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Abstract Let V be the representation of the quantized enveloping algebra of gl(n)

which is the q-analogue of the vector representation and let V ∗ be the dual repre-
sentation. We construct a basis for

⊗r
(V ⊕ V ∗) with favorable properties similar to

those of Lusztig’s dual canonical basis. In particular our basis is invariant under the
bar involution and contains a basis for the subspace of invariant tensors.

Keywords Schur–Weyl duality · Invariant tensors

1 Introduction

The aim of this paper is to study the tensor products of the tensor products of copies
of the vector representation and its dual for general linear Lie algebras and their
quantized enveloping algebras from the diagram point of view.

The background to this paper is a broad program; namely, given a pivotal cat-
egory find a finite presentation. This problem is stated in [13, Sect. 10], [19], [22,
Problem 12.18], [12, Appendix B], [4, 20]. The pivotal categories we will consider
are all spherical categories. These were introduced in [1]. Heuristically, these are an
abstraction of categories of representations where tensor products and duals of repre-
sentations are defined.

More precisely, given some set of vertices there is a pivotal category whose mor-
phisms are diagrams that are planar graphs with vertices from the prescribed set.
This is regarded as the free pivotal category on the vertices and the construction can
be interpreted as a left adjoint. The problem then is firstly to find a finitely generated
diagram category with a surjective pivotal functor to the given category and secondly
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to find defining relations. This is analogous to the problem of finding a finite pre-
sentation for an algebra with vertices corresponding to generators and diagrams to
words in the generators. There are two sources of pivotal categories which have been
studied from this point of view: one is representation theory and the other is subfac-
tors. In representation theory, the category of finite dimensional representations of a
Hopf algebra is a pivotal category. A subfactor gives a planar algebra which can be
regarded as a spherical category.

In this paper, we restrict our attention to strict spherical categories associated
to the general and special linear Lie algebras. The basic tensors are the tensors in
[11, 14, 19, 21].

The aim of the paper is to construct a basis of
⊗r

(V ⊕V ∗) for each r > 0 where V

is the vector representation and V ∗ the dual representation. The intention is that this
basis should be compared with Lusztig’s dual canonical basis. The basic property of
this basis is that the change of basis matrix to the tensor product basis is triangular and
preserves the weight. In particular, the regular representation of the Hecke algebra is
a weight space of

⊗r
V , so we have a basis of the Hecke algebra. Moreover taking

the subset of our basis corresponding to the zero weight space, we obtain a basis for
the space of invariant tensors. A further property of our basis is that it is invariant
under the involution q ↔ q−1.

Two noteworthy properties of both this basis and the dual canonical basis is that
they are cellular bases as discussed in [29] and they are both invariant under rota-
tions in the following sense. Let a, b be objects in a pivotal category. Then we have a
natural isomorphism Inv(b ⊗ a∗) ∼= Inv(a∗ ⊗ b) since both spaces are naturally iso-
morphic to Hom(a, b). This isomorphism corresponds to a bijection between the two
bases.

The relevance to the problem of finding a presentation is, first, that this shows
that the basic tensors are generators in the sense that the functor from the diagram
category to the representation category is surjective and, second, that it gives the
irreducible diagrams.

In [24], Rhoades proved an amazing cyclic sieving result about rectangular Young
tableaux under the action of promotion. This result is discussed in Sect. 7 of the
survey [25] on the cyclic sieving phenomenon. The paper [23] gives a simpler proof
of this result in the cases n = 2 and n = 3 using diagrams. The paper [30] gives a
simpler proof of this result for all n using Lusztig’s dual canonical basis. The proof
in [30] can be made almost elementary by replacing the dual canonical basis with the
basis constructed below. This essentially extends the method in [23] to all n.

