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Abstract In this article, we consider indecomposable Specht modules with abelian
vertices. We show that the corresponding partitions are necessarily p2-cores where
p is the characteristic of the underlying field. Furthermore, in the case of p ≥ 3, or
p = 2 and μ is 2-regular, we show that the complexity of the Specht module Sμ

is precisely the p-weight of the partition μ. In the latter case, we classify Specht
modules with abelian vertices. For some applications of the above results, we extend
a result of M. Wildon and compute the vertices of the Specht module S(pp) for p ≥ 3.
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1 Introduction

The representation theory of symmetric groups has been one of the major research
areas since the beginning of the last century. The theory has been well-developed, yet
it seems that very little is known for the modular case. One way of understanding the
structure of representations of finite groups is through the notion of relative projec-
tivity, on which J.A. Green [13] defined the vertices of modules of finite groups about
50 years ago. The vertices of modules are, in some way, related to the complexity of
the modules defined by J. Alperin and L. Evens [2], and the rank variety defined by
J. Carlson [6].

Classically, Young modules, Specht modules and simple modules are the major
objects extensively studied in the representation theory of symmetric groups. The
computation of the vertices of Young modules has been done by J. Grabmeier [12].
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The vertices of signed Young modules have been computed by S. Donkin [9]. How-
ever, the vertices of simple modules and Specht modules remain mostly unknown.
The vertices of Specht modules of hook shape in p = 2 case were first considered
by G.M. Murphy and M.H. Peel in [24], with a mistake which has been corrected
by M. Wildon [27]. M. Wildon has made some progress on the computation of the
vertices of Specht modules, namely he has computed the vertices of simple Specht
modules of hook shape [27] and showed that, in general, a vertex of a Specht mod-
ule contains some large p-subgroup [28]. Recently, there were some computation
of the vertices of simple modules made by S. Danz, B. Külshammer, J. Müller and
R. Zimmermann [8, 23].

It is well known that, in general, if the defect groups of an indecomposable mod-
ule are abelian then its vertices are necessarily abelian, too. In particular, for the rep-
resentations of symmetric groups in the modular case, representations with abelian
defect correspond to partitions of p-weights strictly less than the characteristic p of
the underlying field. But there are examples of Specht modules of hook shape whose
vertices are abelian, yet their defect groups are not abelian. For example, for p = 3
the Specht module S(7,13) has vertices the Sylow 3-subgroups of S6 × S3 (see [27,
Theorem 2]) but with defect groups the Sylow 3-subgroups of S9.

In this article, we shall mainly be concerned with Specht modules with abelian
vertices. Motivated by the question of classifying these Specht modules, we give
some necessary conditions for such Specht modules. Indeed, for p ≥ 3, we show
that no other abelian subgroups can be the vertices of Specht modules besides the
elementary abelian ones. For p = 2, we could not give a definite answer as in the
odd characteristic case unless the corresponding partitions are 2-regular. Under the
hypothesis that the vertices of the Specht modules are abelian, a class of partitions
arises naturally, namely the p2-core partitions. In fact, for p = 2, we show that a 2-
regular partition μ is a 4-core if and only if the Specht module Sμ has elementary
abelian vertices. For all the Specht modules mentioned above, we conclude that their
complexities are precisely the p-weights of their labeled partitions.

We organize the article in the following way. In Sect. 2, we lay down some basic
knowledge about the representations of symmetric groups, the complexities and the
rank varieties for modules. We state our main results in Sect. 3 and prove them in
Sect. 4. In Sect. 5, we draw some consequences of the main results, in which we
generalize a result of M. Wildon and show that the vertices of S(pp) are the Sylow
p-subgroups of Sp2 when p ≥ 3. This is an example where the partition (pp) is a

p2-core but the Specht module S(pp) does not have abelian vertices. In the last section
Sect. 6, we post some questions which arise naturally from our results.

2 Preliminaries

We introduce the notation and background which we require. General references for
this section are [4, 16, 18].

2.1 The representations

Let G be a finite group and F be a field of characteristic p. In this article, all FG-
modules are finite dimensional vector spaces over F .
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Let M be an FG-module and H be a subgroup of G. We regard the restriction
ResG

H M as the FH -module in the obvious way. If S is an FH -module, we write
IndG

H S for the induced module. Let N be another FG-module. We write N | M if N

is isomorphic to a direct summand of M as an FG-module.
Suppose that p > 0. We say that the module M is relatively H -projective if

M | IndG
H ResG

H M . A vertex Q of an indecomposable FG-module M is a minimal
subgroup of G subject to the condition that M is relatively Q-projective. Given a ver-
tex Q of M , a source of M is an indecomposable FQ-module S such that M | IndG

