general linear loop and denoted by GLL(F ),
is a Moufang loop. The loop GLL(F ) contains a subloop SLL(F ), called the spe-
cial linear loop, consisting of all the elements of norm one where the norm is the
quadratic form given above. It was M. Liebeck [10] who classified all of the finite
simple nonassociative Moufang loops showing that these were the finite Paige loops,
namely, P(q) = SLL(q)/{±I } where I is the multiplicative identity of C. Note that
P(2) ∼= SLL(2). Furthermore, the automorphism group of the Paige loop is

Aut
(
P(q)

) = Aut(C)

= G2(q).

Definition 2.1 For an algebra C we say that the stabilizer of a subspace U ⊆ C is the
subspace StabC(U) = {x ∈ C | xu ∈ U for all u ∈ U}.

For a subspace U ⊆ C we will denote the set of all invertible elements of U as U∗.
One can better understand a split octonion algebra by looking at the hexagonic

structure that arises from it. A hexagonic structure is an incidence structure containing
lines and vertices where any two elements can be joined by a path containing at most
seven elements and there does not exist any 2, 3, 4, or 5-gons. If v1 and v2 are two
such vertices then we will denote the length of the shortest path between v1 and v2 by
d(v1, v2). For an octonion algebra, a hexagon line is a totally singular 2-space, which
is orthogonal to I , such that the product of any two of its elements is zero. Likewise,
a vertex is a singular 1-space, orthogonal to I , such that the product of any two of its
elements is zero. Here Aut(C) = G2(q) is transitive on the set of hexagon lines in C

and is also transitive on the set of vertices in C (see [11]). We say that a vertex v is
incident to a hexagon line h if v is a subset of h. This induces a hexagonic structure
which we call a generalized hexagon; see [11] for more details.

Since Aut(C) = G2(q) is transitive on the set of hexagon lines in C, one can easily
show that if U is a hexagon line in C then

StabC(U) = {x ∈ C | xu ∈ U for all u ∈ U}
= {x ∈ C | ux ∈ U for all u ∈ U} .

Let C be a split octonion algebra over F2 consisting of Zorn’s vector matrices and
let M be a maximal subloop of SLL(F2) = GLL(F2). Then from [6], M is one of the
following:

1. M = (h⊥)∗ = StabC(h)∗ for some hexagon line h ⊆ C;
2. M = (Q ∪ Q⊥)∗ for some quaternion subalgebra Q ⊆ C.

These can be described using Chein loops.

Definition 2.2 If G is a group and u is an element that is not in G then one can
extend the binary operation from G to G ∪ Gu such that:

g1(g2u) = (g2g1)u,
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(g1u)g2 = (
g1g

−1
2

)
u,

(g1u)(g2u) = g−1
2 g1,

for any elements g1, g2 ∈ G. Under this binary operation, the set G∪Gu is a Moufang
loop which is called a Chein loop, originally discovered by O. Chein [2], and is
usually denoted by M2n(G,2) where n = |G|.

One should note that a maximal subloop of the form M = StabC(h)∗ for some
hexagon line h ⊆ C is isomorphic to the Chein loop M24(A4,2). Also, a maximal
subloop of the form M = (Q ∪ Q⊥)∗ for some quaternion subalgebra Q ⊆ C is
isomorphic to M12(S3,2).

We will denote the set of hexagon lines in C over F2 by H . Likewise we will
denote the set of vertices in C by P . Here the number of totally singular 1-spaces of
C which are orthogonal to I with multiplication of zero is |P | = 63.

Lemma 2.3 If h ∈ H and v ∈ P then h contains exactly three vertices and the num-
ber of hexagon lines incident to v is deg(v) = 3.

Proof See [3, 12]. �

Definition 2.4 The distance between two hexagon lines h1, h2 ∈ H , denoted by
d(h1, h2), is half of the distance in the incidence graph. Furthermore, we say that
the hexagon lines h1, h2 ∈ H are adjacent to each other if d(h1, h2) = 1.

Lemma 2.5 If h1, h2, h3 ∈ H such that d(hi, hj ) = 2 for all i �= j then either

(1) h1, h2, and h3 are contained in a hexagon; or
(2) h1, h2, and h3 are all adjacent to some hexagon line l ∈ H .

3 The covering number of P(2)

In this section, we will determine the covering number of P(2) and give an example
of such a covering. One can easily see that when determining the covering number
of P(2) only coverings by maximal subloops need be considered. Recall that the
maximal subloops of P(2) are of type M24(A4,2) and M12(S3,2).

Lemma 3.1 The covering number of P(2) is at least seven. Moreover, if P(2) can
be covered by seven maximal subloops then the intersection of any two of them would
have an order that is not divisible by three.