2 Quantum groups

In this section, we give presentations for the quantized enveloping algebras of the gen-
eral and special linear Lie algebras. Our basic reference for this material is Lusztig’s
book [17]. Then we construct the q-analogues of the exterior powers of the natural
representations. Then we show that the direct sum of these representations is both an
algebra and a coalgebra. This defines the basic tensors that we will use.
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2.1 General linear Lie algebras

Definition 2.1 The quantum group Uq(gl(n)) is the Q(q)-algebra with generators
Ei , Fi for 1 ≤ i ≤ n − 1 and Ki , K−1

i for 1 ≤ i ≤ n. The defining relations are

KiK
−1
i = 1, K−1

i Ki = 1, K±1
i K±1

j = K±1
j K±1

i ,

EiKj =

⎧
⎪⎨

⎪⎩

qKjEi if j = i,

q−1KjEi if j = i + 1,

EjKi otherwise,

KiFj =

⎧
⎪⎨

⎪⎩

q−1FjKi if i = j,

qFjKi if |i − j | = 1,

FjKi otherwise,

EiFj − FjEi = δij

KiK
−1
i+1 − K−1

i Ki+1

q − q−1
,

EiEj = EjEi, FiFj = FjFi for |i − j | ≥ 2,

E2
i Ej − [2]EiEjEi + EjE

2
i = 0 for |i − j | = 1,

F 2
i Fj − [2]FiFjFi + FjF

2
i = 0 for |i − j | = 1.

The algebra Uq(gl(n)) is a Hopf Q(q)-algebra. The comultiplication, �, is defined
on the generators by

�(Ki) = Ki ⊗ Ki,

�
(
K−1

i

) = K−1
i ⊗ K−1

i ,

�(Ei) = Ei ⊗ KiK
−1
i+1 + 1 ⊗ Ei,

�(Fi) = Fi ⊗ 1 + K−1
i Ki+1 ⊗ Fi.

The counit, ε, is defined on the generators by

ε(Ki) = 1, ε
(
K−1

i

) = 1, ε(Ei) = 0, ε(Fi) = 0.

The antipode, S, is defined on the generators by

S
(
K±1

i

) = K∓1
i , S(Ei) = −EiK

−1
i Ki+1, S(Fi) = −KiK

−1
i+1Fi.

Then we also have

S−1(K±1
i

) = K∓1
i , S−1(Ei) = −KiK

−1
i+1Ei, S−1(Fi) = −FiK

−1
i Ki+1.

The algebra Uq(sl(n)) is the subalgebra generated by Ei , Fi for 1 ≤ i ≤ n− 1 and
KiK

−1
i+1, K−1

i Ki+1 for 1 ≤ i ≤ n − 1. This is also a Hopf algebra.
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The integral form of Uq(gl(n)) is the Z[q, q−1]-algebra generated by Er
i /[r]!,

F r
i /[r]! for 1 ≤ i ≤ n − 1, r ≥ 1 and Ki , K−1

i for 1 ≤ i ≤ n.
Similarly, the integral form of Uq(sl(n)) is the Z[q, q−1]-algebra generated by

Er
i /[r]!, F r

i /[r]! for 1 ≤ i ≤ n − 1, r ≥ 1 and KiK
−1
i+1, K−1

i Ki+1 for 1 ≤ i ≤ n − 1.
The bar involution is an involution of Q-algebras and is determined by

q 
→ q−1, K±1
i 
→ K∓1

i , Ei 
→ Ei, Fi 
→ Fi.

This is an involution for Uq(gl(n)) and Uq(sl(n)) and restricts to an involution on the
integral forms in both cases.

2.2 Representations

In this section, we construct certain representations of Uq(gl(n)) and some intertwin-
ers. These intertwiners will be taken to be the generators of a strict spherical category.
These are given in [16].

The one-dimensional representations are denoted by detkq for k ∈ Z. These are
defined by

Ei 
→ 0, Fi 
→ 0, K±1
i 
→ q±k.

Then for all r, s ∈ Z we have

det r
q ⊗ det s

q = det r+s
q .

We also define a representation of Uq(gl(n)) on
∧

V . Let n be the set {1,2, . . . , n}
and let

∧
V be the vector space with basis {vI |I ⊆ n}. Let I ⊆ n, assume i, j ∈ n

such that i ∈ I and j /∈ I then put Si→j (I ) = (I\i) ∪ j so that j is substituted for i.

Definition 2.2 The action of Uq(gl(n)) on
∧

V is defined by

EivI =
{

vSi+1→i (I ) if i + 1 ∈ I and i /∈ I,

0 otherwise,

FivI =
{

vSi→i+1(I ) if i ∈ I and i + 1 /∈ I,

0 otherwise,

K±1
i vI =

{
q±1vI if i ∈ I,

vI otherwise.