Q S.
Let FG = I1 ⊕· · ·⊕Im be a decomposition of the F(G×G)-module FG, with the

action given by (g,h)x = gxh−1, into indecomposables. Suppose that 1 = ∑m
i=1 ei

with ei ∈ Ii for each 1 ≤ i ≤ m. Indeed, Ii = eiFG. The elements ei are mutually
orthogonal primitive central idempotents of the algebra FG and they are called the
blocks of FG. For an indecomposable FG-module M , there is a unique block ej

such that ejM �= 0 and eiM = 0 for all i �= j . In this case, ejM = M and we say that
the module M lies in the block ej . Note that FG ∼= IndG×G

�(G)
F where �(G) is the

diagonal embedding of G into G × G. Thus, for each 1 ≤ i ≤ m, a vertex of Ii is of
the form �(Di) for some subgroup Di of G and the subgroup Di is called a defect
group of the block ei .

Theorem 2.1 ([13]) Let F be a field of characteristic p > 0, G be a finite group and
M be an indecomposable FG-module. Then

(i) Any vertex of M is a p-subgroup of G,
(ii) The vertices of M are conjugate to each other in G, and

(iii) If M lies in the block ej of FG then M is relatively Dj -projective where Dj is a
defect group of ej . In particular, a vertex of M is necessarily a subgroup of Dj

up to conjugation.

Suppose that L is a field extension of F . We write L ⊗F M for the LG-module
upon field extension. In the latter part of this article, we are required to deal with
vertices of modules over field extension. We include a little lemma here.

Lemma 2.2 ([11, Sect. III Lemma 4.14]) Let L be a field extension of F and H be a
p-subgroup of a finite group G. Then an FG-module M is relatively H -projective if
and only if L ⊗F M is relatively H -projective.

In particular, if M is indecomposable and L ⊗F M remains indecomposable as
an LG-module then a p-subgroup Q of G is a vertex of M if and only if Q is a vertex
of L ⊗F M .

2.2 Rank varieties

Let p be a prime. The p-rank of a finite group G is the largest integer n subject to the
condition that G contains an elementary abelian p-subgroup of order pn. The p-rank
of the abelian p-group Zpn1 × · · · × Zpnm with n1, . . . , nm > 0 is m.

Let E be an elementary abelian p-group of p-rank n with generators g1, . . . , gn.
For each non-zero point α = (α1, . . . , αn) of the space Fn, we write uα = 1 +
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∑n
i=1 αi(gi − 1) ∈ FE. Note that 〈uα〉 is a cyclic p-group. Suppose that F is al-

gebraically closed. The rank variety of a FE-module M is the set

V #
E(M) = {0} ∪ {

0 �= α ∈ Fn |M is not projective as F 〈uα〉-module
}
.

The rank variety V #
E(M) is a homogeneous and closed subvariety of the affine space

A
n(F ) [6, Theorem 4.3]. We shall write dimV #

E(M) for the dimension of the alge-
braic variety V #

E(M). The rank variety depends on the choice and order of the genera-
tors of E, but its dimension does not. In the case where p � dimF M , for each 0 �= α ∈
Fn, M necessarily has a summand of dimension coprime to p as F 〈uα〉-modules.
In this case, we have V #

E(M) = V #
E(F ) and thus dimV #

E(M) = n. Let N be another
FE-module. It is clear from the definition that V #

E(M ⊕ N) = V #
E(M) ∪ V #

E(N).
Let G be a finite group and M be a FG-module. Let

P : · · · → P2 → P1 → P0 → M

be a minimal projective resolution of M . Following [2], the complexity c of the mod-
ule M is the smallest non-negative integer such that

lim
n→∞

dimF Pn

nc
= 0;

in other words, the polynomial rate growth of the dimensions of the terms of the
sequence P. We write cG(M) for the number c to indicate the dependence of c on M

as an FG-module.

Theorem 2.3

(i) ([2, Sect. 1 Theorem], [3, Theorem 1.1] and [6, Theorem 7.6]) Let M be an FG-
module, E be a set of representatives of elementary abelian p-subgroups of G

up to conjugation and E max be a set of representatives of maximal elementary
abelian p-subgroups of G up to conjugation. Then

cG(M) = max
E∈E

{
dimV #

E(M)
} = max

E∈E max

{
dimV #

E(M)
}
.

(ii) [2, Corollary 4, 5] The complexity of an indecomposable FG-module M is
bounded above by the p-rank of a defect group of the block in which M lies.

Following Theorem 2.3 (i), we have the conclusion that cG(M) is the p-rank of G

provided p � dimF M . We have a more refined statement of Theorem 2.3 (ii).

Proposition 2.4 [2, Lemmas 5.2, 5.3] Let M be an FG-module where F is a field of
characteristic p > 0.

(i) Suppose that M is relatively H -projective for some subgroup H of G. Then
cG(M) = cH (M).

