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Abstract The Janko group J1 has, up to duality, exactly two regular rank four poly-
topes, of respective Schläfli types {5,3,5} and {5,6,5}. The aim of this paper is to
give geometric constructions of these two polytopes, starting from the Livingstone
graph.

Keywords Regular abstract polytopes · First group of Janko · Livingstone graph

1 Introduction

In [10, 11], Janko constructed a new sporadic simple group, now called J1, of order
175560 as a subgroup of the linear group GL(7,11). Livingstone gave in [13] a prim-
itive permutation representation of degree 266 of J1, this being the smallest number
of points on which J1 can be represented. The underlying geometric structure that
Livingstone used is now called the Livingstone graph. We refer to Sect. 3 for a de-
tailed discussion on this graph. Most papers that have been written on geometries for
J1 deal with this graph (see the introduction of [6] for more details and references).
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More recently, Hartley and Leemans have constructed the universal locally pro-
jective polytope U of type {5,3,5} with icosahedral vertex-figures in [7]. They found
out that its automorphism group is J1 × L2(19). In fact, they both discovered inde-
pendently the polytope of type {5,3,5} for J1 which appears as one of the two non-
trivial regular quotients of U . They also constructed, using a Petrie-like construction
detailed in [9], a polytope of type {5,6,5} whose automorphism group is J1, as well
as four other thin regular geometries which are not polytopal [8].

As mentioned by Peter McMullen in his review of [7] (see review number
1071.51013 in Zentralblatt), Hartley and Leemans did not give any geometric con-
struction of the {5,3,5}-polytope for J1 ×L2(19) or J1. The aim of this paper is to fill
this gap. We give such geometric constructions for the polytopes of type {5,3,5} and
{5,6,5} on which J1 acts as a regular automorphism group using incidence geometry.
Once we have the construction for the {5,3,5}-polytope for J1, it is easy to obtain
such a construction for U , using a mixing operation. The constructions make intense
use of the knowledge of the Livingstone graph. Moreover, once we have the geo-
metric constructions of the {5,3,5}- and {5,6,5}-polytope, using Construction 5.1
of [12], we can construct the four remaining thin geometries of J1 given in [8] as
already mentioned in the latter paper.

In Sect. 2, we recall the basic definitions and notation needed to understand this
paper. In Sect. 3, we recall known facts about the Livingstone graph L and describe
pentagonal families and Petersen graphs appearing as subgraphs of L. We use these
objects to construct the {5,3,5}-polytope in Sect. 4 and the {5,6,5}-polytope in
Sect. 5.

2 Definitions and notation

In this section, we briefly review the basic concepts used throughout the paper. The
section is divided into three short subsections. In the first one, we give the notation
we shall use for graphs. In the second one, we deal with incidence geometries and
abstract polytopes. The last subsection shall cover the basics on Janko’s first group.

2.1 Graphs

Throughout this paper, G = (V (G),E(G)) shall denote a graph with vertex set V (G)

and edge set E(G). Given a vertex v ∈ V (G), we denote the neighborhood of v by
N(V ), that is, the set of all vertices u ∈ V (G) such that {u,v} is an edge of G ; we
further denote by Γ v

i the set of all vertices of G that are at distance i from v (and shall
omit the v when it is clear from the context). In particular, Γ v

0 = {v} and Γ v
1 = N(V ).

The distance between two vertices u,v ∈ V (G) is denoted by d(u, v).
The automorphism group of G , that is, the set of all the bijections of the ver-

tex set that preserve the edge set, is denoted by Aut(G). Given a subgraph H of G ,
StabAut(G){H} denotes the set stabilizer of H in Aut(G), while StabAut(G)[H] denotes
the pointwise stabilizer of H in Aut(G).

We recall that a (connected) graph G of diameter d is a distance-regular graph if
there exist integers bi, ci , i = 0,1, . . . , d , such that, for any two vertices u,v ∈ V (G)
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with d(u, v) = i, there are exactly ci neighbors of v in Γ u
i−1 and bi neighbors of v in

Γ u
i+1 (where we set that Γ w−1 = Γ w

d+1 := ∅, for every vertex w). Note that in particular
a distance-regular graph G is regular with degree b0, and that c1 = 1. For each vertex
v ∈ V (G) and 0 ≤ i ≤ d , the subgraph Γ v

i is also a regular graph and has degree
b0 − bi − ci . The numbers bi, ci (0 ≤ i ≤ d) are called the intersection numbers and
the array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}, is called the intersection array of G .

Given a vertex and edge transitive graph G , the distance-distribution or collinear-
ity diagram of G is the graph whose vertices are the double cosets HxH , for
x ∈ Aut(G), where H is the stabilizer of a fixed vertex of G , with directed edge
labeled α from HxH to HyH if their are precisely α cosets of the form hyH for
h ∈ H adjacent to xH in G . It is common to denote the cardinality of each double
coset inside the vertex of the collinearity diagram. Note that given the collinearity
diagram of a graph, one can read the valency of the vertices, the diameter and girth
of the graph.

2.2 Incidence geometries

Abstract regular polytopes, string C-groups and thin regular residually connected
incidence geometries with a linear Buekenhout diagram are in one-to-one correspon-
dence. In this paper, we decide to take the incidence geometry point of view since our
aim is to construct the two polytopes mentioned in the introduction as incidence ge-
ometries. The interested reader can find the basic theory of regular abstract polytopes
in [14].

Most of the following ideas arise from [19] (see also [4], Chap. 3 or [15]).
An incidence structure is a 4-tuple Γ = (X,∼, t, I ) where X and I are sets of

objects, t : X → I is a type function and ∼ is a symmetric incidence relation on X

such that two objects of the same type are incident if and only if they are equal. The
elements of X are called the elements of Γ and the elements of I are called the types.
The rank of Γ is the cardinality of I . A flag is a set of pairwise incident elements
of Γ and a chamber is a flag of type I . The rank of a flag is its cardinality. An
incidence structure Γ is an incidence geometry or geometry provided that every flag
is contained in a chamber. Moreover, we say that Γ is thin provided that every flag
of corank 1 is contained in exactly two chambers.

The residue of a flag F of Γ is the incidence structure (XF ,∼F , tF ) over the
set of types I\t (F ) where XF is the set of elements of Γ not in F and incident
to F . Moreover, ∼F and tF are the restrictions of ∼ and t to XF and I\t (F ). If
Γ is a geometry, then obviously ΓF is also a geometry. A geometry Γ is residually
connected provided that every residue of rank at least two of Γ has a connected
incidence graph.

An automorphism of Γ is a bijection of X that preserves the types and the inci-
dence. The set of all automorphisms is a group, the automorphism group Aut(Γ ). Let
G ≤ Aut(Γ ) be a group of automorphisms of Γ . We say that G acts flag-transitively
on Γ (or that Γ is flag-transitive) provided that G acts transitively on all chambers
of Γ , hence also on all flags of any given type J where J is a subset of I . If we do
not make precise what G is, we assume G = Aut(Γ ).
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Let Γ (X,∼, t, I ) be a flag-transitive incidence geometry and G = Aut(Γ ). Take
a chamber C of Γ . For each subset J of I , denote by GJ the stabilizer of the flag
F ⊆ C of type J . Obviously, G∅ = G and GI is the stabilizer of a chamber, usually
called the Borel subgroup of Γ . The subgroup lattice of Γ is the set of subgroups
{GJ : J ⊆ I } ordered by inclusion.

