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Abstract We give a new presentation of the Drinfeld double E of the (spherical)
elliptic Hall algebra E+ introduced in our previous work (Burban and Schiffmann
in Duke Math. J. preprint math.AG/0505148, 2005). This presentation is similar in
spirit to Drinfeld’s ‘new realization’ of quantum affine algebras. This answers, in
the case of elliptic curves, a question of Kapranov concerning functional relations
satisfied by (principal, unramified) Eisenstein series for GL(n) over a function field.
It also provides proofs of some recent conjectures of Feigin, Feigin, Jimbo, Miwa and
Mukhin (arXiv:1002.3100, 2010).

Keywords Hall algebras · Cherednik algebras · Shuffle algebras · Drinfeld new
realization

1 Introduction

In the seminal paper [11], M. Kapranov initiated the study of the so-called Hall alge-
bra HX of the category of coherent sheaves over a smooth projective curve X (defined
over a finite field). It may be interpreted in the language of automorphic forms as an
algebra of (unramified) automorphic forms for the collection of groups GL(n) (n ≥ 1)
over the function field of X, with the product being given by the parabolic induction
GL(n) × GL(m) → GL(n + m). On the other hand, the well-known analogy between
Hall algebras of abelian categories and quantum groups (discovered by Ringel [12])
suggests that HX should behave like the positive half of some ‘quantum enveloping
algebra’. Indeed, as observed by Kapranov, the functional equations for Eisenstein
series (which express the invariance of these Eisenstein series under the action of the
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Weyl group, and which are quadratic relations) resemble very much the relations ap-
pearing in Drinfeld’s ‘new realization’ of quantum affine algebras (see [3]). In fact,
they coincide precisely with these relations when X = P

1 (see [1, 11]). As soon as
X is of genus at least one, however, the functional equations do not suffice to deter-
mine the Hall algebra HX , and one has to look for some new, higher rank ‘functional
equations’ satisfied by Eisenstein series.

The aim of this paper is to determine these higher rank functional equations when
X is an elliptic curve. More precisely, we consider the Drinfeld double UX of the
spherical Hall algebra U+

X of X, i.e. the (Drinfeld double of the) subalgebra of HX

generated by the characteristic functions of the connected components Picd(X) of the
Picard group together with the characteristic functions of the stacks of torsion sheaves
on X. We show that UX can be abstractly presented as an algebra generated by the
above elements subject to the standard (quadratic) functional equations plus one set
of cubic relations (see Theorem 4, equations (5.5)). Our method is rather brutal and
very specific to elliptic curves; it is based on a combinatorial realization of UX given
in our previous work [2] in terms of lattice paths in Z

2. We nevertheless expect that
our result can be extended to the whole Hall algebra HX (of an elliptic curve) and its
Drinfeld double DHX .1

As it turns out, the (spherical) elliptic Hall algebra UX , or rather its rational form E
appears in several other guises: as shown in [14] it projects to the spherical Cherednik
algebra SḦn for any n ∈ Z and as such may be thought of as the stable limit SḦ∞ of
these Cherednik algebras; as shown in [15], E may be identified with a convolution
algebra acting on the (equivariant) K-theory of Hilbert schemes of points in C

2 and
its positive half E> admits a realization as a shuffle algebra of Feigin–Odesskii type.
Finally, the algebra E (and the presentation given in Theorem 4) also appears in
recent work of Feigin, Feigin, Jimbo, Miwa and Mukhin (see [5, 6, 9]) where its
representation theory is studied. It also appears in [7, 8]. Our results verify some of
the conjectures presented in loc. cit. (see Sect. 4).

The plan of the paper is the following: after introducing the algebra UX , its rational
form E and after recalling their relation to DAHAs and shuffle algebras (Sects. 2–4)
we state our main theorem giving a Drinfeld realization of E in Sect. 5 including its
Hopf algebra structure. Section 6 is dedicated to the (elementary but intricate) proof
of that result.

2 Recollections on the elliptic Hall algebra

2.1

We begin with some recollections concerning the spherical Hall algebra U+
X of an

elliptic curve X defined over a finite field Fq and its Drinfeld double UX . We refer to
[2] for details. Let Coh(X) be the category of coherent sheaves over X, and let I be
the set of isomorphism classes of objects in Coh(X). There is a partition I = �r,d Ir,d

1This has recently been carried out by Dragos Fratila, see [10].
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according to the rank and the degree of a coherent sheaf. The Euler form on the
Grothendieck group K0(Coh(X)) is given by

〈F , G〉 = rk(F )deg(G) − rk(G)deg(F ).

Set

HX[r, d] = {
f : Ir,d → C |#(suppf ) <

} =
⊕

F ∈Ir,d

C1F ,

and put HX = ⊕
r,d Hx[r, d], where the sums runs over all possible pairs (r, d), i.e.

(r, d) ∈ (Z2)+ ∪ {(0,0)}, where
(
Z

2)+ = {
(r, d) | r > 0 or r = 0, d > 0

}
.

To a triple (F , G, H) of coherent sheaves we associate the finite set

P H
F ,G = {

(φ,ψ) |0 → G φ→ H ψ→ F → 0 is exact
}

and we set P H
F ,G = #P H

F ,G . We write aK = #Aut(K) for a coherent sheaf K. We set

v = q−1/2. Define an associative product on HX by the formula

1F · 1G = v−〈F ,G〉 ∑

H

1

aF aG
P H

F ,G 1H, (2.1)

and a coassociative coproduct by

�(1H) =
∑

F ,G
v−〈F ,G〉 P

H
F ,G
aH

1F ⊗ 1G . (2.2)

There is a natural pairing on HX given by

(1F ,1G ) = δF ,G
1

aF
.

Then (HX, ·,�) is a (topological) bialgebra (see e.g. [13]). Moreover, the pairing
( , ) is a Hopf pairing and it is nondegenerate, making HX a self-dual bialgebra.

For d ∈ Z let 1Picd (X) = ∑
L∈Picd (X) 1L be the characteristic function of the Picard

variety of degree d ; for l ≥ 1 let 1Torl (X) = ∑
T ∈Torl (X) 1T be the characteristic func-

tion of the set of torsion sheaves of degree l; more generally, for any (r, d) ∈ (Z2)+
let 1ss

r,d be the characteristic function of the set of semistable sheaves of rank r and

degree d . By definition, the spherical Hall algebra U+
X of X is the subalgebra of HX

generated by {1Picd (X) |d ∈ Z}∪ {1Torl (X) | l ∈ N}. One shows that it is a sub bialgebra
of HX , and that it contains the element 1ss

r,d for any r, d .

Finally, let UX be the Drinfeld double of U+
X; it is a an algebra generated by two

copies U+
X and U−

X of the spherical Hall algebra U+
X (see e.g. [2, Sect. 3] for more

details). If u belongs to the spherical Hall algebra, we denote by u+ and u− the
corresponding elements in U+

X and U−
X .
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We refer to [11] for the interpretation of HX or UX in the language of automorphic
forms over function fields.

2.2

The spherical Hall algebras U+
X and UX admit the following combinatorial presen-

tation, obtained in [2]. Let σ,σ be the two Weil numbers of X, i.e. the Frobenius
eigenvalues in H 1(X,Q1). Thus we have σσ = q = v−2. For i ≥ 1 we put

αi = αi(σ,σ ) = (
1 − σ i

)(
1 − σ i

)(
1 − (σσ )−i

)
/i.

