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Abstract The motivation for this paper comes from the Halperin–Carlsson con-
jecture for (real) moment-angle complexes. We first give an algebraic combina-
torics formula for the Möbius transform of an abstract simplicial complex K on
[m] = {1, . . . ,m} in terms of the Betti numbers of the Stanley–Reisner face ring k(K)

of K over a field k. We then employ a way of compressing K to provide the lower
bound on the sum of those Betti numbers using our formula. Next we consider a class
of generalized moment-angle complexes Z (D,S)

K , including the moment-angle com-
plex ZK and the real moment-angle complex RZK as special examples. We show
that H ∗(Z (D,S)

K ;k) has the same graded k-module structure as Tork[v](k(K),k). Fi-
nally we show that the Halperin–Carlsson conjecture holds for ZK (resp. RZK ) under
the restriction of the natural T m-action on ZK (resp. (Z2)

m-action on RZK ).

Keywords Möbius transform · Moment-angle complex · Halperin–Carlsson
conjecture

1 Introduction

Throughout this paper, assume that m is a positive integer and [m] = {1, . . . ,m}.
Also, k� denotes the field of characteristic � and k denotes a field of arbitrary char-
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acteristic. Let

2[m]∗ = {
f |f : 2[m] −→ Z/2Z = {0,1}}

consist of all Z/2Z-valued functions on the power set 2[m]. Then 2[m]∗ forms an
algebra over Z/2Z in the usual way, and it has a natural basis {δa|a ∈ 2[m]} where δa

is defined as follows: δa(b) = 1 ⇐⇒ b = a. Given an element f ∈ 2[m]∗, the inverse
image of f at 1 is called the support of f , denoted by supp(f ). We say that f is nice
if supp(f ) is an abstract simplicial complex. Thus, we can identify all nice functions
in 2[m]∗ with all abstract simplicial subcomplexes in 2[m]. On 2[m]∗, we then define a
Z/2Z-valued Möbius transform M : 2[m]∗ −→ 2[m]∗ by the following way: for any
f ∈ 2[m]∗ and a ∈ 2[m], M(f )(a) = ∑

b⊆a f (b).
Now suppose that f ∈ 2[m]∗ is nice such that K = supp(f ) is an abstract simplicial

complex on [m]. Let k(K) be the Stanley–Reisner face ring of K . The following
result indicates an essential relationship between M(f ) and the Betti numbers of
k(K).

Theorem 1.1 (Algebraic combinatorics formula)

M(f ) =
h∑

i=0

∑

a∈2[m]
β

k(K)
i,a δa

where h denotes the length of the minimal free resolution of k(K), and β
k(K)
i,a denote

the Betti numbers of k(K) (see Definition 2.4).

The formula of Theorem 1.1 leads to the following inequality

∣
∣supp

(
M(f )

)∣∣ ≤
h∑

i=0

∑

a∈2[m]
β

k(K)
i,a .

See Corollary 3.2. Then we use an approach of compressing supp(f ) to further ana-
lyze the lower bound on | supp(M(f ))|, and the result is stated as follows.

Theorem 1.2 There exists some a ∈ supp(f ) such that

∣∣supp
(

M(f )
)∣∣ ≥ 2m−|a|.

Remark 1 Since a ∈ supp(f ), |a| ≤ dimK + 1, so | supp(M(f ))| ≥ 2m−|a| ≥
2m−dimK−1.

Next, associating with the Tor-algebra Tork[v](k(K),k) of k(K), we study a class
of generalized moment-angle complexes Z (D,S)

K , in which the moment-angle complex
ZK and the real moment-angle complex RZK are contained, see Sect. 4.2 for the
definition of Z (D,S)

K . We shall show that
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Theorem 1.3 (Theorem 4.2) H ∗(Z (D,S)

K ;k) has the same graded k-module structure
as Tork[v](k(K),k).

Remark 2 Theorem 1.3 tells us that
∑

i dimk Hi(ZK ;k) = ∑
i dimk Hi(RZK ;k).

As a result, we can consider the Halperin–Carlsson conjecture in the category
of (real) moment-angle complexes. It is well-known that ZK (resp. RZK ) naturally
admits a T m-action Φ (resp. (Z2)

m-action ΦR).

Theorem 1.4 Let H (resp. HR) be a rank r subtorus of T m (resp. (Z2)
m). If the

H -action (resp. HR-action) of Φ restricted to H (resp. ΦR restricted to HR) is free
on ZK (resp. RZK), then

∑

i

dimk Hi(ZK ;k) =
∑

i

dimk Hi(RZK ;k) ≥ 2r .

Corollary 1.5 The Halperin–Carlsson conjecture holds for ZK (resp. RZK) under
the restriction of the T m-action Φ (resp. the (Z2)

m-action ΦR).1

Remark 3 Following [16], the Halperin–Carlsson conjecture is stated as follows:

• Let X be a finite-dimensional paracompact Hausdorff space. If X admits a free
action of a torus T r (resp. a p-torus (Zp)r ,p prime) of rank r , then

∑

i

dimk�
H i(X;k�) ≥ 2r (1.1)

where � is 0 (resp. p).

Historically, the above conjecture in the p-torus case originates from the work
of P.A. Smith [17]. For the case of a p-torus (Zp)r freely acting on a finite CW-
complex homotopic to (Sn)k this problem was suggested by P.E. Conner [10], and
essential progress on it was made in [1, 7, 8, 18]. In the general case, the inequality
(1.1) was conjectured by S. Halperin in [13] for the torus case, and by G. Carlsson
in [9] for the p-torus case. So far, the conjecture is known to hold r ≤ 3 in the torus
and 2-torus cases and if r ≤ 2 in the odd p-torus case (see [16]). Also, many authors
contributed to the conjecture in many different aspects. For more details, see, e.g.,
[2, 3, 6, 15].

The paper is organized as follows. In Sect. 2 we study the basic structure of the
algebra 2[m]∗ and the basic properties of the Z/2Z-valued Möbius transform, and
review the notions of Stanley–Reisner face rings and their Tor-algebras. Sections 3
and 4 are two main parts of this paper. We give the proof of the algebraic combina-
torics formula and estimate the lower bound on | supp(M(f ))| in Sect. 3. In Sect. 4
we review the theorem of V.M. Buchstaber and T.E. Panov on the cohomology of ZK .

