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Abstract Let Un denote the group of n × n unipotent upper-triangular matrices over
a fixed finite field Fq , and let UP denote the pattern subgroup of Un correspond-
ing to the poset P . This work examines the superclasses and supercharacters, as
defined by Diaconis and Isaacs, of the family of normal pattern subgroups of Un.
After classifying all such subgroups, we describe an indexing set for their super-
classes and supercharacters given by set partitions with some auxiliary data. We go
on to establish a canonical bijection between the supercharacters of UP and certain
Fq -labeled subposets of P . This bijection generalizes the correspondence identified
by André and Yan between the supercharacters of Un and the Fq -labeled set par-
titions of {1,2, . . . , n}. At present, few explicit descriptions appear in the literature
of the superclasses and supercharacters of infinite families of algebra groups other
than {Un : n ∈ N}. This work significantly expands the known set of examples in this
regard.

Keywords Unitriangular group · Pattern groups · Algebra groups · Supercharacter
theories · Supercharacters · Superclasses · Labeled posets · Labeled set partitions

1 Introduction

Consider the group Un of n × n unipotent upper triangular matrices over a finite
field Fq . Classifying this group’s irreducible representations is a well-known wild
problem, provably intractable for arbitrary n. Despite this, André discovered a natu-
ral way of constructing certain sums of irreducible characters and certain unions of
conjugacy classes of Un, which together form a useful approximation to the group’s
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irreducible representations [1–3]. In his Ph.D. thesis [14], Yan showed how to re-
place André’s construction with more elementary methods. This simplified theory
proved to have both useful applications and a natural generalization. In particular,
Arias-Castro, Diaconis, and Stanley [4] employed Yan’s work in place of the usual
irreducible character theory to study random walks on Un.

Later, Diaconis and Isaacs [5] axiomatized the approximating approach to define
the notion of a supercharacter theory for a finite group, in which supercharacters
replace irreducible characters and superclasses replace conjugacy classes. In addition,
they generalized André’s original construction to define a supercharacter theory for
algebra groups, a family of groups of the form {1 + X : X ∈ n} where n is a nilpotent
(finite-dimensional, associative) Fq -algebra. In the resulting theory, restrictions and
tensor products of supercharacters decompose as nonnegative integer combinations
of supercharacters. Furthermore, there is a notion of superinduction that is dual to
restriction of supercharacters. The references [8, 10, 12, 13] study these aspects of
Diaconis and Isaacs’s supercharacter theory in detail.

One of the primary motivations for these developments is the remarkable com-
binatorial structure of the superclasses and supercharacters of Un. Analogous to the
symmetric group, where we replace partitions with set-partitions, there is a natural
bijection

{
Superclasses and

Supercharacters of Un

}
↔
{

Fq -labeled set partitions
of {1,2, . . . , n}

}
. (1.1)

Thus, André’s approximation to the representation theory of Un is not merely com-
putable, but lends itself as a subject of interest in its own right. Few analogues of (1.1)
appear to be known for families of groups other than Un. Thiem and Venkateswaran
[13] provide one example, describing the superclasses and supercharacters of a nor-
mal series of subgroups interpolating between Un and Un−1.

The purpose of this work is introduce another family of examples, in particular by
generalizing the classification (1.1) to all normal pattern subgroups of Un. A pattern
group is a subgroup UP ⊂ Un of the form

UP = {
g ∈ Un : gij = 0 if i < j and (i, j) /∈ P

}
,

where P ⊂ {(i, j) : 1 ≤ i < j ≤ n} is a set of positions above the diagonal. In order
for the set UP to form a group, P must be a poset on [n] = {1,2, . . . , n}, i.e., a set
of positions such that (i, j), (j, k) ∈ P implies (i, k) ∈ P . The set of normal pattern
subgroups of Un is in bijection with the set of nilpotent two-sided ideals in the algebra
tn of upper triangular matrices over Fq . Both sets are naturally parametrized by Dyck
paths with 2n steps, and hence have order Cn = 1

n+1

(2n
n

)
, the nth Catalan number.

We determine the superclasses and supercharacters of these groups (Theorems 4.1
and 5.1) by constructing explicit bijections of the form

{Superclasses/Supercharacters of UP � Un} ↔
{

Fq -labeled set partitions of
[n] with some auxiliary data

}
.

(1.2)
Unlike for Un, the natural indexing sets for the superclasses and supercharacters of an
arbitrary normal pattern subgroup UP � Un do not coincide, so we require two maps
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to fully define (1.2). In the supercharacter case, the map (1.2) has a more explicit,
combinatorial interpretation (Theorem 6.1) provided by the correspondence

{Supercharacters of UP � Un} ↔ {Certain Fq -labeled subposets of P }. (1.3)

This bijection generalizes (1.1) by providing a neat combinatorial indexing set for the
supercharacters of UP , which we can defined in graph theoretic terms involving only
the poset P .

Section 2 provides background information on supercharacter theories, pattern
groups, and relevant combinatorial constructions. In Sect. 3, we classify all normal
pattern subgroups of Un and describe a strategy for determining these groups’ super-
classes and supercharacters. Sections 4 and 5 carry out this strategy to construct the
bijections (1.2). As an application, we show that if UP � Un then each supercharac-
ter of UP is given by a product of irreducible supercharacters. In Sect. 6, we show
how each supercharacter of UP corresponds to a unique labeled subposet of P , and
then characterize these posets to define the correspondence (1.3).

2 Preliminaries

This section reviews the definition of an abstract supercharacter theory, then in-
troduces a specific supercharacter theory for pattern groups. The final subsection
presents our definition of labeled set partitions, and establishes some notational con-
ventions.

2.1 Abstract supercharacter theories

Let G be a finite group. We use the word character to mean any function G → C of
the form g �→ tr(ρ(g)) where ρ is a representation of G in a complex finite dimen-
sional vector space. As defined originally by Diaconis and Isaacs [5], a superchar-
acter theory of G is a pair (S, S ∨), where S is a set of characters of G and S ∨ is a
partition of the elements of G, satisfying the following conditions:

(1) |S| = |S ∨|.
(2) Each irreducible character of G appears as a constituent of exactly one χ ∈ S .
(3) Each χ ∈ S is constant on each set K ∈ S .
(4) The conjugacy class {1} ∈ S ∨.

We call S ∨ the set of superclasses and S the set of supercharacters of the super-
character theory (S, S ∨). Each superclass is a union of conjugacy classes, and each
supercharacter χ ∈ S is equal to a positive constant times

∑
ψ∈Irr(χ) ψ(1)ψ where

Irr(χ) denotes the set irreducible constituents of χ [5, Lemma 2.1]. By condition (2),
the sets Irr(χ) for χ ∈ S form a partition of the set Irr(G) of irreducible characters
of G. Consequently, the supercharacters S form an orthogonal basis for the space of
superclass functions, the complex valued functions on G which are constant on the
superclasses S ∨.

Every finite group has two supercharacter theories: the usual irreducible character
theory and the trivial supercharacter theory with S = {1, ρG − 1} and S ∨ = {{1},
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G − {1}}, where ρG denotes the character of the regular representation of G. The
preprint [7] discusses several methods of constructing additional supercharacter the-
ories of an arbitrary finite group.

In this work, we study a particular supercharacter theory introduced by Diaco-
nis and Isaacs [5] as a generalization of the work of André [1] and Yan [14]. This
nontrivial supercharacter theory serves as a useful approximation for the irreducible
characters of groups whose representations are poorly understood, and displays some
fascinating combinatorial properties. Before introducing this supercharacter theory,
we must define pattern groups, the family of groups to which the theory applies. This
is the goal of the next section.

2.2 Posets and pattern groups

Fix a positive integer n and let [n] = {1,2, . . . , n}. We denote by �n� the set of posi-
tions above the diagonal in an n × n matrix:

�n� = {
(i, j) : 1 ≤ i < j ≤ n

}
.

By a poset P on [n], we mean a subset P ⊂ �n� such that if (i, j), (j, k) ∈ P then
(i, k) ∈ P . The poset P corresponds to the strict partial ordering ≺ of the set [n]
defined by setting i ≺ j if and only if (i, j) ∈ P .

We say that (i, k) ∈ P is a cover of P if there is no j such that (i, j), (j, k) ∈ P ,
and we denote the set of covers of P by P cov. The sets P and P cov then uniquely
determine each other: namely,

(i, k) ∈ P if and only if ∃ (j1, j2), (j2, j3), . . . , (jr−1, jr ) ∈ P cov

with i = j1 and k = jr . (2.1)

We can visually depict P via its Hasse diagram, which is the directed graph whose
vertices are 1,2, . . . , n and whose directed edges are the ordered pairs (i, j) ∈ P cov.
For example, we can define the poset P = {(1,3), (1,4), (2,3), (2,4), (3,4)} for
n = 4 by writing

P =
4

3

1 2

Fix a finite field Fq with q elements, and let Un denote the group of n × n upper-
triangular matrices with ones on the diagonal and entries in Fq . Given a poset P
on [n], the pattern group UP is the subgroup Un given by

UP = {
g ∈ Un : gij = 0 if i < j and (i, j) /∈ P

}
.

The group Un is the pattern group corresponding to the poset P = �n�.
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Remarks

(a) Note that under our definitions, the set P can serve as a poset on [n] for any
sufficiently large integer n. Thus, implicit in the notation UP is the choice of
a dimension n corresponding to P . Different choices of n result in canonically
isomorphic pattern groups, however.

(b) Examples of pattern groups include the unipotent radicals of rational parabolic
subgroups of the finite general linear groups GLn(Fq). One can describe many
group theoretic structures of pattern groups in terms of the poset P , such as the
center, Frattini subgroups, coset representatives, etc. (see [6, 10] for examples).

2.3 Superclasses

Let nn denote the nilpotent Fq -algebra of strictly upper triangular n×n matrices with
entries in Fq . For any matrix X, let

supp(X) = {
(i, j) : Xij �= 0

}

denote the set of positions in X with nonzero entries. Now, given a poset P on [n],
define nP ⊂ nn as the nilpotent Fq -algebra

nP = UP − 1 = {
X ∈ nn : supp(X) ⊂ P

}
.