Note that E2
i vI = 0 and F 2

i vI = 0 for 1 ≤ i ≤ n − 1 and all I ⊂ n. Therefore, the
free Z[q, q−1]-module on the set {vI |I ⊆ n} is a representation for the integral forms.

Example 2.3 Consider the vector space V (n) with basis {v1, . . . , vn}. This is a left
Uq(gl(n))-module where the action of the generators is given by

Eivj =
{

vj−1 if j = i + 1,

0 otherwise,



J Algebr Comb (2012) 35:93–107 97

Fivj =
{

vj+1 if j = i,

0 otherwise,

K±1
i vj =

{
q±1vj if j = i,

vj otherwise.

The vector space
∧

V is an associative algebra. This is based on [21, Lemma 2.6].
For I, J disjoint subsets of n put

π(I, J ) = |{(i, j) ∈ I × J |i > j}|.
Definition 2.4 The multiplication on

∧
V is defined by

vI ⊗ vJ 
→
{

(−q)−π(I,J )vI∪J if I ∩ J = ∅,

0 otherwise.

This multiplication is associative since both evaluations give

vI ⊗ vJ ⊗ vK 
→
{

(−q)−π(I,J,K)vI∪J∪K if I ,J ,K are pairwise disjoint,

0 otherwise,

where π(I, J,K) = π(I, J ) + π(I,K) + π(J,K). The unit is v∅.
An alternative construction of this algebra is that it is generated by {vi |1 ≤ i ≤

n − 1} and the defining relations are

vivj + qvjvi = 0 for 1 ≤ i < j ≤ n − 1.

These two structures on
∧

V are compatible in the sense that the inclusion Q(q) →∧
V determined by 1 
→ v∅ and the multiplication map

∧
V ⊗∧

V → ∧
V are both

homomorphisms of representations.
The vector space

∧
V is a coalgebra. The comultiplication � on

∧
V is defined

by

vI 
→
∑

J,K

(−1)π(J,K)q |J |.|K|vJ ⊗ vK,

where the sum is over J,K ⊂ n such that J ∩ K = ∅ and J ∪ K = I . This comulti-
plication is coassociative.

The counit
∧

V → Q(q) is given by

vI 
→
{

1 if I = ∅,

0 otherwise.

The counit and the comultiplication are both homomorphisms of representations.
The representation

∧
V has a decomposition

∧
V =

n⊕

p=0

V (p),
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where V (p) has basis {vI ||I | = p}. For 0 ≤ p ≤ n, the representation V (p) is irre-
ducible. A highest weight vector is vI where I = {i ∈ n|i ≤ p}, and a lowest weight
vector is vI where I = {i ∈ n|i ≥ n − p + 1}.

Dually, we have a representation on
∧

V . This is the vector space with basis
{vI |I ⊆ n}.

Definition 2.5 The action of Uq(gl(n)) on
∧

V is defined by

EivI =
{

vSi+1→i (I ) if i + 1 ∈ I and i /∈ I,

0 otherwise,

FivI =
{

vSi→i+1(I ) if i ∈ I and i + 1 /∈ I,

0 otherwise,

K±1
i vI =

{
q∓1vI if i ∈ I,

vI otherwise.

It is convenient to put V (−p) = V (p) for 1 ≤ p ≤ n. Then for all r, s ∈ Z such
that −n ≤ r, s, r + s ≤ n we have a homomorphism of Uq(n)-modules

V (r) ⊗ V (s) → V (r + s). (1)

3 Flow diagrams

In this section, we follow [19, 21] and introduce the category of flow diagrams.

Definition 3.1 The monoid of objects of the category F is the free monoid on the set
{1,1,2,2, . . .}. The category F is generated as a spherical category by morphisms

a ⊗ b → a + b ab → a + b

The defining relations are the following associativity relations which hold for all la-
bellings of the edges.

= =

It is usually preferable to work with reduction rules rather than relations. In order
to do this for the flow diagrams, it is necessary to introduce two infinite families of
vertices. One family includes the first type of vertex. The number of incoming lines is
arbitrary and there is one outgoing line. The condition is that the label on the outgoing
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line is the sum of the labels on the incoming line. The other family has one incoming
line and an arbitrary number of outgoing lines. The condition is that the label on the
incoming line is the sum of the labels on the outgoing line.