1T.E. Panov informs of us that using a different method, Yury Ustinovsky has also recently proved the
Halperin’s toral rank conjecture for the moment-angle complexes with the restriction of natural tori actions,
see arXiv:0909.1053.

http://arxiv.org/abs/arXiv:0909.1053
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Then we prove Theorem 1.3 therein. Finally we finish the proof of Theorem 1.4 in
Sect. 5.

2 Möbius transform and Stanley–Reisner face ring

2.1 An algebra over Z/2Z

Let 2[m] denote the power set of [m], which is the set of all subsets (including the
empty set) of [m]. Then 2[m] forms a poset with respect to inclusion ⊆, and it is also
a boolean algebra under the set operations of union, intersection and complement
relative to [m]. Let

2[m]∗ = {
f |f : 2[m] −→ Z/2Z = {0,1}}.

Then 2[m]∗ forms an algebra over Z/2Z, where the addition is defined by (f +
g)(a) = f (a) + g(a) and multiplication is defined by (f · g)(a) = f (a)g(a) for
a ∈ 2[m]. Given a function f ∈ 2[m]∗, define

supp(f ) := f −1(1)

which is called the support of f .

Definition 2.1 For each a ∈ 2[m], the function δa ∈ 2[m]∗ defined by

δa(b) =
{

1 if b = a

0 otherwise

is called the a-function. For each i ∈ [m], the function xi ∈ 2[m]∗ defined by

xi(a) = 1 ⇔ i ∈ a

∀a ∈ 2[m] is called the ith coordinate function.

Lemma 2.1 {δa|a ∈ 2[m]} forms a basis for 2[m]∗.

Proof This is because any f ∈ 2[m]∗ can be expressed as

f =
∑

a∈2[m]
f (a)δa =

∑

a∈supp(f )

δa.
�

By 1 one denotes the constant function such that 1(a) = 1 for all a in 2[m]. Obvi-
ously, 1 = ∑

a∈2[m] δa . For each a ∈ 2[m], set

μa :=
{∏

i∈a xi if a is nonempty

1 if a is empty.

Then it is easy to see that
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Lemma 2.2 Let a, b ∈ 2[m]. Then μa(b) = 1 ⇔ a ⊆ b.

Definition 2.2 We say that f ∈ 2[m]∗ is nice if supp(f ) is an abstract simplicial
complex on vertex set

⋃
a∈supp(f ) a ⊆ [m]. Note that an abstract simplicial complex

K on a subset of [m] is a collection of subsets in [m] with the property that for each
a ∈ K , all subsets (including the empty set) of a belong to K . Each a ∈ K is called a
simplex and has dimension |a|−1. The dimension of K is defined as maxa∈K {dima}.

It is easy to see that f is nice if and only if for each a ∈ supp(f ), any subset b ⊆ a

has the property f (b) = 1.
Let F[m] = {f ∈ 2[m]∗|f is nice}, and K[m] the set of all abstract simplicial com-

plexes on vertex set A where A runs over all possible subsets in [m].
Proposition 2.1 All functions of F[m] bijectively correspond to all abstract simplicial
complexes of K[m].

Proof Clearly, f �→ supp(f ) gives a bijection F[m] −→ K[m], whose inverse is K �→∑
a∈K δa . �

2.2 Möbius transform

Based upon Proposition 2.1, we shall carry out our work from the viewpoint of func-
tional analysis.

Definition 2.3 The map M : 2[m]∗ −→ 2[m]∗ given by the formula

M(f )(a) =
∑

b⊆a

f (b)

for all f ∈ 2[m]∗ and a ∈ 2[m] is called the Z/2Z-valued Möbius transform.

Lemma 2.3 M is a linear transform such that M2 = id. In particular,

M(δa) = μa (2.1)

for any a ∈ 2[m]. Consequently, M(μa) = δa .

Proof The linearity of M is obvious. To check that M2 = id, take f ∈ 2[m]∗, one
has that for any a ∈ 2[m]

M2(f )(a) =
∑

b⊆a

∑

c⊆b

f (c) =
∑

c⊆a

∑

b∈[c,a]
f (c) = f (a) +

∑

c�a

∑

b∈[c,a]
f (c). (2.2)

For every term in the latter sum of (2.2), from c � a we see that [c, a] is a
boolean subalgebra of 2[m] which has 2k elements for some k > 0. So the sum∑

b∈[c,a] f (c) = 0 in Z/2Z. Therefore M2(f )(a) = f (a) for any a ∈ 2[m], so
M2(f ) = f as desired. Equation (2.1) is a direct calculation by Lemma 2.2. �

As a consequence of Lemmas 2.1 and 2.3, one has
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Corollary 2.1 {μa|a ∈ 2[m]} is also a basis of 2[m]∗.

Remark 4 By definition of M, if f (∅) = 1 then M(f )(∅) = 1.

In the next two subsections we shall review the Stanley–Reisner face rings and
Tor-algebras. Our main reference is the book by E. Miller and B. Sturmfels [14].

2.3 Stanley–Reisner face ring

Now let f ∈ F[m] be a nice function such that K = supp(f ) ∈ K[m] is an abstract
simplicial complex on [m].

Following the notions of [14], let k[v] = k[v1, . . . , vm] be the polynomial alge-
bra over k on m indeterminates v = v1, . . . , vm. Each monomial in k[v] has the
form of va = v

a1
1 · · ·vam

m for a vector a = (a1, . . . , am) ∈ N
m of nonnegative integers.

Thus, k[v] is N
m-graded, i.e., k[v] is a direct sum

⊕
a∈Nm k[v]a with k[v]a · k[v]b =

k[v]a+b where k[v]a = k{va} is the vector space over k, spanned by va. Gener-
ally, a k[v]-module M is N

m-graded if M = ⊕
b∈Nm Mb and va · Mb ⊆ Ma+b.

Given a vector a ∈ N
m, by k[v](−a) one denotes the free k[v]-module generated

in degree a. So k[v](−a) is isomorphic to the ideal 〈va〉 as N
m-graded modules.

Furthermore, a free N
m-graded module of rank r is isomorphic to the direct sum

k[v](−a1) ⊕ · · · ⊕ k[v](−ar ) for some vectors a1, . . . ,ar ∈ N
m.