The group UP acts on the algebra nP on the left and right by multiplication. The
map X �→ 1 + X gives a bijection nP → UP , and we define the superclasses of UP
to be the sets formed by applying this map to the two-sided UP -orbits in nP . The
superclass of UP containing g ∈ UP , denoted Kg

P , is therefore the set

Kg

P = {
1 + x(g − 1)y : x, y ∈ UP

}
.

Each superclass is a union of conjugacy classes, and one superclass consists of just
the identity element of UP .

2.4 Supercharacters

Given a poset P on [n], let n∗
P denote the dual space of Fq -linear functionals

λ : nP → Fq . Similarly, let n∗
n denote the dual space of nn. Throughout this work,

we distinguish linear functionals by their domains, and hence do not view λ ∈ n∗
Q as

an element of n∗
P when nP ⊂ nQ. This precaution avoids some potential ambiguities

later.
One of the benefits of working with pattern groups is that we have a canonical way

of identifying n∗
P with nP . Specifically, we associate λ ∈ n∗

P with the matrix in nP
whose (i, j)th entry is λij , where we define

λij =
{

λ(eij ), if (i, j) ∈ P ,

0, otherwise.
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Here eij denotes the elementary n × n matrix with 1 in entry (i, j) and 0 in all other
entries. This identification gives a vector space isomorphism n∗

P
∼= nP , and provides

a convenient way of defining linear functionals on nP as matrices. Following the
convention for matrices, given λ ∈ n∗

P , we let

supp(λ) = {
(i, j) ∈ P : λij �= 0

}
.

We have left and right actions of the group UP on the vector space n∗
P given by

defining gλ and λg for g ∈ UP and λ ∈ n∗
P to be the functionals with

gλ(X) = λ
(
g−1X

)
and λg(X) = λ

(
Xg−1) for X ∈ nP .

These actions are compatible in the sense that (gλ)h = g(λh) for g,h ∈ UP , and
λ ∈ n∗

P . Hence we may remove all parentheses without introducing ambiguity. Given
λ ∈ n∗

P , we denote the corresponding left, right, and two-sided UP -orbits by UP λ,
λUP , UP λUP .

Fix a nontrivial group homomorphism θ : F
+
q → C

×. The supercharacters of UP
are the functions χλ

P : UP → C indexed by λ ∈ n∗
P , defined by the formula

χλ
P (g) = |UP λ|

|UP λUP |
∑

μ∈UP λUP

θ ◦ μ(g − 1), for g ∈ UP . (2.2)

It follows from this definition that supercharacters are constant on superclasses. In
addition, we have χλ

P = χ
μ

P if and only if μ ∈ UP λUP . χλ
P is the character of the left

UP -module

V λ
P = C-span{vμ : μ ∈ UP λ}, where gvμ = θ ◦ μ

(
1 − g−1)vgμ for g ∈ UP .

For λ,μ ∈ n∗
P ,

〈χλ
P , χ

μ

P 〉UP =
{|UP λ ∩ λUP |, if μ ∈ UP λUP ,

0, otherwise,

where 〈χ,ψ〉UP = 1

|UP |
∑

g∈UP

χ(g)ψ(g).

Thus, χλ
P is irreducible if and only if UP λ∩λUP = {λ}, and distinct supercharacters

are orthogonal.

Notation If the context is clear, we may drop the subscript and write Kg , χλ to
denote the superclass and supercharacter Kg

P , χλ
P .

Remarks

(a) Diaconis and Isaacs [5] first defined this set of superclasses and supercharacters
for a larger family of groups known as algebra groups, generalizing the work of
André and Yan [1, 14] which applied only to Un. Diaconis and Thiem derive a
more explicit supercharacter formula in [6].
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(b) While [5] defines the module V λ
P abstractly, we can construct it as an explicit

submodule of CUP by defining vμ =∑
x∈UP θ ◦ μ(1 − x)x ∈ CUP for μ ∈ n∗

P .
(c) The numbers of superclasses and supercharacters are equal to the numbers of

two-sided UP orbits in nP and n∗
P , and these are the same by Lemma 4.1 in [5].

Furthermore, it is clear from the formula (2.2) that the character ρUP of the reg-
ular representation of UP decomposes as

ρUP =
∑
λ

|UP λUP |
|UP λ| χλ

P

where the sum is over a set of representatives λ of the two-sided UP orbits in n∗
P .

Thus, each irreducible character of UP appears as a constituent of a unique su-
percharacter. Consequently, the supercharacters and superclasses defined above
indeed form a supercharacter theory of UP in the sense of Sect. 2.1.

2.5 Fq -labeled set partitions and the supercharacters of Un

The supercharacter theory described in the preceding section arose as a generaliza-
tion of a specific attempt to approximate the irreducible characters of Un. The clas-
sification of this group’s conjugacy classes and irreducible representations is a wild
problem, but the classification of its superclasses and supercharacters has a highly
satisfactory combinatorial answer in terms of Fq -labeled set partitions. We define
these objects below, and then describe how they correspond to the superclasses and
supercharacters of Un.

Fix a nonnegative integer n. A set partition λ = {λ1, λ2, . . . , λ�} of [n] is a set
of disjoint, nonempty sets λi ⊂ {1, . . . , n} such that

⋃
i λi = [n]. The sets λi are

called the parts of λ. We view each part as a finite increasing sequence of positive
integers, and typically abbreviate λ by writing the numbers in each part from left to
write, separating successive parts with the “|” symbol. For example, we write λ =
{{1,2}, {3}, {4,7,8}, {5,6}} as λ = 12|3|478|56.

The support of a set partition λ = (λ1, λ2, . . . , λ�) is the set

supp(λ) = {
(i, j) : i < j and for some k, we have i, j ∈ λk and i < x < j

only if x /∈ λk

}
.

In other words, (i, j) ∈ supp(λ) if and only if i < j are consecutive integers
in some part of λ. For example, the support of λ = 12|3|478|56 is supp(λ) =
{(1,2), (4,7), (7,8), (5,6)}. The set supp(λ) is the same as the set A(λ) defined in
[8] and A(λ) defined in [12].

An Fq -labeled set partition is a set partition λ with a map supp(λ) → F
×
q which

labels each element of the support with a nonzero element of Fq . We represent a
labeled set partition by writing the set partition λ as above, and then replacing each

supported point “ij” with “i
t

�j” where t ∈ F
×
q is the label assigned to (i, j). For

example, the Fq -labeled set partitions corresponding to the (unlabeled) set partition
12|3|478|56 are of the form

λ = 1
a
�2|3|4 b

�7
c
�8|5 d

�6, where a, b, c, d ∈ F
×
q .
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For each (i, j) ∈ supp(λ), let λij ∈ F
×
q denote the corresponding label, and for each

(i, j) /∈ supp(λ) let λij = 0. This notation naturally assigns to a labeled set partition
λ of [n] a strictly upper triangular n × n matrix over Fq ; namely, the matrix whose
(i, j)th entry is λij . For example,

1
r
�3

s
�5|2 t

�4 corresponds to

⎛
⎜⎜⎜⎜⎝

0 0 r 0 0
0 0 t 0

0 0 s

0 0
0

⎞
⎟⎟⎟⎟⎠ .

This correspondence defines a bijection
{

Fq -labeled set
partitions of n

}
↔
{

Matrices in nn with at most one nonzero
entry in each row and column.

}
.

We can view the n×n upper triangular matrix defined by a labeled set partition of
[n] as an element of either the algebra nn or the dual space n∗

n. To distinguish between
these two identifications, we adopt the following notation: let

Sn = {
X ∈ nn : supp(X) contains at most one position in each row and column

}
,

S∗
n = {

λ ∈ n
∗
n : supp(λ) contains at most one position in each row and column

}
.

More generally, given any poset P on [n], define

SP = {
X ∈ nP : supp(X) contains at most one position in each row and column

}
,

S∗
P = {

λ ∈ n
∗
P : supp(λ) contains at most one position in each row and column

}
.

We refer to elements of both of these sets as Fq -labeled set partitions of [n]. Observe
that the support of a set partition is well-defined and consistent, in the sense that
supp(λ) defines the same set, whether λ is viewed as a set partition, a matrix, or a
linear functional.

Yan showed in [14] that the superclasses and supercharacters of Un are indexed
by the set of all Fq -labeled set partitions of [n]. In particular, the maps

Sn → {Superclasses of Un}
λ �→ K1+λ

and
S∗

n → {Supercharacters of Un}
λ �→ χλ

(2.3)

are bijections. André proved the character result earlier from a more geometric per-
spective in [1]. The indexing sets Sn and S∗

n provide the following simple superchar-
acter formula for Un:

χλ(1 + μ)

=

⎧⎪⎨
⎪⎩
∏

(i,l)∈supp(λ)
ql−i−1θ(λilμil )

q |{(j,k)∈supp(μ):i<j<k<l}| ,
if (i, j), (j, k) /∈ supp(μ) whenever

i < j < k and (i, k) ∈ supp(λ),

0, otherwise,
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for λ ∈ S∗
n and μ ∈ Sn. It is evident from this formula that for each λ ∈ S∗

n , the
supercharacter χλ of Un factors as a product of irreducible supercharacters indexed
by ν ∈ S∗

n with |supp(ν)| ≤ 1.
The primary intent of this work is to generalize this classification to all normal

pattern subgroups of Un. In order to do this, we first require some understanding of
what such pattern groups look like; the next section provides this information.

3 Normal pattern subgroups of Un

Given a poset P on [n], we say that P is normal in �n� and write P � �n� if

(i, l) /∈ P implies (j, k) /∈ P , for all 1 ≤ i ≤ j < k ≤ l ≤ n. (3.1)

Taking the contrapositive, P � �n� if and only if (j, k) ∈ P implies (i, l) ∈ P for all
1 ≤ i ≤ j < k ≤ l ≤ n. Of course, the reason for adopting this notation has much to
do with the following.