If Γ is a flag-transitive geometry and its Borel subgroup is the identity, we say that
G acts regularly on Γ .

We refer to [4], Chap. 3, for the definition of Buekenhout diagram (or diagram
for short) of a geometry. We say that a diagram is linear if two of its vertices are of
degree 1, all the others are of degree 1 or 2 and it is connected.

We define the (coset) pre-geometry Γ = Γ (G, (Gi)i∈I ) as follows. The set X

of elements of Γ consists of all cosets gGi , g ∈ G, i ∈ I . We define an incidence
relation ∼ on X by:

g1Gi ∼ g2Gj iff g1Gi ∩ g2Gj is non-empty in G.

Theorem 2.1 [1] Let G be a group, I a finite set, and F = (Gi)i∈I a family of
subgroups of G. Assume that

(i) For each subset J of I of corank at least 2, GJ = 〈GJ∪{i} : i ∈ I\J 〉, and
(ii) The connected components of the diagram of Γ = Γ (G, (Gi)i∈I ) are strings.

Then

(a) G is flag-transitive on Γ ;
(b) Γ is residually connected.

A similar theorem, in terms of incidence complexes as opposed to incidence ge-
ometries, can be found in [18].

2.3 Janko’s first group

As pointed out in the introduction, in [10, 11], Janko constructed a new sporadic
simple group, now called J1, of order 175560 as a subgroup of the linear group
GL(7,11). This group is the only simple group with abelian 2-Sylow subgroups and
with an involution whose centralizer is isomorphic to the direct product of the group
of order two and the alternating group A5 of order 60. The entire subgroup pattern of
J1 was first given by Francis Buekenhout in [3]. In 1985, in a private communication
to Buekenhout, Pahlings corrected that pattern. It is now implemented in the com-
puter package GAP[17] as a table of marks and directly available in MAGMA using
the “SubgroupLattice” function. In our discussion of the Livingstone graph, we shall
make use the subgroup lattice of J1. A picture of it is available in [6]. We also provide
a picture of this subgroup lattice in Fig. 11.

3 On the Livingstone graph

The geometry of the first group of Janko, J1, was first described by Livingstone [13]
as a permutation representation of J1 on 266 vertices. Such a description is often
known as the Livingstone graph and the properties of it can be found in [2, 13, 16], for
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Fig. 1 The collinearity diagram
of the Livingstone graph

example. In this section, we review some aspect of this graph that will be of great use
for us in the next sections, and refer the reader to the above references for some de-
tails. We remark that most of the following discussion, in particular Propositions 3.1,
3.2 and 3.3, can be found in [2]; however, we insist on giving some details here as
they will be of great help in our understanding when constructing the polytopes.

Let G be the Livingston graph on 266 vertices and let G = Aut(G) ∼= J1. The
graph G is an 11-regular, 2-arc-transitive graph such that for each v ∈ V (G),
StabG(v) ∼= L2(11). Moreover, such StabG(v) acts transitively on the 11 vertices
of the neighborhood N(v) of v. The intersection array of the Livingstone graph is
{11,10,6,1;1,1,5,11}, implying that its collinearity diagram is as in Fig. 1. In par-
ticular, the stabilizer of a vertex v has five orbits on V (G), of respective lengths 1,
11, 110, 132 and 12; the elements of the orbit of length 11 are all at distance 1 from
v, the ones in the orbit of length 110 are at distance 2, and so on. Let us call Γ v

i the
set of vertices at distance i from v (and we shall omit the v when it is clear from the
context). From the collinearity diagram, we further derive that the girth of G is five.

3.1 The Petersen graphs of G

As we shall see in this section, there are subgraphs in G isomorphic to the Petersen
graph.

3.1.1 The pentagons

Let v0 ∈ V (G), and consider Γi := Γ
v0
i . From Fig. 1, one can see that there are

11×10×4
2 = 220 pentagons with v0 as a distinguished vertex. Furthermore, these

pentagons have exactly two vertices in Γ1 and the remaining two vertices in Γ2.
Note that the vertex-transitivity of G tells us now that, in fact, we can find exactly
266×220

5 = 2926 × 4 pentagons in G . In fact, by [2], we have that these pentagons
belong to two different orbits under G, one with 2926 of them, and the other one
with 8778 = 2926 × 3 pentagons. We shall call these two pentagon orbits white (and
denote it by W ) and orange (and denote it by O), respectively.

Let v0, v1, v2 be a 2-arc of G with v0 adjacent to v1 and v1 adjacent to v2. For
every subgrah H of G, let StabGH denote the stabilizer of H as a subgraph and
let StabG[H ] denote the pointwise stabilizer of H . Then StabG{v0, v1} ∼= 2 × A5,
StabG[v0, v1] ∼= A5 and StabG[v0, v1, v2] ∼= S3 (see [16]). Consider all the pentagons
of G that have vertices v0, v1 and v2: as there are four vertices adjacent to v2 at
distance two from v0, there are exactly four such pentagons; call the set of these
four pentagons Ω . We shall now see in which orbit these pentagons are. First note
that given v0, v1, v2, for each v ∈ N(v2) ∩ Γ2, there is a unique u ∈ Γ1 such that
v0, v1, v2, v, u form a pentagon. Hence, the way S3(∼= StabG[v0, v1, v2]) acts on Ω

is equivalent to the way S3 acts on N(v2) ∩ Γ2.
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Fig. 2 Pentagons in Ω

Since the action of G on G is 2-arc-transitive, StabG[v0, v1](∼= A5) acts transi-
tively on the 10 vertices of Γ1 \ {v1}. It is well-known that there is only one way in
which A5 acts transitively on 10 points, namely the way A5 acts on the vertices of a
Petersen graph. Furthermore, there is only one conjugacy class of subgroups isomor-
phic to S3 in A5 and A5 acts on the 10 points as the stabilizer of one of the vertices of
a Petersen graph: it has three orbits on them, one of length one (the fixed vertex), one
of length three (its three adjacent vertices) and the last one of length six (the remain-
ing six vertices of the Petersen graph). This implies that StabG[v0, v1, v2] has exactly
three orbits on Γ1 \ {v1}, of lengths one, three and six. As each v ∈ N(v2) ∩ Γ2 is in
correspondence with a vertex u ∈ Γ1 \ {v1}, the action of StabG[v0, v1, v2] ∼= S3 on
Γ1 \{v1} determines the action of S3 on N(v2)∩Γ2, that is, S3 should have two orbits
on N(v2) ∩ Γ2 (and hence on Ω) of lengths one and three, respectively. A counting
argument now gives us that out of the four pentagons of Ω one is white, while the
other three are orange, see Fig. 2.

Consider an orange pentagon. Since its orbit under G has 8778 elements, its sta-
bilizer must be of order 20. Taking a look at the subgroup lattice of J1, we see that
there is only one conjugacy class of groups of order 20 in J1, and such groups are
isomorphic to 2 × D10 ∼= D20. That is, the stabilizer of a pentagon in O is isomor-
phic to 2 × D10. Let us denote by CO the conjugacy class of subgroups 2 × D10 that
stabilize a pentagon of O.