A monomial va in k[v] is said to be squarefree if every coordinate of a is 0 or 1,
i.e., a ∈ {0,1}m called a squarefree vector. Clearly, all elements in 2[m] bijectively
correspond to all vectors in {0,1}m by mapping ξ : a ∈ 2[m] �−→ a ∈ {0,1}m, where
a has entry 1 in the ith place when i ∈ a, and 0 in all other entries. With this under-
standing, for a ∈ 2[m], one may write va = ∏

i∈a vi . Then the Stanley–Reisner ideal
of K is defined as IK = 〈vτ |τ �∈ K〉. Furthermore, the quotient ring

k(K) = k[v]/IK

is called the Stanley–Reisner face ring.

Example 2.1 If K = 2[m] then k(K) = k[v], and if K = 2[m] \ {[m]} then k(K) =
k[v]/〈v[m]〉.

It is well-known that k(K) is a finitely generated graded k[v]-module. Hilbert’s
syzygy theorem tells us that there exists a free resolution of k(K) of length at most
m. One knows from [14, Sect. 1.4] that k(K) is N

m-graded and it has an N
m-graded

minimal free resolution as follows:

0 ←− k(K) ←− F0
φ1←− F1 ←− · · · ←− Fh−1

φh←− Fh ←− 0 (2.3)

where each homomorphism φi is N
m-graded degree-preserving. Since each Fi is

a free N
m-graded k[v]-module, one may write Fi = ⊕

a∈Nm k[v](−a)
β

k(K)
i,a where

β
k(K)
i,a ∈ N (see also [14, Sect. 1.5]). By [14, Corollary 1.40], if a ∈ N

m is not square-

free, then β
k(K)
i,a = 0 for all i. Thus, we only need to consider those β

k(K)
i,a with
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a ∈ {0,1}m. Throughout the following we shall write β
k(K)
i,a := β

k(K)
i,a where a ∈ 2[m]

with ξ(a) = a.

Definition 2.4 (Cf. [14, Definition 1.29]) The number β
k(K)
i,a is called the (i, a)th

Betti number of k(K).

2.4 Tor-algebra of k(K)

Applying the functor ⊗k[v]k to the sequence (2.3), one may obtain the following
chain complex of N

m-graded k[v]-modules:

0 ←− F0 ⊗k[v] k
φ′

1←− F1 ⊗k[v] k ←− · · · φ′
h←− Fh ⊗k[v] k ←− 0.

Since the free resolution (2.3) is minimal, the differentials φ′
i ’s become zero homo-

morphisms. Then the ith homology module of the above chain complex is
kerφ′

i

Imφ′
i+1

=
Fi ⊗k[v] k, denoted by Tork[v]

i (k(K),k). Namely, Tork[v]
i (k(K),k) = Fi ⊗k[v] k so

dimk Tork[v]
i

(
k(K),k

) = rankFi =
∑

a∈2[m]
β

k(K)
i,a .

This also implies that for a ∈ N
m with a �∈ {0,1}m, Tork[v]

i (k(K),k)a = 0, and so

Tork[v]
i (k(K),k) can be decomposed into a direct sum

⊕

a∈2[m]
Tork[v]

i

(
k(K),k

)
a

with dimk Tork[v]
i (k(K),k)a = β

k(K)
i,a (see also [14, Lemma 1.32]). Furthermore, one

has that

Tork[v](k(K),k
) =

h⊕

i=0

Tork[v]
i

(
k(K),k

) =
⊕

i∈[0,h]∩N,a∈2[m]
Tork[v]

i

(
k(K),k

)
a

which is a bigraded k[v]-module. Combining with the above arguments, this gives

Proposition 2.2
∑h

i=0 dimk Tork[v]
i (k(K),k) = ∑h

i=0
∑

a∈2[m] β
k(K)
i,a .

3 Möbius transform of abstract simplicial complexes and Betti numbers of face
rings

3.1 An algebraic combinatorics formula

Following Sects. 2.3–2.4, we now investigate the essential relationship between the
Möbius transform M(f ) of f and the Betti numbers of the face ring k(K) of K .
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Theorem 3.1 (Algebraic combinatorics formula)

M(f ) =
h∑

i=0

∑

a∈2[m]
β

k(K)
i,a δa.

Proof For any b ∈ 2[m], the exact sequence (2.3) in degree b reads into

0 ←− kDb ←− kdb,0 ←− kdb,1 ←− kdb,2 ←− · · · ←− kdb,h ←− 0

where Db = dimk k(K)b and db,i = dimk(Fi)b . Since the above sequence is also
exact, we have Db = ∑h

i=0 (−1)idi,b . An easy observation shows that f (b) =
dimk k(K)b = Db , and db,i = ∑

a⊆b β
k(K)
i,a (this is induced from Fi =

⊕
a∈Nm k[v](−a)

β
k(K)
i,a ).

Now let us work in integers modulo 2. We then have Db = ∑h
i=0 di,b, and further

f (b) =
h∑

i=0

∑

a⊆b

β
k(K)
i,a =

h∑

i=0

∑

a∈2[m]
β

k(K)
i,a μa(b).

So

f =
h∑

i=0

∑

a∈2[m]
β

k(K)
i,a μa.

Applying M to the above equality and noting that M(μa) = δa , we arrive at the
required formula. �

Corollary 3.2 Let f ∈ 2[m]∗ be a nice function such that K = supp(f ) ∈ K[m] is an
abstract simplicial complex on [m]. Then

∣
∣supp

(
M(f )

)∣∣ ≤
h∑

i=0

∑

a∈2[m]
β

k(K)
i,a .

Proof From the formula of Theorem 3.1, one has

M(f ) =
h∑

i=0

∑

a∈2[m]
β

k(K)
i,a δa =

∑

a∈2[m]

(
h∑

i=0

β
k(K)
i,a

)

δa

so for any a ∈ supp(M(f )),
∑h

i=0 β
k(K)
i,a must be odd and nonnegative, and then

∑h
i=0 β

k(K)
i,a ≥ 1. Therefore

h∑

i=0

∑

a∈2[m]
β

k(K)
i,a ≥

∑

a∈supp(M(f ))

h∑

i=0

β
k(K)
i,a ≥

∑

a∈supp(M(f ))

1 = ∣∣supp
(

M(f )
)∣∣

as desired. �
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3.2 The estimation of the lower bound on | supp(M(f ))|

We shall upbuild a method of compressing supp(f ) to get the desired lower bound
on | supp(M(f ))|.