Lemma 3.1 If P is a poset on [n], then UP � Un if and only if P � �n�.

This result appears in a more general form as Lemma 4.1 in [9]. Its proof leads
to the following pair of corollaries, which appear as Lemma 3.2 in [10] and Corol-
lary 4.1 in [9].

Corollary 3.1 If P is poset with P � �n�, then gXh ∈ nP for all g,h ∈ Un and
X ∈ nP . Thus nP is a two-sided ideal in nn and UP is a union of superclasses of Un.

This property will allow us to use the classification (2.3) to great advantage in our
analysis of the actions of UP on nP and n∗

P . For the second corollary, let tn denote
the algebra of n × n upper triangular matrices over Fq .

Corollary 3.2 A subset a ⊂ tn is a nilpotent two-sided ideal if and only if a = nP for
some poset P � �n�.

Proposition 2 in [11] shows the number of nilpotent two-sided ideals in tn, and
hence the number of normal pattern subgroups of Un, to be the nth Catalan number
Cn = 1

n+1

(2n
n

)
. In fact, this result holds if tn is taken to be the algebra of n × n upper

triangular matrices over any field. Intuitively, this follows by viewing the positions of
a matrix as the interior squares of an n×n grid. Then, given a normal poset P � �n�,
consider the border separating the positions in P from all other positions on and
above the diagonal. Condition (3.1) ensures that this border is a monotonic path in
the grid starting at the upper left hand corner, ending at the lower right corner, and
never passing below the diagonal. For example,
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UP =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 ∗ ∗ ∗
1 0 ∗

1 0
1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

� U4 corresponds to

• • · · ·

· • • • ·

· · · • •

· · · · •

· · · · •

This gives a bijective correspondence between the set nilpotent ideals in tn and the set
of Dyck paths of order n, which has order Cn. This number is independent of Fq . By
contrast, the number of nilpotent two-sided ideals in nn depends significantly on the
field Fq , and is infinite if Fq is replaced by a field of characteristic zero. See Sect. 4
in [9] for a more detailed discussion.

Now that we have in classified the normal pattern subgroups of Un, we can set
about describing the family’s superclasses and supercharacters. Fix a poset P � �n�.
Corollary 3.1 then shows that Un acts on nP on the left and right by multiplication.
These actions in turn give rise to compatible left and right actions of Un on n∗

P ,
defined in the usual way by gλ(X) = λ(g−1X) and λg(X) = λ(Xg−1) for g ∈ Un,
λ ∈ n∗

P , and X ∈ nP . Since gUP = gUP g−1g = UP g for all g ∈ Un, we can view
Un as acting (on the left and right) on the left, right, and two-sided UP orbits of nP
and n∗

P . For example, we have

gUP XUP h = UP (gXh)UP and gUP λUP h = UP (gλh)UP

for g,h ∈ Un, X ∈ nP , and λ ∈ n∗
P . These actions evidently preserve all orbit sizes, so

it follows that each left/right/two-sided Un-orbit in nP or n∗
P decomposes as a disjoint

union of left/right/two-sided UP -orbits, all of which have the same cardinality.
This last statement suggests a strategy for identifying the superclasses and super-

characters of the normal pattern subgroup UP . This classification amounts to describ-
ing the two-sided UP -orbits in nP and n∗

P , and we can do this in two steps: by first
finding the Un-orbits in nP and n∗

P , and then decomposing each Un-orbit into UP -
orbits. The first step in this process is in some sense trivial, since by (2.3) we can
index the orbits of the action of Un with Fq -labeled set partitions. We accomplish
the second step by introducing some additional constructions defined in terms of the
poset P to identify the distinct UP -orbits in each Un-orbit.

Of course, these ideas apply equally well to the problem of describing the su-
perclasses and supercharacters of the normal pattern subgroups of an arbitrary pat-
tern group UQ in place of Un. However, one needs to thoroughly understand the
superclasses and supercharacters of UQ to derive anything very explicit about the
analogous structures for the group’s normal subgroups, which is why we restrict our
attention to the case UQ = Un.

We carry out the strategy described above in the next two sections, then derive
an additional correspondence between the supercharacters of UP � Un and certain
subposets of P whose covers are labeled by elements of F

×
q .
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4 Superclass constructions

Fix a poset P � �n�. We know that the two-sided Un-orbits in nP are indexed by the
set partitions SP , and we need a way of identifying the distinct UP orbits in each. We
accomplish this with the following constructions. Given a set partition λ ∈ SP and a
poset Q ∈ {P , �n�}, define

adjLQ(λ) = {
(i, k) : ∃ (j, k) ∈ supp(λ) with (i, j) ∈ Q

}
,

adjRQ(λ) = {
(i, k) : ∃ (i, j) ∈ supp(λ) with (j, k) ∈ Q

}
,

adjQ(λ) = adjLQ(λ) ∪ adjRQ(λ).

(4.1)

The notation adj comes from thinking of these positions as being adjacent to the sup-
port of λ with respect to Q. In particular, these positions are the only ones which we
can “reach” by acting on λ with UQ, in the sense that elements in the one-sided or-
bits UQλ and λUQ have nonzero entries only in supp(λ) and in adjLQ(λ) and adjRQ(λ),
respectively.

It is clear from our definition of a poset and Lemma 3.1 that the positions defined
by adjLQ and adjRQ are contained in P regardless of whether Q = P or Q = �n�. Next
define the set differences

auxL
Q(λ) = adjL�n�(λ) − adjLQ(λ),

auxR
Q(λ) = adjR�n�(λ) − adjRQ(λ),

auxQ(λ) = adj�n�(λ) − adjQ(λ).

(4.2)

The notation aux comes from viewing these positions as auxiliary to the support of
λ with respect to Q, in the sense that the entries in these positions comprise the min-
imum amount of information necessary to specify the distinct UQ-orbits in UnλUn.
These sets of positions are likewise always subsets of P ; in particular, note that they
are empty when Q = �n�.

The sets in both (4.1) and (4.2) are all disjoint from supp(λ). This follows since
supp(λ) contains at most one position in each row and column as λ is a set partition,
and the positions in (4.1) and (4.2) each lie either in the same row and strictly to the
right of a position in supp(λ), or in the same column and strictly above a position in
supp(λ).

Example 4.1 Suppose P � �7� is the poset given by

P =

7

5 6

3 4

1 2

and λ = 1
a
�4

b
�6|2 c

�5|3 d
�7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 a 0 0 0
0 0 0 c 0 0

0 0 0 0 d

0 0 b 0
0 0 0

0 0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ SP .
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Then UP is the commutator subgroup of U7, which is explicitly given by the set of
matrices x ∈ U7 with xi,i+1 = 0 for all i. We compute

adjL�7�(λ) =
{

(1,5), (1,6), (1,7),

(2,6), (2,7), (3,6)

}
,

adjLP (λ) = {
(1,6), (1,7), (2,6)

}
,

auxL
P (λ) = {

(1,5), (2,7), (3,6)
}
,

and

adjR�7�(λ) =
{

(1,5), (1,6), (1,7),

(2,6), (2,7), (4,7)

}
,

adjRP (λ) = {
(1,6), (1,7), (2,7)

}
,

auxR
P (λ) = {

(1,5), (2,6), (4,7)
}
.

Thus, adj�7�(λ), adjP (λ), and auxP (λ) are the following sets of positions in a 7 × 7
matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The main result of this section, and the singular motivation for these definitions,
is the construction of a bijection

{Superclasses of UP } ↔ {
(λ,X) : λ ∈ SP and X ∈ nP , supp(X) ⊂ auxP (λ)

}
.

In this direction, we first have the following lemma, which employs (4.1) and (4.2) to
classify the one-sided UP -orbits in nP .

Lemma 4.1 Fix a poset P � �n� and a set partition λ ∈ SP , and let Q ∈ {P , �n�}.
(a) Each left UQ-orbit in Unλ has the form {λ + X + Z ∈ nP : supp(Z) ⊂ adjLQ(λ)}

for a unique matrix X ∈ nP with supp(X) ⊂ auxL
Q(λ).

(b) Each right UQ-orbit in λUn has the form {λ+Y +Z ∈ nP : supp(Z) ⊂ adjRQ(λ)}
for a unique matrix Y ∈ nP with supp(Y ) ⊂ auxR

Q(λ).

(c) Consequently, |UQλUQ| = q |adjQ(λ)|.

Proof We only prove (a) as (b) follows by similar arguments and (c) is immediate
from the first two parts since |UQλUQ| = |UQλ||λUQ|

|UQλ∩λUQ| [5, Lemma 3.1]. In this direc-
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tion, we first show that

UQλ = {
λ + Z ∈ nP : supp(Z) ⊂ adjLQ(λ)

}
.