There are infinitely many reduction rules. These reduction rules are that any edge
which connects two vertices in the same family can be contracted.

Next we define a functor from F to the categories of representations of the integral
form of Uq(gl(n)). The map of objects is determined by the map on the generators.
This map is given by

a 
→
{

V (a) if 1 ≤ a ≤ n,

0 if n < a,
a 
→

{
V (a) if 1 ≤ a ≤ n,

0 if n < a.

The functor is defined on morphisms by defining it on the generators. These are the
trivalent vertices. The images of these trivalent vertices are the intertwiners discussed
in Sect. 2.2. The defining relations in F are satisfied since

∧
V is an associative

algebra and a coassociative coalgebra.
The functor from F to the category of representations of the integral form of

Uq(sl(n)) is defined by composing with the restriction functor. An edge labeled n

now corresponds to the trivial representation. However, these edges cannot be simply
omitted. Instead, the majority of the edge can be omitted but two stubs at the ends of
the edge need to be retained. This is discussed in [19].

4 Growth algorithm

In this section, we give the main contribution of this paper. Let M be the free monoid
on the set {1,1,2,2, . . .}. Then we construct a flow diagram for each element of M .
The analogue of this construction for the exceptional Lie group G2 was given in [27],
and the analogue for Spin(7) was given in [28].

The morphisms in F are trivalent graphs drawn in a rectangle. In this section, the
flow diagrams are trivalent graphs drawn in a triangle. The triangles are drawn as in
Fig. 1. The edge AB is called the top edge of the triangle.

First, we give a triangle of length one for each element of M . These are the trian-
gles

a a

Fig. 1 Triangle
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Then for each ordered pair of elements of M ∪{0} we give a diamond. It is convenient
to identify M ∪ {0} with Z by a 
→ a, a 
→ −a and 0 
→ 0. Then we have directed
edges labeled by elements of Z. We identify a directed edge labeled a with the edge
with the reverse orientation and labeled −a. Then for each ordered pair (a, b) of
elements of Z we give a diamond. There are two cases, namely a �= b and a = b. The
diamonds in these two cases are respectively

Now given a word in M of length r, we draw a triangle of length r . On the top
edge of this triangle, we draw the word as a sequence of triangles. Then we fill in the
diamonds.

For Uq(gl(n)), flow diagrams have edges labeled by a and a for 1 ≤ a ≤ n. For
Uq(sl(n)), the objects a and n − a are isomorphic for 1 ≤ a ≤ n. In particular, n

and n are isomorphic to the trivial representation. The cases n = 2,3,4 are described
below.

4.1 Two part partitions

This is the case sl(2). The category of invariant tensors in this case is the Temperley–
Lieb category. This is studied in [26] and the account here is based on [10].

There is one type of edge which is not directed. There are no vertices.
There are two triangles which are the vertices of a crystal graph

and the four diamonds
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Here is an example of the growth algorithm.

The words are words in the alphabet {1,2}. Usually, one replaces 1 by an open
bracket (and 2 by a closed bracket). Then balanced lattice words are exactly well-
formed parentheses.

4.2 Three part partitions

This is the case sl(3) and is studied in [15] and [13].
There is one type of edge which is directed. There are six triangles. These are the

following three together with the three obtained by reversing all directions in each
of these three triangles. These are the vertices of two crystal graphs each with three
vertices.

Here are the nine diamonds.
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Here is an example of the growth algorithm.

4.3 Four part partitions

This is the case sl(4) and was studied in [14]. There are two types of an edge, one
directed and one not. There are two types of a vertex. There are eight triangles. Four
of these are drawn below and the other four are obtained by reversing the direction of
each directed edge in each of these diagrams. These four triangles are the vertices of
a crystal graph as are the other four vertices.

4.4 Wave graphs

Here we relate our growth diagrams to the wave graphs of [18]. The construction we
give is an extension of the construction in this preprint.