Let us set (Z2)∗ = Z
2\{(0,0)},

(
Z

2)+ = {
(p, q) ∈ Z

2 |p > 0 or p = 0, q > 0
}
,

(
Z

2)> = {
(p, q) ∈ Z

2 |p > 0
}
,

and (Z2)− = −(Z2)+, (Z2)< = −(Z2)>. For any x = (p, q) ∈ (Z2)∗ we put ∂(x) =
g.c.d.(p, q) ∈ N and call this positive number the length of x. We will say that x is
primitive if ∂(x) = 1. Finally, for a pair of non-collinear (x,y) ∈ (Z2)∗ we set εx,y =
sign(det(x,y)) ∈ {±1}. We also let �x,y stand for the triangle in Z

2 with vertices
{(0,0),x,x + y} (Fig. 1).

Because of the relation to Hall algebras of elliptic curves (see below), we usually
refer to the first component of a lattice point x = (r, d) ∈ Z

2 as its rank and to its
second component as its degree.

Definition Let EX be the unital C-algebra generated by elements {ux |x ∈ (Z2)∗}
modulo the following set of relations:

(i) If x,x′ belong to the same line in Z
2 then

[ux, ux′ ] = 0. (2.3)

(ii) Assume that x,y ∈ (Z2)∗ are such that x is primitive and that �x,y has no interior
lattice point. Then

[uy, ux] = εx,y
θx+y

α1
, (2.4)

Fig. 1 The triangle �x,y
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where the elements θz, z ∈ (Z2)∗ are obtained by equating the Fourier coefficients
of the collection of relations

1 +
∑

i>0

θix0s
i = exp

(
∑

r≥1

αrurx0s
r

)

, (2.5)

for any primitive x0 ∈ (Z2)∗ (observe that θz/α1 = uz if deg(z) = 1).

The relation with spherical Hall algebras is given in the following theorem. Set as
usual [l] = (vl − v−l)/(v − v−1) and define elements Tr,d in U+

X for (r, d) ∈ (Z2)+
via the following equations

1 +
∑

l≥1

1ss
lx = exp

(
∑

l≥1

1

[l]Tlxs
l

)

for all primitive vectors x. We also set ci = αi/(v
−1 − v).

Theorem 1 [2] The assignment

T ±
1,d 
→ c1u±1,±d , T ±

0,l 
→ clu0,±l

extends to an isomorphism of algebras Φ : UX
∼→ EX . Moreover, we have Φ(T ±

x ) =
c∂(x)u±x for any x ∈ (Z2)+.

Observe that EX is Z
2-graded (by the rank and the degree) and carries a natural

SL(2,Z)-symmetry. It corresponds to an action of SL(2,Z) by Fourier–Mukai trans-
forms on the derived category Db(Coh(X)). Rather than EX , we will use the rational
form EK of EX defined over the field K = C(σ,σ ), where σ,σ are now formal pa-
rameters. Since the ground field will always be K, we will drop the index K from the
notation.

We denote by E± the subalgebra of E generated by ux for x ∈ (Z2)±. The follow-
ing is proved in [2, Corollary 5.7]

Proposition 2.1 The algebra E± is isomorphic to the algebra generated by elements
{ux,x ∈ (Z2)±} modulo the set of relations (2.3–2.4). Moreover there is a triangular
decomposition

E � E+ ⊗ E−. (2.6)

It is also shown in [2, Corollary 6.1] that E is actually generated by elements {ur,d}
with −1 ≤ r ≤ 1; likewise the subalgebras E+ and E− are, respectively, generated
by the elements {u1,d , u0,l} and {u−1,d , u0,−l} for d ∈ Z and l ∈ N.
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3 Link to spherical DAHAs

3.1

In this section, which is included for completeness, we briefly describe the relation
between the elliptic Hall algebra E and spherical DAHAs of type GL(n). Let Ḧn be
the double affine Hecke algebra of type GL(n) and parameters t = σ−1, q = σ−1.
This is an algebra generated by elements X±1

i , Y±1
i , Tj for i = 1, . . . , n and j =

1, . . . , n − 1, subject to a set of relations which we will not write here (see [14,
Sect. 2]). Let S stand for the complete idempotent in the finite Hecke algebra Hn

generated by T1, . . . , Tn−1 and put SḦn = SḦnS. There is a well-known action of
the group SL(2,Z) on SḦn by algebra automorphisms, and we may use it to define a
unique collection of elements P

(n)
r,d for (r, d) ∈ Z

2\{0} satisfying P
(n)
0,d = S

∑
i Y

d
i S if

d > 0 and

P
(n)
γ (r,d)

= γ · P (n)
r,d

for all γ ∈ SL(2,Z).
The following result is proved in [14, Theorem 3.1]:

Theorem 2 For any n there is a surjective algebra morphism Ψn : E � SḦn given
by

ur,d 
→ 1

q∂(r,d) − 1
P

(n)
r,d .

Moreover we have
⋂

n Ker Ψn = {0}.

We may think of E as a stable limit SḦ∞ of SḦn as n tends to infinity.

4 Shuffle algebra presentation

4.1

We now provide a shuffle realization of the positive elliptic Hall algebra E>. Such a
realization was obtained in [15]. The same shuffle algebra also appears in the work
of Feigin and Tsymbaliuk (see [9]).

Set

ζ̃ (z) = (1 − σz)(1 − σz)(1 − (σσ )−1z)

(1 − z)

and put ζ̃ (z1, . . . , zr ) = ∏
i<j ζ̃ (zi/zj ). Following Feigin and Odesskii [4] we define

an associative algebra A = Aζ̃ (z) as follows. Consider the twisted symmetrization
operator

Ψr : K
[
z±1

1 , . . . , z±1
r

] → K
[
z±1

1 , . . . , z±1
r

]Sr

P (z1, . . . , zr ) 
→
∑

γ∈Sr

γ · (ζ̃ (z1, . . . , zr )P (z1, . . . , zr )
)



J Algebr Comb (2012) 35:237–262 243

and set Ar = Im(Ψr). Note that Ψr is a K[z±1
1 , . . . , z±1

r ]Sr -module morphism. There
is a unique linear map mr,s : Ar ⊗ As → Ar+s fitting in a commutative diagram

K
[
z±1

1 , . . . , z±1
r

] ⊗ K
[
z±1

1 , . . . , z±1
s

] Ψr⊗Ψs

ir,s ∼

Ar ⊗ As

mr,s

K
[
z±1

1 , . . . , z±1
r+s

] Ψr+s

Ar+s,

(4.1)

where ir,s(P (z1, . . . , zr ) ⊗ Q(z1, . . . , zs)) = P(z1, . . . , zr )Q(zr+1, . . . , zr+s). It is
easy to check that the maps mr,s endow the space A = K ⊕ ⊕

r≥1 Ar with the struc-
ture of an associative algebra. The product in A may be explicitly written as the
shuffle operation

h(z1, . . . , zr )·f (z1, . . . , zs)

= 1

r!s!Symr+s

(
∏

1≤i≤r
r+1≤j≤r+s

ζ̃ (zi/zj ) · h(z1, . . . , zr )f (zr+1, . . . , zr+s)

)

,

where Sym is the usual symmetrization operator. The following is shown in [15, The-
orem 10.1]:

Theorem 3 The assignment u1,d 
→ zd
1 ∈ A1 for d ∈ Z extends to an isomorphism of

K-algebras Φ : E> ∼→ A.