This holds since (gλ − λ)ik =∑
i<j<k gij λjk for g ∈ UQ. If (i, k) /∈ adjLQ(λ) then

either (j, k) /∈ supp(λ) for all j > i, or (i, j) /∈ Q whenever (j, k) ∈ supp(λ). In both
cases (gλ − λ)ik = 0, so supp(gλ − λ) ⊂ adjLQ(λ) and UQλ is contained in the given
right hand set. To show the reverse containment, we observe that UQλ−λ is a vector
space, and that if (i, k) ∈ adjLQ(λ) then we have (i, j) ∈ Q and (j, k) ∈ supp(λ), so

eik = (1 + λ−1
jk eij )λ − λ ∈ UQλ − λ. Thus the right hand set is itself contained in

UQλ.
Since auxL

�n�
(λ) = ∅, this proves the lemma when Q = �n�. To treat the case

Q = P , observe that

|Unλ|
|UP λ| = q

|adjL
�n�

(λ)|−|adjLP (λ)| = q |auxL
P (λ)|,

and so the number of left UP -orbits in Unλ is the same as the number of elements
X ∈ nP with supp(X) ⊂ auxL

P (λ). It therefore suffices to demonstrate that UP (λ +
X) = UP λ + X for X ∈ nP with supp(X) ⊂ auxL

P (λ), as this shows that distinct
elements of the form λ+X belong to distinct left UP -orbits, and that these orbits are
of the desired form. To this end, fix X ∈ nP with supp(X) ⊂ auxL

P (λ). Let g ∈ UP ,
and note that (gX − X)ik =∑

i<j<k gijXjk . If (i, k) ∈ auxL
P (λ), then by definition

there is some i < j ′ < k with (j ′, k) ∈ supp(λ) and (i, j ′) /∈ P . In this case, for each
i < j < k either Xjk = 0 or

(j, k) ∈ auxL
P (λ) ⇒ (j, j ′) ∈ �n� − P ⇒ (i, j) /∈ P ⇒ gij = 0,

by Lemma 3.1. Hence (gX−X)ik = 0 if (i, k) ∈ auxL
P (λ). Clearly, (gX−X)ik = 0 if

(i, k) /∈ adjL�n�(λ) since in this case we have Xjk = 0 for all j > i. Thus, supp(gX −
X) ⊂ adjLP (λ), so it follows that UP (λ + X) ⊂ UP λ + X. Since |UP (λ + X)| =
|UP λ| = |UP λ + X| as λ and λ + X belong to the same left Un-orbit, we must have
UP (λ + X) = UP λ + X, as desired. �

Classifying these one-sided orbits in some sense solves the analogous two-sided
problem, since for any λ ∈ nP , we have a natural surjection

UP λ × λUP → UP λUP ,
(4.3)

(gλ,λh) �→ gλh for g,h ∈ UP .

Thus, knowing the one-sided orbits gives a way of constructing all the two-sided
orbits, although not uniquely.

In the special case that λ ∈ SP and P � �n�, we can explicitly describe the map
(4.3) without reference to a choice of elements g,h in the following way. Given
λ ∈ SP , define a Fq -bilinear product ∗λ : nP ×nP → nP by (X,Y ) �→ X∗λ Y , where

(X ∗λ Y )il = Xil + Yil +
∑

i<j<k<l
(j,k)∈supp(λ)

XikYjl(λjk)
−1, for X,Y ∈ nP .
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This product characterizes the map (4.3) by the following lemma:

Lemma 4.2 Assume P � �n� and λ ∈ SP . If X = gλ − λ and Y = λh − λ for
g,h ∈ Un, then X ∗λ Y = gλh − λ.

Proof Since gλh − λ = X + Y + (g − 1)λ(h − 1) we have

(gλh − λ)il = Xil + Yil +
∑

i<j<k<l
(j,k)∈supp(λ)

gij λjkhkl . (4.4)

The set partition λ has at most one nonzero entry in each row and column; there-
fore, if (j, k) ∈ supp(λ) then λj ′k = λjk′ = 0 for all j ′ �= j and k′ �= k, and so
gijλjk = ∑

i<j ′<k gij ′λj ′k = Xik and λjkhkl = ∑
j<k′<l λjk′hk′l = Yjl. Hence if

(j, k) ∈ supp(λ) then gijλjkhkl = (gij λjk)(λjkhkl)(λjk)
−1 = XikYjl(λjk)

−1, and af-
ter substituting this into (4.4), we obtain gλh − λ = X ∗λ Y . �

Example 4.2 Suppose P � �7� and λ ∈ SP are as in Example 4.1. By Lemma 4.1,
the sets

{λ+ re15 + se27 + te36 : r, s, t ∈ Fq} and {λ+ue15 + ve26 +we47 : u,v,w ∈ Fq}

give representatives of the distinct left and right UP -orbits in Unλ and λUn, respec-
tively. If X = re15 + se27 + te36 and Y = ue15 + ve26 + we47 for some r, s, t, u, v,

w ∈ Fq , then

X ∗λ Y = (r + u)e15 + se27 + te36 + ve26 + we47 + rv

c
e16 + tw

b
e37.

Fix λ ∈ SP . By Lemma 4.1, there are |UnλUn|
|UP λUP | = q

|adj�n�(λ)|−|adjP (λ)| = q |auxP (λ)|
two-sided UP -orbits contained in UnλUn. Thus, simply by order considerations we
know that these UP -orbits are in bijection with the set of X ∈ nP with supp(X) ⊂
auxP (λ). Our problem is to assign each such X to a representative of a distinct two-
sided UP -orbit. There is not really a canonical way of doing this, but using the prod-
uct ∗λ defined above, we can describe one relatively natural method as follows.

Given X ∈ nP with supp(X) ⊂ auxP (λ), let XL and XR\L be the unique elements
of nP such that

X = XL +XR\L, supp(XL) ⊂ auxL
P (λ), supp(XR\L) ⊂ auxR

P (λ)−auxL
P (λ).

Now define a map Rλ : {X ∈ nP : supp(X) ⊂ auxP (λ)} → UnλUn − λ by

Rλ(X) = XL ∗λ XR\L, for X ∈ nP with supp(X) ⊂ auxP (λ).

By Lemma 4.1, XL ∈ Unλ − λ and XR\L ∈ λUn − λ, so Rλ maps X to an element of
UnλUn − λ. This definition gives us all we need to index the superclasses of UP .
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Theorem 4.1 Fix a poset P � �n�. Given λ ∈ SP and X ∈ nP with supp(X) ⊂
auxP (λ), define

K(λ,X)

P
def= the superclass of UP containing 1 + λ + Rλ(X) ∈ UP .

(a) The following map is a bijection:
{
(λ,X) : λ ∈ SP and X ∈ nP , supp(X) ⊂ auxP (λ)

}→ {Superclasses of UP },
(λ,X) �→ K(λ,X)

P .

(b) Given λ ∈ SP and X ∈ nP with supp(X) ⊂ auxP (λ), the superclass K(λ,X)

P has
order q |adjP (λ)|, which does not depend on X.

Remark A much simpler map from pairs (λ,X) to superclasses of UP would assign
(λ,X) to the superclass containing the element 1 +λ+X ∈ UP . This map fails to be
a bijection, however. For a counterexample, take P � �7� to be as in Example 4.1 and

define μ,ν ∈ SP by μ = 1|2|3|4 a
�6|5|7 and ν = 1

b
�7|2|3|4 a

�6|5 for some a, b ∈
F

×
q . One checks that auxP (μ) = auxP (ν) = {(3,6), (4,7)}, yet if X = e36 +e47 ∈ nP

then 1 + μ + X and 1 + ν + X belong to the same superclass of UP .

Before continuing, it is helpful to consider an example illustrating our notation.

Example 4.3 Again suppose P � �7� and λ ∈ SP are as in Example 4.1. If X =
re15 + se36 + te47 ∈ nP for some r, s, t ∈ Fq , then

Rλ(X) = (re15 + se36) ∗λ (te47) = X + b−1ste37

and K(λ,X)

P is the superclass of UP containing the element

1 + λ + Rλ(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 a r 0 0
1 0 0 c 0 0

1 0 0 s d + b−1st

1 0 b t

1 0 0
1 0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ UP .

The proof of Theorem 4.1 depends on the following somewhat technical lemma.

Lemma 4.3 Fix a poset P � �n� and λ ∈ SP , and let Xi ∈ nP have supp(Xi) ⊂
auxP (λ) − auxL

P (λ) for i = 1,2. Then there are elements h1, h2 ∈ Un with Xi =
λhi − λ such that supp(λh1h

−1
2 ) ∩ auxL

P (λ) = ∅.

Proof Enumerate the positions in auxP (λ) − auxL
P (λ) as (i1, k1), . . . , (ir , kr ) such

that k1 ≥ · · · ≥ kr . For each index t = 1, . . . , r , let jt be the column with (it , jt ) ∈
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supp(λ). We claim that the lemma holds if we take hi ∈ Un to be the element

hi = 1 +
r∑

t=1

(Xi)it kt (λit jt )
−1ejt kt =

r∏
t=1

(
1 + (Xi)it kt (λit jt )

−1ejt kt

)
,

where the factors in the product are multiplied in order from left to right. (In other
words, we evaluate the expression

∏r
t=1 xt as x1x2 · · ·xr .)

To show this, we first note that (jt , kt ) ∈ �n� − P for all t by the definitions
given in (4.1) so our elements hi ∈ Un are well-defined. We next observe that since
k1 ≥ · · · ≥ kr , we have ejt kt ejt+1kt+1 = 0 for all t , and so the given sum and product
formulas for hi are equal. Since λejt kt = λit jt eit kt by construction, it follows imme-
diately that λhi − λ = Xi .

To prove that supp(λh1h
−1
2 ) ∩ auxL

P (λ) = ∅, consider the subspace S ⊂ nP of
matrices whose nonzero positions coincide with or lie below nonzero positions of λ:

S = {Y ∈ nP : Yik �= 0 ⇒ λjk = 0 for all j > i}.
Clearly, λ ∈ S . Now observe that for any t , (it , kt ) ∈ auxP (λ) − auxL

P (λ) implies
that (it , kt ) /∈ adjL�n�(λ), and so necessarily (j, kt ) /∈ supp(λ) for all j > it . It follows

from this that both X1,X2 ∈ S . Furthermore, if Y ∈ S , then Y ′ = Yejt kt ∈ S . This
follows since by construction (it , jt ) ∈ supp(λ), so the nonzero positions of Y in the
jt th column all lie below the it th row; hence Y ′ has nonzero positions only in the kt th
column below the it th row, and so Y ′ ∈ S since (j, kt ) /∈ supp(λ) for all j > it .

It follows immediately that we have Sh−1
2 ⊂ S , since if Y ∈ S then Y(1 +

cejt kt )
−1 = Y(1 − cejt kt ) = Y − cYejt kt ∈ S for all t = 1, . . . , r and c ∈ Fq . Thus,

in particular X1h
−1
2 ∈ S and λh−1

2 ∈ S , so λh1h
−1
2 = X1h

−1
2 + λh−1

2 ∈ S . But
Y ∈ S implies that supp(Y ) ∩ adjL�n�(λ) = ∅, so we certainly have supp(λh1h

−1
2 ) ∩

auxL
P (λ) = ∅. �

We may now prove the theorem.