Let w be a word of length kn in the alphabet {1,2, . . . , n}. Then associated to this
word are (n−1) words in the alphabet {0,1,2}. For 1 ≤ i ≤ n−1, let wi be the word
obtained from w by the following substitutions

j 
→

⎧
⎪⎨

⎪⎩

1 if j = i,

2 if j = i + 1,

0 otherwise.

Then it is clear that w can be recovered from the words w1, . . . ,wn−1. Extend the
growth algorithm in Sect. 4.1 by assigning the empty triangle to the letter 0. Apply
this growth algorithm to each of the words w1, . . . ,wn−1 to get n − 1 triangles. Now
bind these pages into a book by identifying the top edges of the triangles (which
forms the spine of the book). This gives the wave graph of the word w.

The reason for calling this a wave graph comes from the following properties of
the wave graph. There are k points marked on the spine. Each page of the book is a
triangle with some embedded arcs. Each of these arcs either connects a point on the
boundary of the page (not on the spine) with one of the marked points on the spine or
connects two of the marked points on the spine. Each marked point on the spine is the
endpoint of either one arc or else is the endpoint of two arcs which are on adjacent
pages.
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The growth diagram of a word w can be constructed directly from the wave graph
of the word w simply by superimposing the pages of the book. The idea here is to
regard each page as transparent and then to close the book.

The special case considered in [18] is the case when each arc on every page con-
nects two points on the spine. In this special case, each arc in the book consists of
one arc from each page and has one endpoint on the first page and one endpoint on
the last page. These correspond to the following:

Definition 4.1 A closed wave graph is a partition of the set {1,2, . . . , kn} into k sub-
sets each with n elements. For 1 ≤ a ≤ k we have ia1 < · · · < iak . Then the condition
is that there does not exist a and r �= s such that

iar < ias < ia+1
r < ia+1

s .

These then correspond to standard Young tableaux of shape kn. For example, for
n = 2, k = 3 we have five standard Young tableaux. These tableaux, the lattice word
and the wave diagrams are

1 2
3 4
5 6

1 2
3 5
4 6

1 3
2 4
5 6

1 3
2 5
4 6

1 4
2 5
3 6

112233 112323 121233 121323 123123

(
1 4 5
2 3 6

) (
1 5 6
2 3 4

) (
1 2 6
3 4 5

) (
1 2 4
3 5 6

) (
1 2 3
4 5 6

)

4.5 Basis

In Sect. 4, we defined the flow diagram of a word. In this section, we use the flow
diagram of a word to construct a tensor. Then we show that these tensors are a basis
of the tensor product.

Let w be a word in {1,1,2,2, . . . , n, n}. Define a type to be a word in {+,−}. The
type of w is the word u given by the substitution a 
→ +, a 
→ − for 1 ≤ a ≤ n. The
representation V (u) associated to a type u is determined by the rules

V (+) = V, V (−) = V, V (u1u2) = V (u1) ⊗ V (u2).

Let Mr(n) be the set of words of length r . Then we identify this with the tensor
product basis of

⊗r
(V ⊕ V ). This tensor product has the obvious decomposition⊗r

(V ⊕ V ) = ∑
u V (u) where the sum is over types of length r . Then the set of

words of length r and type u is identified with the tensor product basis of V (u).
For a dominant weight λ, let V (λ) be the corresponding irreducible highest weight

representation. Define an involution λ 
→ λ∗ by V (λ)∗ ∼= V (λ∗). Then the lowest
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weight vector of V (λ∗) has weight −λ. Let vhi
λ be a highest weight vector in V (λ)

and vlo
λ a lowest weight vector.

A flow diagram drawn in the triangle in Fig. 1 is an intertwiner

ψ : V (OA) ⊗ V (OB)∗ → V (AB).

Here each edge of the triangle is a directed path which meets the flow diagram in
a sequence of edges. Let the sequence of labels of these edges be λ1, . . . , λk . The
weight of the edge is λ1 +· · ·+λk and the associated representation is V (λ1)⊗· · ·⊗
V (λk).

Let vhi be the tensor product of the highest weight vectors in V (OA) and let vlo

be the tensor product of the lowest weight vectors in V (OB)∗. Then the element of
V (AB) associated to the flow diagram is ψ(vhi ⊗ vlo).

Example 4.2 The basic triangle is an intertwiner

ψ : V (a) ⊗ V (a − 1)∗ → V.