(ii) Suppose that M is indecomposable. Let Q be a vertex of M with a source S.
Then cG(M) = cQ(S).



J Algebr Comb (2012) 35:157–171 161

Readers who are familiar with the variety theory for modules would have realized
that the author has avoided taking cohomological variety into discussion, thanks to
the Quillen stratification theorem and [3, Theorem 1.1].

2.3 The representations of symmetric groups

We now briefly go through the representations of symmetric groups. Let n be a non-
negative integer. A partition μ of n is a sequence of positive integers (μ1,μ2, . . . ,μs)

such that μ1 ≥ μ2 ≥ · · · ≥ μs and
∑s

i=1 μi = n. In this case, we write |μ| = n. Note
that we allow the empty partition ∅ to be the unique partition of 0. The partition μ

is called p-singular if there is some i ≥ 0 such that μi+1 = μi+2 = · · · = μi+p > 0;
otherwise, it is called p-regular. Let Λ(n) be the set consisting of all partitions of n.
There is a one-to-one correspondence between Λ(n) and the set of Young diagrams
with n nodes in an obvious way. The Young diagram of μ is written as [μ]. Fix
a positive integer m, not necessarily a prime. Each partition μ is associated to a
partition μ̃ and an non-negative integer w such that |μ| = |μ̃| + mw. The partition
μ̃ and the integer w is called the m-core and the m-weight of μ, respectively [16,
Sect. 2.7]. The m-core of μ is obtained by successively removing w removable rim
m-hooks. In the case where w = 0, or equivalently μ = μ̃, we say that the partition
μ is an m-core.

We write Sn for the symmetric group acting on n letters. To each partition μ of
n, we have the FSn-module S

μ
F , the Specht module labeled by the partition μ. We

usually write Sμ for S
μ
F if the underlying field is understood. The dimension of the

Specht module S
μ
F is given by the hook formula

dimF S
μ
F = n!

∏
(i,j)∈[μ] hi,j

where hi,j denotes the hook length of the node (i, j) of [μ] and n = |μ|. We note that
the dimension of S

μ
F is independent of the field F .

Theorem 2.5 Let p be the characteristic of a field F and n be a positive integer.

(i) [16, 2.7.40] Let m be a positive integer. The number of hook lengths of a Young
diagram [μ] which are divisible by m is precisely the m-weight of μ.

(ii) [18, Theorem 4.12] For p = 0, the set {Sμ |μ ∈ Λ(n)} is a complete set of non-
isomorphic simple FSn-modules.

(iii) [18, Corollary 13.18] Let μ be a partition. For p ≥ 3, or p = 2 and μ is 2-
regular, the Specht module Sμ is indecomposable.

(iv) [16, Sect. 6.1 and Theorem 6.2.45] The blocks of FSn are parametrized by the
p-cores of the partitions of n such that the block eμ̃ labeled by the p-core μ̃

contains the Specht module Sμ. In particular, if μ,λ are partitions of n then
the Specht modules Sμ,Sλ lie in the same block of FSn if and only if μ̃ = λ̃.
A defect group of the block eμ̃ is conjugate to a Sylow p-subgroup of Swp where
w is the p-weight of μ.

We shall take a step further to discuss the vertices of a special class of modules
of the symmetric groups, the Young modules [19]. Here and hereafter, whenever we
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have subgroups H ⊆ Sa , K ⊆ Sb where a +b ≤ n for some positive integers a, b,n,
we write H × K ↪→ Sa × Sb ↪→ Sn for the obvious inclusions.

Let μ = (μ1, . . . ,μr) be a partition of n. Let Sμ be the Young subgroup of Sn,
i.e.,

Sμ = Sμ1 × Sμ2 × · · · × Sμr .

Let Mμ ∼= IndSn

Sμ
F be the associated permutation module. Suppose that Mμ = M1 ⊕

· · · ⊕ Mk is a decomposition of Mμ into indecomposable summands. Then there is a
unique direct summand Mj of Mμ such that Sμ ⊆ Mj . We write Yμ for Mj and call
it a Young module. Clearly, the Young modules are well-defined up to isomorphism.
Every indecomposable direct summand of Mμ is isomorphic to some Young module
and Yμ ∼= Yλ if and only if μ = λ. The Young modules have trivial sources. It is
well known that if μ is a p-regular partition and Sμ is a simple Specht module then
Sμ ∼= Yμ; see, for example, [7, Sect. 1].