Proof of Theorem 4.1 In light of the two-sided action of Un on nP , we know that
every superclass of UP is a subset of a superclass UnλUn of Un for some λ ∈ SP ,
and that conversely, each superclass UnλUn of Un decomposes as a disjoint union of
superclasses of UP of equal order.

Fix λ ∈ SP . Then by Lemma 4.1, we know that there are |UnλUn|
|UP λUP | =

q
|adj�n�(λ)|−|adjP (λ)| = q |auxP (λ)| distinct two-sided UP -orbits in UnλUn. Hence to

show that the given map (λ,X) �→ Kg

P is a bijection, it suffices to prove that
when λ ∈ SP is fixed, the q |auxP (λ)| elements of the form λ + Rλ(X) where
supp(X) ⊂ auxP (λ) belong to distinct two-sided UP -orbits.

To this end, suppose the contrary: that for some Xi ∈ nP with supp(Xi) ⊂
auxP (λ) for i = 1,2, we have x(λ + Rλ(X1))y = λ + Rλ(X2) for some x, y ∈ UP .
Write (Xi)L = giλ − λ and (Xi)R\L = λhi − λ for gi, hi ∈ Un, where hi is taken to
be as in Lemma 4.3. Then λ + Rλ(Xi) = giλhi and we have λh1h

−1
2 y′ = x′g−1

1 g2λ,
where x′ = g−1

1 x−1g1 ∈ UP and y′ = h2yh−1
2 ∈ UP by normality.
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By Lemma 4.1, we have g−1
1 g2λ ∈ UP (λ + X) for some X ∈ nP with supp(X) ⊂

auxL
P (λ). Similarly, by Lemmas 4.1 and 4.3 we have λh1h

−1
2 ∈ (λ + Y)UP for some

Y ∈ nP with supp(Y ) ⊂ auxR
P (λ) − auxL

P (λ). Putting this together, we have

λh1h
−1
2 y′ = x′g−1

1 g2λ ∈ UP (λ + X) ∩ (λ + Y)UP .

But supp(X) ∩ supp(Y ) = ∅, so by the characterization of the left and right UP -
orbits in Lemma 4.1, it necessarily follows that X = Y = 0. Thus, UP (λ + (X1)L) =
UP (λ + (X2)L) and (λ + (X1)R\L)UP = (λ + (X2)R\L)UP , so (X1)L = (X2)L and
(X1)R\L = (X2)R\L by Lemma 4.1, and consequently X1 = X2.

This proves that the map (λ,X) �→ Kg

P is a bijection. The last part of the theorem
concerning the sizes of superclasses follows directly from Lemma 4.1. �

5 Supercharacter constructions

Fix a poset P � �n�. The constructions and arguments needed to classify the super-
characters of UP closely mirror those of the previous section. We begin by defining
several sets of positions which serve the same purpose as, and are dual to, the sets adj
and aux above. Given a set partition λ ∈ S∗

P and a poset Q ∈ {P , �n�}, define

coadjLQ(λ) = {
(j, k) ∈ P : ∃ (i, k) ∈ supp(λ) with (i, j) ∈ Q

}
,

coadjRQ(λ) = {
(i, j) ∈ P : ∃ (i, k) ∈ supp(λ) with (j, k) ∈ Q

}
,

coadjQ(λ) = coadjLQ(λ) ∪ coadjRQ(λ).

(5.1)

Note the dependence on P in the definition of coadjLQ and coadjRQ. Since we distin-
guish linear functionals by their domains, and so view S∗

Q and S∗
R as disjoint sets

when Q and R are distinct posets, this slight abuse of notation does not present any
significant ambiguity. Next define

coauxL
Q(λ) = coadjL�n�(λ) − coadjLQ(λ),

coauxR
Q(λ) = coadjR�n�(λ) − coadjRQ(λ),

coauxQ(λ) = coadj�n�(λ) − coadjQ(λ).

(5.2)

These sets of positions are also always subsets of P , and in particular, they are empty
when Q = �n�.

The sets in both (5.1) and (5.2) are disjoint from supp(λ). As in the preceding
section, this follows since supp(λ) contains at most one position in each row and
column as λ is a set partition, and the positions in (5.1) and (5.2) each lie either in the
same row and strictly to the left of a position in supp(λ), or in the same column and
strictly below a position in supp(λ).
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Example 5.1 Suppose P � �7� is given as in Example 4.1. If λ ∈ S∗
P is the set parti-

tion

λ = 1
a
�4

b
�6|2 c

�7|3 d
�5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 a 0 0 0
0 0 0 0 0 c

0 0 d 0 0
0 0 b 0

0 0 0
0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ n
∗
P

then we compute

coadjL�7�(λ) = {
(2,4), (3,7), (4,7), (5,7)

}
,

coadjLP (λ) = {
(4,7), (5,7)

}
,

coauxL
P (λ) = {

(2,4), (3,7)
}
,

and

coadjR�7�(λ) = {
(1,3), (2,4), (2,5), (2,6)

}
,

coadjRP (λ) = {
(2,4), (2,5)

}
,

coauxR
P (λ) = {

(1,3), (2,6)
}
.

Thus, coadj�7�(λ), coadjP (λ), and coauxP (λ) are the following sets of positions in a
7 × 7 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

As in Sect. 4, our primary goal is to construct a bijection

{Supercharacters of UP } ↔ {
(λ,X) : λ ∈ S∗

P and η ∈ n
∗
P , supp(η) ⊂ coauxP (λ)

}
.

For this, we first classify the one-sided UP -orbits in n∗
P with the following lemma.
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Lemma 5.1 Fix a poset P � �n� and a set partition λ ∈ S∗
P , and let Q ∈ {P , �n�}.

(a) Each left UQ-orbit in Unλ has the form {λ + η + ν ∈ n∗
P : supp(ν) ⊂ coadjLQ(λ)}

for a unique functional η ∈ n∗
P with supp(η) ⊂ coauxL

Q(λ).
(b) Each right UQ-orbit in λUn is of the form {λ + μ + ν ∈ nP : supp(ν) ⊂

coadjRQ(λ)} for a unique functional μ ∈ n∗
P with supp(μ) ⊂ coauxR

Q(λ).

(c) Consequently |UQλUQ| = q |coadjQ(λ)|.

Proof After one verifies for g ∈ Un the identities (g−1λ − λ)jk =∑
i<j gij λik when

(j, k) ∈ P and (λg−1 − λ)ij = ∑
j<k gjkλik when (i, j) ∈ P (which are given as

Theorem 4.2 in [6] when g ∈ UP ), the proof of this lemma follows exactly the same
structure as the proof of Lemma 4.1. �

For any λ ∈ n∗
P , we again have a natural surjection

UP λ × λUP → UP λUP ,

(gλ,λh) �→ gλh for g,h ∈ UP .
(5.3)

Once again, when λ ∈ S∗
P and P � �n�, we can explicitly describe this map without

reference to the elements g,h in the following way. Given λ ∈ S∗
P , define a Fq -

bilinear product ∗λ : n∗
P × n∗

P → n∗
P (with slight abuse of notation using the same

symbol as above) by (η,μ) �→ η ∗λ μ, where

(η ∗λ μ)jk = ηjk + μjk +
∑

i<j<k<l
(i,l)∈supp(λ)

ηjlμik(λil)
−1, for η,μ ∈ n

∗
P and (j, k) ∈ P .

This product characterizes the map (5.3) by the following lemma:

Lemma 5.2 Assume P � �n� and λ ∈ S∗
P . If η = gλ − λ and μ = λh − λ for

g,h ∈ Un, then η ∗λ μ = gλh − λ.

Proof Replace g,h with their inverses, so that η = g−1λ−λ and μ = λh−1 −λ. One
can then check that

(g−1λh−1 − λ)jk = ηjk + μjk +
∑

i<j<k<l
(j,k)∈supp(λ)

gij λilhkl, for (j, k) ∈ P . (5.4)

The set partition λ has at most one nonzero entry in each row and column; there-
fore, if (i, l) ∈ supp(λ) then λi′l = λil′ = 0 for all i′ �= i and l′ �= l, and so gijλil =∑

i′<j gi′j λi′l = ηjl and λilhkl =∑
k<l′ λil′hkl′ = μik. Hence if (i, l) ∈ supp(λ) then

gijλilhkl = (gij λil)(λilhkl)(λil)
−1 = ηjlμik(λil)

−1, and after substituting this into
(5.4), we obtain gλh − λ = η ∗λ μ. �

Example 5.2 Suppose P � �7� and λ ∈ S∗
P are as in Example 5.1. Write e∗

ij ∈ n∗
P to

denote the linear functional with e∗
ij (X) = Xij . Then by Lemma 5.1, the sets

{
λ + re∗

24 + se∗
57 : r, s ∈ Fq

}
and

{
λ + te∗

13 + ue∗
26 : t, u ∈ Fq

}
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give representatives of the distinct left and right UP -orbits in Unλ and λUn, respec-
tively. If η = re∗

24 + se∗
37 and μ = te∗

13 + ue∗
26 for some r, s, t, u ∈ Fq , then

η ∗λ μ = re∗
24 + se∗

37 + te∗
13 + ue∗

26 + c−1sue∗
36.

Fix λ ∈ S∗
P . By the same order considerations as in the superclass case, we know

that the set of two-sided UP -orbits contained in UnλUn is in bijection with the set of
η ∈ n∗

P with supp(η) ⊂ coauxP (λ). The difficulty is again to assign each such η to
a representative of a distinct two-sided UP -orbit. Mirroring the superclass case, we
have the following (non-canonical) construction.