Let now P := {v0, v1, v2, v3, v4} ∈ W ∩ Ω . Since |W | = 2926, |StabGP | = 60,
and there are three different conjugacy classes of subgroups of J1 with 60 elements.
Two such conjugacy classes contain subgroups isomorphic to A5, while the other
one contains subgroups isomorphic to S3 ×D10. Note that since G is 2-arc-transitive,
there exist two automorphisms ρ and σ of G sending the 2-arc v0, v1, v2 to v0, v4, v3
and v1, v2, v3, respectively. Thus 〈ρ,σ 〉 ∼= D10 is a subgroup of StabGP . On the other
hand, we knew that the orbit of length one of StabG[v0, v1, v2] in Ω is precisely P .
Therefore, StabG[v0, v1, v2] ≤ StabG[P ] ≤ StabGP and StabGP ∼= S3 × D10. Let us
denote by CW the conjugacy class of subgroups S3 × D10 that stabilize a pentagon
of W .

Furthermore, each stabilizer of an orange pentagon is a subgroup of a subgroup
S3 × D10, the latter being the stabilizer of a white pentagon. Moreover, each element
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Fig. 3 The pentagon P ,
together with Γ2 ∩ N(v2) and
Γ2 ∩ N(v3)

of CW contains exactly three elements of CO . In other words, the stabilizer of every
pentagon in O stabilizes exactly one pentagon in W , while the stabilizer of each
pentagon in W contains the stabilizers of three pentagons in O.

3.1.2 The Petersen graphs

Consider now Γ2 ∩ N(v2) =: {u1, u2, u3, v3} and Γ2 ∩ N(v3) =: {w1,w2,w3, v2}
(see Fig. 3). Recall that, for P = {v0, . . . , v4}, there exists ρ ∈ StabG(P ) sending
v0, v1, v2 to v0, v4, v3. Such ρ sends {u1, u2, u3} to {w1,w2,w3}. On the other hand,
each of the ui ’s, together with v0, v1 and v2, determines a pentagon in O, and hence
S3 ∼= StabG[v0, v1, v2] acts transitively on {u1, u2, u3}. Since S3 and D10 commute in
StabGP , S3 also acts transitively on {w1,w2,w3}. Moreover, S3 acts transitively on
the sets σ i{u1, u2, u3}, for i = 1,2,3,4 (where we recall that σ ∈ D10 ≤ StabGP is
the ‘rotation’ that sends v0, v1, v2 to v1, v2, v3). Therefore, σ also maps {u1, u2, u3}
to {w1,w2,w3}.

Now, the set {u1, u2, u3}〈σ 〉 contains 15 vertices, all at distance one from P , and
with the property that StabGP stabilizes them (as a set). Let H be the subgraph of G
on these 15 vertices. Let xi := uiσ

3, so that xi ∈ Γ1 for each i = 1,2,3, and S3 ∼=
StabG[v0, v1, v2] acts transitively on {x1, x2, x3}. We know that for each i = 1,2,3,
v0, v1, v2 and ui determine a pentagon in O; call Pi such pentagon, and let ai be the
remaining vertex of them. (Hence ai ∈ Γ1.) Note that since S3(∼= StabG[v0, v1, v2])
acts transitively on {P1,P2,P3}, it acts transitively on {a1, a2, a3}. But we also know
that the orbits of S3 on Γ1 have lengths 1, 1, 3, and 6, implying that {x1, x2, x3} =
{a1, a2, a3} (see Fig. 4).

By rotating {u1, u2, u3} and {x1, x2, x3} with σ , we see that H consists of cycles:
either one 15-cycle, or a 5-cycle and a 10-cycle or three 5-cycles. Since S3 acts tran-
sitively on {u1, u2, u3} and its images under the elements of 〈σ 〉, the cycles of H

should all have the same length, so that H cannot be the union of a 5-cycle and a
10-cycle. On the other hand, there exists α ∈ S3 such that u1α = u2 and u3α = u3,
and hence x1α = x2 and x3α = x3, but no symmetry of a 15-cycle different from
the identity fixes two point, implying that H is, in fact, the union of three disjoint
pentagons. Without loss of generality, we can say that each of these three pentagons,
P1,P2 and P3, has vertices {ui, xi,wi, zi, yi}, i = 1,2,3, respectively.
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Fig. 4 The pentagon P ,
Γ2 ∩ N(v2) and the pentagons
O induced by them

In fact, one may show that the vertices of P , together with the vertices of each
of the Pi give a subgraph Pi of G on 10 vertices isomorphic to the Petersen Graph,
and that D10 < StabGP stabilizes each of them. We know that the pentagon P in Pi

belongs to W . In what follows, we shall find out in which orbit each of the other 11
pentagons of Pi is.

We summarize the above discussion in the following proposition.

Proposition 3.1 [2] Each white pentagon P belongs to three Petersen subgraphs
of G ; in each of them, the subgraph spanned by the vertices not in P is an orange
pentagon.

3.1.3 The pentagons of the Petersen graphs

Let us start by considering the three pentagons P1, P2 and P3. Recall that they belong
to the same orbit. Assume that they are in W . Then StabGPi

∼= S3 ×D10; furthermore,
the D10 in StabGP actually stabilizes each of the Pi ’s, while the S3 in S3 × D10 per-
mutes them. Thus StabGP ∩⋂3

1 StabGPi
∼= D10. That is, there is a group isomorphic

to D10 that is contained in four different S3 × D10. However, this yields us to a con-
tradiction in the subgroup lattice of J1. The lattice tells us that there are two different
classes of subgroups isomorphic to D10, both contained in the class of S3 × D10 (see
Fig. 11).

However, regardless of the class of D10 that we take, each such group is contained
in exactly one group in the class S3 ×D10. (Note, however, that each subgroup in the
class S3 × D10 contains exactly one D10 of one of the classes, but three of the other
class.) In other words, the Pi ’s cannot belong to W , and therefore they belong to O.
Hence these pentagons correspond precisely to the three D10’s belonging to the same
conjugacy class inside S3 × D10 ∼= StabGP .

Recall that the pentagons with vertices v0, v1, v2, ui and xi are orange, for each
i = 1,2,3. Moreover, the images of these pentagons under 〈σ 〉 are also orange; in
particular, the pentagon Q1 with vertices v2, v3, v4, y1 and u1 is in O (see Fig. 5).
Suppose now that the pentagon Q2 with vertices w1, v3, v4, y1 and z1 is in O.
Hence there exists an automorphism α ∈ G that sends Q2 to Q1. Furthermore, since
StabGQ1 ∼= StabGQ2 ∼= 2 × D10, we may assume that α fixes v3, v4 and y1, while it
sends w1 and z1 to v2 and u1, respectively.
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Fig. 5 The Petersen graph P1

Let us first assume that α is not an involution. Since α fixes v3, v4 and y1,
α ∈ StabG[v3, v4, y1] ∼= S3 implying that α3 = id. Then Q3 := Q2α ∈ O. Since
Q1,Q2,Q3 ∈ O share the vertices y1, v3 and v4, there is an S3(∼= StabG[y1, v3, v4])
acting transitively on them. We can then choose β ∈ StabG[y1, v3, v4] of order two
that sends Q2 to Q1 and fixes Q3. In other words, without loss of generality, we may
assume that α2 = id .