Every partition μ can be written as its p-adic expansion as follows. Let μ(0) be
the partition obtained from μ by successively stripping off all horizontal p-hooks.
Then we have the coordinate-wise summation μ = pμ(1) + μ(0) for some partition
μ(1). Inductively, we can write μ(k − 1) = pμ(k)+μ(k−1) for k ≥ 2 and hence μ =
pkμ(k)+ · · ·+pμ(1) +μ(0). The process ends if for some k, μ(k) has no removable
horizontal p-hooks. Let μ(k) = μ(k). Then μ = pkμ(k) + · · · + pμ(1) + μ(0) is the
p-adic expansion of μ. Let ρ(μ) be the partition

(
pk, . . . ,pk

︸ ︷︷ ︸
|μ(k)| factors

, . . . , p, . . . ,p
︸ ︷︷ ︸
|μ(1)| factors

,p0, . . . , p0
︸ ︷︷ ︸
|μ(0)| factors

)

of n and Sρ(μ) be the corresponding Young subgroup of Sn.

Theorem 2.6 ([12], [10, Sect. 4.1]) Any vertex of the Young module Yμ is conjugate
to a Sylow p-subgroup of Sρ(μ).

The main purpose of this article is to study the vertices and complexity of Specht
modules. Thus, by Theorem 2.3 (i), it is crucial to understand the maximal elementary
abelian p-subgroups of a symmetric group up to conjugation. Let m be a positive
integer. Let (Zp)m act on itself by the left regular action. This induces an injective
group homomorphism (Zp)m ↪→ Spm . Since the action is faithful we write Vm(p)

for the image of this homomorphism.

Theorem 2.7 ([1, Sect. VI Theorem 1.3]) Let n be a positive integer. There is a
one-to-one correspondence between the ways of writing n = i0 + i1p + · · · + irp

r

for some non-negative integer r such that all i0, . . . , ir are non-negative integers and
0 ≤ i0 ≤ p − 1, and the set of representatives of all maximal elementary abelian
p-subgroups of Sn up to conjugation, given by
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V1(p) × · · · × V1(p)
︸ ︷︷ ︸

i1 times

×· · · × Vr(p) × · · · × Vr(p)
︸ ︷︷ ︸

ir times

↪→ Sp × · · · × Sp
︸ ︷︷ ︸

i1 times

×· · · × Spr × · · · × Spr

︸ ︷︷ ︸
ir times

↪→ Sn.

Note that the p-rank of the maximal elementary abelian p-subgroup of Sn given
in Theorem 2.7 is i1 + 2i2 + · · · + rir . We shall draw an easy conclusion, following
Theorem 2.5 (iv) and Theorem 2.3 (ii), that the complexity of a Specht module Sμ is
bounded above by the p-weight of μ. The statement remains valid if we replace the
Specht module by the simple module Dμ, whenever μ is p-regular, of FSn as there
is an analogous statement to Theorem 2.5 (iv) for simple modules, though this is not
of the main concern of this article.

3 Main results

We present our main results in this section.

Theorem 3.1 Let F be a field of characteristic p > 0 and Sμ be an indecomposable
Specht module. Suppose that Sμ has an abelian vertex of p-rank m. Then μ is a
p2-core and the complexity of Sμ is m.

Theorem 3.2 Let F be a field of characteristic p > 0 and μ be a partition. Suppose
that p ≥ 3, or p = 2 and μ is 2-regular. Suppose that the Specht module Sμ has an
abelian vertex Q of p-rank m. Let c be the complexity of the Specht module Sμ and
w be the p-weight of the partition μ. Then c = m = w and Q is conjugate to the
elementary abelian p-subgroup

V1(p) × · · · × V1(p)
︸ ︷︷ ︸

w factors

↪→ Sp × · · · × Sp ↪→ Sn.

Theorem 3.3 Let p = 2, μ be a 2-regular partition and Q be a vertex of the Specht
module Sμ. Let w be a non-negative integer. Then the following statements are equiv-
alent.

(i) The vertex Q is abelian of 2-rank w.
(ii) The vertex Q is elementary abelian of 2-rank w.

(iii) The partition μ is a 4-core of 2-weight w.

In any of these cases, the Specht module Sμ has trivial source, complexity w and is a
simple Young module.

Remark 3.4 The hypothesis of Theorem 3.3 cannot be loosened in the following
sense. For p = 2, it is known that the Specht modules S(n−r,1r ) are indecomposable
when 2 | n [25, Theorem 4.1]. In this case, the vertices of S(n−r,1r ) are the Sylow
2-subgroups of Sn [24, Theorem 4.5]. Thus, for instance, the Specht module S(4,1,1)

has a non-abelian vertex, yet the partition (4,1,1) is a 4-core. So, in Theorem 3.3, we
cannot replace the 2-regularity condition merely by the indecomposability condition.
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4 Proof of the main results

In this section, we shall prove our main theorems. We first prove Theorem 3.1. We
then divide the latter part of this section into two subsections. The first part concerns
the proof of Theorem 3.2 when p ≥ 3. The second part concerns the proofs of Theo-
rem 3.2 when p = 2 and Theorem 3.3.

We state two known results upon which our proofs rely heavily.