Definition 3.1 Fix k ∈ [m]. We say that f ∈ F[m] is kth extendable if

(k-1) f ({k}) = 1;
(k-2) M(f ) · xk �= 0 in 2[m]∗.

The linear transformation Ek : 2[m]∗ −→ 2[m]∗ determined by μa �→ μa\{k} is called
the kth compression-operator. A function f ∈ F[m] is said to be extendable if it is
kth extendable for some k ∈ [m]; otherwise, f is said to be non-extendable.

Introducing the map εk : 2[m] −→ 2[m] defined by a �→ a ∪ {k}, we derive the
following formula for Ek .

Lemma 3.1 For any f ∈ 2[m]∗ we have

Ek(f ) = f ◦ εk.

Proof It suffices to check that the formula Ek(μa) = μa ◦ εk holds for each a ∈ 2[m].
Indeed, take b ∈ 2[m], we have

Ek(μa)(b) = 1 ⇔ a \ {k} ⊆ b ⇔ a ⊆ b ∪ {k} ⇔ μa

(
εk(b)

) = 1.

Therefore, Ek(μa) = μa ◦ εk as desired. �

Remark 5 We see from Lemma 3.1 that Ek is exactly the star operator at k.

Proposition 3.1 Fix k ∈ [m]. If f ∈ F[m] satisfies f ({k}) = 1, then Ek(f ) ∈ F[m]
and supp(Ek(f )) ⊆ supp(f ).

Proof For any pair a ⊆ b in 2[m], we have εk(a) ⊆ εk(b). So if Ek(f )(b) =
f (εk(b)) = 1, then f (εk(a)) = 1 since f ∈ F[m], and so Ek(f )(a) = 1. Also,
f ({k}) = 1 implies that Ek(f )(∅) = f (∅ ∪ {k}) = 1. Thus, Ek(f ) is nice.

For any a ∈ 2[m], if Ek(f )(a) = 1 then by Lemma 3.1 f (εk(a)) = 1, so f (a) = 1
since a ⊆ εk(a) and f ∈ F[m]. Hence, supp(Ek(f )) ⊆ supp(f ) as desired. �

Now let us look at the composition transformation M ◦ Ek ◦ M =: Êk . For any
a ∈ 2[m], one has

Êk(δa) = M ◦ Ek ◦ M(δa) = M ◦ Ek(μa) = M(μa\{k}) = δa\{k}. (3.1)

Note also that since M2 = id, M ◦ Ek = Êk ◦ M.

Lemma 3.2 For any g ∈ 2[m]∗ and k ∈ [m], we have Êk(g)xk = 0.
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Proof Write g = ∑
a∈supp(g) δa . Since Êk is linear and Êk(δa) = δa\{k} for any

a ∈ 2[m], it follows that Êk(g) = ∑
a∈supp(g) δa\{k}. Obviously, for any a ∈ 2[m],

δa\{k}xk = 0. Thus, Êk(g)xk = 0 as desired. �

Corollary 3.3 Let k ∈ [m]. If f ∈ 2[m]∗ satisfies M(f )xk �= 0, then f �= Ek(f ).

Proof Suppose that f = Ek(f ). Applying M to both sides, we get M(f ) =
M(Ek(f )) = Êk(M(f )). Write g = M(f ). Then g = Êk(g). Multiplying by xk

on the two sides of g = Êk(g), we have gxk = Êk(g)xk . Since gxk = M(f )xk �= 0,
we have Êk(g)xk �= 0, a contradiction by Lemma 3.2. �

Proposition 3.2 Let f ∈ 2[m]∗. Then for each k ∈ [m],
∣∣supp

(
Êk(f )

)∣∣ ≤ ∣∣supp(f )
∣∣.

Proof Let A = {a ∈ 2[m]|k /∈ a, a ∈ supp(f )} and B = {a ∈ 2[m]|k /∈ a, εk(a) ∈
supp(f )}. Then we have

f =
∑

a∈supp(f )

δa =
∑

a∈supp(f )
k /∈a

δa +
∑

a∈supp(f )
k∈a

δa =
∑

a∈A

δa +
∑

a∈B

δεk(a)

and by (3.1)

Êk(f ) =
∑

a∈A

δa\{k} +
∑

a∈B

δεk(a)\{k} =
∑

a∈A

δa +
∑

a∈B

δa =
∑

a∈A�B

δa

where A � B = (A \ B) ∪ (B \ A). Now
∣∣supp

(
Êk(f )

)∣∣ = |A � B| ≤ |A| + |B| = ∣∣supp(f )
∣∣

as desired. �

Remark 6 Observe that for any f ∈ F[m], whenever f is kth extendable for some
k ∈ [m], by Proposition 3.1 and Corollary 3.3 we obtain that Ek(f ) ∈ F[m] and
supp(Ek(f )) � supp(f ). In addition, since (M ◦Ek)(f ) = (Êk ◦ M)(f ), by Propo-
sition 3.2 one has that | supp(M(Ek(f )))| ≤ | supp(M(f ))|. We replace f with
Ek(f ) and repeat the above process whenever possible, so as to get a sequence
of functions in F[m] with strictly decreasing support. This process must end after
a finite number of steps, giving finally a f0 ∈ F[m] that is non-extendable with
supp(f0) ⊆ supp(f ) and | supp(M(f0))| ≤ | supp(M(f ))|. It remains to character-
ize such a non-extendable f0 ∈ F[m].

Proposition 3.3 Let f ∈ F[m]. Then f is non-extendable if and only if there is some
a0 ∈ 2[m] such that supp(f ) = 2a0 (i.e., f = ∑

b⊆a0
δb).

Proof Suppose that f is non-extendable. Let a0 = {k ∈ [m]|f ({k}) = 1}. If a0 = ∅,
obviously we have f = δ∅. Assume that a0 is non-empty. Given an element b ∈ 2[m],
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if f (b) = 1, since f ∈ F[m], then for any k ∈ b,f ({k}) = 1 so k ∈ a0 and b ⊆ a0.
Since f is non-extendable, M(f )xk = 0 for any k ∈ a0. Then we see from M(f ) =∑

b∈supp(M(f )) δb that for any b ∈ supp(M(f )), b∩a0 = ∅. Since M(f )(∅) = 1, we
have ∅ ∈ supp(M(f )). Furthermore

f (a0) = M2(f )(a0) = M
( ∑

b∈supp(M(f ))

δb

)
(a0)

=
∑

b∈supp(M(f ))

μb(a0) = μ∅(a0) = 1.