From this we induce that v1α is a vertex adjacent to both u1(= z1α) and
w1(= v2α), and since there are no 4-cycles in G , this implies that v1α = x1, and so
x1α = v1. In a similar way, v0α = v0. But this is telling us that α ∈ G sends P ∈ W
to {v0, x1,w1, v3, v4} ∈ O, which is a contradiction. Therefore, for each i = 1,2,3,
the pentagon with vertices v3, v4, yi, zi and wi is in W (together with their images
under 〈σ 〉).

In particular, out of the 12 pentagons there are in each Petersen graph, 6 of them
are white, while the other 6 are orange. Note then, that given a vertex in a Petersen
graph of G , out of the six pentagons that contain it, three of them are in W , while the
other three are in O. Furthermore, if {u,v} is an edge of a Petersen graph P, then out
of the three pentagons in W ∩P (resp., O ∩P) that contain v, exactly two of them also
contain u and hence the edge {v,u}. This means that there is exactly one pentagon in
W ∩ P and one pentagon in O ∩ P containing v, but not u (or u but not v).

We summarize the above discussion in the following proposition.

Proposition 3.2 [2] Each Petersen subgraph P of G contains 6 white pentagons and
6 orange pentagons. Moreover, given any white pentagon P of P, the vertices of P

not in P span an orange pentagon.

3.1.4 The stabilizers of the Petersen graphs

Consider the two orange pentagons P1 := {x1,w1, z1, y1, u1} and PO := {x1,w1, v3,

v4, v0} (see Fig. 5), and let γ ∈ G be such that P1γ = PO. Note that P = {v0, . . . , v4}
and PW := {u1, v2, v1, z1, y1} are the two white pentagons that are the complement
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of P1 and PO , respectively, in the Petersen graph P1. We know that the StabGP1 ∼=
2 × D10 stabilizes P1, and since γ ∈ StabP1 does not stabilize P1, we obtain that 2 ×
D10 < StabGP1 < J1. The only such class of subgroups of J1 is the one containing
subgroups isomorphic to 2 × A5. Therefore, StabGP1 ∼= 2 × A5.

Since the automorphism group of a Petersen graph is isomorphic to S5, the sub-
group C2 := Z(StabGP1) of StabGP1 fixes every point of P1, while the nontrivial
elements in A5 do not do this, implying that the pointwise stabilizer of P1 is gener-
ated by an involution.

On the other hand, it is also known that the stabilizer of an edge of G is isomorphic
to 2 × A5. Furthermore, there is only one conjugacy class of subgroups isomorphic
to 2 × A5 in J1, and the orbits of one such subgroup on the 266 vertices of G have
lengths 2, 10, 20, 24, 30, 60 and 120. The orbit of length 10 of the stabilizer of
an edge is precisely giving a subgraph of G isomorphic to the Petersen graph. In
fact, given an edge e = {u,v}, there are 10 white pentagons containing it; the set of
vertices in those pentagons that are at distance two from e form a Petersen graph P

with StabG{u,v} = StabGP.
Finally, note that given e ∈ E(G), and its corresponding Petersen graph P, when

we choose a pentagon P ∈ W ∩ P and its corresponding complementary P1 ∈ O ∩ P,
we have StabGP1 = 2 × D10 acting on the other two Petersen graphs defined by P .
Therefore, 2×D10 also has an orbit of length four on the vertices of G , which contains
the two pairs of points determined by these two other Petersen graphs. Let P(G)

denote the set containing the four-tuples of the type {P,P1, e, {e0, e1}}, where P ∈ W
and P1 ∈ O determine a Petersen graph, e is the edge related to this Petersen graph,
and {e0, e1} are the two edges determined by the other two Petersen graphs on P .

We summarize the above discussion in the following proposition.

Proposition 3.3 [2] Given an edge e of G , there exists a Petersen subgraph P, whose
vertices are all the vertices at distance two of each vertex of e. Moreover, StabG(e) =
StabG(P) ∼= 2 × A5.

3.2 A rank two geometry in G

3.2.1 The other conjugacy class of subgroups isomorphic to A5

As we saw before, given an edge e = {v,u} of G , the pointwise stabilizer of e is
isomorphic to A5. But by taking a look at the subgroup lattice of J1, we see that
there are two different conjugacy classes of A5 that are subgroups of L2(11). While
the conjugacy class corresponding to the pointwise stabilizer of e acts transitively on
N(v) \ {u} (that is, it has two orbits on N(v), one of length one and the other one of
length 10), the other class that fixes the vertex v, has also two orbits of N(v) but now
of lengths five and six, respectively.

Let v1 ∈ V (G) be fixed, and consider an A5 := H acting on its neighborhood,
having orbits of lengths five and six; call these two orbits V5 and V6, respectively.
Note that fixing an edge e in which v1 is contained gives us an A5 not conjugated
to H . It is well-known (see the subgroup lattice) that the intersection of these two
A5’s will depend on whether the vertex u ∈ e, u �= v is in V5 or on V6; in fact, if
u ∈ V5, then StabG[e] ∩ H ∼= A4, while if u ∈ V6, then StabG[e] ∩ H ∼= D10.
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3.2.2 A helpful rank 2 geometry

In [5], Buekenhout et al. determine all residually connected, primitive flag-transitive
geometries for L2(11). Of our interest is the geometry Γ of rank 2, listed as number 7
in Sect. 6.1 of the latter reference. We now describe this rank 2 geometry. Note that
this rank 2 geometry can be seen as the unique biplane with 11 points and 11 lines,
whose automorphism group is precisely L2(11); the details of the description of such
biplane can be found in [15]. This coset geometry, with points and blocks, is such
that, given a point p and a block b incident to p, the stabilizer of b and the stabilizer
of p in L2(11) are both isomorphic to A5 but not conjugate in L2(11). The stabilizer
of b and l in L(2,11) is isomorphic to D10. So Γ consists of 11 points, distributed on
blocks of six points, in such a way that any two points determine exactly three blocks.
As there are 11 points and every block has six points, there are 11 blocks and every
point is in six blocks. Moreover, every two blocks intersect in exactly three points.
This geometry is unique, up to isomorphism, in the sense that any coset geometry of
rank two for L2(11) with G0 ∼= G1 ∼= A5, G0 ∩ G1 ∼= D10 and G0 not conjugate to
G1 in L2(11) is isomorphic to Γ .

Hence, given a vertex v1 of G , the geometry Γ precisely describes the 11 sub-
groups isomorphic to A5 in L2(11) that have orbits of length 5 and 6 on N(v1). That
is, the 11 vertices of N(v1) correspond to the 11 points of Γ , while the 11 blocks of
Γ correspond to the 11 subgroups acting on these 11 points. In particular this implies
that choosing any two vertices in N(v1), there are precisely three sets of six elements
of N(v1) in which there is an A5 acting transitively.