Theorem 4.1 ([26], [20, Theorem 1]) Let n1, . . . , ns be positive integers. If there is
an injective group homomorphism Zpn1 × · · · × Zpns ↪→ Sm then pn1 + · · · + pns ≤
m.

For any positive integer n and prime number p, we write np for the prime power
pa such that pa | n and gcd(p,n/pa) = 1.

Theorem 4.2 ([5, Theorem 1.1]) Let M be an FG-module for some finite group
G. Suppose that M is relatively H -projective for some subgroup H of G. Let Q ∼=
Zpn1 ×· · ·×Zpnm be an abelian subgroup of H of p-rank m with n1 ≥ · · · ≥ nm ≥ 1.
Let c = cQ(M) be the complexity of the FQ-module ResG

Q M . Then

|G : H |p|Q|p
pn1 · · ·pnc

∣
∣
∣
∣ (dimF M)p.

We can now prove Theorem 3.1.

Proof of Theorem 3.1 We assume the notation as in Theorem 3.1. Let n = |μ| and w

be the p-weight of μ. Let D be a defect group of the block eμ̃ and Q be a vertex of
Sμ. Without loss of generality, we may assume that

Q ⊆ D ⊆ Spw.

We apply Theorem 4.2 and Proposition 2.4 by taking M = Sμ, H = Q ∼= Zpn1 ×
· · · × Zpnm with n1 ≥ · · · ≥ nm ≥ 1. Let c = cQ(Sμ) = cSn

(Sμ). We have

pa−n1−···−nm · pnc+1 · · ·pnm = pa−n1−···−nc | (dimF Sμ)p

where pa = (n!)p . By Theorem 2.5 (i) and the hook formula, we let s be the non-
negative integer such that

ps = pa

pw · (dimF Sμ)p
=

∏
(i,j)∈[μ](hi,j )p

pw
.

Note that s = 0 if and only if μ is a p2-core; namely every hook length of [μ] is not
divisible by p2. With this notation, we deduce that

s + w ≤ n1 + · · · + nc. (4.1)
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On the other hand, we have the injection Q ↪→ Spw . As such, by Theorem 4.1, we get
pn1 +· · ·+pnm ≤ pw; namely pn1−1 +· · ·+pnm−1 ≤ w. Combining this inequality
with (4.1), we have

(
pn1−1 − n1

) + · · · + (
pnc−1 − nc

) + pnc+1−1 + · · · + pnm−1 + s ≤ 0. (4.2)

Since pk−1 − k ≥ 0 for every positive integer k we conclude that m = c, s = 0,
pni−1 = ni for all 1 ≤ i ≤ c and w = n1 + · · · + nc. We have proved Theorem 3.1. �

4.1 The case where p ≥ 3

Assuming all the computations what we have just done in the proof of Theorem 3.1,
we continue to prove Theorem 3.2 for the case of p ≥ 3.

Proof of Theorem 3.2 when p ≥ 3 If p is odd then, from pni−1 = ni , necessarily
ni = 1 for all 1 ≤ i ≤ c; namely m = c = w and Q is an elementary abelian p-group
of p-rank w. Since Q is also a subgroup of Spw , by Theorem 2.7, we let

E = (V1(p))i1 × · · · × (Vr(p))ir

be an maximal elementary p-subgroup of Spw containing Q. Comparing their p-
ranks, we have w ≤ i1 + 2i2 + · · · + rir . On the other hand, we also have i1p +
i2p

2 + · · · + irp
r = pw. Thus we deduce that

i2(p − 2) + · · · + ir
(
pr−1 − r

) ≤ 0

and hence i2 = · · · = ir = 0, i1 = w. Namely, Q is necessarily conjugate to (V1(p))w .
This completes the proof of Theorem 3.2 when p is odd. �

Remark 4.3 The author would like to point out that the proofs given above, for Theo-
rem 3.1 and Theorem 3.2 when p ≥ 3, are very similar to the proof of [27, Theorem 1]
in which Wildon dealt with the case where m = 1.

4.2 The case where p = 2

Note that the proof of Theorem 3.1 assumes nothing about the 2-regularity of the
partition μ, in the case of p = 2. It works for all indecomposable Specht modules
with abelian vertices. In view of Theorem 3.2, we still have a result for p = 2 case
without assuming the 2-regularity condition.

Proposition 4.4 Let p = 2 and Sμ be indecomposable. Suppose that a vertex Q of
Sμ is abelian of p-rank m. Let c be the complexity of Sμ and w be the 2-weight of μ.
Then m = c, c ≤ w ≤ 2c and the direct factors of Q are either Z2 or Z4.