Since f ∈ F[m], it follows that for any subset b ⊆ a0, f (b) = 1. Therefore, for b ∈
2[m]

f (b) = 1 ⇔ b ⊆ a0.

This implies that supp(f ) = 2a0 = {b ∈ 2[m]|b ⊆ a0}.
Conversely, suppose that f = ∑

b⊆a0
δb for some a0 ∈ [m]. If a0 = [m], then

f = 1 = μ∅ so M(f ) = δ∅. Moreover, for any k ∈ a0, M(f )xk = 0 so f is non-
extendable. If a0 = ∅, obviously f is non-extendable. Assume that a0 �= [m],∅. Then
an easy argument shows that

f =
∏

i∈[m]\a0

(1 + xi) =
∑

b⊆[m]\a0

μb.

Applying M to the above equality, it follows that M(f ) = ∑
b⊆[m]\a0

δb . Now for
any k ∈ a0 and any b ⊆ [m] \ a0, we have δbxk = 0 so M(f )xk = 0. This means that
f is also non-extendable. �

From the proof of Proposition 3.3, we easily see that

Corollary 3.4 Let a ∈ 2[m]. Then f = ∑
b⊆a δb if and only if M(f ) = ∑

b⊆[m]\a δb

(i.e., supp(f ) = 2a if and only if supp(M(f )) = 2[m]\a). In this case,
| supp(M(f ))| = 2m−|a|.

We now summarize the above arguments as follows.

Theorem 3.5 For any f ∈ F[m], there exists some a ∈ supp(f ) such that

∣∣supp
(

M(f )
)∣∣ ≥ 2m−|a|.

Remark 7 The interested readers are invited to see a simple fact that f ∈ F[m] can be
compressed by compression-operators into a non-extendable f0 with supp(f0) = 2a0

if and only if a0 is a maximal element in supp(f ) as a poset. This result will not be
used later in this article.
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4 Moment-angle complexes and their cohomologies

Let K be an abstract simplicial complex on vertex set [m]. Let (X,W) be a pair of
topological spaces with W ⊂ X. Following [5, Construction 6.38], for each simplex
σ in K , set

Bσ (X,W) =
m∏

i=1

Ai

such that

Ai =
{

X if i ∈ σ ,

W if i ∈ [m] \ σ .

Then one can define the following subspace of the product space Xm:

K(X,W) =
⋃

σ∈K

Bσ (X,W) ⊂ Xm.

4.1 Moment-angle complexes

When the pair (X,W) is chosen as (D2, S1),

ZK := K
(
D2, S1) ⊂ (

D2)m

is called the moment-angle complex on K where D2 = {z ∈ C||z| ≤ 1} is the unit disk
in C, and S1 = ∂D2. Since (D2)m ⊂ C

m is invariant under the standard action of T m

on C
m given by

(
(g1, . . . , gm), (z1, . . . , zm)

) �−→ (g1z1, . . . , gmzm),

(D2)m admits a natural T m-action whose orbit space is the unit cube Im ⊂ R
m
≥0. The

action T m
� (D2)m then induces a canonical T m-action Φ on ZK .

When the pair (X,W) is chosen as (D1, S0),

RZK := K
(
D1, S0) ⊂ (

D1)m

is called the real moment-angle complex on K where D1 = {x ∈ R||x| ≤ 1} = [−1,1]
is the unit disk in R, and S0 = ∂D1 = {±1}. Similarly, (D1)m ⊂ R

m is invariant under
the standard action of (Z2)

m on R
m given by

(
(g1, . . . , gm), (x1, . . . , xm)

) �−→ (g1x1, . . . , gmxm).

Thus (D1)m admits a natural (Z2)
m-action whose orbit space is also the unit cube

Im ⊂ R
m
≥0, where Z2 = {−1,1} is the group with respect to multiplication. Further-

more, the action (Z2)
m

� (D1)m also induces a canonical (Z2)
m-action ΦR on RZK .

Let PK be the cone on the barycentric subdivision of K . Since the cone on the
barycentric subdivision of a k-simplex is combinatorially equivalent to the standard
subdivision of a (k+1)-cube, PK is naturally a cubical complex and it is decomposed
into cubes indexed by the simplices of K . Then one knows from [5] and [11] that both
T m-action Φ on ZK and (Z2)

m-action ΦR on RZK have the same orbit space PK .
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Example 4.1 When K = 2[m], ZK = (D2)m and RZK = (D1)m. When K = 2[m] \
{[m]}, ZK = S2m−1 and RZK = Sm−1.

Remark 8 In general, ZK and RZK are not manifolds. However, if K is a simplicial
sphere, then both ZK and RZK are closed manifolds (see [5, Lemma 6.13]).

4.2 Cohomology

V.M. Buchstaber and T.E. Panov in [5, Theorem 7.6] have calculated the cohomology
of ZK (see also [15, Theorem 4.7]). Their result is stated as follows.

Theorem 4.1 (Buchstaber–Panov) As k-algebras,

H ∗(ZK ;k) ∼= Tork[v](k(K),k
)

where k(K) = k[v]/IK = k[v1, . . . , vm]/IK with degvi = 2.

Here we calculate the cohomologies of a class of generalized moment-angle com-
plexes. For this, we begin with the notion of the generalized moment-angle complex,
due to N. Strickland, cf. [4] and [12]. Given an abstract simplicial complex K on
[m], let (X,W) = {(Xi,Wi)}mi=1 be m pairs of CW-complexes with Wi ⊂ Xi . Then
the generalized moment-angle complex is defined as follows:

K(X,W) =
⋃

σ∈K

Bσ (X,W) ⊂
m∏

i=1

Xi

where Bσ (X,W) = ∏m
i=1 Hi and

Hi =
{

Xi if i ∈ σ ,

Wi if i ∈ [m] \ σ .

Now take (X,W) = (D,S) = {(Di ,Si )}mi=1 with each CW-complex pair (Di ,Si )

subject to the following conditions:

(1) Di is acyclic, that is, H̃j (Di ) = 0 for any j .
(2) There exists a unique κi such that H̃κi

(Si ) = Z and H̃j (Si ) = 0 for any j �= κi .

Then our objective is to calculate the cohomology of

Z (D,S)

K := K(D,S) =
⋃

σ∈K

Bσ (D,S) ⊂
m∏

i=1

Di .