Let us denote by V(G) the set consisting of all triples {v1,V5,V6}, where v1 ∈
V (G), V5 ∪ V6 = N(v1), with |Vi | = i and such that there is an A5 < StabGv acting
transitively on both V5 and V6.

3.2.3 Blocks and Petersen graphs

Let v1 ∈ V (G), and v0, v2 ∈ N(v1). Let A,B and C be the three blocks of Γ deter-
mined by v0 and v2 (so that N(v1) \ {v0, v2} = A ∪ B ∪ C). Since the intersection of
any two blocks contains exactly three points, we can label the points in A,B and C

as follows:

A := {b, c,p, q}, B := {a, c, x, y}, C := {a, b, z,w}.
Note that the 2-arc {v0, v1, v2} determines a unique white pentagon, and this, in
turn, gives us exactly three Petersen graphs, say P0,P1,P2. As |Pi ∩ N(v1)| = 3 and
v0, v2 ∈ Pi ∩N(v1), each of the Petersen graphs intersects N(v1) \ {v0, v2} in exactly
one point, giving in this way three special points that belong to A ∪ B ∪ C, one per
Petersen graph. In what follows, we shall show that these three points are precisely
a, b and c.

Now, StabG{v0, v1, v2} ∼= 2×S3, where the 2 acts as a reflection of the 2-arc, while
the S3 acts as the permutation group on the blocks A,B and C. On the other hand,
this S3 has two orbits on N(v1) \ {v0, v2}: Δ3, of length three and Δ6, of length six
(and so it acts transitively on each of them). In particular, this means that no element
of S3 different than the identity fixes a point of Δ6, while the only element of S3
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that fixes all points of Δ3 is the identity. Moreover, we know that the three points of
N(v1) \ {v0, v2} that belong to the Petersen graphs described above are the elements
of Δ3 (labeled z1, z2, z3 is Sect. 3.1.2).

Consider the stabilizer of the block A, isomorphic to A5. If we fix not only A but
also v0 and v2, we obtain that StabG[A,v0, v1, v2] ∼= 2 =: 〈α〉. Since α fixes both v0
and v2, it fixes the set of blocks A,B,C; and as it fixes A, it can either fix both B and
C or interchange them.

Let us look at the action of α on the elements of A. Suppose that bα = b. Then
α fixes B and therefore it fixes C, c and a. This implies that a, b, c /∈ Δ6, so that
a, b, c ∈ Δ3. But the only element of StabG[v0, v1, v2] that fixes all elements of Δ3
is the identity, which is a contradiction. Therefore, α does not fix b. In a similar way,
α cannot fix c. By assuming that α sends b to either p or q , we see that, as b ∈ B , α

cannot keep B and C as blocks, which cannot happen, and hence bα = c. This now
implies that Bα = C and that aα = a. Then, again, as α fixes a, a /∈ Δ6, therefore
a ∈ Δ3.

By now considering the stabilizers of the blocks B and C, respectively, we obtain
that b, c ∈ Δ3. Furthermore, fixing a block, say A, exactly two of the points of Δ3
are in A, while the third one is in the complement of such block. Note that given
v0, v1, v2 and one of the points in Δ3, the Petersen graph is completely determined.

The above discussion leads us to the following proposition.

Proposition 3.4 Given a vertex v1 ∈ V (G), and any three vertices i, j, k ∈ N(v1),
there is always either one or two blocks of Γ containing them. Furthermore, there
are exactly two blocks of Γ containing i, j and k if and only if there is a Petersen
graph of G containing the four vertices v1, i, j, k.

3.2.4 Blocks from pentagons and pentagons from blocks

We first consider a Petersen graph P, with a distinguished pentagon PW in W (and
hence “complementary” pentagon PO in O). This Petersen graph has an edge e as-
sociated to it that is a distance two of each of the points of P. Let v1, v0 be the end
points of e. Note that StabG{PO} ∼= 2 × D10, while StabG{PO, v1} ∼= D10.

To each vertex w of P we can associate exactly one point u in N(v1) to it, namely,
the vertex in N(v1) that belongs to the (unique) pentagon in W spanned by e and w.
This gives us a partition of N(v1) \ {u} into two sets A and B , of five vertices each,
corresponding to the points in PW and PO , respectively.

Since StabG{v1,PO} ∼= D10 fixes both v0 and v1 and acts transitively on both
pentagons PW and PO , it acts transitively on each of the sets A and B . But there is
only one conjugacy class of subgroups isomorphic to D10 inside StabG[e] ∼= A5, and
such class is also contained in the other class of A5. That is, StabG{v1,PO} ∼= D10
can be seen as a subgroup of the H ∼= A5 in StabG{v1}. Hence, the two sets A and B

correspond to the two sets V5 and V6 \ {v0} (though we don’t know if A corresponds
to V5 or to V6 \ {v0}).

On the other hand, we have the following proposition.
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Proposition 3.5 Let {v1,V5,V6} ∈ V(G) (as defined in Sect. 3.2.2) and let v0 ∈ V6.
Then, the edge {v0, v1} induces a unique element of P(G).

Proof Let H ∼= A5 in StabG{v1} be such that its orbits on N(v1) are V5 and V6, and
hence StabG[v1, v0] ∩ H ∼= D10 =: H ′. Then H ′ acts transitively on the five points
of V5, as well as on the five points of V6 \ {v0}. Consider now the Petersen graph P

associated to {v0, v1} (that is, such that StabGP = StabG{v0, v1}). The vertices of P

are in one to one correspondence to the vertices of N(v1) \ {v0}; hence the vertices of
P get divided into two sets, say P and Q, each with five elements, corresponding to
the sets V5 and V6 \ {v0}, respectively. Note then that the two transitive orbits of H ′
on P are precisely P and Q.

Since a maximal independent set (also called coclique) of a Petersen graph has
4 vertices, any subset of 5 vertices contains an edge. Since D10 acts transitively on
P and G has girth 5, the subgraph P must be a cycle. That is, P and Q are disjoint
pentagons of P and P, together with P and Q, is the unique element of P(G) induced
by {v0, v1}. �

4 A polytope of type {5,3,5}
The understanding of the Livingstone graph obtained in the previous section provides
us now with enough information to define an incidence structure Q = (

⋃3
0 Fi ,∼, t ,

{0, . . . ,3}), where F0 is the set of pairs {e,P} where e is an edge of G and P is its
associated Petersen graph (see Sect. 3.1.4), F1 and F2 are two copies of P(G) (see
also Sect. 3.1.4), and F3 is the set V(G) defined in Sect. 3.2.3. The type function
t : fi ∈ Fi �→ i and the incidence relation ∼ is defined as follows.