Proof By (4.2) with p = 2, we have m = c, 2ni−1 = ni for all 1 ≤ i ≤ c and w =
n1 + · · · + nc. Thus each of the ni is either 1 or 2. �
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In general, we do not know when a Specht module over an even characteristic
field is decomposable. Since vertices are defined only for indecomposable modules,
in view of Theorem 2.5 (iii), the 2-regularity assumption is technically required.

Note that the proof which we have just given in Sect. 4.1 for Theorem 3.2 fails
when p = 2 because of the possibility that Q may have Z4 as a direct factor. Thus we
need to take a closer look at these partitions μ which are 2-regular and the vertices of
Sμ are abelian.

Lemma 4.5 Let μ = (μ1, . . . ,μr) be a partition. Then μ is both a 2-regular and
4-core partition if and only if exactly one of the following holds.

(i) μr = 1 and there exists a number 0 ≤ s ≤ r − 1 such that μi − μi+1 = 3 for all
1 ≤ i ≤ s and μi − μi+1 = 1 for all s + 1 ≤ i ≤ r − 1.

(ii) μr ∈ {2,3} and μi − μi+1 = 3 for all 1 ≤ i ≤ r − 1.

Proof Suppose that μ is 2-regular and is a 4-core. It is easy to see that 1 ≤ μi −
μi+1 ≤ 3 for all 1 ≤ i ≤ r − 1 and μi − μi+1 �= 2 for all 1 ≤ i ≤ r − 2. Suppose
that μj − μj+1 = 3 and μj−1 − μj = 1 for some 2 ≤ j ≤ r − 1. Then the node
(j −1,μj−1 −2) has hook length 4. If μr is 2, or 3, then μr−1 −μr �= 1; otherwise the
node (r − 1,1), respectively (r − 1,2), has hook length 4. This proves one direction
of the characterization. The converse is easy. �

Using the above characterization of 2-regular and 4-core partitions, and the char-
acterization of simple Specht modules for p = 2 [17, Main Theorem], we obtain the
following corollary.

Corollary 4.6 (of [17, Main Theorem]) Let p = 2 and μ be a 2-regular partition. If
μ is a 4-core then Sμ is simple and Dμ ∼= Sμ ∼= Yμ.

Corollary 4.7 Let p = 2 and μ be a 2-regular partition of n. Suppose that μ is a
4-core. Then any vertex Q of Sμ is conjugate to

V1(2) × · · · × V1(2)
︸ ︷︷ ︸

w factors

↪→ (S2)
w ↪→ Sn

where w is the 2-weight of μ. Furthermore, the complexity of Sμ is w.

Proof Let μ = 2kμ(k) + · · · + 2μ(1) + μ(0) be the 2-adic expansion of μ with
|μ(k)| �= 0. We claim that 0 ≤ k ≤ 1 and μ(0) is the 2-core of μ. Note that there are
only two types of removable skew 2-hooks, the horizontal 2-hook and the vertical 2-
hook. Since μ(0) is obtained from μ by successively removing all horizontal 2-hooks
it is then not a 2-core if there is some removable vertical 2-hook of μ(0). In this
case, the original partition μ has two successive non-empty rows whose difference
of their sizes is divisible by 2. However, this is not allowed by the characterization
in Lemma 4.5. Thus μ(0) = μ̃. It is clear that, in general, if μ is a pk-core for some
positive integer k then μ(l) = ∅ for all l ≥ k.
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By Corollary 4.6, the Specht module Sμ is isomorphic to the Young module Yμ.
By Theorem 2.6, we deduce that any vertex Q of the Specht module Sμ ∼= Yμ is
conjugate to a Sylow 2-subgroup of Sρ(μ) = (S2)

|μ(1)| where

|μ(1)| = (n − |μ(0)|)/2 = (n − |μ̃|)/2 = w.

Since the Young module Yμ has a trivial source; namely the FQ-module F , by
Proposition 2.4 (ii), we have

cSn
(Sμ) = cQ(F ) = w.

The proof of our corollary is now complete. �

The proofs for Theorem 3.2 when p = 2 and Theorem 3.3 are now clear:

Proof of Theorem 3.2 when p = 2 We assume all the notation in Theorem 3.2. By
Theorem 3.1, the partition μ is necessarily a 4-core. By Corollary 4.7, we get m =
w = c and Q is conjugate to (V1(2))w . �

Proof of Theorem 3.3 Corollary 4.7 shows that (iii) implies (ii). The implication
from (ii) to (i) is trivial. Theorem 3.1 shows that (i) implies (iii). The final statement
comes from Corollaries 4.6 and 4.7. �

5 Some applications of the main results

In [27, Theorem 1], M. Wildon showed that the vertices of an indecomposable Specht
module Sμ are non-trivial cyclic if and only if the p-weight of μ is 1. We have a
generalization of this result.