First, for each i ∈ [m], it follows immediately from the long exact sequence of
(Di ,Si ) that

0 = H̃ κi (Di;k) −→ H̃ κi (Si;k)
∼=−→ H̃ κi+1(Di ,Si;k) −→ H̃ κi+1(Di;k) = 0.
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On the cellular cochain level, one has the following short exact sequence

0 −→ C∗(Di ,Si;k)
j∗

−→ C∗(Di;k)
i∗−→ C∗(Si;k) −→ 0

where each Ck(Di ,Si;k) can be considered as a subgroup of Ck(Di;k), so j∗ is an
inclusion. By the zig-zag lemma, one can choose a κi -cochain xi of Cκi (Di;k) such
that

• i∗(xi) represents a generator of H̃ κi (Si;k).
• dxi ∈ ker i∗ = Im j∗ so j∗(dxi) = dxi may be regarded as a cocycle in

Cκi+1(Di ,Si;k) since j∗ is an inclusion, where d is the coboundary operator
of C∗(Di;k). Thus, the cohomological class of dxi generates H̃ κi+1(Di ,Si;k).

Write x
(1)
i = xi and x

(2)
i = dxi , and let x

(0)
i denote the constant 0-cochain 1 in

C0(Di;k). Obviously, x
(0)
i , x

(1)
i and x

(2)
i are linearly independent in C∗(Di;k) as

a k-vector space.
Now let us work in the cellular cochain complex C∗(

∏m
i=1 Di;k) of the product

space
∏m

i=1 Di . Let Ω∗ be the vector subspace of C∗(
∏m

i=1 Di;k) spanned by the
following cross products

x
(k1)
1 × · · · × x(km)

m , ki ∈ {0,1,2}.
An easy observation shows that Ω∗ is a cochain subcomplex of C∗(

∏m
i=1 Di;k), and

{x(k1)
1 × · · · × x

(km)
m | ki ∈ {0,1,2}} forms a basis of Ω∗ as a vector space over k since

x
(0)
i , x

(1)
i and x

(2)
i are linearly independent in C∗(Di;k). For convenience, we write

each basis element x
(k1)
1 × · · · × x

(km)
m of Ω∗ in the following form:

x(τ,σ )

where x = x
(k1)
1 , . . . , x

(km)
m , τ = {i| ki = 1} and σ = {i| ki = 2}. In particular, if τ =

σ = ∅, then x(∅,∅) = x
(0)
1 × · · · × x

(0)
m . Thus, Ω∗ can be expressed as

Ω∗ = Span
{
x(τ,σ )

∣∣τ, σ ⊆ [m] with τ ∩ σ = ∅}
.

Next by ΦK we denote the composition

Ω∗ ↪→ C∗
(

m∏

i=1

Di;k

)
l∗−→ C∗(Z (D,S)

K ;k
)

where the latter map l∗ is induced by the inclusion l : Z (D,S)

K ↪→ ∏m
i=1 Di , and is

surjective. Set

SK = Span
{
x(τ,σ ) ∈ Ω∗∣∣σ �∈ K

}
.

Clearly SK is a cochain subcomplex of Ω∗.

Lemma 4.1 SK ⊆ kerΦK . Furthermore, ΦK induces a cochain map Ω∗/SK −→
C∗(Z (D,S)

K ;k), also denoted by ΦK .
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Proof Let x(τ,σ ) be a basis element in SK ⊂ C∗(
∏m

i=1 Di;k). For any product cell

e = e1 × · · · × em ⊂ Z (D,S)

K ⊆ ∏m
i=1 Di , there must be some σ ′ ∈ K such that

e ⊂ Bσ ′(D,S), where each ei can represent a generator in the cellular chain group
Cdim ei

(Di;k). In addition, it is easy to see that e can also be regarded as a genera-

tor of the cellular chain complex C∗(Z (D,S)

K ;k)
l∗

↪→ C∗(
∏m

i=1 Di;k) where l∗ is the

inclusion induced by l : Z (D,S)

K ↪→ ∏m
i=1 Di . Since σ �∈ K , σ is non-empty. More-

over, there is some i0 ∈ σ \ σ ′ such that ei0 ⊂ Si0 ⊂ Di0 and the factor x
(2)
i0

∈
Cκi0 +1(Di0,Si0;k) ⊂ Cκi0 +1(Di0;k) in x(τ,σ ), together yielding that 〈x(2)

i0
, ei0〉 = 0.

Therefore, 〈x(τ,σ ), l∗(e)〉 = 〈x(τ,σ ), e〉 = 0 by the definition of cross product. Further-
more, we see that the value of ΦK(x(τ,σ )) on e is

〈
ΦK

(
x(τ,σ )

)
, e

〉 = 〈
x(τ,σ ) ◦ l∗, e

〉 = 〈
x(τ,σ ), l∗(e)

〉 = 0

so ΦK(x(τ,σ )) = 0 in C∗(Z (D,S)

K ;k), as desired. �

By Ω∗(K) we denote the quotient Ω∗/SK . Let L be a subcomplex of K . Then
we obtain a pair (Z (D,S)

K , Z (D,S)

L ) of CW-complexes. Now since SK ⊆ SL, we have a
short exact sequence

0 −→ kerπ∗ −→ Ω∗(K)
π∗−→ Ω∗(L) −→ 0 (4.1)

where π∗ is induced by the natural inclusion π : SK ↪→ SL. By Ω∗(K,L) we de-
note the kernel kerπ∗. It is easy to see that two cochain maps ΦK : Ω∗(K) −→
C∗(Z (D,S)

K ;k) and ΦL : Ω∗(L) −→ C∗(Z (D,S)

L ;k) give a cochain map Φ(K,L) :
Ω∗(K,L) −→ C∗(Z (D,S)

K , Z (D,S)

L ;k) such that the following diagram commutes

0 Ω∗(K,L)

Φ(K,L)

Ω∗(K)

ΦK

π∗
Ω∗(L)

ΦL

0

0 C∗(Z (D,S)

K , Z (D,S)

L ;k) C∗(Z (D,S)

K ;k) C∗(Z (D,S)

L ;k) 0.

Furthermore, we may obtain a homomorphism between two long exact cohomology
sequences given by two short exact sequences above.

Proposition 4.1 For any K ∈ K[m], ΦK induces an isomorphism

H ∗(Ω∗(K);k
) ∼=−→ H ∗(Z (D,S)

K ;k
)

as graded k-modules.