Let F0 = {e,P} ∈ F0, F1 = {P,P1, e, {e0, e1}} ∈ F1, F2 = {P ′,P ′
1, e

′, {e′
0, e

′
1}} ∈

F2 and F3 = {v1,V5,V6} ∈ F3. Then,

F3 ∼ F0 ⇔ v1 ∈ P and |V6 ∩ P| = 3;
F3 ∼ F1 ⇔ v1 ∈ P, |V6 ∩ P | = 2 and |V5 ∩ P1| = 1;
F3 ∼ F2 ⇔ v1 ∈ e′ and |V6 ∩ e′| = 1;
F2 ∼ F0 ⇔ e′ ∈ P, P ′

1 ∩ P is an edge
and it is one of the opposite edges to e′ in P;

F2 ∼ F1 ⇔ e′ ∈ P,
∣
∣V (P ∩ P ′

1)
∣
∣ = ∣

∣V (P1 ∩ P ′)
∣
∣ = 1;

F1 ∼ F0 ⇔ P ∈ P and a ∈ {e0, e1}.
Throughout this paper, we shall refer to the elements of Fi as the i-faces of Q.

Furthermore, the 0-, 1-, and 3-faces are often called vertices, edges and facets, respec-
tively. Note that the stabilizer of a 0-face is isomorphic to 2 × A5, the stabilizers of a
1-face and of a 2-face are both isomorphic to 2 ×D10, and the stabilizer of a 3-face is
isomorphic to A5. Furthermore, J1 acts transitively on the faces of each rank. Finally,
we have that Q has 1463 vertices, 8778 edges, 8778 2-faces and 2926 facets.

4.1 The flags of Q

We want to show that the incidence defined above yields a regular polytope. To this
end, we need to study the flags of Q, together with their stabilizers in G. Recall that,
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in the language of incidence geometry, a flag is a set of pairwise incident element of
Γ (that is, a chain of an abstract polytope), while a chamber is a flag containing all
the types (that is, a flag of an abstract polytope). Hence, we determine the sublattice
of Q and use it to show that we have a thin regular residually connected incidence
geometry, and hence an abstract regular polytope.

4.1.1 Flags of rank 2

We begin our study with flags of rank 2, that is, pairs of incident elements of Q. In
particular, given an i-face Fi we find out how many j -faces are incident to it. We base
our arguments on the discussion on the Livingstone Graph in Sect. 3. Throughout, we
also make use of counting combinatorial arguments; they can often be replaced by
geometric graph arguments that although nicer, would make this paper longer than
wanted.

Flags of type {0,1} We fix F0 := {a,P} ∈ F0. There are 6 pentagons in P ∩ W , that
is, six options for P ∈ F1. Once chosen P ∈ W ∩ P, there are three pentagons in O
associated to P , exactly one of them also belongs to P, while the other two do not;
we hence have two options to pick such a pentagon to be P1 ∈ F0, and each choice
will determine if a = e0 or a = e1 and hence completely determine F1. Thus, there
are 12 1-faces F1 incident to F0.

On the other hand, if we start by fixing an F1 = {P,P1, e, {e0, e1}} ∈ F1, we have
that for an F0 to be incident to F1 there are two possibilities: either a = e0 or a = e1;
each of these possibilities gives us a unique P and hence a unique 0-face incident to
F1, implying that there are two 0-faces incident to F1.

Recall that StabGF0 ∼= 2 × A5, where the A5 fixes the two vertices of a while
it acts transitively on the vertices, edges and pentagons in W ∩ P (resp., in O ∩ P).
Furthermore, by fixing P ∈ W ∩P, we also fix the associated pentagon in O ∩P, and
hence the two edges a′, a′′ corresponding to the other two Petersen graphs spanned
by P . The 2 < StabGF0 fixes the Petersen graph P pointwise, and it interchanges
the two vertices of a, as well as the edges a′ and a′′. In particular, this implies that
StabGF0 acts transitively on the 1-faces incident to F0.

Since G acts transitively on F0, we obtain that G acts transitively on the flags of
type {0,1}. Moreover, given a flag Ω0,1 := {F0,F1} (of type {0,1}), the stabilizer of
Ω0,1 is contained in both 2 × D10 ∼= StabGF1 and 2 × A5 ∼= StabGF0. In fact, since
StabGF0 acts transitively on the 1-faces incident to F0, we have that

StabGΩ0,1 = StabGF0 ∩ StabGF1 ∼= 2 × D10 ∩ 2 × A5.

As the 2 in StabGF1 interchanges e0 by e1, it does not fix F0 (similarly the 2 in
StabGF0 does not fix F1), we have that StabGΩ0,1 ∼= D10.

Flags of type {0,2} Again, G acts transitively on F0. Therefore, we can choose a
0-face without loss of generality. When fixing a 0-face F0 = {a,P}, to see how many
2-faces are incident to F0, we note that P has 15 edges, and each of them has two
opposite edges. Choosing an edge e′ ∈ P, let b := {u,w} and b′ := {u′,w′} be the
two opposite edges in P. Then e′ is at distance two from all the vertices u,w,u′,w′.
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Fig. 6 The relation between the 0- and the 2-faces of a flag of type {0,2}

From Sect. 3.1.3, we know that e′ spans a white pentagon with two of these vertices,
while it spans an orange pentagon with the other two; moreover, if e′ spans a pentagon
in W (resp., O) with u, then it also spans a pentagon in W (resp., O) with w. That is,
only either b or b′ can be used as the edge of intersection of P with P ′

1 ∈ F2. Without
loss of generality, let it be b, that is, the Petersen graph P

′
0 associated to e′ contains b.

But we know that given an edge of a Petersen graph P
′
0 it belongs to exactly two

white pentagons of P
′
0; in other words, for each e′ we have a unique P

′
0, but two

option for P ′
1. Hence there are 15 × 2 = 30 2-faces incident to F0.

Then, given a 2-face, there are 30×|F0||F2| = 30×1463
8778 = 5 0-faces incident to it.

Here, the D10 ≤ StabGF2 acts as the symmetry group of P ′
1, always fixing e′

pointwise, implying that StabGF2 acts transitively on the 0-faces incident to F2.
And as G acts transitively on F2 then it acts transitively on the flags of rank two
of type {0,2}. Moreover, if Ω0,2 is a flag of type {0,2}, StabGΩ0,2 = StabGF0 ∩
StabGF2 ∼= 22.

Flags of type {0,3} Given a 0-face F0 = {e,P}, we count how many 3-faces
{v1,V5,V6} are incident to F0. There are 10 options to choose v1 from, namely the
10 vertices of P. Now, the three neighbors of v1 in P most be in V6. By Sect. 3.2.2,
since these three points are in both N(v1) and P, they belong to exactly two blocks
of Γ . That is, for each choice of v1 there are two different possibilities of F3 incident
to F1. Hence there are 10 × 2 = 20 3-faces incident to F0.

Therefore, we have 20×|F0||F3| = 20×1463
2926 = 10 0-faces incident to a given 3-face.

To figure out what the stabilizer of a flag Ω0,3 = {F0,F3} is, note that v1 ∈ P

and StabG{v1,P} ∼= 2 × S3, where the 2 =: 〈ρ〉 fixes P pointwise, but interchanges
the vertices of its corresponding edge. Hence, ρ fixes the 2-arc {v0, v1, v2} (where
v0, v2 ∈ N(v1) ∩ P), and thus the white pentagon PW determined by it. Moreover,
this implies that while ρ fixes one of the Petersen graphs determined by PW , it swaps
the other two of them. In other words, if A,B and C are the three blocks of Γ de-
termined by fixing v1 and picking v0, v2 ∈ N(v1), then ρ fixes one of them and in-
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terchanges the other two. However, it does not fix any point of the fixed block. As
ρ fixes all three point in N(v1) ∩ P, it cannot fix a block that contains these points.
Hence StabGΩ0,3 ∼= S3.