Corollary 5.1 Let p be the characteristic of the field F and suppose that p ≥ 3. Let
1 ≤ m ≤ p − 1 be an integer and μ be a partition. Then a vertex Q of Sμ is abelian
of p-rank m if and only if the p-weight of μ is m. In this case, Q is necessarily
elementary abelian.

Proof Assume that Q is abelian. Theorem 3.2 shows that Q is elementary abelian
and m = w where w is the p-weight of μ. Conversely, suppose that m = w. In this
case, we have the abelian defect case. Thus Q is necessarily abelian as a subgroup of
some defect group of Sμ. By Theorem 3.2, Q is has p-rank w = m. �

Remark 5.2 By virtue of [27, Theorem 1], Corollary 5.1 also holds for p = 2 and Sμ

is indecomposable.

There is a special class of Specht modules Sμ whose partition μ is of the form
(μ1

a1 ,μ2
a2, . . . ,μr

ar ) where both μi, ai are multiples of p for every 1 ≤ i ≤ r . We
call them the (p × p)-partitions. As another application of our results, we study the
vertices of the Specht modules Sμ where μ is a (p × p)-partition for p ≥ 3. We
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have seen in Lemma 2.2 that the vertices of an indecomposable module remain un-
changed, should the module remains indecomposable upon field extension. Since all
Specht modules in the case of p ≥ 3 are indecomposable, we may assume that F is
algebraically closed for the rest of this section.

For p ≥ 3, Hemmer show that the complexity of the Specht module Sμ when μ is
a (p × p)-partition is strictly less than the p-weight of μ [15, Corollary 1.4]. Thus
the following corollary is immediate by applying Theorem 3.2.

Corollary 5.3 Suppose that p ≥ 3 and μ is a (p × p)-partition. Then the vertices of
Sμ are non-abelian.

Let Ep = V1(p) × · · · × V1(p) (p factors) be the maximal elementary abelian p-
subgroup of Sp2 as in Theorem 2.7. We have cS

p2 (S
(pp)) = cEp(S(pp)) = p−1 [22,

Theorem 3.1(i)]. Furthermore, for p ≥ 3, with respect to the generators

(1, . . . , p), (p + 1, . . . ,2p), . . . ,
(
p2 − p + 1, . . . , p2)

of Ep , a description of the union of irreducible components Wp−1 of dimension p−1
of V #

Ep
(S(pp)) and the vanishing ideal of Wp−1 is given in [22, Theorem 3.1(ii)]. The

vanishing ideal I of Wp−1 is generated by the element

f (x1, . . . , xp) = (x1 · · ·xp)p−1f̃ +
p∑

i=1

x1
n(p−1) · · · ̂xi

n(p−1) · · ·xp
n(p−1)

for some homogeneous polynomial f̃ and positive integer n, and where the term

x1
n(p−1) · · · ̂xi

n(p−1) · · ·xp
n(p−1) is the product of all xj

n(p−1)’s with 1 ≤ j ≤ p ex-
cept the term xi

n(p−1). In particular, we have the following lemma.

Lemma 5.4 Any irreducible component of Wp−1 ⊆ V #
Ep

(S(pp)) is not a hyperplane
of A

p(F ).

Proof Suppose that Wp−1 contains a hyperplane, i.e., f (x1, . . . , xp) ∈ I (Wp−1) ⊆
〈a1x1 + · · · + apxp〉 for some non-zero vector v = (a1, . . . , ap) ∈ A

p(F ). Let g ∈
F [x1, . . . , xp] be the polynomial such that

f (x1, . . . , xp) = (a1x1 + · · · + apxp)g(x1, . . . , xp). (5.1)

Suppose that at least two of the coordinates of v are non-zero; say ar and as . Let
1 ≤ i ≤ p be such that i is different from either r or s. Then there exist elements
b1, . . . , bp of F with bi = 0, and bj �= 0 for all 1 ≤ j ≤ p and j �= i, such that
a1b1 + · · · + apbp = 0. Substituting the values b1, . . . , bp into (5.1), we have the
contradiction where

0 �= b1
n(p−1) · · · ̂bi

n(p−1) · · ·bp
n(p−1) = 0 · g(b1, . . . , bp) = 0.

This shows that the coordinates of v are all zero except aj �= 0 for some unique
1 ≤ j ≤ p. We deduce that f (x1, . . . , xp) = ajxjg(x1, . . . , xp) and hence xj is a
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factor of f (x1, . . . , xp). However, it is clear from the description of f that xj is not
a factor. The proof is now complete. �

The next corollary describes the vertices of the Specht module S(pp) for p ≥ 3.

Corollary 5.5 For p ≥ 3, any vertex of S(pp) is a Sylow p-subgroup of Sp2 .