Proof First observe that for K = {∅}, Ω∗(K) is spanned by {x(τ,∅)|τ ⊆ [m]} with
zero coboundary operator. On the other hand, if K = {∅} then Z (D,S)

K = ∏m
i=1 Si . By

the Künneth formula, the above set is not only a set but also a basis of H ∗(Z (D,S)

K ;k)
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as a graded k-module (if we view the elements of the set as cohomological classes).
Thus, clearly ΦK induces an isomorphism in this case.

Next we proceed inductively by considering a pair of abstract simplicial com-
plexes (K,L) where K = L� {σ0} for some simplex σ0 (which is a maximal element
of K as a poset). Hence (Z (D,S)

K , Z (D,S)

L ) is a pair of CW-complexes, which has by

excision the same cohomology as (Z (D,S)

2σ0 , Z (D,S)

2σ0 \{σ0}). This pair (Z (D,S)

2σ0 , Z (D,S)

2σ0 \{σ0}) is
in turn homeomorphic to

∏

i∈[m]\σ0

Si ×
( ∏

i∈σ0

Di ,A

( ∏

i∈σ0

Di

))

where A(
∏

i∈σ0
Di ) = (Si1 × Di2 × · · · × Dis ) ∪ · · · ∪ (Di1 × · · · × Dis−1 × Sis ) with

σ0 = {i1, . . . , is |i1 < · · · < is}. By relative Künneth formula, its cohomology with k
coefficients is isomorphic to

Span
{
x(τ,σ0)

∣∣τ ⊆ [m] with τ ∩ σ0 = ∅}

as graded k-modules. On the other hand, we see easily from the short exact sequence
(4.1) that Ω∗(K,L) = kerπ∗ is exactly equal to the cochain complex

Span
{
x(τ,σ0)

∣∣τ ⊆ [m] with τ ∩ σ0 = ∅}

with zero coboundary operator. It then follows that Φ(K,L) induces an isomorphism

H ∗(Ω∗(K,L);k
) ∼=−→ H ∗(Z (D,S)

K , Z (D,S)

L ;k
)

as graded k-modules. Inductively, now we may assume that ΦL induces an isomor-
phism H ∗(Ω∗(L);k) −→ H ∗(Z (D,S)

L ;k) as graded k-modules. Hence we may con-

clude that the same holds for H ∗(Ω∗(K);k) −→ H ∗(Z (D,S)

K ;k) by the five-lemma.
This completes the induction and the proof of Proposition 4.1. �

Now let us return to study the complex (Ω∗(K), d). First, we may impose a
{0,1}m-graded (or 2[m]-graded) structure on Ω∗(K), by defining for a ∈ 2[m]

Ω∗(K)a := Span
{
x(τ,σ )

∣∣τ ⊆ [m], σ ∈ K with τ ∪ σ = a, τ ∩ σ = ∅}
.

Then, clearly Ω∗(K) = ⊕
a∈2[m] Ω∗(K)a . Furthermore, given a basis element

x(τ,σ ) ∈ Ω∗(K)a with τ = a \ σ , by a direct calculation we have

d
(
x(a\σ,σ )

) =
∑

k∈a\σ
σ∪{k}∈K

εkx(a\(σ∪{k}),σ∪{k})

which still belongs to Ω∗(K)a , where εk = ±1. So (Ω∗(K)a, d) has also a cochain
complex structure. This means that Ω∗(K) is a bigraded k-module. Also, clearly the
basis of Ω∗(K)a is indexed by K|a where K|a = {σ ∈ K|σ ⊆ a}.
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Lemma 4.2 For each a ∈ 2[m], (Ω∗(K)a, d) is isomorphic to the coaugmented
cochain complex (C∗(K|a;k), d ′) as cochain complexes. Furthermore,
H ∗(Ω∗(K)a;k) ∼= H̃ ∗(K|a;k) as graded k-modules.

Lemma 4.2 is a (dualized) consequence of the following general result.

Lemma 4.3 Let K be an abstract simplicial complex on a finite set. Let V (K) be a
vector space over k with a K-indexed basis {vσ |σ ∈ K}, and let ι : V (K) −→ V (K)

be a linear map such that ι2 = 0 and ι(vσ ) = ∑
k∈σ εkvσ\{k} where εk = ±1. Then

there is an isomorphism f : V (K) −→ C∗(K;k) as k-vector spaces with form f :
vσ �−→ εσ σ such that f ◦ ι = ∂ ◦ f , where εσ = ±1 and C∗(K;k) is the ordinary
chain complex over k of K with the boundary operator ∂ .

Proof We proceed inductively. For K = {∅}, V (K) = Span{v∅} ∼= k with ι = 0 and
C∗(K;k) = Span{∅} ∼= k with ∂ = 0, so clearly we have such an f . Now for an
arbitrary K �= {∅}, take a maximal element σ0 of K (as a poset) so that L = K \ {σ0}
is a subcomplex of K . The subspace V (K)|L = Span{vσ |σ ∈ L} is invariant under ι.
So we can apply induction hypothesis to (V (K)|L, ι), yielding an isomorphism f0 :
V (K)|L −→ C∗(L;k) by vσ �−→ εσ σ such that f0 ◦ ι = ∂ ◦ f0. Now observe that
ι(vσ0) = ∑

k∈σ0
εkvσ0\{k} ∈ V (K)|L, so f0(ι(vσ0)) = ∑

k∈σ0
εkεσ0\{k}(σ0 \ {k}) which

is in the chain group C|σ0|−2(2σ0;k) ⊂ C|σ0|−2(L;k), and (∂ ◦ f0)(ι(vσ0)) = (f0 ◦
ι)(ι(vσ0)) = f0(ι

2(vσ0)) = 0, i.e., f0(ι(vσ0)) ∈ ker ∂ . Since C∗(2σ0;k) is acyclic and
C|σ0|−1(2σ0;k) = Span{σ0}, we have f0(ι(vσ0)) = ∂(nσ0) for some n ∈ k. However,
∂(nσ0) = n∂(σ0) so n∂(σ0) = ∑

k∈σ0
εkεσ0\{k}(σ0 \ {k}). This forces n to be ±1. We

can then extend f0 to f : V (K) −→ C∗(K;k) by defining vσ0 �−→ nσ0, so that we
have

f
(
ι(vσ0)

) = f0
(
ι(vσ0)

) = ∂(nσ0) = ∂
(
f (vσ0)

)
.