Remark A similar shuffle realization exists for the (spherical) Hall algebra of an
arbitrary smooth projective curve (see [16]).

5 Drinfeld presentation

This section contains our main result, i.e. a presentation of the elliptic Hall algebra E
akin to the ‘Drinfeld new realization’ of quantum affine algebras.

5.1

Consider the formal series

T1(z) =
∑

l

u1,lz
l, T−1(z) =

∑

l

u−1,lz
l,

and

T
+
0 (z) = 1 +

∑

l≥1

θ(0,l)z
l, T

−
0 (z) = 1 +

∑

l≥1

θ(0,−l)z
−l .
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We introduce the polynomials

χ1(z,w) = (z − σw)(z − σw)
(
z − (σσ )−1w

)
,

χ−1(z,w) = (
z − σ−1w

)(
z − σ−1w

)
(z − σσw).

Note that χ−1(z,w) = −χ1(w, z). Finally, we set as usual δ(x) = ∑
l∈Z

xl .
In the theorem below, the equations are to be understood formally, i.e. as equalities

of Fourier coefficients of znwl for all n, l ∈ Z. The residue operation is defined as
follows: if A(z) = ∑

l∈Z
alz

l is a formal series then ReszA(z) = a−1.

Theorem 4 The elliptic Hall algebra E is isomorphic to the algebra generated by
the Fourier coefficients of T−1(z),T1(z),T

+
0 (z) and T

−
0 (z), modulo the following

relations, for all ε, ε1, ε2 ∈ {1,−1}:
T

ε1
0 (z)T

ε2
0 (w) = T

ε2
0 (w)T

ε1
0 (z), (5.1)

χε1(z,w)T
ε2
0 (z)Tε1(w) = χ−ε1(z,w)Tε1(w)T

ε2
0 (z), (5.2)

χε(z,w)Tε(z)Tε(w) = χ−ε(z,w)Tε(w)Tε(z), (5.3)

[
T−1(z),T1(w)

] = 1

α1

(
T

−
0 (z)δ

(
z

w

)
− T

+
0 (z)δ

(
z

w

))
, (5.4)

together with the cubic relations

Resz,y,w

[
(zyw)m(z + w)

(
y2 − zw

)
Tε(z)Tε(y)Tε(w)

] = 0, (5.5)

for all m ∈ Z and ε ∈ {−1,1}.

The proof of the above theorem is given in Sect. 6. The cubic relations (5.5) may
also be written more simply as follows:

[[u1,l+1, u1,l−1], u1,l

] = [[u−1,l−1, u−1,l+1], u−1,l

] = 0 (5.6)

for all l ∈ Z. Introduce elements u0,l for l ∈ Z
∗ via the formulas

log

(

1 +
∑

i>0

θ(0,±i)s
i

)

=
∑

r≥1

αru(±r,0)s
r . (5.7)

As a consequence of the identity

∑

l≥1

αl

wl

zl
= log

(
χ1(z,w)

) − log
(
χ−1(z,w)

)
,

relation (5.2) is equivalent to

[u0,±l , u1,n] = ±u1,n±l . (5.8)
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Note that the SL(2,Z)-symmetry of E is broken in the above presentation. How-

ever, there is still a natural symmetry by the unipotent subgroup
(

1 Z

0 1

)
⊂ SL(2,Z),

given by
(

1 n

0 1

)
· u±1,l = u±1,l±n,

(
1 n

0 1

)
· θ0,l = θ0,l . (5.9)

The following remark is noteworthy:

Lemma 5.1 The cubic relations (5.6) for all l ∈ Z are implied by (5.2) and a single
cubic relation

[[u1,1, u1,−1], u1,0
] = [[u−1,−1, u−1,1], u−1,0

] = 0. (5.10)

Proof The idea is to explicitly realize the action of the unipotent symmetry group(
1 Z

0 1

)
in terms of the adjoint action of the rank zero operators u0,l . For this, consider

the vector space map

J : K
[
x±1

1 , x±1
2 , x±1

3

] → E, x
l1
1 x

l2
2 x

l3
3 
→ u1,l1u1,l2u1,l3 .

By relation (5.8) the adjoint action of an element u0,l , l ≥ 1 satisfies

ad(u0,l)J
(
P(x1, x2, x3)

) = J
(
pl · P(x1, x2, x3)

)
,

where pl = xl
1 + xl

2 + xl
3. Since the power sum functions pl generate the alge-

bra of symmetric polynomials, there exists for any k ≥ 1 an operator vk (an ex-
plicit polynomial in the adjoint operators ad(u0,l) satisfying vk · J (P (x1, x2, x3)) =
J ((x1x2x3)

k · P(x1, x2, x3)) ). This means that from a relation J (P (x1, x2, x3)) = 0
(like the cubic relation (5.10)) and the relation (5.8) we automatically deduce the
relations J ((x1x2x3)

k · P(x1, x2, x3)) = 0 for k ≥ 1. A similar reasoning using the
adjoint operators ad(u0,l) with l < 0 yields the same equations with now k ≤ −1.
The lemma follows. �

Note finally that we do not claim that the positive part E+ of E is isomorphic to the
algebra generated by the Fourier coefficients of T1(z) and T

+
0 (z) modulo the relevant

relations (5.1–5.5). Although this might be the case, we were unable to prove it.

5.2

The algebra generated by elements u±1,d , θ0,d for d ∈ Z subject to the relations (5.1–
5.5) was considered in [5], where it was coined ‘quantum continuous gl∞’. There the
authors conjectured its link to the stable limit SḦ∞ of spherical DAHAs on the one
hand, and to the shuffle algebra Aζ̃ (z) on the other. The combination of Theorems 2,
3 with Theorem 4 yields a proof of these conjectures.
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5.3

For the sake of completeness, we include here the formulas for the Hopf algebra
structure of E . This Hopf algebra structure is inherited from the one which exists on
the Hall algebra HX (see [2]). In terms of the Drinfeld generators, the coproduct takes
the following form (see [2, Lemma 4.11]):

�
(
T1(z)

) = T1(z) ⊗ 1 + T
+
0 (z) ⊗ T1(z),

�
(
T−1(z)

) = T−1(z) ⊗ 1 + T−1(z) ⊗ T
−
0 (z),

�
(
T

±
0 (z)

) = T
±
0 (z) ⊗ T

±
0 (z).

(5.11)

Note in particular that E± are sub bialgebras of E . The theory of Hall algebras
also provides E± with a (topological) antipode. We will not write it here. Finally, note
that the SL(2,Z)-symmetry is broken if one takes the coproduct into consideration;
in other words, SL(2,Z) does not act by Hopf algebra automorphisms (however, the

unipotent subgroup
(

1 Z

0 1

)
does).

6 Proof of the main theorem

This section contains the details of the proof of Theorem 4.