The associated vector in V has weight a.

Let w be a word of type u. The associated flow diagram is an intertwiner

F(w) : V (OA) ⊗ V (OB)∗ → V (u)

and this gives A(w) := F(w)(vhi ⊗vlo) ∈ V (u). Denote the coefficients of this vector
in the tensor product basis by Aw

x . Next we give a state sum expression for Aw
x .

Definition 4.3 A state assigns to each edge e labeled p a subset of {1,2, . . . , n} of
size p. Furthermore, at each vertex we require that the subsets on the incoming edges
be disjoint, that the subsets on the outgoing edges be disjoint, and that the two unions
of subsets be equal.

Each state σ has a heft ht(σ ) ∈ Z[q, q−1]. The heft of a state is the product over
the trivalent vertices, maxima and minima of the diagram. Note that each term in the
product is a unit in Z[q, q−1] and so for any state σ , ht(σ ) is a unit.

The coefficients Aw
x can be expressed as a state sum. Consider the flow diagram

F(w). The boundary edges are assigned subsets by taking the highest weight vec-
tors on edge OA, lowest weight vectors on edge OB , and taking the sequence of
singletons on edge AB to be the word x.

Example 4.4 The basic triangles are labeled

a a
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Then we have

Aw
x =

∑

σ

ht(σ ), (2)

where the sum is over all states which satisfy the boundary conditions.

Theorem 4.5 For all r ≥ 0, the set {A(w)|w ∈ Mr} is a basis of
⊗r

(V ⊕ V ).

Proof This is equivalent to the statement that the matrix A is invertible. Let ≤ be the
lexicographic order on Mr . It follows from (2) that if Aw

x �= 0 then x ≤ w and Aw
w ∈

Z[q, q−1] is a unit. This means A is a triangular matrix with units on the diagonal
and so is invertible.

The reason Aw
w is a unit is that the sum (2) only has one term. This is the state in

which the states of every diamond are given by

�

Denote this basis by Br . For each type u of length r put

B(u) = {ψ(w)|w has type u}.
Then B(u) is a basis of V (u).

The weight of a word w is the vector λ(w) = (λ1, . . . , λn). Write #a for the num-
ber of occurrences of the letter a in w. Then λa = #a − #a for 1 ≤ a ≤ n.

There are two weights associated to a flow diagram. One is H which is the weight
of the edge OA and the other is D which is the weight of the edge OB . For the flow
diagram of w, we have λ(w) = H − D. Furthermore, for every state σ of F(w) the
weight of w(σ) is the weight of w.

Corollary 4.6 For each type u, the set

{A(w)|H(w) = 0,D(w) = 0}
is a basis of the invariant tensors in V (u).

The case u = +k is [18, Theorem 1].

5 Applications

The first applications are to Schur–Weyl duality and extensions. For any u, the vec-
tor space End(V (u)) can be identified with the invariant tensors in V (u) ⊗ V (u)∗.
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Then, by Corollary 4.6, we have constructed a basis of this algebra. This approach
is characteristic-free. For u = +r , this gives the original Schur–Weyl duality, see [9].
For u = +r−s , End(V (u)) is a q-analogue of the walled Brauer algebra. The walled
Brauer algebra is studied in [5], and the q-analogue is studied in [6] and [7]. For
u = (+−)r , we have the derangement algebras studied in [3] and [2]. These versions
of Schur–Weyl duality over C are discussed in [8].

The main open problem is the problem of finding defining relations. In a theoreti-
cal sense, we have solved this problem. Given any flow diagram, we can expand it in
terms of the tensor product basis and then change basis to the basis of flow diagrams.
Unfortunately, this is not useful, and it is an open problem to find a more effective al-
gorithm for writing a general flow diagram in this basis. Defining relations for SL(2)

are well known, defining relations for SL(3) are given in [15], relations for SL(4) are
given in [14] with the conjecture that these are defining relations, and relations for all
SL(n) are given in [19].

As a first step towards this, we present an algorithm which decides if a given flow
diagram is an element of the basis. First, we construct a word from the flow diagram
using cut paths and then we construct the flow diagram from the word. The original
flow diagram is a basis vector if and only if these two flow diagrams are the same.
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