Given η ∈ n∗
P with supp(η) ⊂ coauxP (λ), let ηL and ηR\L be the unique elements

of n∗
P such that

η = ηL + ηR\L, supp(ηL) ⊂ coauxL
P (λ),

supp(ηR\L) ⊂ coauxR
P (λ) − coauxL

P (λ).

Now define a map R∗
λ : {η ∈ n∗

P : supp(η) ⊂ coauxP (λ)} → UnλUn − λ by

R
∗
λ(η) = ηL ∗λ ηR\L, for η ∈ nP with supp(η) ⊂ coauxP (λ).

By Lemma 5.1, ηL ∈ Unλ − λ and ηR\L ∈ λUn − λ, so R∗
λ maps η to an element of

UnλUn − λ. We can now classify the supercharacters of UP .

Theorem 5.1 Fix a poset P � �n�. Given λ ∈ S∗
P and η ∈ n∗

P with supp(η) ⊂
coauxP (λ), define

χ
(λ,η)

P
def= the supercharacter indexed by λ + R

∗
λ(η) ∈ n

∗
P .

(a) The following map is a bijection:
{
(λ, η) : λ ∈ S∗

P , η ∈ n∗
P , supp(η) ⊂ coauxP (λ)

}→ {Supercharacters of UP },
(λ, η) �→ χ

(λ,η)

P .

(b) For λ ∈ S∗
P and η ∈ n∗

P with supp(η) ⊂ coauxP (λ), we have

χ
(λ,η)

P (1) = q |coadjLP (λ)| = q |coadjRP (λ)| and
〈
χ

(λ,η)

P , χ
(λ,η)

P
〉
UP

= q |coadjLP (λ)∩coadjRP (λ)|,

both of which do not depend on η.

Remark A much simpler map from pairs (λ, η) to supercharacters of UP would as-
sign (λ, η) to the supercharacter indexed by λ + η ∈ n∗

P . However, as in the super-
class case, this naive map fails to be a bijection. One sees this by examining essen-
tially the same counterexample as in the remark following Theorem 4.1. Namely,
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take P � �7� to be as in Example 4.1 and define μ,ν ∈ S∗
P by μ = 1|2|3|4 a

�6|5|7
and ν = 1

b
� 7|2|3|4 a

� 6|5 for some a, b ∈ F
×
q . One checks that coauxP (μ) =

coauxP (ν) = {(1,6), (2,7)}, yet if η = e∗
16 + e∗

27 ∈ n∗
P then μ + η and ν + η belong

to the same two-sided UP orbit and so index the same supercharacter.

Our exposition of the proof of this result is not nearly as long as in the superclass
case. The proof likewise depends on a technical lemma.

Lemma 5.3 Fix a poset P � �n� and λ ∈ S∗
P , and let ηi ∈ nP have supp(ηi) ⊂

coauxP (λ) − coauxL
P (λ) for i = 1,2. Then there are elements h1, h2 ∈ Un with ηi =

λhi − λ such that supp(λh1h
−1
2 ) ∩ coauxL

P (λ) = ∅.

Proof Enumerate the positions in coauxP (λ) − coauxL
P (λ) as (i1, j1), . . . , (ir , jr )

such that j1 ≤ · · · ≤ jr . For each index t = 1, . . . , r , let kt be the column with
(it , kt ) ∈ supp(λ). We claim that the lemma holds with

hi =
(

1 +
r∑

t=1

(ηi)it jt (λit kt )
−1ejt kt

)−1

=
r∏

t=1

(
1 + (ηi)it jt (λit kt )

−1ejt kt

)−1
,

where the factors in the product are multiplied in order from left to right. Proving
this is straightforward and follows almost exactly the same argument as the proof of
Lemma 4.3, with only minor adjustments reflecting the fact that our action is now on
n∗

P rather than nP . �

Proof of Theorem 5.1 Given the preceding lemma, the proof of the theorem is essen-
tially just a repetition of the proof of Theorem 4.1, where we change all instances of
nP to n∗

P , and we update all references to the corresponding lemmas in this section. �

Example 5.3 Again suppose P � �7� and λ ∈ SP are as in Example 5.1. If η =
re∗

13 + se∗
26 + te∗

37 ∈ n∗
P , then

R
∗
λ(η) = (

te∗
37

) ∗λ

(
re∗

13 + se∗
26

)= η + c−1ste∗
35

and χ
(λ,η)

P = χν
P where ν ∈ n∗

P is the Fq -linear functional defined by the matrix

ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 r a 0 0 0
0 0 0 0 s c

0 0 d stc−1 t

0 0 b 0
0 0 0

0 0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ n
∗
P .

Since a character χ is irreducible if and only if its inner product with itself is one,
we have the following corollary to Theorem 5.1.
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Corollary 5.1 Let P � �n�, and suppose λ ∈ S∗
P and η ∈ n∗

P has supp(η) ⊂
coauxP (λ). Then the supercharacter χ

(λ,η)

P is irreducible if and only if (i, k), (j, l) ∈
supp(λ) implies {(i, j), (j, k), (k, l)} �⊂ P whenever i < j < k < l.

When P = �n� and λ ∈ S∗
n , this result becomes the combinatorial condition that

χλ
�n�

is irreducible if and only if the set partition λ is non-crossing. A set partition of

�n� is non-crossing if when the numbers 1,2, . . . , n are arranged consecutively in a
circle, none of the chords connecting i and j for (i, j) ∈ supp(λ) intersect inside the
circle.

As another corollary, we can describe the restriction of supercharacters from Un

to the normal subgroup UP explicitly.

Corollary 5.2 Fix a poset P � �n�. Choose λ ∈ S∗
n and let μ ∈ S∗

P be the restriction
of λ to nP . Then the restriction of χλ to UP decomposes as

ResUn

UP

(
χλ
)= qc

∑
η

χ
(μ,η)

P ,

where c = |coadjL�n�(λ)| − |coadjLP (μ)| − |coauxP (μ)| and where the sum is over all

η ∈ n∗
P with supp(η) ⊂ coauxP (μ).

Proof This result follows by applying Theorem 5.1 in [9]. �

As remarked at the end of Sect. 2.5, each supercharacter of Un is given by a prod-
uct of irreducible supercharacters. This is not true for all algebra groups under the
supercharacter theory defined in [5]; as a counterexample, the abelian algebra group
G = {g ∈ U3 : g12 = g23} has supercharacters with degree two. However, using the
theorem we can show that it does hold when UP � Un. In particular, let P � �n�

and call a supercharacter χ
(λ,η)

P elementary if |supp(λ)| = 1. Such supercharacters
are characterized explicitly as those of the form χ

μ

P where μ ∈ n∗
P and for some

(i, l) ∈ P , we have

(1) μil �= 0
(2) μjk �= 0 only if i ≤ j ≤ max{i′ : (i, i′) ∈ �n� \ P } and l ≥ k ≥ min{l′ : (l′, l) ∈

�n� \ P }
(3) μjk = μikμjl/μil if μjk �= 0

By Corollary 5.1, each elementary supercharacter of UP is irreducible. Observe also
by Lemma 5.1 that if χ

μ

P is elementary, then χ
gμh

P is elementary for all g,h ∈ Un.
We now have the following result.

Proposition 5.1 If P � �n� then each supercharacter of UP is a product of (irre-
ducible) elementary supercharacters.

Proof Choose an arbitrary supercharacter of UP ; by our classification theorem, this
character is given by χ

μ

P for a linear functional μ ∈ n∗
P with μ = gλh for some
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g,h ∈ Un and λ ∈ S∗
P . Write λ = α1 +· · ·+αk for some αi ∈ n∗

P with |supp(αi)| = 1;
then the positions in supp(αi) all lie in distinct row and columns. We claim that
χλ

P = χ
α1

P · · ·χαk

P . This follows most readily from module considerations. One easily
checks that the map

UP α1 × · · · × UP αk → UP λ,

(ν1, . . . , νk) �→ ν1 + · · · + νk

is a bijection, and it follows immediately that the linear map defined on basis elements
by

V
α1

P ⊗ · · · ⊗ V
αk

P → V λ
P ,

vν1 ⊗ · · · ⊗ vνk
�→ vν1+···+νk

is a UP -module isomorphism, which establishes our factorization of χλ
P as a product

of the elementary supercharacters χ
αi

P . It then follows from the formula (2.2) that

χ
μ

P = χ
gλh

P = χ
gα1h

P · · ·χgαkh

P and so χ
μ

P is also a product of elementary superchar-
acters. �

6 Fq -labeled posets and the supercharacters of UP � Un

As promised in the introduction, we now carry the classification of the supercharac-
ters of UP a step further, by providing a combinatorial interpretation of Theorem 5.1.
To this end, we first show how one can naturally represent the supercharacters χ

(λ,η)

P
as posets labeled by elements of Fq . Then, going in the opposite direction, we classify
the set of such representative posets by a graph theoretic condition involving only P .

To begin this program, we must first make a few definitions. Recall that if P is a
poset, then P cov is the set of its covers, i.e., the elements (i, k) ∈ P such that there
is no j with (i, j), (j, k) ∈ P . Analogous to an Fq -labeled set partition, we define an
Fq -labeled poset to be a poset P with a map P cov → F

×
q which labels each cover with

a nonzero element of Fq . We can think of this labeling as assigning an element of F
×
q

to each edge in the Hasse diagram of P . For each (i, j) ∈ P cov, we let Pij denote
the corresponding label, and for each (i, j) /∈ P cov we set Pij = 0. With minor abuse
of notation, we refer to a labeled poset by just its poset structure P . In particular, an
Fq -labeled subposet of a poset P is just a labeled poset whose poset structure is a
subset of P .

The utility of these definitions comes from the fact that if P � �n�, then we can
naturally identify each supercharacter of UP with an Fq -labeled poset. To make this
connection explicit, we begin with the following observation.

Proposition 6.1 Fix a poset P � �n�. If λ ∈ S∗
P and η ∈ n∗

P has supp(η) ⊂
coauxP (λ), then supp(λ + η) is the set of covers of a poset P (λ,η) on [n].