6.1

During the course of the proof, we will denote by Ẽ the algebra generated by the
Fourier coefficients of T−1(z),T1(z),T

+
0 (z) and T

−
0 (z), modulo relations (5.1–5.4)

and (5.5). To avoid any confusion with E , we will denote by uε,l for ε ∈ {−1,1} or
θ0,l the generators of Ẽ . Since by (5.1) the elements θ0,l commute, we may use (5.7)
to define a family of elements u0,l for l ∈ Z

∗.
The fact that E is generated by the elements {u±1,l , l ∈ Z} and {θ(0,l), l ∈ Z

∗} is a
consequence of [2, Corollary 6.1]. That the functional equations (5.1–5.4) hold in E
is also well known—see e.g. [11, Theorem 3.3] or [2, Sect. 6.1]. The relation (5.5)
is easy to check directly. Hence there is a natural surjective algebra homomorphism
φ : Ẽ � E given by φ(uε,l) = uε,l and φ(θ0,l) = θ0,l . The content of Theorem 4 is
that the map φ is actually an isomorphism.

6.2

We begin with the following Lemma, which will allow us to restrict to positive parts.
Let Ẽ+, resp. Ẽ− be the subalgebras of Ẽ generated by {u1,l | l ∈ Z} and {u0,l | l ≥ 1},
resp. by {u−1,l | l ∈ Z} and {u0,l | l ≤ −1}. Let also Ẽ0

be the (commutative) subalge-
bra generated by {u0,l | l ∈ Z

∗}.

Lemma 6.1 The multiplication map

m : Ẽ+ ⊗ Ẽ− → Ẽ (6.1)

is surjective.
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Proof By (5.4) we have

[u1,l , u−1,n] ∈ Ẽ0. (6.2)

Next, by (5.8)

[u0,l , u1,n] ∈ Ẽ+, [u0,l , u−1,n] ∈ Ẽ−. (6.3)

Using (6.2) and (6.3) it is easy to see that one may rewrite any monomial in the
variables u1,l , u0,n, u−1,m as a (finite) linear combination of similar monomials in
which the variables u1,l , u0,n, u−1,m appear in that order. This proves the Lemma. �

Remark Of course, it follows from Theorem 4 that (6.1) is actually an isomorphism.

The map φ restricts to maps φ± : Ẽ± � E±, and by Proposition 2.1 and
Lemma 6.1 it is enough to show that φ+, φ− are isomorphisms. Of course, by sym-
metry it is even enough to deal with φ+.

The algebra Ẽ+
is N-graded by the rank since all the defining relations are ho-

mogeneous. We denote by Ẽ+[r] its graded piece of degree r , and set Ẽ+[≤ r] =⊕r
i=0 Ẽ+[i], Ẽ+[< r] = ⊕r−1

i=0 Ẽ+[i]. The spaces Ẽ−[s], Ẽ−[≥ s], Ẽ−[> s] are de-
fined in a similar fashion. We will use the same notations for E instead of Ẽ . The map
φ+ restricts to a collection of maps

φ+≤r : Ẽ+[≤ r] � E+[≤ r], φ+
r : Ẽ+[r] � E+[r]

and similarly for φ+
<r .

6.3

Our line of proof of Theorem 4 will be to show by induction on r that φ+
r (or equiv-

alently φ+≤r ) is an isomorphism. This is clear for r = 0,1. In this paragraph, we con-
sider the case r = 2. We will invoke the following result which is a particular case of
[2, Lemma 5.6]. Let {vλ}λ be a K-basis of E+[0] = K[u0,1, u0,2, . . .].

Lemma 6.2 The collection of elements

{u2,lvλ | l ∈ Z, λ} ∪ {u1,lu1,mvλ | l ≤ m,λ}

forms a K-basis of E+[2].

Define some elements u2,l for l ∈ Z through the following formulas:

u2,2k+1 = [u1,k+1, u1,k], u2,2k = α1

α2

{
[u1,k+1, u1,k−1] − 1

2
α1u

2
1,k

}
. (6.4)
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It is clear that φ(u2,l) = u2,l for l ∈ Z. Recall that φ restricts to an isomorphism

Ẽ+[0] � E+[0] and put vλ = φ−1(vλ). We will show that the collection of elements

{
u2,lvλ | l ∈ Z, λ

} ∪ {
u1,lu1,mvλ | l ≤ m,λ

}
(6.5)

linearly generate Ẽ+[2], from which it will follow that they form a basis, and that
φ≤2 is indeed an isomorphism. First of all, by (5.8) the elements {u1,lu1,mvλ | l,m,λ}
linearly generate Ẽ+[2]. The functional equation (5.3) gives

−u1,nu1,m + αu1,n−1u1,m+1 − βu1,n−2um+2 + u1,n−3u1,m+3

= −u1,mu1,n + βu1,m+1u1,n−1 − αu1,m+2un−2 + u1,m+3u1,n−3, (6.6)

where we have set α = (σσ)−1(σ + σ) + σσ and β = σ + σ + (σσ )−1. We may
use (6.6) to try to express a product u1,nu1,m with n > m as a linear combination of
products u1,ku1,l with k− l < n−m. More specifically, (6.6) allows us to express any
u1,nu1,m as a linear combination of elements u1,ku1,l where (k, l) belongs to either
of the sets

{
(n − 1,m + 1), (n − 2,m + 2), (n − 3,m + 3)

}
,

{
(m + 3, n − 3), (m + 2, n − 2), (m + 1, n − 1), (m,n)

}
.

From this one deduces that
∑

m,n Ku1,nu1,m is linearly spanned by elements

u1,ku1,l , l + k = d, k ≤ l + 1 (d odd),

u1,ku1,l , l + k = d, k ≤ l + 2 (d even).
(6.7)

Comparing (6.4) and (6.7) we see that
∑

m,n Ku1,nu1,m is linearly spanned by
{u2,l | l ∈ Z} and {u1,lu1,m | l ≤ m} from which it follows in turn that (6.5) generate

Ẽ+[2] as wanted.

6.4

For the proof of Theorem 4 we have to introduce several simple combinatorial no-
tions.

Slopes. Let z = (r, d) be a vector in (Z2)+. The slope of z is defined as α(z) = d/r ∈
Q ∪ {∞}. There is a bijection between elements of Q ∪ {∞} and primitive vectors in
(Z2)+.

Farey sequences. Let F0 = { 0
1 , 1

0 }, F1 = { 0
1 , 1

1 , 1
0 }, and define Fn inductively as fol-

lows: between any two consecutive entries a
b
, c

d
in Fn−1 insert the element a+c

b+d
. For

instance, we have F2 = { 0
1 , 1

2 , 1
1 , 2

1 , 1
0 }, F3 = { 0

1 , 1
3 , 1

2 , 2
3 , 1

1 , 3
2 , 2

1 , 3
1 , 1

0 }. The follow-
ing facts are classical:

(a) any positive rational number p
q

belongs to Fn for n large enough,
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(b) for any consecutive entries a
b
, c

d
in Fn we have ad − bc = −1,

(c) any pair of positive rational numbers ( a
b
, c

d
) satisfying ad − bc = −1 appears as

consecutive entries in some Fn.

In particular, it follows from (b) that all the fractions appearing in Fn are reduced.

Primitive triangles. Let us call a lattice triangle �x,y in Z
2 with sides x,y,x+y prim-

itive if it satisfies the condition in relation (2.4), i.e. if ∂(x) = 1 and if it has no interior
lattice point. There are two ways of producing a primitive triangle starting from two
consecutive entries ( a

b
, c

d
) of a Farey sequence Fn. Namely, let w = (b, a), z = (d, c)

be the associated primitive vectors in (Z2)++ = {(p, q) ∈ (Z2)∗ |p ≥ 0, q ≥ 0}. Then

�w,lz, �z,lw (l > 0) (6.8)

and

�z+l(w+z),w+m(w+z), (l,m ≥ 0) (6.9)

are all primitive triangles.