Proof Let Q be a vertex of M = S(pp) and S be a source of M . By Mackey Decom-
position Theorem, we have

Res
S

p2

Ep
M

∣
∣ Res

S
p2

Ep
Ind

S
p2

Q S ∼=
⊕

g∈Ep\S
p2/Q

Ind
Ep
gQ∩Ep

Res
gQ
gQ∩Ep

gS

where Ep\Sp2/Q is a set of double coset representatives of (Ep,Q) in Sp2 . Sup-
pose that gQ ∩ Ep �= Ep for all g; namely gQ ∩ Ep is a proper subgroup of Ep and
hence has order at most pp−1. Let

Ug = V #
Ep

(
Ind

Ep
gQ∩Ep

Res
gQ
gQ∩Ep

gS
)
.

In fact, dimUg = dimV #
gQ∩Ep

(Res
gQ
gQ∩Ep

gS). Since Ug is an induced module in-
duced from a proper subgroup of Ep we have that the rank variety

U := V #
Ep

(
Res

S
p2

Ep
Ind

S
p2

Q S
)

=
⋃

Ug ⊆ A
p(F )

is a finite union of subvarieties of dimension at most p−1. If Ug has dimension p−1

for some g then it is necessarily that V #
gQ∩Ep

(Res
gQ
gQ∩Ep

gS) ∼= A
p−1(F ) and hence

Ug is a union of hyperplanes of A
p(F ).

Let N be a kEp-module such that N ⊕ Res
S

p2

Ep
M = Res

S
p2

Ep
Ind

S
p2

Q S. We have

V #
Ep

(M) ∪ V #
Ep

(N) = U . Let V be an irreducible component of V #
Ep

(M) of dimen-
sion p − 1. By the unique decomposition property of varieties into their irreducible
varieties, see [14, Corollary 1.6], we conclude that V is a hyperplane of A

p(F ). This
contradicts to Lemma 5.4, and hence we conclude that gQ ∩ Ep = Ep for some
g ∈ Sp2 ; namely Ep ⊆ Q up to some conjugation.

Since S(pp) has complexity p − 1, different from the p-weight of (pp), by The-
orem 3.2 or Corollary 5.3, the vertices cannot be abelian. Thus Q has order strictly
larger than pp , i.e., pp+1 and hence is a Sylow p-subgroup of Sp2 . �

Remark 5.6 The case of p = 2 is dealt with in [27, Lemma 6]: the Specht module
S(2,2) has the Klein four group V2(2) as its vertex, which is different from the de-
scription in Corollary 5.5.

6 Some further questions

In this section, we include some further questions. The following question is natural
following our Theorem 3.3.
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Question 6.1 Given that μ is p-regular and p ≥ 3, are the vertices of the Specht
module Sμ abelian if μ is a p2-core?

To answer Question 6.1, our method used in Sect. 4.2 does not help so much. The
main obstruction is that there are Specht modules Sμ which are not Young modules,
with μ p-regular and a p2-core (for example, the Specht module S(6,3) with p = 3).
Readers may have observed that, in order to achieve Theorem 3.3, the main idea is to
prove the simplicity of the corresponding Specht modules as in Corollary 4.6. Thus
we can partly answer Question 6.1 by imposing this crude assumption.

Proposition 6.2 Let p ≥ 3, μ be a p-regular partition and Q be a vertex of the
Specht module Sμ. Suppose that Sμ is simple. Let w be a non-negative integer. Then
the following statements are equivalent.

(i) The vertex Q is abelian of p-rank w.
(ii) The vertex Q is elementary abelian of p-rank w.

(iii) The partition μ is a p2-core of p-weight w.

In any of these cases, the Specht module Sμ has trivial source, complexity w and is a
simple Young module.

Proof We only need to show that (iii) implies (i). As we have mentioned in the proof
of Corollary 4.7, the p-adic expansion of μ is μ(0) + pμ(1), here we allow μ(1) = ∅.
By the simplicity condition, we deduce that Sμ ∼= Yμ and hence Q is conjugate to a
Sylow p-subgroup of Sρ(μ) = (Sp)|μ(1)| by Theorem 2.6. So Q is abelian, necessar-
ily of p-rank w and the Specht module Sμ has complexity w by Theorem 3.1. �

Of course, ultimately, we will be delighted to achieve the following goal, if the
computation of the vertices of all Specht modules is difficult.

Question 6.3 Classify all indecomposable Specht modules with abelian vertices.

As we have pointed out in the beginning of Sect. 4.2, the technical assumption of
2-regularity is required in Theorem 3.2. The result will be nicer if it works for all in-
decomposable Specht modules with abelian vertices. The possibility of the existence
of an example of a Specht module Sμ with abelian vertices Q which contain Z4 as a
direct factor is the main obstruction.We do not have an example of a Specht module
that support this possibility of Proposition 4.4.

Question 6.4 For p = 2, is there an indecomposable Specht module Sμ whose ver-
tices are abelian and contain Z4 as a direct factor?
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