Proof From [7], along with the fact that |P(2)| = 120, there exist Sylow 3-subloops
of P(2) all of which are of order three. Thus, a lower bound for the covering number
of P(2) can be found by counting the number of Sylow 3-subloops of P(2) and
using the fact that any two distinct Sylow 3-subloops of P(2) intersect trivially. We
know from [8, Proposition 3.6] that if p is an odd prime that divides q + 1 then
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|Sylp(P (q))| = (q4 + q3 + q2)|Sylp(SL2(q))|. Therefore, |Syl3(P (2))| = 28. Since
|Syl3(M12(S3,2))| = |Syl3(S3)| = 1 and |Syl3(M24(A4,2))| = |Syl3(A4)| = 4, one
would have to use at least seven maximal subloops of the form M24(A4,2) to cover
P(2). Furthermore, since the Sylow 3-subloops of P(2) intersect trivially, if P(2)

can be covered by seven maximal subloops of order 24 then the intersection of any
two of them would have an order that is not divisible by three. �

Theorem 3.2 If h1 ∈ H and the six hexagon lines adjacent to h1 are h2, . . . , h7 ∈ H

then P(2) = ⋃7
i=1 StabC(hi)

∗.

Proof Since G2(2) is transitive on H , without loss of generality, we may assume that

h1 =
{(

0 (x,0,0)

(0, y,0) 0

)∣∣∣∣x, y ∈ F2

}
.

Thus, the six hexagon lines adjacent to h1 are:

h2 =
{(

0 (x,0,0)

(0,0, y) 0

)∣∣∣∣x, y ∈ F2

}
,

h3 =
{(

0 (x,0,0)

(0, y, y) 0

)∣∣∣∣x, y ∈ F2

}
,

h4 =
{(

0 (0,0, x)

(0, y,0) 0

)∣∣∣∣x, y ∈ F2

}
,

h5 =
{(

0 (x,0, x)

(0, y,0) 0

)∣∣∣∣x, y ∈ F2

}
,

h6 =
{(

y (x,0, y)

(0, x, y) y

)∣∣∣∣x, y ∈ F2

}
, and

h7 =
{(

y (x + y,0, y)

(0, x, y) y

)∣∣∣∣x, y ∈ F2

}
.

Here

StabC(h1) =
{(

a (b,0, c)

(0, d, f ) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
,

StabC(h2) =
{(

a (b, c,0)

(0, d, f ) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
,

StabC(h3) =
{(

a (b, c, c)

(0, d, f ) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
,

StabC(h4) =
{(

a (b,0, c)

(d, f,0) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
,

StabC(h5) =
{(

a (b,0, c)

(d, f, d) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
,
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StabC(h6) =
{(

a (b, c, d + a)

(c, f, d + g) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
, and

StabC(h7) =
{(

a (b, c, d + a)

(c, f, d + g + c) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
.

One should note that h1, h2, and h3 meet at the vertex
〈( 0 (1,0,0)

(0,0,0) 0

)〉
and

StabC(h1)
∗ ∩ StabC(h2)

∗ = StabC(h2)
∗ ∩ StabC(h3)

∗

= StabC(h1)
∗ ∩ StabC(h3)

∗

=
{(

1 (a,0,0)

(0, b, c) 1

)∣∣∣∣a, b, c ∈ F2

}

= I + span(h1, h2).

Similarly, h1, h4, and h5 meet at the vertex
〈( 0 (0,0,0)

(0,1,0) 0

)〉
and the hexagon lines h1,

h6, and h7 meet at the vertex
〈( 0 (1,0,0)

(0,1,0) 0

)〉
with

StabC(h1)
∗ ∩ StabC(h4)

∗ = StabC(h4)
∗ ∩ StabC(h5)

∗

= StabC(h1)
∗ ∩ StabC(h5)

∗

=
{(

1 (a,0, b)

(0, c,0) 1

)∣∣∣∣a, b, c ∈ F2

}

= I + span(h1, h4)

and

StabC(h1)
∗ ∩ StabC(h6)

∗ = StabC(h6)
∗ ∩ StabC(h7)

∗

= StabC(h1)
∗ ∩ StabC(h7)

∗

=
{(

1 + b (a,0, b)

(0, c, b) 1 + b

)∣∣∣∣a, b, c ∈ F2

}

= I + span(h1, h6).

Moreover, if hi, hj ∈ {h2, . . . , h7} with d(hi, hj ) = 2 then

StabC(hi)
∗ ∩ StabC(hj )

∗ =
{(

1 (a,0,0)

(0, b,0) 1

)∣∣∣∣a, b ∈ F2

}

= I + h1.
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So if T is a nonempty subset of {h1, . . . , h7} then

∣∣∣∣
⋂
hi∈T

StabC(hi)
∗
∣∣∣∣ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

24 if |T | = 1,

8 if |T | > 1 and all of the lines
in T meet at a vertex,

4 = |I + h1| if there exist hj ,hk ∈ T with
d(hj ,hk) = 2.