Flags of type {1,2} Given F1 = {P,P1, e, {e0, e1}} ∈ F1, each of the edges of P

can be chosen to be e′ ∈ F2. Once e′ is chosen, a Petersen graph P
′
0 is determined. As

we saw in Sect. 3, there is exactly one vertex, say v0, in P
′
0 ∩ P and another vertex,

say u0, in P
′
0 ∩ P ′. On the other hand, given an edge of a Petersen graph P

′
0 and

an edge {v0, u0} of it there is exactly one pentagon P ′ ∈ P ∩ W with u0 ∈ P ′ and
v0 /∈ P ′. This unique P ′ gives in turn a unique P ′

1 ∈ O and hence determines a F2
incident to F1. That is, there are exactly five 2-faces incident to F1. In turn, since
|F1| = |F2|, given a 2-face, there are five 1-faces incident to it.

Moreover, D10 ≤ StabG(F1) acts transitively on the edges of P , implying that
StabG(F1) acts transitively on the 2- faces incident to F1. Since G is transitive on F1,
it acts transitively on the flags of type {1,2}.

The subgroup StabG(Ω1,2) is of index five in both StabG(F1) and StabG(F2)

(where Ω1,2 = {F1,F2}). The subgroup lattice of J1 tell us that StabG(Ω1,2) ∼= 22.

Flags of type {1,3} From Sect. 3.2.3, given a 3-face F3 = {v1,V6,V5}, each two
vertices of V6 imply a unique choice of a third point u to complete a Petersen graph
in such a way that u ∈ V5. Hence there are 6×5

2 = 15 1-faces incident to F3. We then

also have that there are 15×|F3|F1| = 5 3-faces incident to a given 1-face.
Note that inside A5 ∼= StabGF3, the stabilizer of a set of two points of V6 is iso-

morphic to 22 and this subgroup stabilizes the point of V5 that belongs to P1 (see
Sect. 3.2.3). That is, StabGΩ1,3 ∼= 22, where Ω1,3 is a flag of type {1,3}.
Flags of type {2,3} From Sect. 3.2.4, given a 3-face {v1,V6,V5}, there are six pos-
sibilities to choose F2 incident to it, namely, one per edge with end points v1 and a
vertex of V6. Moreover, given a 2-face {P ′,P ′

1, e
′, {e′

0, e
′
1}}, the choice of which ver-

tex of e′ is v1 (and hence having the other vertex of e′ belonging to V6) completely
determines a block in N(v1), and hence a F3 incident to the given 2-face. That is,
there are exactly two 3-faces incident to a given 2-face.

Now, given Ω2,3 = {F2,F3} with F2 ∼ F3, we have that StabG[e′] ∼= D10 acts
transitively not only on P ′ and P ′

1, but also on V5 and V6 \ {v6} (where e′ = {v1, v6}).
Hence, StabGΩ2,3 ∼= D10.

This discussion on flags of rank 2 is summarized in the following proposition.

Proposition 4.1 G acts transitively on the flags of rank 2 of a given type of Q. Fur-
thermore, if Ωi,j denotes a flag of type {i, j}, we have that

StabGΩ0,1 ∼= D10, StabGΩ0,2 ∼= 22, StabGΩ0,3 ∼= S3,

StabGΩ1,2 ∼= 22, StabGΩ1,3 ∼= 22, StabGΩ2,3 ∼= D10.

4.1.2 Flags of rank 3 and chambers of Q

We now prove that every flag is contained in a chamber, and hence the incidence
structure Q is, in fact, a geometry; to do so, we first show that every rank 2 flag
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Fig. 7 A flag {F0,F1} of type
{0,1} and elements to construct
a 2-face incident to F1

is contained in rank 3 flags. Moreover, from the arguments we give, together with
some given above, it is also clear that such geometry is thin. Throughout, for each
J ⊆ {0,1,2,3}, ΩJ denotes a rank |J | flag of Q of type J .

For each case, we take a rank 2 flag Ωi,j , extend it to a rank 3 flag Ωi,j,k and show
that StabGΩi,j acts transitively on the k-faces incident to it. In this way, we obtain
that G is transitive on the flags of type {i, j, k}. In turn, this immediately implies that
every flag of type {i, k} or {j, k} can be extended to one of type {i, j, k}.

In a similar way, to show that every flag is contained in a chamber, it is enough
to show that a flag Ω0,1,2 is contained in a chamber and that StabGΩ0,1,2 acts transi-
tively on the 3-faces incident to such rank 3 flag.

Flags of type {0,1,2} Let us start with a rank 2 flag Ω0,1 = {F0,F1} of type {0,1},
with F0 = {a,P} and F1 = {P,P1, e, {e0, e1}} (so that P ∈ P and a ∈ {e′

0, e
′
1}) and let

P0 be the Petersen graph spanned by P and P1.
Let F2 ∈ F2 be such that F2 ∼ F1, with F2 = {P ′,P ′

1, e
′, {e′

0, e
′
1}}. Thus, e′ ∈ P

and |V (P ∩P ′
1)| = |V (P ′ ∩P1)| = 1. We shall show that F2 ∼ F0, and so any flag of

type {0,1} can be completed to one of type {0,1,2}. In other words, we need to show
that e′ ∈ P and P ′

1 ∩ P is an edge opposite to P.
We have that e′ ∈ P , and so e′ ∈ P. Moreover, note that if v0 ∈ P , u0 ∈ P1 are

adjacent vertices that, together with e′, span pentagons in W , then {v0, u0} is an edge
opposite to e′ in P0. Since F2 ∼ F1, {v0, u0} ∈ P

′
0, the Petersen graph spanned by P ′

and P ′
1. Now, in P, v0 and e′ span a pentagon in W ; call v1 the other vertex of P that

also spans a pentagon in W with e′ (see Fig. 7). Then v1 ∈ P
′
0, and further {v0, v1} is

an edge of P. Note that since F2 ∼ F1, we have v0 ∈ P ′
1 and u0 ∈ P ′. Hence, to show

that F2 ∼ F0, we need to show that v1 ∈ P ′
1. To this end, we observe that P ′ and P ′

1
partition the vertices of P

′
0, and given a vertex in P ′ (resp., P ′

1), one of its neighbors is
in P ′

1 (resp., P ′), while the other two are in P ′ (resp., P ′
1). We then have that v0 ∈ P ′

1
and v1 �= u0 are both neighbors of v0; furthermore, we know that u0 ∈ P ′, implying
that v1 ∈ P ′

1, and hence every flag of type {0,1} is contained in a flag of type {0,1,2}.
Now, given faces F0 ∼ F2, we shall find the 1-faces F1 incident to this flag. To

this end, we shall determine the pentagons P and P1. The incidences F0 ∼ F1 ∼ F2
imply that e′ and the vertex v0(= P ′

1 ∩ P) determine P . Although e′ is given by F2,
we have two different possibilities to choose v0 from, namely the two vertices of the
intersection P ∩ P ′

1. Following arguments similar to those above, one can see that
once v0 is chosen (and hence P is determined), there is a unique P1 that completes
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Fig. 8 A flag {F0,F2} of type
{0,2} and elements to construct
a 1-face incident to them

F1 as wanted (see Fig. 8). That is, there are exactly two 1-faces incident to a given
flag of type {0,2}.