Hence f ◦ ι = ∂ ◦ f in V (K). The induction step is finished, proving the lemma. �

The famous Hochster formula tells us (see [14, Corollary 5.12]) that for each a ∈
2[m],

H̃ |a|−i−1(K|a;k) ∼= Tork[v]
i

(
k(K),k

)
a
.

We know by Lemma 4.2 that each class of H̃ |a|−i−1(K|a;k) may be understood as
one of H ∗(Ω∗(K)a;k), represented by a linear combination of the elements of the
form x(a\σ,σ ) ∈ Ω∗(K)a with |σ | = |a| − i; so by Proposition 4.1 it corresponds to a
cohomological class of degree |σ |+∑

k∈a κk = −i+∑
k∈a(κk +1) in H ∗(Z (D,S)

K ;k).
To sum up, it follows that for each n ≥ 0,

Hn
(

Z (D,S)

K ;k
) ∼=

⊕

a∈2[m]
−i+∑

k∈a(κk+1)=n

Tork[v]
i

(
k(K),k

)
a
.

Combining with all arguments above, we conclude that
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Theorem 4.2 As graded k-modules,

H ∗(Z (D,S)

K ;k
) ∼= Tork[v](k(K),k

)
.

Together with Proposition 2.2 and Theorem 4.2, we obtain that

Corollary 4.3
∑

i dimk Hi(Z (D,S)

K ;k) = ∑h
i=0

∑
a∈2[m] β

k(K)
i,a .

Remark 9 It should be pointed out that here we merely determine the k-module struc-
ture of H ∗(Z (D,S)

K ;k). Of course, this is enough for our purpose in this paper. Ob-
serve that if there are two i, j ∈ [m] with i �= j such that κi and κj are even, then

for x
(2)
i , x

(2)
j ∈ Ω∗(K), x

(2)
i × x

(2)
j = −x

(2)
j × x

(2)
i . This means that in this case,

if k is not a field of characteristic 2, then H ∗(Ω∗(K);k) cannot be isomorphic to
Tork[v](k(K),k) as k-algebras since k(K) is a commutative ring. Even when k is a
field of characteristic 2, there is still some nuance preventing us from simply extend-
ing the ring structure result (4.1) of Buchstaber and Panov to the case of, say RZK ;
Indeed, in this case x

(1)
i would be a 0-cochain, which satisfies x

(1)
i ∪ x

(1)
i = x

(1)
i ,

whereas in the cases when κi > 0, x
(1)
i ∪ x

(1)
i would be instead zero element in

H ∗(Si;k). Nevertheless, our calculation of the module structure actually represents
any cohomological class in H ∗(Z (D,S)

K ;k) as a sum of x(τ,σ )’s via the isomorphism

H ∗(Ω∗(K);k) ∼= H ∗(Z (D,S)

K ;k), from which we may also figure out the cohomolog-
ical equivalence relation amongst such sums; since the cup product of pairs of these
elements is clear, in a certain sense we should have also determined the ring structure
of H ∗(Z (D,S)

K ;k). In other words, let k(K) = k[v]/IK = k[v1, . . . , vm]/IK be the
Stanley–Reisner face ring of K with degvi = κi + 1. Then it should be reasonable to
conjecture that the following results hold:

• If all κi ’s are odd, then H ∗(Z (D,S)

K ;k) ∼= Tork[v](k(K),k) as k-algebras.

• If κi > 0 for any i ∈ [m], then H ∗(Z (D,S)

K ;k2) ∼= Tork2[v](k2(K),k2) as k2-
algebras.

• In general, H ∗(Z (D,S)

K ;k2) ∼= H [H ∗(
∏m

i=1 Si;k2) ⊗k2[v] k2(K)] as k2-algebras.

5 Application to the free actions on ZK and RZK

First we prove a useful lemma.

Lemma 5.1 Let K ∈ K[m] be an abstract simplicial complex on vertex set [m], and
let H (resp. HR) be a rank r subtorus of T m (resp. (Z2)

m). If the restricted action of
Φ to H (resp. ΦR to HR) is free on ZK (resp. RZK), then r ≤ m − dimK − 1.

Proof It is well-known that the restricted action of Φ to H (resp. ΦR to HR) is free
on ZK (resp. RZK ) if and only if for any point z (resp. x) of ZK (resp. RZK ),
H ∩ Gz (resp. HR ∩ Gx ) is trivial, where Gz (resp. Gx ) is the isotropy subgroup
at z (resp. x) of the T m-action Φ (resp. the (Z2)

m-action ΦR). Suppose that r >
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m − dimK − 1. Take a ∈ K with |a| = dimK + 1. Without the loss of generality,
assume that a = {1, . . . , |a|}. Then we see that ZK (resp. RZK ) contains the point
of the form z = (0, . . . ,0, z|a|+1, . . . , zm) (resp. x = (0, . . . ,0, x|a|+1, . . . , xm)). It is
easy to see that the isotropy subgroup Gz (resp. Gx ) has rank at least |a|, so the
intersection H ∩ Gz (resp. HR ∩ Gx ) cannot be trivial. This contradiction means that
r must be equal to or less than m − dimK − 1. �

Now let us use the preceding results to complete the proof of Theorem 1.4.

Proof Theorem 1.4 Let f = ∑
a∈K δa ∈ F[m] such that supp(f ) = K . If f = 1 (i.e.,

K = 2[m]), then ZK = (D2)m (resp. RZK = (D1)m). However, any properly nontriv-
ial subtorus of T m (resp. (Z2)

m) cannot freely act on (D2)m (resp. (D1)m) since the
point (0, . . . ,0) is always a fixed point. Thus we may assume that f �= 1. By The-
orem 3.5, there exists some a ∈ 2[m] with a �= [m] such that a ∈ supp(f ) = K and
| supp(M(f ))| ≥ 2m−n where n = |a|. Since a ∈ K , we have n ≤ dimK + 1. So by
Lemma 5.1 it follows that n ≤ m − r and r ≤ m − n. Combining with Theorem 3.5
and Corollaries 3.2 and 4.3 together gives

2r ≤ 2m−n ≤ ∣∣supp
(

M(f )
)∣∣ ≤

∑

i

dimk Hi(ZK ;k) =
∑

i

dimk Hi(RZK ;k)

as desired. �
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