Lemma 6.3 Any primitive triangle �x,y with x,y ∈ (Z2)++ is of the above form (6.8,
6.9) for some consecutive entries of a Farey sequence.

Proof We will use the following result.

Sublemma 6.1 Let �x,y be a triangle with no interior lattice points. Then either
∂(x) = ∂(y) = ∂(x + y) = 2 or two among {x,y,x + y} are primitive vectors.

Proof It suffices to show that a triangle �u,v with ∂(u) = 2, ∂(v) = 3 possesses
an interior lattice point. Up to GL(2,Z) action we may assume that v = (0,3) and
that u belongs to (Z2)+. Since ∂(u) = 2 we have u = (r, d) with r ≥ 2. Note that
∂(u + v) ≤ r . Pick’s formula says that

A = I + B

2
− 1,

where A is the area of �u,v, B = ∂(u) + ∂(v) + ∂(u + v) is the number of boundary
points, and I is the number of interior points. In our case, it yields

I = 3

2
r − 1

2

(
3 + 2 + ∂(u + v)

) + 1 ≥ 3

2
r − 1

2
(3 + 2 + r) + 1 ≥ r + 1 − 5

2
≥ 1

2
.�

By the above sublemma, if �x,y is a primitive triangle then either ∂y = 1 or ∂(x +
y) = 1. Assume that ∂(x + y) = 1. Then from Pick’s formula above computing the
area of the triangle �x,y, it follows that |det(x,y)| = ∂(y). Hence, if we set y0 =
y/∂(y) then det(x,y0) ∈ {−1,1}. By the properties of Farey sequence, this means
that {x,y0} or {y0,x} are consecutive entries in some Fn, and hence that �x,y is of
the form (6.8). Next assume that ∂y = 1 and set d = ∂(x + y) so that, by Pick’s
formula, again we have |det(x,y)| = d . This time, set (x + y)0 = (x + y)/∂(x +
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y) so that |det(x, (x + y)0)| = |det(y, (x + y)0)| = 1. Up to swapping x and y we
may assume that det(x, (x + y)0) = −det(y, (x + y)0) = −1. Let l,m be the greatest
integers satisfying x − l(x + y)0 ∈ (Z2)++,y − m(x + y)0 ∈ (Z2)++, and put z =
x − l(x + y)0,w = y − m(x + y)0. We claim that det(z,w) = 1 and that z + w =
(x + y)0. To see this, first note that 0 ≤ rk(z) < rk((x + y)0). Indeed, it is clear
that 0 ≤ rk(z) ≤ rk((x + y)0), and we cannot have rk(z) = rk((x + y)0) because
otherwise this would imply that deg((x + y)0) > deg(z) in contradiction with the
fact that det(z, (x + y)0) = det(x, (x + y)0) < 0. For similar reasons, 0 < rk(y −
m(x + y)0) ≤ rk((x + y)0). But then comparing ranks and using the equality x + y =
∂(x + y)(x + y)0, we see that l + m = ∂(x + y) − 1, which gives z + w = (x + y)0.
Moreover det(z,w) = det(x,y) − (l + m) = 1. This proves our claim. Note that w, z
are consecutive entries in some Farey sequence since det(z,w) = 1. We are done. �

Minimal triangles. Let z = (r, d) with r ≥ 2. A primitive triangle �x,y in Z
2 will be

said to be minimal of weight z if x+y = z, det(x,y) < 0 and if ∂(x) = ∂(y) = 1. Note
that this last condition is automatic if ∂(z) > 1. It is easy to see using property a) of
Farey sequences that there exists minimal triangles of weight z for any z = (r, d) with
r ≥ 2.

We will later need the following lemma:

Lemma 6.4 For any l ≥ 1 there exists a noncommutative polynomial Pl(u, v,w),
homogeneous of degree l such that the following holds: for any minimal triangle
�x,y of weight z we have

Pl(ux, uz, uz+y) = ulz.

Proof By SL(2,Z)-invariance, we can reduce ourselves to the case �x,y ⊂ (Z2)++.
We are then in the case (6.9) of Lemma 6.3. Without loss of generality, and again
by SL(2,Z)-invariance, we may assume that x = (p + 1,p),y = (q, q + 1), with
p,q ∈ N. Observing then that we have a lot of primitive triangles, we check that
u(l−2)z+x = [uz, . . . , [uz, ux] · · · ] and θlz/α1 = [uz + y, u(l−2)z+x]. The existence
(and independence on �x,y) of the polynomial Pl easily follows. �

As examples, we give

P1(u, v,w) = v, P2(u, v,w) = α1

α2

(
[u,w] − α1

2
v2

)
.

6.5

We are now ready to start the proof of Theorem 4. As mentioned above, we argue by
induction. Let us fix some r ∈ N and let us assume that φ+

<r is an isomorphism. By
Sect. 5.3, we may in fact assume that r ≥ 3. For any x = (s, l) ∈ (Z2)+ with 0 < s < r

we put ux = (φ+
<r)

−1(ux) and θx = (φ+
<r)

−1(θx). By our assumption these elements
satisfy the same relations as their counterparts in E as long as these relations occur
in rank strictly smaller than r .
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At several points of the proof it will be necessary to consider both elements of
Ẽ+

and Ẽ−
. By symmetry, our assumption implies that the restricted map φ−

>−r :
Ẽ−[> −r] → Ẽ−[> −r] is an isomorphism. This allows us to define elements ux =
(φ−

>−r )
−1(ux) and θx = (φ−

>−r )
−1(θx) for any x = (s, l) ∈ (Z2)− with −r < s < 0.

Lemma 6.5 For any s, t > 1 we have

Ẽ+[< s] · Ẽ−[> −t] = Ẽ−[> −t] · Ẽ+[< s],
and

E+[< s] · E−[> −t] = E−[> −t] · E+[< s].

Proof Since Ẽ+[< s] = (Ẽ+[≤ 1])s−1 and Ẽ−[> −t] = (Ẽ−[≥ −1])t−1 it suffices to
check that Ẽ+[≤ 1] · Ẽ−[≥ −1] = Ẽ−[≥ −1] · Ẽ+[≤ 1]. This is a direct consequence
of relations (5.8) and (5.4). The same argument applies to E . �

Lemma 6.5 has the following consequence. Let P(ux) be a homogeneous polyno-
mial relation in E involving only generators ux with x = (s, d), |s| < r , and whose
total rank in the elements ux with x ∈ (Z2)+ is strictly less than r , resp. whose total
rank in the elements ux with x ∈ (Z2)− is strictly more than −r . Then the same re-
lation P(ux) holds in Ẽ . Indeed, by Lemma 6.5 we have P(ux) ∈ Ẽ+[< r] · Ẽ−[>
−r] = Ẽ+[< r] ⊗ Ẽ−[> −r] and the restriction of φ to that space is injective.

6.6

Our method will be to inductively construct elements ux, θx for all x ∈ (Z2)+ and to
verify the relations (2.3–2.4) for all primitive triangles. Our first task will be to define
suitable elements in Ẽ+ lifting ur,d , θr,d ∈ E+ for d ∈ Z. Our construction of these
elements ur,d , θr,d is based on the notion of minimal triangle (see Sect. 6.4). Note

that if �x,y is a minimal triangle in (Z2)+ of weight z then [ux, uy] = 1
α1

θz. The idea

here is to use this in order to define the desired elements uz, θz ∈ Ẽ+[r] for z = (r, d).
For this approach to make sense, we need the following result.