Remark The superclass analogue of this proposition fails; for example, with P as

in Example 4.1 let λ = 1
a
�7|2 b

�4
c
�6|3|5 ∈ SP and X = se14 + te47 ∈ nP . Then
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supp(X) ⊂ auxP (λ) but (1,4), (4,7), (1,7) ∈ supp(λ+X), so supp(λ+X) cannot be
the set of covers of a poset. Thus, in somewhat typical asymmetry, the supercharacters
of UP � Un appear to lend themselves more naturally to a classification in terms of
nice combinatorial objects than do the superclasses.

Proof Fix a set partition λ ∈ S∗
P and let S = supp(λ) ∪ coauxP (λ). To prove the

lemma, it suffices to show that if (i, j), (j, k) ∈ S then (i, k) /∈ S, since if this holds,
then S is the set of covers of the poset defined by the condition (2.1). We do this
by considering four cases. First, suppose (i, j), (j, k) ∈ supp(λ). Since λ has at most
one nonzero entry in each row and column, clearly (i, k) /∈ supp(λ). In addition, by
definition (i, k) /∈ coadj�n�(λ) so (i, k) /∈ coauxP (λ).

Next, suppose (i, j) ∈ supp(λ) and (j, k) ∈ coauxP (λ). Then again (i, k) /∈
supp(λ), so, arguing by contradiction, assume (i, k) ∈ coauxP (λ). Then by defini-
tion (i, k) is below or to the left of some position in supp(λ); the latter case cannot
occur since (i, j) ∈ supp(λ), so there must be some i′ < i such that (i′, k) ∈ supp(λ)

and (i′, j) /∈ P . But by Lemma 3.1 this implies that (i, j) /∈ P , a contradiction. Hence
(i, k) /∈ coauxP (λ). We can handle the symmetric case that (i, j) ∈ coauxP (λ) and
(j, k) ∈ supp(λ) with a similar argument.

Finally, suppose (i, j), (j, k) ∈ coauxP (λ). Then (i, k) /∈ supp(λ), since if (i, k) ∈
supp(λ) and (i, j) ∈ coauxP (λ) then we must have (j, k) /∈ P . Alternatively, if
(i, k) ∈ coauxP (λ) then by definition either there exists i′ < i with (i′, k) ∈ supp(λ)

and (i′, j) /∈ P , or there exists k′ > k with (i, k′) ∈ supp(λ) and (j, k′) /∈ P .
By Lemma 3.1, however, the first case implies (i, j) /∈ P and the second case
implies (j, k) /∈ P . Both consequences are contradictions, so necessarily (i, k) /∈
coauxP (λ). �

Extending our notation, we attach to the poset P (λ,η) in Proposition 6.1 the obvi-
ous Fq -labeling given by setting

(
P (λ,η)

)
ij

= (λ + η)ij , for all i, j. (6.1)

When P � �n�, this gives us a well-defined map
{
(λ, η) : λ ∈ S∗

P and η ∈ n∗
P , supp(η) ⊂ coauxP (λ)

}→ {
Fq -labeled posets on [n]},

(λ, η) �→ P (λ,η)

(6.2)
which we will show later to be injective.

Practically speaking, these observations just mean that we can concisely visualize
our supercharacter indexing set by drawing the Hasse diagrams of the corresponding
labeled posets. As we shall soon see, we lose no information by thinking of things in
this way.

Example 6.1 The Hasse diagram of P (λ,η) has a decomposition into paths (i.e., di-
rected graphs whose vertices and edges can be listed as v1, . . . , vm and (v1, v2), . . . ,

(vm−1, vm)) if and only if η = 0. In this case, the connected components of the Hasse
diagram of P (λ,0) are just the labeled parts of λ.
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Example 6.2 Let P � �7� be as in Example 4.1 and suppose λ = 1
a
�4

b
�6|2 c

�7|
3

d
�5 ∈ S∗

P and η = re∗
13 + se∗

26 + te∗
37 ∈ n∗

P as in Example 5.1, where a, b, c, d ∈ F
×
q

and r, s, t ∈ Fq . Then P (λ,η) is the Fq -labeled poset

P (λ,η) =

5 7 6

3

d
t

2

c
s

4

b

1
ar

where we remove the edges labeled by r, s, t , respectively, if these elements are zero.

The problem at the heart of what follows is to determine the image of the map
(6.2), and then to show that restricted to this set, (6.2) has an inverse. To do this we
require some additional definitions. Fix an arbitrary poset P on [n]. We call a subset
S ⊂ P cov independent if no two elements in S share the same first coordinate or same
second coordinate, that is, if whenever (i, j), (k, l) ∈ S are distinct, we have i �= k and
j �= l.

Among all independent subsets of P cov, there is one of particular interest which
we may define as follows. Given a subset S ⊂ P cov, let �S denote the integer partition
whose parts are the positive numbers j − i for (i, j) ∈ S. In greater detail, list the
elements of S as (i1, j1), . . . , (is , js) so that j1 − i1 ≥ · · · ≥ js − is and define �S to
be the weakly decreasing sequence of nonnegative integers

�S = (j1 − i1, . . . , js − is ,0,0,0, . . .).

In particular, if S = ∅ then �S = (0,0,0, . . . ). Given any two integer sequences �, �′,
we say that � > �′ if � �= �′ and the first nonzero coordinate of � − �′ is positive; as
usual, we say that � ≥ �′ if � = �′ or � > �′. Under this definition, ≥ is the lexico-
graphic total ordering of the set of all integer sequences.

We now define a highest cover set of P to be any independent set S ⊂ P cov such
that �S ≥ �T for every independent set T ⊂ P cov. Observe that if S is a highest cover
set, then S is a maximal independent subset of P cov, i.e., S is not properly contained
in any independent set. This follows simply because any independent set T with
T ⊃ S has �T ≥ �S . Consequently, if S is a highest cover set, then every cover has
either the same first coordinate or the same second coordinate as some element of S.
However, S may not be the independent subset of P cov with the greatest number of
elements.

Lemma 6.1 If P is a poset on [n], then P has a unique highest cover set.

We denote the unique highest cover set of P by P cov
h .
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Proof We induct on the number of elements of P cov. If P cov is empty, then
P cov

h = ∅ is clearly unique. Suppose P cov is not empty, but that if Q is any poset
on [n] with fewer covers than P , then Q has a unique highest cover set. Let H =
{(i1, j1), . . . , (is , js)} be the set of elements of P cov with j1 − i1 = · · · = js − is =
max{j − i : (i, j) ∈ P cov}. Then necessarily the numbers it are all distinct and the
numbers jt are all distinct, so H is independent. Remove from P all elements (i, j)

with i = it or j = jt for some t , and call the resulting set Q. Then Q is a poset on
[n] with fewer covers than P , so Q has a unique highest cover set Qcov

h . The set
S = H ∪ Qcov

h is then an independent subset of P cov. We claim that it is the unique
highest cover set of P . To prove this, suppose T ⊂ P cov is an independent subset with
�T ≥ �S . It suffices to show that S = T . Clearly, if �T ≥ �S then H ⊂ T , since other-
wise one of the first s coordinates of �T would be less than j1 − i1 = · · · = js − is . But
if H ⊂ T , then T − H is an independent subset of Qcov with �T −H ≥ �S−H = �Qcov

h
,

so T − H = Qcov
h by hypothesis and T = S, as desired. �

The proof of this lemma shows that to one can form P cov
h by the following algo-

rithm:

Input: P , a poset on [n].
Instructions:

1. Set S= P cov.
2. Choose an element (i, k) ∈ S such that k − i = max(x,y)∈S(y − x) and add (i, k)

to P cov
h .

3. Remove from S all elements of the form (i, j) and (j, k) for 1 ≤ j ≤ n.
4. If S is nonempty, return to step 2; otherwise, the algorithm terminates.

Output: P cov
h .

Example 6.3 If P is the poset on n = 6 given by

P =

6

4 5

2 3

1

then P cov
h = {(1,3), (2,6), (3,5)}. Note that P �� �6� since (2,5) /∈ P but (3,4) ∈ P .

By a chain, we mean a subset of �n� of the form {(ai, aj ) : 1 ≤ i < j ≤ k} where
1 ≤ a1 < · · · < ak ≤ n. We say that poset P decomposes into chains if there exists

a set partition λ = {λ1, . . . , λ�} of [n] such that P is the union of the chains Ci
def=

{(a, b) : a, b ∈ λi, a < b} for i = 1, . . . , �. This is slightly stronger than saying that
P is a disjoint union of chains, for example, P = {(1,2), (1,3)} is a disjoint union of
chains but does not decompose into chains.
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Corollary 6.1 If P is a poset on [n], then P cov = P cov
h if and only if P decomposes

into chains.

Proof If P decomposes into chains then P cov is independent and clearly the highest
cover set. Conversely, if P cov = P cov

h , then no elements are removed from S in step 3
of our algorithm, which means that no two covers of P share the same first coordinate
or same second coordinate. Using this property and considering how P is determined
by its covers, one concludes that P decomposes into chains. �

We can now describe a poset condition which characterizes the image of the map
(6.2). Given a poset P on [n], we say that a poset Q on [n] is P -representative if
Q ⊂ P and the following conditions hold:

(i) If (i, k) ∈ Qcov
h and (i, j) ∈ Qcov then (j, k) /∈ P .

(ii) If (i, k) ∈ Qcov
h and (j, k) ∈ Qcov then (i, j) /∈ P .

Before proceeding, we inspect what this definition means for the fundamental exam-
ple P = �n�.

Proposition 6.2 A poset Q is �n�-representative if and only if Q decomposes into
chains.

Proof If Q is �n�-representative then no elements can be removed from S in step 3
of our algorithm for constructing Qcov

h since this would cause either (i) or (ii) to fail
in our definition of P -representative. Therefore, Qcov

h = Qcov so Q decomposes into
chains by Corollary 6.1. The converse is immediate. �

Each �n�-representative poset thus naturally corresponds to a set partition of [n]:
namely, the one whose parts are the connected components of the Hasse diagram
of Q. Hence the set of �n�-representative Fq -labeled posets indexes the set of super-
characters of Un. In fact, we can say something much more general.