Hence,
∣∣∣∣∣

7⋃
i=1

StabC(hi)
∗
∣∣∣∣∣ = 7 · 24 − (9 · 8 + 24 · 4) + (3 · 8 + 32 · 4)

−
(

7
4

)
· 4 +

(
7
5

)
· 4 −

(
7
6

)
· 4 +

(
7
7

)
· 4

= 120

= ∣∣P(2)
∣∣

and P(2) = ⋃7
i=1 StabC(hi)

∗. �

From Theorem 3.2 along with Lemma 3.1, we get that the covering number of
P(2) is seven. Furthermore, P(2) = ⋃7

i=1 StabC(hi)
∗ for any set of hexagon lines

h1, . . . , h7 ∈ H where d(h1, hi) = 1 for all 2 ≤ i ≤ 7.

4 Uniqueness of a covering with seven subloops

We are now ready to show that G2(2) permutes the coverings of P(2) with seven
subloops transitively.

Lemma 4.1 If h1, h2 ∈ H with d(h1, h2) = 3 then StabC(h1)
∗ ∩ StabC(h2)

∗ ∼= S3
and is of order six.

Proof From [1, Sect. 17], the group G2(2) is distance-transitive on the generalized
hexagon. So without loss of generality, we may assume that

h1 =
{(

0 (x,0,0)

(0, y,0) 0

)∣∣∣∣x, y ∈ F2

}

and h2 =
{(

0 (0, x,0)

(y,0,0) 0

)∣∣∣∣x, y ∈ F2

}
.

Since

StabC(h1) =
{(

a (b,0, c)

(0, d, f ) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
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and StabC(h2) =
{(

a (0, b, c)

(d,0, f ) g

)∣∣∣∣a, b, c, d, f, g ∈ F2

}
,

StabC(h1)
∗ ∩ StabC(h2)

∗ =
{(

a (0,0, b)

(0,0, c) d

)∣∣∣∣a, b, c, d ∈ F2

}∗

∼= S3. �

Now suppose h1, . . . , h7 ∈ H satisfy P(2) = ⋃7
i=1 StabC(hi)

∗. Since three di-
vides the order of S3, by Lemmas 3.1 and 4.1, d(hi, hj ) ≤ 2 for all i, j ∈ {1,2, . . . ,7}.

Theorem 4.2 If h1, . . . , h7 ∈ H satisfy P(2) = ⋃7
i=1 StabC(hi)

∗ then there exists an
i ∈ {1, . . . ,7} such that d(hi, hj ) ≤ 1 for all j ∈ {1, . . . ,7}.

Proof First assume that d(hi, hj ) = 2 for all i, j ∈ {1, . . . ,7} with i �= j . Clearly, for
any pair of lines hi and hj there exists at most one line hk with k ∈ {1, . . . ,7} \ {1,2}
such that hi, hj , and hk are all adjacent to some line M . Thus at least four of these
lines are contained in a hexagon with hi and hj . Without loss of generality, let i = 1,
j = 2, and h3, h4, h5, h6 be contained in a hexagon with h1 and h2. Then at least two
of h4, h5, h6 are contained in a hexagon with h1 and h3, say h4, h5. Similarly, at least
one of these is contained in a hexagon with h2 and h3, say h4. Hence, any three of the
lines h1, h2, h3, h4 are contained in a hexagon. But this contradicts the main result
of [9].

Now suppose that d(h1, h2) = 1. Let p be the vertex incident to both h1 and h2
and let M be the third line containing p. If d(hi, h3) = 2 for i ∈ {1,2} then clearly
d(h3,M) = 1. In this case, none of h4, h5, h6, h7 are at distance one from either h1 or
h2 except for M . Hence, without loss of generality, we may assume that h4 = M and
that h5, h6, and h7 are at distance one from h4. Now if d(h1, h3) = 1 and h3 �= M

then all of the lines h4, h5, h6, and h7 are at distance one from h1. Hence, since
G2(2) is transitive on H , there exists a unique line hi such that d(hi, hj ) ≤ 1 for all
j ∈ {1, . . . ,7}. �

With G2(2) being transitive on H , it immediately follows from Theorem 4.2 that
G2(2) permutes the coverings of P(2) with seven subloops transitively.

Problem Knowing that there does indeed exist Moufang loops that have a covering
number of seven, the next question that arises is:
Does there exist a Moufang loop whose covering number is eleven?
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