Proposition 6.1 Fix z = (r, d). For any two minimal triangles �x,y and �x′,y′ of
weight z satisfying rk(x) > 0, rk(x′) > 0, we have

[ux, uy] = [ux′ , uy′ ]. (6.10)

Proof Set l = ∂(z) and w = 1
l
z. We first assume that w = (1, u) for some u ∈ Z.

Acting by the unipotent group
(

1 Z

0 1

)
, we may further assume that u = 0, i.e. that z =

(l,0). The relevant minimal triangles of weight z are then the triangles �(i,1),(l−i,1)

for i = 1, . . . , l − 1, see Fig. 2.
If l = 3 then by (5.5) we have

[
u1,0, [u1,1, u1,−1]

] = 0 = −[u2,1, u1,−1] + [u1,1, u2,−1] (6.11)
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Fig. 2 Minimal triangles of weight (5,0)

which is (6.10) in this case. Here we have used the rank two relations

[u1,0, u1,1] = −u2,1, [u1,0, u1,−1] = u2,−1.

Suppose now that l > 3. By the induction hypothesis we have [ui,1, ul−1−i,−1] =
[ui−1,1, ul−i,−1] for all i = 1, . . . , l − 2. Applying ad(u1,0) and using the relations
[u1,0, ui,1] = −ui+1,1, [u1,0, ui+1,−1] = ui+1,−1 for all i = 1, . . . , l − 2 we get

[ui,1, ul−i,−1] − [ui+1,1, ul−i−1,−1] = [ui+1,1, ul−i−1,−1] − [ui+2,1, ul−i−2,−1]
(6.12)

for i = 1, . . . , l − 3. We need one more relation in order to be able to deduce that
[ui,1ul−i,−1] = [uj,1, ul−j,−1] for all i, j = 1, . . . , l − 1. If l = 4 then we get this

relation by applying ad(u2,0) to the equality [u1,1, u1,−1] = 1
α1

θ2,0; if l > 4 then
we likewise get this missing relation by applying ad(u2,0) to [ui,1ul−2−i,−1] =
[uj,1, ul−2−j,−1] for all i, j = 1, . . . , l − 3. This proves Proposition 6.1 when w is
of rank one.

The cases with rk(w) ≥ 2 may be dealt with in a similar fashion. If l = 1 then
there is a unique minimal triangle of weight z and there is nothing to prove. If
l = 2 then there are two minimal triangles �x,z−x,�x+w,w−x; we have [ux, uw] =
ux+w, [uw−x, uw] = −uz−x and

[ux, uw−x] = uw. (6.13)

The relation [ux, uz−x] = [ux+w, uw−x] follows by applying ad(uw) to (6.13). Now
let us assume that l ≥ 3. The minimal triangles of weight z are of the form
�x,lw−x,�x+w,(l−1)w−x, . . . ,�x+(l−1)w,w−x, where x is the point in (Z2)+ of least
rank lying on the line L′ closest to, parallel to, and lying above L = Rw, see Fig. 3.

By construction, 0 < rk(x) ≤ rk(w). We claim that rk(x) < rk(w). Indeed if
rk(x) = rk(w) then x = w + 1. The parallelogram with sides w, x having no inte-
rior lattice point and 4 points on its boundary, its area det(x,w) = rk(w) is equal to
1. This contradicts our assumption on w and proves that 0 < rk(x) < rk(w). Using
the induction hypothesis, we have

[ux, u(l−1)w−x] = · · · = [ux+(l−2)w, uw−x] = 1

α1
θ(l−1)w.
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Fig. 3 The line L′ and the point x

Applying ad(uw) and using some rank < r relations yields

[ux+w, u(l−1)w−x] − [ux, ulw−x] = · · · = [ux+(l−1)w, uw−x] − [ux+(l−2)w, u2w−x]

= 1

α1
[uw, θ(l−1)w] = αl−1

α1
[uw, u(l−1)w].

(6.14)

Again, we need one more relation. We obtain it by applying ad(u(l−1)w) to the equa-
tion [ux, uw−x] = uw, which gives

[ux+(l−1)w, uw−x] − [ux, ulw−x] = [u(l−1)w, uw]. (6.15)

Combining (6.14) and (6.15) and using the fact that αl−1/α1 �= −1/(l − 1) we obtain
[uw, u(l−1)w] = 0 as desired. This concludes the proof of Proposition 6.1. �

The above proposition allows us to unambiguously define an element θ(r,d) ∈
Ẽ+[r] for every d ∈ Z by setting

θ(r,d) = α1[ux, uy] (6.16)

for any minimal triangle �x,y of weight (r, d) with rk(x) > 0.

Proposition 6.2 If x1,x2 are colinear vectors in (Z2)+ satisfying rk(x1) + rk(x2) =
r then [ux1

, ux2
] = 0.

Proof If r = 3 then necessarily {x1,x2} = {(1, l), (2,2l)} for some l ∈ Z, and the fact
that [u(1,l), u(2,2l)] = 0 is a consequence of relation (5.5). For a general r , choose
a minimal triangle �z,x1−z of weight x1. We have θx1

= α1[uz, ux1−z]. Since the
triangle �z,x1−z is minimal there are no lattice points between the line L passing
through x1 and x2 and the line L′ passing through z and z + x2. The two trian-
gles �z,x1+x2−z and �z+x2,x1−z being both minimal of weight x1 + x2 we have
[uz, ux1+x2−z] = [uz+x2

, ux1−z] by Proposition 6.1 (Fig. 4).
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Fig. 4 Two minimal triangles of weight x1 + x2

But then

[θx1
, ux2

] = α1
([[uz, ux1−z], ux2

])

= α1
([

uz, [ux1−z, ux2
]] + [[uz, ux2

], ux1−z
])

= α1
(−[uz, ux1+x2−z] + [uz+x2

, ux1−z]
) = 0. (6.17)

In the above we have used the fact that there are no lattice points in the interior
of the triangles �z,x2 , �x2,x1−z. We have θx1

= α∂(x1)ux1
+ h where h is a linear

combination of products uw1
uw2

· · ·uwl
with all the wis colinear to x1, and rk(wi ) <

rk(x1). Hence [ux2
, h] = 0 and [ux1

, ux2
] = 0 as wanted. �

By the above proposition, we may use the relation (5.7) and the construction of
θ(r,d) provided by Proposition 6.1 and (6.16) in order to define an element ur,d .

6.7

Now that we have constructed a canonical element u(r,d) ∈ Ẽ+[r] for every d ∈ Z,
we may proceed with the proof of the induction step. In order to show that φ+≤r is

an isomorphism, we need to check that the relations (2.3), (2.4) hold in Ẽ+
. Propo-

sition 6.2 takes care of (2.3), so we will focus on (2.4) for all primitive triangles in

(Z2)+ of total rank r . The unipotent group
(

1 Z

0 1

)
acts on Ẽ+

and it is easy to see from

the definitions that
(

1 n

0 1

)
· up,q = up,q+np

for all p ≤ r and n ∈ Z. Hence it is enough to check that relation (2.4) holds for
all primitive triangles in (Z2)++. Let us fix two vectors x,y ∈ (Z2)++ satisfying
rk(x + y) = r , det(x,y) < 0, and let us assume that either �x,y or �y,x is primitive.
We have to examine the following cases.
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Fig. 5 Case (i): x and y are primitive and rk(x) > 0

Case (i) We have ∂(x) = ∂(y) = 1. Assume first that rk(x) > 0. Since �x,y is a mini-
mal triangle of weight x+y, the relation (2.4) in this case is nothing but the definition
of θx+y (Fig. 5).