To find the stabilizer of the flag Ω0,1,2 = {F0,F1,F2}, we note that StabG[Ω0,2] ∼=
22. If ρ, τ are the generators of this 22, then one of them, say ρ, interchanges the ver-
tices of e′, and fixes P

′
0 pointwise; while the other one, say τ , fixes e′ pointwise and

acts on P
′
0 as the reflection that interchanges v0 and v1. Hence, ρ ∈ StabG[Ω0,1,2],

while τ interchanges the two 1-faces incident to Ω0,2. That is, StabG[Ω0,2] acts tran-
sitively on the 1-faces incident to Ω0,2. On the other hand, we know that G acts
transitively on the flags of type {0,2}, implying that G acts transitively on the flags
of type {0,1,2}. Furthermore, StabG[Ω0,1,2] ∼= 2.

Flags of type {1,2,3} Given F1 ∼ F3, to have an F2 incident to both we choose e′
as one of the two edges of P that contain v1. By the discussion on flags of type {1,2}
the choice of such e′ completely determines F2. Hence there are exactly two 2-faces
incident to a flag of type {1,3}.

It is now clear that starting with StabGΩ1,3 ∼= 22, there is only one involution
that fixes e′, implying that StabGΩ1,2,3 ∼= 2 (the intersection between the pointwise
stabilizer of the two points in N(v1) that determine three blocks, and the stabilizer of
one such block).

Flags of type {0,1,3} Given faces F0 ∼ F1 and F1 ∼ F3, it is now straightforward
from Sect. 3.2.2 to see that F0 ∼ F3. Furthermore, the stabilizer of a flag Ω0,1,3 of
type {0,1,3} corresponds to the elements of StabGΩ0,1 ∼= D10 that fix a point of the
pentagon P . That is, StabGΩ0,1,3 ∼= 2.

Flags of type {0,2,3} If we now take faces F0 ∼ F2 and F2 ∼ F3, it is immediate
that v1 ∈ P and that if e′ = {v1, u}, u ∈ V6. By the discussion of the flags of type
{0,1,2}, we can observe further that the other two vertices in N(v1) ∩ P are also in
V6, implying that F0 ∼ F3.

Since the stabilizer of the flag Ω0,2, isomorphic to 22, allows us to swap the ver-
tices of e′, while StabGΩ0,2,3 does not contain such element, but does contain the
one that is a reflection on the edge P ′

1 ∩ P, the subgroup StabGΩ0,2,3 ∼= 2.
We summarize the above discussion in the following proposition.
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Fig. 9 The subgroup lattice
of Q

Proposition 4.2 Q is transitive on flags of rank 3 of each type. Furthermore, if Ωi,j,k

denotes a flag of type {i, j, k}, we have that

StabGΩ0,1,2 ∼= StabGΩ1,2,3 ∼= StabGΩ0,1,3 ∼= StabGΩ0,2,3 ∼= 2.

Chambers Given a flag Ω0,1,3 = {F0,F1,F3} of type {0,1,3}, we proceed as we
did for flags of type {1,2,3} and obtain that there are exactly two F2’s incident to
Ω0,1,3. Furthermore, StabGΩ0,1,3 ∼= 2 is generated precisely by the ‘reflection’ of P

that interchanges the two possible choices for e′ that determine F2. This implies that
StabGΩ0,1,3 is transitive on the 2-faces incident to Ω0,1,3 and also that StabGΩ0,1,2,3
is the identity.

From this we can then see that the sublattice for Q is as in Fig. 9.

Theorem 4.1 The incidence structure Q is a thin and residually connected geometry.
Its automorphism group G is isomorphic to J1. Moreover, G acts flag-transitively and
regularly on Q. Finally, the Buekenhout diagram of Q is as follows.

Proof This theorem is an immediate consequence of Theorem 2.1, the sublattice
given in Fig. 9 and the fact that J1 is the automorphism group of the Livingstone
graph. �

5 A polytope of type {5,6,5}

We finish by defining a second incidence geometry of rank 4 arising from the Liv-
ingstone graph. The vertices, edges and 2-faces of this new geometry P are defined
in the same way as those for the {5,3,5}, and we now change only the 3-faces. Since
the details that show that the given construction is indeed a regular polytope of rank 4
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Fig. 10 The subgroup lattice of
P

with automorphism group isomorphic to J1 are similar to the ones given in the above
section, for space reasons, we leave them out.

We start by defining the faces (of P ) of each rank as follows:

F0(P ) := {{e,P}|e ∈ E(G),P is the Petersen subgraph associated to e
}
,

F1(P ) := P(G), F2(P ) := P(G), F3(P ) := V (G).

Although the edges and 2-faces of P are defined using the same set of elements
as in Sect. 4, the incidences of elements of these sets will be defined in a different
way. In what follows, let Fi represent an element of Fi (P ), i = 0,1,2,3. To avoid
confusion, an element F1 ∈ F1(P ) will be denoted as {P,P1, e, {e0, e1}} while an
element F2 ∈ F2(P ) will be denoted with primes, that is, F2 = {P ′,P ′

1, e
′, {e′

0, e
′
1}}.

As each a ∈ E(G) has a Petersen graph associated to it, an element of F0(P ) can be
thought of as an edge of G , a Petersen graph P, or an edge with its respective Petersen
graph.

Let ∼ denote the incidence relation between faces. We shall say that:

F3 ∼ F0 ⇔ F3 is at distance two from F0 and they span a pentagon in W ;
F3 ∼ F1 ⇔ F3 ∈ P ∈ F1;
F3 ∼ F2 ⇔ F3 ∈ e′ ∈ F2;
F2 ∼ F0 ⇔ e′ ∈ P, P ′ ∩ P is an edge

and it is one of the opposite edges to e′ in P;
F2 ∼ F1 ⇔ e′ ∈ P,

∣
∣V (P ∩ P ′)

∣
∣ = ∣

∣V (P1 ∩ P ′
1)

∣
∣ = 1;

F1 ∼ F0 ⇔ P ∈ P and a ∈ {e0, e1}.

(1)

Note that from the definition of our faces, and the results from Sect. 3, we have
that P has 1463 0-faces, and the stabilizer of each of them is 2 × A5; 8778 1-faces,
each with stabilizer 2 × D10; also 8778 2-faces with stabilizers 2 × D10; and 266
3-faces, each with stabilizer L2(11). Moreover, G acts transitively on the faces of P
of each rank. In fact, each γ ∈ G can be seen as an automorphism of P , that is, a
bijection of the faces of P that preserves the incidences and hence the rank.

Proposition 5.1 The incidence structure P ,∼ is an incidence geometry with sublat-
tice given in Fig. 10.
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Theorem 5.1 The incidence structure P is a thin and residually connected geometry.
Its automorphism group G is isomorphic to J1. Moreover, G acts flag-transitively and
regularly on P . Finally, the Buekenhout diagram of P is as follows.
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