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Abstract In (J. Algebr. Comb. doi:10.1007/s10801-011-0302-8, 2011), O. Schiff-
mann gave a presentation of the Drinfeld double of the elliptic Hall algebra which is
similar in spirit to Drinfeld’s new realization of quantum affine algebras. Using this
result together with a part of his proof, we can provide such a description for the
elliptic Hall algebra.

We will use freely all the notations and the results of [1].

Let §~ " be the algebra generated by the Fourier coefficients of the series T (z) and
']1“6r (z) subject only to the relevant positive relations (5.1), (5.2), (5.3), (5.5) in [1]. To
avoid any confusion with the generators of £ , we denote the generators of §~ " by
U4, d €Zand @y 4,d > 1.

~t ~
We denote by £ the subalgebra of € generated by the positive (resp., negative)

~+
generators. Similarly for £*. Our goal is to prove that £ is isomorphic to € ' . The
strategy is to go through their Drinfeld doubles. But first we need to define a coalgebra

+
structure on £ .

The online version of the original article can be found under doi:10.1007/s10801-011-0302-8.
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st xt
Lemma 1.1 The map A:E — E ®E given on generators by

A(Tg (2)) = T§ (2) ® Ty (2),

ATi()=Ti@) @1+ T () ® Ti(2)
is a well defined algebra map and makes E " into a (topological) bialgebra.

Proof We need to check that the map A respects all the relations between the gen-

erators of §” +. The relations (5.1), (5.2), (5.3) are an easy routine check. We are left
to check the cubic relation (5.5). Using [1, Lemma 5.1], we only need to check the
following relation:

[[w1,—1, w11, ui0] =0.

Applying A, we obtain:

[lur,—1,upil uo] ® 14+ E + Z O0.m 0,10, @ [[U1,~1-m» U1, 1-n], 11, 1]
m,n,[>0
(1.1)

where Ec & 118E 21+ & 218€ 1.

The first term is O since it’s exactly the cubic relation. We want to prove that £
and the third term are also 0. Let us begin with E.

We will need to use the following easy lemma whose proof is omitted:

Lemma 1.2 Let A, B be two algebras over a field. Suppose we have a morphism of
algebras f : A — B.Thenker(f ® f) =AQker(f) +ker(f) ® A.

The arguments of [1, Sect. 6.3] show that 5 +[5 2] and EF[< 2] are isomorphic
(through the canonical morphism). We apply the above lemma to this morphism can :

ET L £ and we get in particular that
=00 (<21 et<2®ET <2

is still an isomorphism.

Using the fact that the map can commutes with the coproduct, we get that can ®
can(E) = 0. By the above isomorphism, we deduce that E =0.!

Let us now deal with the cubic term. For any integers m, n, [ € Z, we put

Rom,n, D)= [[w1 —14m, w1, 14n], 1]
(m,n,l)

Ut Jooks as if we cheated here because E lives only in a completion of the tensor product. However, each

graded piece of E (remember that 5 + is 72 graded) lives in an ordinary tensor product and hence we can
apply the lemma.
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where the sum is over all the six permutations of the triplet (m,n,[). So in order
to prove that the third term of the relation (1.1) vanishes, it is enough to prove that
R(m,n,l)=0forany m,n,l € Z.

Observe first that R(I,/,]) = 0 for any / € Z since it is the cubic relation (5.6)
from [1]. By symmetry, we can suppose that [ < m,n. Applying the adjoint action
of ug x—; to the relation R(l,[,1) =0, we get that R(k,[,!/) =0 for any k > [. So in
particular R(m, [, !) = 0. Now applying the adjoint action of up ,—; to R(m,[,1) =0,
we obtain R(m, n,[l) = 0 which is exactly what we wanted. O

~+
In order to prove that the algebra £ embeds in its Drinfeld double (or that the
Drinfeld double has a triangular decomposition), we need to define an inverse for the
antipode.

The inverse will take values in a completion of §~ +, and we are forced to define it
in the following way:

S (To(2)) =To(x) ",

$7HT1(2) = —T1()To() "

Lemma 1.3 The inverse of the antipode is well defined, i.e., it satisfies the relations
. =+
defining the algebra € .

Proof The only difficulty is to check the cubic relation, the other ones being easy
verifications. So what we want to prove is the following:

Res; y.w ((@yw)? (z + w) (y* — zw) Ty (w) To(w) ™' T1 () To(y) ™"
xT1(2)To(z)" ) =0

foralld € Z.
Using the commutation relations between the series T(z) and T (w), the above
expression becomes:

Res; y.w((@yw)? (z +w) (y* — zw) T1 () T1 () T1(w) To(z) ' To(y) ™"
xTo(w)_l) =0

forall d € Z.
Expliciting this last expression we obtain:

Z (ul,dflfmu],defnul,dfl — U, d—2-mW,d—nW,d-1-1
m,n,[>0

/ / /
+ Ul d—mW,d—2-nWl,d—1-1 — Wl,d—1-mW,d—nUd—2-1)O , O , Oy ; =0
(1.2)

where @(’) ,, are the coefficients of the series To(z) 1.
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. . . o5t ..
Now in order to prove that this last relation holds in £ ', it is enough to prove that
for any d € Z we have

Z (U1, d—1-mW1,d—2-n¥1,d—1 = U1, d—2-mW1,d—n¥1,d—1-I
(m,n,l)
+ UL d—mUl,d—2—nW,d—1—1 — W1 ,d—1-mWl,d—ntd—2—1) =0
where m, n,l > 0 and the sum is over the permutations of the triplet (m, n, /).
This last relation can be proved in the same way as we did for R(m, n, /) starting
from the cubic relation:
U N—1U, N—2U] N — U N—2U] NU] N—1 + U] NU N—2U] N—1]
— U N—1u Nuny—2=0
for N € Z small enough and applying the adjoint actions of 1y 4—n—n, U0,d—n—N»

and ug g—j—nN-
This finishes the proof that S~! is well defined on §~ +. 0

In [1], it is proved that 5 is isomorphic to £. It follows that there is a natural

surjective morphism 7 : 8 — 8 ~ £T and therefore a natural surjective mor-
phism on the Drinfeld doubles:

D'§~+—> DET ~E~E.
If the natural map £ Dg " is well defined then since the composition
5 — Dg * — 5

is the identity (because all the morphisms are the obvious ones) we obtain that

which is what we wanted. - ~

To prove that the natural morphism &€ — DE  is well defined, we need to check
that the relations (5.1)—(5.5) are satisfied in D§+. It is clear that (5.1), (5.3), (5.5),
and (5.2) (1 = ep) are satisfied since they involve only the positive (resp., negative)
part. We need to deal with (5.2) (] = —¢3) and (5.4). We claim that they are implied
by Drinfeld’s relations in the double. This is an easy verification.

Putting all together, we have:

Theorem 1.4 The elliptic Hall algebra £ is isomorphic to the algebra generated
by the Fourier coefficients of T1(z) and T(“)L (z) subject to the relations:

T§ ()T (w) =T (w)T§ (2),
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X1z w) Ty ()T (w) = x—1(z, w)T1(w) Ty (2),
X1z, w)T1(2)T1(w) = x-1(z, w)T1 ()T (2),

2
Res; y.w[(@yw)" (z + w) (y* — zw) T1(QT1(MT1(w)| =0, Vm € Z.
Acknowledgements I am indebted to Olivier Schiffmann for suggesting the solution to the cubic term
issue for the coproduct. I would also like to thank Alexandre Bouayad for numerous discussions on the
Drinfeld double.
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