Now let us suppose that rk(x) = 0, i.e. x = (0,1). Up to the action of
(

1 n
0 1

)
, we

may assume that y = (r,−1). Then we have

[u0,1, ur,−1] = [
u0,1, [u1,0, ur−1,−1]

]

= [[u0,1, u1,0], ur−1,−1

] + [
u1,0, [u0,1, ur−1,−1]

]

= [u1,1, ur−1,−1] + 1

α1
[u1,0, θr−1,0].

By Proposition 6.2 we have [u1,0, θr−1,0] = 0, from which it follows that [u0,1, ur,−1]
= [u1,1, ur−1,−1] = 1

α1
θr,0 as wanted.

Case (i) above exhausts all primitive triangles of the form (6.9). Thus we assume
from now on that �x,y or �y,x is of the form (6.8). In particular, by Lemma 6.3, the
slopes α(y), α(x) are consecutive entries in some Farey sequence, say Fn.

Case (ii) We have ∂(y) = ∂(x + y) = 1 and ∂(x) > 1. We put x0 = x/∂(x) and divide
this into subcases as follows:

Case ((ii)a) α(y) appears in an earlier Farey sequence than α(x). Let us set w0 =
x0 − y. Then α(y), α(w0) appear as consecutive entries in Fn−1. In particular, w0 ∈
(Z2)++. By our induction hypothesis, we have

[u∂(x)w0
, uy] = u∂(x)w0+y (6.18)

since rk(w0) < rk(x0) (Fig. 6).
Observe that, in E , relation (6.18) is conjugate under the SL(2,Z) action with

the relation [ux, uy] = ux+y which we are trying to establish. The idea here is to
explicitly realize this conjugation action by suitable adjoint operators, as in the proof
of Lemma 5.1. We begin with the following.
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Fig. 6 Case ((ii)a): y is primitive and α(x) appears after α(y)

Lemma 6.6 Let u1, . . . , um, v1, . . . , vs be elements of some algebra A satisfying

[vi, ul] = vi+l for i + l ≤ s, (6.19)

l ≤ m. Then there exists a polynomial Qm in the adjoint operators ad(ul), 1 ≤ l ≤
m such that, for any noncommutative homogeneous polynomial P(x1, . . . , xs−m) of
degree m, we have

Qm · P(v1, v2, . . . , vs−m) = P(v2, v3, . . . , vs−m+1).

Proof Set t = s −m. It is enough to consider the case of a monomial P(v1, . . . , vt ) =
vi1 · · ·vim . Denote by J the degree ≤ m component of the ring of polynomials
C[y1, . . . , ym] and consider the linear map

κ : J → A

y
l1
1 · · ·ylm

m 
→ vi1+l1vi2+l2 · · ·vim+lm

(6.20)

The assumptions in the lemma imply that for any F(y1, . . . , ym) homogeneous of
degree at most m − l we have

ad(ul) · κ(
F(y1, . . . , ym)

) = −κ
(
pl · F(y1, . . . , ym)

)

where pl = ∑
i y

l
i is the power sum symmetric function. For instance

ad(ul) · κ(1) = [ul, vi1 · · ·vim]
= −vi1+lvi2 · · ·vim − vi1vi2+l · · ·vim − · · · − vi1 · · ·vim+l .

(6.21)
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The symmetric function em = y1 · · ·ym belongs to C[p1, . . . , pm] hence there exists a
polynomial Qm in the operator ad(u1), . . . , ad(um) such that Qmκ(1) = κ(em). The
lemma is proved. �

We apply the above lemma to the following situation: A = Ẽ , m = ∂(x), s = 3+m,
ui = uiy for all i = 1, . . . , ∂(x),

v1 = uw0−y, v2 = uw0
, v3 = ux0

and more generally v3+i = ux0+iy. We first need to check that (6.19) holds, that is,
that [uw0+ty, uly] = uw0+(l+t)y whenever t ≥ −1, 1 ≤ l ≤ m and l + t ≤ m + 1. For
this, assume first that rk(w0) > 0. Then rk(w0 + (m+1)y) < rk(m(w0 +y)+y) = r

hence all the above relations are of rank less than r and hold by our induction hypoth-
esis. Note that we could have w0 − y ∈ (Z2)− hence the need to apply Lemma 6.5
(see Sect. 6.5). Next, if rk(w0) = 0, i.e. if rk(x0) = rk(y) then rk(w0 +(m+1)y) = r

so we directly apply the induction hypothesis for all relations except for one, that is,
[uw0+y, umy] = uw0+(m+1)y. However, the relation [uw0

, umy] = uw0+my does hold
because it is of rank less than r , while Proposition 6.2 gives [uy, umy] = 0 so that we
indeed have [uw0+y, umy] = [[uw0

, uy], umy] = [[uw0
, umy], uy] = [uw0+my, uy] =

uw0+(m+1)y.
Lemma 6.6 provides us with a polynomial Qm in the adjoint operators ad(uy), . . . ,

ad(umy) such that Qm · P(uw0−y, uw0
, ux0

) = P(uw0
, ux0

, ux0+y) for any homoge-
neous polynomial P(u, v,w) of degree m. We take P = Pm, defined by Lemma 6.4.
Observe that, by the induction hypothesis and rank considerations as above,

Pm(uw0−y, uw0
, ux0

) = umw0
,

Pm(uw0
, ux0

, ux0+y) = umx0
= ux.

We therefore have

ux = Pm(uw0
, ux0

, ux0+y) = Qm · Pm(uw0−y, uw0
, ux0

) = Qm · umw0

and hence

[ux, uy] = [Qm · umw0
, uy] = Qm · ([umw0

, uy]
) = Qm · umw0+y

(recall that, by Proposition 6.2, [uly, uy] = 0 for any l ≤ m since rk((m + 1)y) ≤
rk(mx0 + y) = r). Now, umw0+y = ad(uw0

)m(uy), which we may view as a poly-
nomial in uw0

with coefficients in C[uy]. Since Qm is a polynomial in the adjoint
operators ad(uy), . . . , ad(umy) and since ad(uly)uy = 0 for l ≤ m, we can apply
Lemma 6.6 again, to obtain

Qm · (umw0+y) = Qm · (ad
(
um

w0

)
(uy)

) = ad(ux0
)m(uy) = umx0+y = ux+y

as wanted. This finishes case ((ii)a).

Case ((ii)b) α(x) appears in an earlier Farey sequence than α(y). If x0 = (0,1) then
y = (1, n) for some n and r = 1, contrary to our hypothesis. So we may safely assume
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Fig. 7 Case ((ii)b): y is primitive and α(x) appears before α(y)

that rk(x0) > 0. Put z0 = y − x0. Note that α(z0), α(x0) are consecutive entries in the
Farey sequence Fn−1 and in particular z0 belongs to (Z2)++. Moreover, we have
rk(x0), rk(z0) < rk(y). By our induction hypothesis (Fig. 7),

[ux, uz0
] = ux+z0

(6.22)

since this relation is of rank rk(x)+rk(z0) < rk(x)+rk(y) = r . Note that [ux0
, ux] =

0 for the same reason since rk(x)+ rk(x0) < rk(x)+ rk(y) = r , that [ux0
, uz0

] = uy,
and note that [ux0

, ux+z0
] = ux+y because �x0,x+z0 is a minimal triangle. We now

get the desired relation [ux, uy] = ux+y by applying ad(ux0
) to (6.22).