Theorem 6.1 Fix a poset P � �n�. Then the maps

{Supercharacters of UP } →
{
(λ, η) : λ ∈ S∗

P and η ∈ n∗
P ,

supp(η) ⊂ coauxP (λ)

}

→
{

P -representative
Fq -labeled posets

}
, (6.3)

χ
(λ,η)

P �→ (λ, η)

�→ P (λ,η)

are bijections.

Remark While our definitions make sense in greater generality, the combinatorial
picture drawn by this theorem certainly may fail to hold if UP is not normal in Un.
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For example, consider the posets P(i) ⊂ �n� of the form

P(i) =

n

...

i + 1

1 i

...

2

which Thiem and Venkateswaran study in [13]. For 2 < i < n, we have P(i) �� �n�,
and in this case the set of P(i)-representative posets is not in bijection with the set of
supercharacters of the corresponding pattern group.

Proof That the first map is a bijection is the statement of Theorem 5.1. To prove
that the second map is a bijection, let Q be a P -representative Fq -labeled poset, and
define λQ, ηQ ∈ n∗

P by

λQ =
∑

(i,j)∈Qcov
h

Qij e
∗
ij and ηQ =

∑
(i,j)∈Qcov−Qcov

h

Qij e
∗
ij .

We claim that the map Q �→ (λQ, ηQ) is the inverse of the second map in the the-
orem statement. The difficulty here is just to show that (λQ, ηQ) lies in the map’s
domain. In this direction, we first note that since Qcov

h is an independent subset of
Qcov, supp(λQ) has at most one position in each row and column, so λQ ∈ S∗

P is a
labeled set partition.

We want to show that supp(ηQ) ⊂ coauxP (λQ). For this, fix some (j, k) ∈
supp(ηQ) = Qcov − Qcov

h . Since supp(λQ) = Qcov
h , there is either some (i, k) ∈

supp(λQ) or some (j, l) ∈ supp(λQ), and we want to show that in the first case
i < j and in the second case k < l. To this end, suppose on the contrary that any
element of supp(λQ) in the same row or column as (j, k) lies strictly below or to
the left of (j, k). We derive a contradiction as follows. Let T0 be the set of positions
(j ′, k′) ∈ Qcov

h with k′ − j ′ ≥ k − j , and observe that T = T0 ∪ {(j, k)} remains an
independent set by our contrary assumption. Writing S = Qcov

h , we then have the
contradiction �T > �S , since if |T0| = r , then by construction �T,i = �S,i for i ≤ r

and �T,r+1 = k − j > �S,r+1.
This proves that there is either some (i, k) ∈ supp(λQ) with i < j or some

(j, l) ∈ supp(λQ) with k < l. Hence by (5.1) we have (j, k) ∈ coadj�n�(λQ). Fur-
thermore, by the definition of P -representative and (5.1), in the first case we have
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(i, j) /∈ P so (j, k) /∈ coadjLP (λQ) and in the second case we have (k, l) /∈ P so
(j, k) /∈ coadjRP (λQ). Therefore, (j, k) /∈ coadjP (λQ), so (j, k) ∈ coauxP (λQ) and
more generally supp(ηQ) ⊂ coauxP (λQ).

Thus, (λQ, ηQ) lies is the domain of the second map in the theorem, and clearly its
image under this map is P (λQ,ηQ) = Q. Hence Q �→ (λQ, ηQ) gives a well-defined
inverse to the second map, so this map is a bijection. �

The preceding proof shows that if λ ∈ S∗
P and η ∈ n∗

P has supp(η) ⊂ coauxP (λ),
then supp(λ) is equal to the highest cover set of P (λ,η). Thus, if χQ is the superchar-
acter corresponding to a P -representative poset Q, then there is a unique λ ∈ S∗

P with
supp(λ) = Qcov

h and

χQ(1) = q |coadjLP (λ)| = q |coadjRP (λ)| and 〈χQ, χQ〉UP = q |coadjLP (λ)∩coadjRP (λ)|.

In particular, we can restate the irreducibility criterion given by Corollary 5.1 as a
condition on the P -representative poset corresponding to a given supercharacter.

Corollary 6.2 Let P � �n�. Choose a supercharacter χ of UP and suppose χ cor-
responds to the P -representative Fq -labeled poset Q under the map (6.3). Then χ is
irreducible if and only if (i, k), (j, l) ∈ Qcov

h implies {(i, j), (j, k), (k, l)} �⊂ P when-
ever i < j < k < l.

As an additional corollary, we classify all degree one supercharacters of UP in
terms of the corresponding P -representative posets.

Corollary 6.3 Fix a poset P � �n�.

(a) The poset P , with any Fq -labeling, is itself P -representative and corresponds to
a supercharacter of degree one under (6.3).

(b) More generally, a supercharacter of UP has degree one if and only if it corre-
sponds under (6.3) to a P -representative Fq -labeled poset Q satisfying Qcov ⊂
P cov.

Proof Part (a) follows since, by the definition of a cover, (i, k), (i, j) ∈ P cov ⇒
(j, k) /∈ P and (i, k), (j, k) ∈ P cov ⇒ (i, j) /∈ P .

To prove part (b), we note that a supercharacter χ
(λ,η)

P , where λ ∈ S∗
P and

supp(η) ⊂ coauxP (λ), has degree one if and only if

coadjLP (λ) = coadjRP (λ) = coadjP (λ) = ∅.

By definition this occurs if and only if supp(λ) ⊂ P cov. We claim that in this case
coauxP (λ) ⊂ P cov as well. To show this, observe that in this setup

coauxP (λ) = coadj�n�(λ) = coadjL�n�(λ) ∪ coadjR�n�(λ).

If (j, k) ∈ coadjL�n�(λ) then there exists (i, k) ∈ supp(λ) with i < j . If (j, k) is

not a cover of P , so that (j, j ′), (j ′, k) ∈ P for some j ′, then by Lemma 3.1 we
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have (i, j ′), (j ′, k) ∈ P , contradicting (i, k) ∈ P cov. If (j, k) ∈ coadjR�n�(λ) then it

follows that (j, k) ∈ P cov by a similar argument. Hence P (λ,η) = supp(λ + η) ⊂
supp(λ) ∪ coauxP (λ) ⊂ P cov if and only if χ

(λ,η)

P has degree one, which is the state-
ment of (b). �

We conclude with two examples illustrating applications of Theorem 6.1 to spe-
cific pattern groups.

Example 6.4 Suppose P � �5� is the poset given by

P =
5

4 3

2 1

so that UP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 a b c

1 0 d e

1 0 f

1 0
1

⎞
⎟⎟⎟⎟⎠ : a, b, c, d, e, f ∈ Fq

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

in which case UP is the commutator subgroup of U5. Then the P -representative
Fq -labeled posets are those of the following fifteen forms

5

2 4

1 3

5

3 4

1 2

5

4 3

2 1

4

5 2

3 1

5

3 4

1 2

1

4 5

2 3

5

4 3

2 1

5

4 3

2 1

5

3 4

1 2

3

4 5

1 2

1

4 5

2 3

5

4 3

2 1

5

4 3

2 1

3

4 5

1 2

5

4 3

2 1

where both solid and dashed lines are labeled by elements of F
×
q , but dashed lines are

optional and may be omitted. (Alternatively, we can think of dashed lines as being
labeled by elements of Fq rather than F

×
q .) In each of these diagrams, the solid lines

indicate the elements of the given poset’s highest cover set. Counting the number of
such labellings, it follows by Theorem 6.1 that the number of supercharacters and
superclasses of UP is

1 + 3(q − 1) + 3(q − 1)2 + (q − 1)3 + 3q2(q − 1) + 3q2(q − 1)2 + q3(q − 1)2

which simplifies to q3(q2 + 1)(q − 1). All of these representative posets satisfy
the condition in Corollary 6.2, so every supercharacter of UP is irreducible and
q3(q2 + 1)(q − 1) is the number of irreducible characters and conjugacy classes of
the group.
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As our second example, we index the supercharacters of a family of pattern groups.

Example 6.5 Given nonnegative integers m,n, let T = T (m,n) � �m + n� denote
the poset given by

T (m,n) =

m + 1 m + 2 · · · m + n

m

...

1

so that UT =
{(

u a

0 In

)
: u ∈ Um, a ∈ F

m×n
q

}
.

This pattern group is isomorphic to the semidirect product of Um and the additive
group F

m×n
q of m × n matrices over Fq , with respect to the natural action of Um on

F
m×n
q by left multiplication.

Using Theorems 5.1 and 6.1, it follows that a subposet P is T -representative if
and only if P is of the form

P =

�
(1)
1 �

(1)
2

· · · �
(1)
k1

v
(1)
j1

...

v
(1)
1

�
(2)
1 �

(2)
2

· · · �
(2)
k2

v
(2)
j2

...

v
(2)
1

· · ·

�
(r)
1 �

(r)
2

· · · �
(r)
kr

v
(r)
jr

...

v
(r)
1

for some nonnegative integers r , j1, . . . , jr , k1, . . . , kr , where the following condi-
tions hold:

(a) v
(i)
j ∈ {1, . . . ,m} and �

(i)
j ∈ {m + 1, . . . ,m + n} for each i, j .

(b) The vertices v
(i)
j are distinct for all i, j .

(c) �
(i)
j �= max{�(i′)

1 , . . . , �
(i′)
ki′ } if i �= i′ and v

(i)
ji

> v
(i′)
ji′ .

Notably, the vertices �
(i)
j in the Hasse diagram of P may coincide, subject to condi-

tion (c). For example, if m = 5 and n = 3 and we have two posets

P1 =
8 7 6

3 4

1 2 5

and P2 =
8 7 6

4 3

1 2 5

then P1 is T -representative while P2 is not T -representative.
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