Case ((ii)c) α(x0), α(y) appear in F0. Then we have x0 = (0,1),y = (1,0) and there-
fore r = 1. This contradicts our assumption on r , so this case does not arise.

Case (iii) We have ∂(x) = ∂(x + y) = 1 and ∂(y) > 1.
We put y0 = y/∂(y) and further divide this into subcases as follows:

Case ((iii) a) α(x) appears in an earlier Farey sequence than α(y), and rk(x) > 0 (i.e.
x �= (0,1)). This case is similar to case ((ii)a), with the roles of x and y interchanged.
We provide the details for the reader’s peace of mind. Let us set z0 = y0 − x, so that
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Fig. 8 Case ((iii)a): x is primitive and α(y) appears after α(x)

α(z0), α(x) are consecutive entries in Fn−1. Note that rk(y0) > rk(z0) > 0. By our
induction hypothesis (Fig. 8),

[ux, u∂(y)z0
] = ux+∂(y)z0

.

We apply Lemma 6.6 to A = Ẽ , n = ∂(y), s = n + 3, ui = uix for i = 1, . . . , ∂(y),

v1 = uz0−x, v2 = uz0
, v3 = uy0

and more generally v3+i = uy0+ix. The requested relations [ulx, uz0+dx] = uz0+(l+d)x
for 1 ≤ l ≤ n,d ≥ −1 and l + d ≤ n + 1 all hold since they are of rank at most
rk(z0 + (n + 1)x) < rk(n(z0 + x) + x) = r . Thus there exists a polynomial Qn

in the adjoint operators ad(ux), . . . , ad(unx) such that Qn · P(uz0−x, uz0
, uy0

) =
P(uz0

, uy0
, uy0+x) for any homogeneous polynomial P(u, v,w) of degree n. We

again take P = Pn, defined by Lemma 6.4. As before, the induction hypothesis im-
plies that

Pn(uz0−x, uz0
, uy0

) = unz0
,

Pn(uz0
, uy0

, uy0+x) = uny0
= uy.

We therefore have

uy = Pn(uz0
, uy0

, uy0+x) = Qn · Pn(uz0−x, uz0
, uy0

) = Qn · unz0

and hence

[ux, uy] = [ux,Qn · unz0
] = Qn · ([ux, unz0

]) = Qn · unz0+x

(recall that [ulx, ux] = 0 for any l ≤ n since rk((n + 1)x) < rk(ny0 + x) = r). Now,
unz0+x = (−1)nad(uz0

)n(ux) so, applying Lemma 6.6 again we have

Qn · (unz0+x) = (−1)nQn · (ad
(
un

z0

)
(ux)

) = (−1)nad(uy0
)n(ux) = uny0+x = ux+y

as wanted. This finishes case ((iii)a).
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Case ((iii)b) α(y) appears in an earlier Farey sequence than α(x). This case is similar
to Case ((ii)b). Put w0 = x − y0. The pair {α(y0), α(w0)} appears as consecutive
entries in Fn−1, and in particular w0 ∈ (Z2)++. Since rk(y0) > 0 we have rk(w0) <

rk(x). Hence by the induction hypothesis (Fig. 9)

[uw0
, uy] = uw0+y. (6.23)

Now observe that [uy, uy0
] = 0 since rk(y)+ rk(y0) ≤ rk(y)+ rk(x) = r (see Propo-

sition 6.2), and note that [uw0+y, uy0
] = ux+y since �w0+y,y0 is a minimal triangle.

The desired relation [ux, uy] = ux+y is now obtained by applying ad(uy0
) to (6.23).

Case ((iii)c) x = (0,1),y0 = (1, n). Up to the SL(2,Z)-action, we can take n = 0.
Hence y = (r,0) (Fig. 10).

We begin with the following result.

Claim We have [u1,0, ur,0] = 0.

Proof of Claim It goes along the lines of the proof of Lemma 6.1. By construction
we have θr,0 = α1[us,1, ur−s,−1] for all s = 1, . . . , r − 1. Applying ad(u1,0) to this
equation we get

[u1,0, αrur,0] = [u1,0, θr,0] = α1
([us,1, ur+1−s,−1] − [us+1,1, ur−s,−1]

)
. (6.24)

Fig. 9 Case ((ii)b): x is primitive and α(x) appears after α(y)

Fig. 10 Case ((iii)c): x = (0,1) and y = (r,0)
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Assume that r + 1 = 2k is even. Then, by Proposition 6.2 we have [uk,0, θk,0] =
[uk,0, uk,0] = 0 and by a reasoning similar to the one above,

0 = −[uk+1,1, uk−1,−1] + [u1,1, u2k−1,−1] (6.25)

(we use case ((ii)a) to deduce that [uk,0, uk−1,−1] = u2k−1,−1). Combining (6.24)
and (6.25) we obtain

0 = kαr/α1
([u1,0, ur,0]

)

which proves our claim in this case.
Now assume that r = 2k is even. Hence k ≥ 2. We compute on the one hand

[uk,0, uk+1,0] = 1

αk+1
[uk,0, θk+1,0] = α1

αk+1

(−[uk+1,1, uk,−1] + [u1,1, u2k,−1]
)

(we use Case ((ii)b) to deduce that [uk,0, uk,−1] = u2k,−1) and on the other hand

[uk,0, uk+1,0] = 1

αk

[θk,0, uk+1,0] = α1

αk+1

([uk+2,1, uk−1,−1] − [u1,1, u2k,−1]
)

(we use case ((ii)b) to deduce that [uk−1,−1, uk+1,0] = −u2k,−1). Now, using (6.24)
we obtain that

[uk,0, uk+1,0] = kαr

αk+1
[u1,0, ur,0]

on the one hand while at the same time

[uk,0, uk+1,0] = − (k + 1)αr

αk

[u1,0, ur,0].

Since k/αk+1 �= −(k + 1)/αk we finally deduce that [u1,0, ur,0] = 0 as wanted. �

Next, we claim that [u−1,1, ur,0] = ur−1,1. Indeed, we may express ur,0 as a poly-
nomial P = P(u1,0, u1,±1, . . .) of degree r in the generators u1,l for l ∈ Z. Then,
using relation (5.4) we may express the commutator [u−1,1,P (u1,0, u1,±1, . . .)] as a
polynomial in generators u0,l , u1,±l for l ∈ Z. This polynomial is of degree r − 1 in
the variables u1,±l . Since [u−1,1, ur,0] = ur−1,0 and since φ+

r−1 is an isomorphism
we deduce that [u−1,1, ur,0] = ur−1,1 as wanted. Now we apply ad(u1,0) and use the
fact proved above that [u1,0, ur,0] = 0 to get

[u0,1, ur,0] = [[u−1,1, u1,0], ur,0

] = [[u−1,1, ur,0], u1,0

] = [ur−1,1, u1,0] = ur,1

as desired. This settles case ((iii)c) and with it, finally (!) concludes the proof of
Theorem 4. �
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